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We consider the existence, stability and dynamics of the nodeless state and fundamental nonlin-
ear excitations, such as vortices, for a quasi-two-dimensional polariton condensate in the presence
of pumping and nonlinear damping. We find a series of interesting features that can be directly
contrasted to the case of the typically energy-conserving ultracold alkali-atom Bose-Einstein con-
densates (BECs). For sizeable parameter ranges, in line with earlier findings, the nodeless state
becomes unstable towards the formation of stable nonlinear single or multi-vortex excitations. The
potential instability of the single vortex is also examined and is found to possess similar charac-
teristics to those of the nodeless cloud. We also report that, contrary to what is known, e.g., for
the atomic BEC case, stable stationary gray ring solitons (that can be thought of as radial forms of
Nozaki-Bekki holes) can be found for polariton condensates in suitable parametric regimes. In other
regimes, however, these may also suffer symmetry breaking instabilities. The dynamical, pattern-
forming implications of the above instabilities are explored through direct numerical simulations
and, in turn, give rise to waveforms with triangular or quadrupolar symmetry.

I. INTRODUCTION

One of the most rapidly developing branches of stud-
ies in the physics of Bose-Einstein condensation is that
of exciton-polariton condensates in semiconductor micro-
cavities. Only a few years since their experimental real-
ization1–4, exciton-polariton Bose-Einstein condensates
(BECs) have become a prototypical system for studies
at the interface of non-equilibrium physics and nonlin-
ear dynamics. More specifically, the radiative lifetime of
the polaritons provides a short relaxation time scale in
the system of the order of 1–10 ps5. At the same time,
the light mass of these quasi-particles provides them with
a considerably higher condensation temperature. More-
over, the photonic component of the system only al-
lows for a short lifetime and no thermalization. Instead,
the exciton-polariton system produces a genuinely non-
equilibrium condensate, requiring the external pumping
of an excitonic reservoir, which in turn balances the po-
lariton loss5,6. This “open” nature of the system, featur-
ing gain and loss, is then responsible for its rich pattern
forming capabilities that have been recently summarized,
e.g., in Refs 7–9.

Our interest in the prototypical two-dimensional set-
ting of the system will be precisely at the level of the in-
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terplay of the intrinsic nonlinearity due to inter-particle
interactions and the gain/loss nature of the system. This
interplay has led to a wide variety of remarkable ob-
servations (and theoretical explorations) including, but
certainly not limited to, features such as flow without
scattering (analogue of the flow without friction)10, the
existence of vortices11 (see also Ref. 12 for vortex dipole
dynamics and Ref. 13 for observations thereof), persis-
tent currents as well as higher charge vortices14, collective
dynamics15, solitary wave structures such as bright16,
dark17 and gap18 solitons, and even remarkable applica-
tions such as spin switches19 and light emitting diodes20

operating even near room temperatures.

The approach that has been used most commonly in
theoretical studies of exciton-polariton BECs relies on
the analysis of two coupled evolution equations for the
polaritons and the exciton reservoir which enables their
production. In particular, the relevant model assumes
the form of two coupled complex Ginzburg-Landau (cGL)
equations describing the evolution of exciton and pho-
ton wavefunctions21–23. However, an alternative that has
been proposed9,24–26 in the case of incoherent and/or far
blue-detuned laser pumping (see, e.g., Ref. 9 and refer-
ences therein) suggests that a single cGL equation for the
macroscopically occupied polariton state may be used in-
stead; such a model yields results consistent with exper-
imental observations27 (see also Refs. 8,9).

In what follows, we will consider the case of incoher-
ent pumping and use in our study a single cGL equation.
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Our aim is to analyze in detail some of the fundamen-
tal states of the two-dimensional system. In particular,
in earlier works these states have been chiefly obtained
as attractors of the relevant gain/loss dynamics, reveal-
ing the pattern forming complexity that emerges spon-
taneously in the system. Here, our aim is not only to
revisit fundamental states (such as the nodeless cloud or
the single vortex) and explore their parametric depen-
dence by developing two-parameter bifurcation diagrams
(in parameters such as the gain strength and its spot ra-
dius); it is instead to provide a detailed view towards the
stability of these states unveiling their spectral properties
and the somewhat unusual nature of their instabilities.
In addition to these more standard states, we will also
consider states that, to the best of our knowledge, have
not been previously presented in the context of polari-
ton condensates, although they have been discussed for
atomic condensates28. A principal example of this form is
the so-called ring dark soliton (RDS) which, remarkably,
although never stable in the context of atomic BECs29–31,
can in fact be shown to be stable in suitable (gain) para-
metric regimes here. This is, effectively, a potentially
stable radial form of a Nozaki-Bekki hole32 that was pre-
viously explored in cGL contexts33, yet was not found to
be stable in these settings; instead, it was found there to
potentially initiate a form of spiral wave turbulence. Im-
portantly, this ring soliton structure was observed in po-
lariton superfluids in a very recent experiment34. We also
reveal the symmetry-breaking instabilities of this ring
soliton structure and unveil a series of solutions without
radial symmetry that may spontaneously emerge as a re-
sult of such instabilities. Among them, we highlight the
potential for states with triangular or square/rectangular
symmetry, whose parametric dependence (as stationary
states) we also explore. Finally, for all relevant states, we
offer a number of direct numerical simulations that yield
insight towards the manifestation of the instabilities and
the spontaneous emergence of patterns such as vortex
lattices, but also of non-vortical patterns without radial
symmetry. We should also note in passing here that a
similar study focusing, however, predominantly on the
existence properties of some of the solutions considered
here (rather than on their stability, which is the prin-
cipal emphasis herein), and chiefly considering the case
without a parabolic trap, was recently published35.

Our exposition is structured as follows. In Sec. II, we
offer the theoretical setup and techniques that will be
used. In Sec. III, we present the numerical results in
two subsections: the first one provides the bifurcation
structure and parametric continuations/stability analysis
of the relevant solutions (initially this is done for the
nodeless cloud and single vortex, and subsequently for
the ring and related symmetry broken states); the second
one examines the results of direct numerical simulations
results. Finally, in Sec. IV, we summarize our findings, as
well as mention some interesting directions for potential
future studies.

II. MODEL SETUP

As indicated above, we will consider the complex
Ginzburg-Landau model developed in Refs. 24–26 (see
also Ref. 9 and references therein):

i∂tψ =
{

−∇2
⊥
+ r2 + |ψ|2 + i

[

(χ(r)− σ|ψ|2)
]}

ψ, (1)

where ψ denotes the polariton wavefunction trapped in-
side a two-dimensional (2D) harmonic potential, ∇2

⊥
≡

∂2x+∂
2
y is the transverse (2D) Laplacian and r2 ≡ x2+y2.

In fact, the above equation has the form of a “modi-
fied” Gross-Pitaevskii equation (GPE), which is the tra-
ditional lowest-order mean-field model describing atomic
BECs36,37: the differences of Eq. (1) from the traditional
form of the GPE can be traced in the presence of (i) the
spatially dependent gain term with

χ(r) = αΘ(rm − |r|), (2)

where Θ is the step function generating a symmetric spot
of radius rm and strength α for the gain, and (ii) the non-
linear saturation loss term, of strength σ. Estimates of
the relevant physical time and space scales, as well as
physically relevant parameter values, are given, e.g., in
Ref. 24. It is relevant to mention that although our re-
sults below are given in the context of Eq. (1), we have
ensured that similar phenomenology arises in the model
of Refs. 21–23, for suitable parametric choices. In that
light, the phenomenology that is reported in this work
should be broadly relevant to (2D) polariton BECs in-
dependently of model specifics. We also note in passing
that Ginzburg-Landau-type models, similar to the one
of Eq. (1) —i.e., including a localized gain term (but,
in most cases, in the one-dimensional setting and with-
out the external potential)— were recently studied in
the context of nonlinear optics38 and in the physics of
magnon condensates39.
In what follows, we will consider the stationary

solutions of this 2D model, in the form ψ(r, t) =
ψ0(r) exp(−iµt) where µ is the dimensionless chemical
potential, and the stationary state ψ0(r) is governed by
the elliptic partial differential equation of the form:

µψ0 =
{

−∇2
⊥
+ r2 + |ψ0|

2 + i
[

(χ(r)− σ|ψ0|
2)
]}

ψ0.
(3)

Importantly, an additional population balance con-
straint, i.e., an overall balancing of gain and loss within
the 2D domain, has to be enforced: this condition is
dN/dt = 0, where the norm N =

∫

d2r|ψ0|
2 represents

the number of polaritons. It is straightforward to show
that the balance condition can be readily expressed as:

∫

d2r (χ(r)− σ|ψ0|
2)|ψ0|

2 = 0. (4)

It then follows that the above equation self-consistently
selects the particular value of the chemical potential once
the other parameters (i.e., α, σ, and rm) are fixed. We
note in passing the significant difference of this trait from
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the Hamiltonian atomic BEC case, where there exist
monoparametric families of solutions as a function of µ
(which is a free parameter there rather than one depen-
dent on the remaining gain/loss parameters). Hence, in
the computation of the system, it is critical to enforce the
condition (4), as this condition will determine in addition
to the profile ψ0, the associated value of µ.
Once stationary solutions of the differential-algebraic

system of Eqs. (3)-(4) are identified, their linear (spec-
tral) stability is considered by means of a Bogolyubov-de
Gennes (BdG) analysis36,37. Specifically, small perturba-
tions (of order O(δ), with 0 < δ ≪ 1) are introduced in
the form

ψ(x, y, t) = e−iµt [ψ0(x, y) + δ p(x, y, t)] , (5)

with

p(x, y, t) ≡ a(x, y)e−iωt + b⋆(x, y)eiω
⋆t. (6)

Then, the ensuing linearized equations are solved to
O(δ), leading to the following eigenvalue problem:

ω

(

a(x, y)
b(x, y)

)

=

(

L1 L2

−L∗

2 −L∗

1

)(

a(x, y)
b(x, y)

)

, (7)

for the eigenfrequency ω and associated eigenvector
(a(r), b(r))T , and L1 and L2 are the following operators:

L1 = −µ−
d2

dx2
−

d2

dy2
+ r2 + 2(1− iσ)|ψ0|

2 + iχ(r),

L2 = (1− iσ)ψ2
0 .

When the eigenfrequencies are found to possess a positive
imaginary part, then, per the ansatz of Eq. (6), an insta-
bility is expected to arise. On the other hand, if all the
spectrum has Im(ω) < 0, then the corresponding struc-
ture is spectrally stable. When a structure is found to
be unstable, we conduct direct numerical simulations of
Eq. (1) in order to explore the evolution of the instability
and the state towards which the dynamics is attracted.
We now proceed to study the existence, stability and

nonlinear dynamics of the different configurations of in-
terest, namely the nodeless cloud, the single-charge vor-
tex and the ring dark soliton-like waveform, as well as of
some symmetry-breaking structures that result from the
evolution dynamics of these states, when unstable.

III. NUMERICAL RESULTS

A. Existence and Spectral Stability

1. Nodeless Cloud and Central Vortex

We performed a search of nonlinear excitations for dif-
ferent values of the parameters. In what follows, we chose
to keep σ = 0.35 (following the work of Ref. 40) fixed,
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FIG. 1: (Color online) Stability domains of nodeless cloud
(NC) , and central vortex (CV) soliton-like solutions for
σ = 0.35. The stable domains correspond to the regions
between the curves. In a wide range of values within the
two-dimensional parameter space, these solutions co-exist and
may even be concurrently stable. Circles indicate points
shown in following figures for NC and CV solutions. All quan-
tities shown here, and in the figures that follow, are dimen-
sionless. Curves in this figure (as well those in Figs. 5 and 7
below) were smoothed from data with stepsizes of ∆α = 0.1
and ∆rm = 0.1, or lower.

and vary both the gain strength, α, and the gain spot
size radius, rm, in order to develop two-parameter bi-
furcation diagrams characterizing the stability properties
of the different states of interest. The relevant solutions
were numerically obtained by using a (modified) Newton-
Raphson method41. This is done in order to identify (and
perform continuations on) solutions of Eq. (3), together
with condition (4). This system forms a partial differen-
tial algebraic set of equations (PDAE).
We start by exploring the more fundamental solution

profiles, namely the nodeless cloud (NC) and the central
vortex cloud (CV).
It would be relevant to recall here, for comparison pur-

poses, the stability properties of these waveforms in the
Hamiltonian case of α = σ = 0. There, the NC is the
ground state of the system and is neutrally stable for all
parameter values36,37. Similarly, and although it is an
excited state of the system (bearing an “anomalous” or
“negative energy” mode), the CV is generically stable, in-
dependently of the chemical potential (or effectively the
number of atoms) of the system42.

The results of the scan of the parameter space are rep-
resented in Fig. 1, where we show the limits of stability
of the NC and CV. Interestingly, it can be observed that
while there are wide parametric regimes where the NC is
stable, there are also large intervals of parameters where
this solution is, in fact, unstable, contrary to what is
known to be the case in atomic BECs. Furthermore, the
stability region for the NC configuration is bounded both
from above and from below, unlike the one-dimensional
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FIG. 2: (Color online) Density and phase profiles of nodeless
cloud configurations (NC, top two rows) and central vortex
configurations (CV, bottom two rows) for α = 2.0 and σ =
0.35. The values of α and rm used correspond, left to right,
to points A1-D1 in Fig. 1. Dash-dotted circles, from here on,
indicate the boundary of the gain spot.
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FIG. 3: (Color online) Eigenfrequencies (ω = ωr+i ωi) associ-
ated with the spectral analysis of the NC (top) and CV (bot-
tom) waveforms for the same parameter values as in Fig. 2.
Notice how the instability of both the NC and the CV in these
cases emerges from a band of continuous spectrum crossing
into the unstable half-plane, as rm is increased. This predis-
poses us towards a “dramatic” instability evolution that will
significantly modify the background state and will result, as
we will see below, in the formation of vortex lattice configu-
rations.

(1D) scenario of Ref. 40 where the stability region is only
bounded above. Since there is loss everywhere, as the
spot size goes to zero there is only enough gain to sus-
tain a progressively smaller condensate, until it disap-
pears in the limit of rm = 0. On the other hand, also
the CV features wide intervals of stability, but also ones
of instability. It can, in fact, be seen that the feature
identified as “stability inversion” in Ref. 40 for the case
of 1D polariton BECs is still present here. Namely, there
are regimes where the NC is stable but the CV is not,
but also —in reverse— there are regimes where the CV
is stable, but the NC is not.
In Fig. 2 we show the density and phase profiles of the

NC (top two rows) and CV (bottom two rows) solutions
for varying rm. It is clear that as the radius of the drive
increases, so does the size of the condensate. This is in
contrast to what is the case with atomic BECs, where
the size of the NC is controlled solely by the (parabolic)
trap: here, the gain (and its interplay with the nonlinear
loss/saturation) plays a critical role in the size of the
waveform. For the CV solutions of the bottom two rows,
notice the characteristic 2π phase circulation.

We now turn to an examination of the stability of the
different configurations. The spectral planes (ωr, ωi),
where the subscripts r and i denote, respectively the
real and imaginary parts of the eigenfrequency, for the
NC and the CV configurations are illustrated in Fig. 3.
There, it is evident that except for a weak instability
arising through Hopf bifurcations for small values of rm,
for most intermediate values of rm, both the NC and
the CV configuration are stable. The predominant in-
stability that arises for both configurations is the one for
higher values of the gain radius rm in this continuation.
In that case, the instability arises in a less customary (for
such structures, at least in their Hamiltonian form) way:
entire segments of the continuous spectrum cross over
the axis of ωi = 0 (see right panels of Fig. 3) and lead to
bands of unstable eigenfrequencies. It is, thus, in a sense,
perhaps expected that the entire “background state” of
the system will be highly unstable towards a fundamen-
tally different pattern, an expectation that indeed we will
see to be confirmed by the direct numerical simulations
featuring the instability evolution of these states.

2. Gray Ring Solitons and Triangular States

In addition to the more fundamental solutions explored
above, we have identified a host of previously undis-
closed, to the best of our knowledge, solutions of the 2D
polariton BEC system34. Arguably, the most remark-
able among them is the gray ring (GR) soliton, some
typical density profiles of which are shown in Fig. 4.
The depicted profiles correspond to the points shown as
(green) dots in the 2D existence/stability (rm, α)-plane
(i.e., width and amplitude of the parametric gain) shown
in Fig. 5. The plane itself reveals some of the interesting
potential of such solutions, including the possibility of
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(bottom row) of gray ring (GR) solitons, and triangular so-
lutions (TS) for the system parameters marked by (green)
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FIG. 5: (Color online) Existence domains of gray ring (GR)
solitons and triangular solutions (TS) for σ = 0.35. Solutions
are stable except that the GR is unstable where the TS ex-
ists. For the distinction between GR solitons arising from the
Hamiltonian BEC limit (BEC-GR) and those emerging from
the NC (NC-GR), see details in the text.

symmetry-breaking bifurcations giving rise to a new tri-
angular form of solutions (denoted as TS). An additional
remarkable feature is that while such ring dark solitons
were proposed in both atomic condensates29–31 and in
cGL gain/loss systems (as radial Nozaki-Bekki holes) in
both contexts they were found to be unstable and thus
break up into more prototypical coherent structures, in-
cluding vortices and spiral waves, respectively. We now
turn to a more detailed examination of their properties
including the existence and stability domains, also high-
lighting similarities and importantly differences from the
above atomic case, including the generically gray nature
of such excitations in our polariton setting.
For relatively low values of the gain spot size (rm <

1.3) the GR soliton is always unstable for α < 4.0, but
can be stable above that gain value. It coexists with the

NC over most of this spot size range.

Above that spot size value, the GR soliton solution can
only be identified within the parametric range indicated
by the curves in Fig. 5.

Interestingly, what is illustrated by the parametric
plane is a progressive convergence of the GR and NC
solutions, as represented by the label NC-GR in Fig. 5.
This gradual “merging”, at the solution profile level, is
signaled by the progressive increase of the phase variation
of the NC until it reaches a value around π. Recall that
from the results presented for the NC branch (Fig. 2),
the phase varies by less than π/2.

The admittedly somewhat arbitrary distinction be-
tween the NC branch and the GR one (and their hybrid
NC-GR form) herein was based on whether there is a
dip in the density profile (NC-GR) or not (NC). In par-
ticular, we observe that as the amplitude α of the gain
grows, the NC becomes progressively more modulated
(as already seen and explained in Ref. 24).

To be more precise, we point out that the distinction
between accordingly termed BEC-GRs and the previ-
ously discussed NC-GRs is obtained through the non-
monotonic dependence of their dip versus the gain radius
rm. More specifically, for GRs, the depth of their dip
(measured as the difference of the density at the center
minus the density at the dip) is found to increase with
increasing rm, while NC-GRs are instead characterized
by a decreasing dip (and NCs by a non-existent one). In
reality, these solutions seem to seamlessly merge as the
critical points identified are traversed, however, the above
distinctions were given in order to better appreciate the
“origin” of the different solutions.

In fact, there is an additional connection of such GR
soliton solutions with their BEC analogues discussed ear-
lier in Refs. 29–31. In particular, as we approach the limit
of weak and narrow drive (α→ 0 and rm small), the so-
lution increasingly resembles the BEC ring dark soliton
(RDS) of the above works. This is illustrated in panels
A and C of Fig. 4 where, in addition to the polaritonic
GR soliton profile, the corresponding Hamiltonian case
is also shown for the same chemical potential. As can
be seen, the dip in both cases occurs at the same po-
sition, that is distinct from the gain spot radius. This
(and the overall quality of the density comparison) is a
strong indication of the common origin of this solution
with its Hamiltonian sibling. Hence the label BEC-GR
in Fig. 5, and in the discussion above. Recalling that
the RDS in the Hamiltonian case is always unstable, we
identify herein a critical role of the gain along with the
saturating loss terms in inducing a limited region where
this GR soliton can be stabilized.

Thus, the origin of the NC and GR solutions is indeed
distinct, as in the BEC-GR case, the solutions physically
emerge as a result of the interplay of the linear potential
and its modes with the effective nonlinearity of the sys-
tem. On the other hand, in the NC-GR case, the gain
(and loss) structure of the system plays a critical role in
inducing a flux pattern that, in turn, creates the observed
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FIG. 6: (Color online) Spectra pertaining to the GR soliton
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dip in the density profile.

In the light of our distinction, the density profiles ob-
served in Ref. 24, that exhibit a gradual deepening of the
shoulder (e.g. as α, the strength of the gain, is increased)
are still NCs and not GRs. Thus, the former observations
can be considered “precursors” of our GR states (but not
examples of ones such).

An additional comment should be made here about
the gray nature of these rings. Contrary to what may
be expected from their BEC siblings featuring a phase
shift of π when stationary (and associated with a finite
velocity when they are “gray”), in the polaritonic case,
the rings are generically found to be gray. This is, in fact,
reminiscent of what was recently found also in the context
of complex PT -symmetric potentials, e.g., in the work of
Refs. 43,44. In both cases, the origin of the phenomenon
is the same: in particular, the complex nature (of the
potential in the PT -symmetric case and of the gain/loss
structure in the cGL setting herein) of the terms in the
equation produce a genuinely complex solution with a
non-trivial phase structure and an associated “particle
flux” along the stationary spatial profile. These features
are absent in the BEC case, where the stationary RDS
solution is genuinely real.

We note in passing that we found another radially sym-
metric soliton solution resembling the GR soliton. This
solution has its dip closer to the gain spot size, but it was
never found to be stable. It is therefore related to this
length scale, contrary to what is the case for the GR so-
lutions focused upon here. Due to the generic instability
of the waveform apparently slaved to the gain, we do not
explore it further here.

The spectral properties of the GR soliton state have
been found to be significantly different than those of the
previous two fundamental states (NC and CV). In par-
ticular, as can be seen in Fig. 6, the instability of this
state as rm is increased stems from the fact that eigen-

frequencies cross the origin of the spectral plane. This
predisposes us towards a fundamentally different instabil-
ity, possibly arising through a symmetry breaking pitch-
fork bifurcation. We will see also how this expectation
is manifested in the direct numerical simulations of the
following section. This symmetry breaking bifurcation is
substantiated in the parametric plane of Fig. 5 where a
region has been denoted under TS (triangular solutions).
As the curve outlining this region is crossed, the BEC-GR
soliton solutions undergo the above mentioned pitchfork
bifurcation and spontaneously give rise to such TS. The
TS states are generically found to be stable, a feature
that will render them natural attractors for the BEC-
GR soliton unstable dynamics in the parametric range of
TS existence, as will be corroborated in the dynamical
evolution section below.

3. Quadrupoles

In the same spirit as the triangular solutions identi-
fied above, we have also been able to find solutions with
quadrupolar symmetry. These solutions are especially
relevant below the region of stability of the NC, as well as
that of the (BEC-)GR. Such solutions are characterized
by four dips of the density, at which locations the phase
portrait shows a winding of 2π (Fig. 8). This type of so-
lution is also reminiscent of a corresponding quadrupole
(vortex) solution in the realm of atomic BECs42. In the
latter setting, the solutions are critically induced by the
parabolic trap, created from the linear limit thereof (as a
complex combination of two of the second excited states
of the 2D quantum-harmonic oscillator).
The regions of stability of the quadrupoles in the two

parameter plane of (α, rm) are shown in Fig. 7. Different
classes of instability can be found, leading to exponen-
tial, oscillatory or combined decay. Nevertheless, islands
of stability are also identified within which as we will see
below the quadrupolar state can offer a dynamical at-
tractor starting, e.g., from GR soliton initial data, but
also for both the NC and the CV.
As the gain strength grows, we find that the

quadrupole exact solution profiles tend to a more elon-
gated profile along a symmetry axis, reaching a form
where the four dips nearly coalesce in two. Neverthe-
less, the phase (and the vorticity, not shown) clearly show
that the four vortices of alternating positive and negative
charge are still separate.

B. Dynamical evolution

As a way of confirming the stability results found
above, and also of exploring the pattern forming out-
comes of the dynamical evolution of the identified insta-
bilities, we numerically integrated the full equation of
motion, namely Eq. (1). Our initial conditions consisted
of profiles in the form of the above obtained exact (up
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FIG. 7: (Color online) Stability domains of quadrupole so-
lutions (QS), for σ = 0.35. The different letters denote case
example profiles illustrated below in Fig. 8.

A

y

−2

0

2

0.7

1.4

y

−2

0

2
−π

0

π

B

3

6

−π

0

π

C

2.5

5

−π

0

π

D

1.3

2.6

−π

0

π

E

y

−2

0

2
0.5

1

x

y

−2 0 2

−2

0

2
−π

0

π

F

5

10

x
−2 0 2

−π

0

π

G

6

12

x
−2 0 2

−π

0

π

FIG. 8: (Color online) Density and phase profiles of
quadrupole solutions (QS) for the values of α and rm cor-
responding to points A-G in Fig. 7.

to a prescribed numerical tolerance) solutions, suitably
perturbed to accelerate the decay, if unstable, or confirm
that it returns to the attracting solution, if stable. The
perturbation added for unstable waveforms was in the
form of the profile of the eigenvector with the most un-
stable eigenfrequency. For the solutions expected to be
stable, random noise was used. The latter results are not
shown (they were only used to confirm the spectral stabil-
ity results), but it was found that the solutions remained
unaltered after propagation for time up to t = 1000.

Examples of the unstable scenarios are presented
below45. The results presented correspond again to
points of the set A1–D1 (see Fig. 1) that are unstable
(for each of NC and/or CV); other values lead to a qual-
itatively similar behavior. Figure 9 illustrates the case
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FIG. 9: (Color online) Dynamical evolution of a NC state for
parameter values α = 2.0 and rm = 2.8, which is just outside
of the stability region (see point C1 in Fig. 1).
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FIG. 10: (Color online) Dynamical evolution of a NC state
for parameter values α = 2.0 and rm = 3.2 (see point D1 in
Fig. 1). The resulting configuration of 4 vortices is rotating.

where the NC has just become unstable (for rm = 2.8,
while the stability boundary for this value of α = 2 is
rm = 2.7). In this case, we can observe that the NC be-
comes unstable to an azimuthal modulation with eight-
fold symmetry and eventually, upon the nonlinear evolu-
tion of the instability, decays to a pair of rotating vor-
tices. A further increase of rm = 3.2 results in a similar
evolution (cf. Fig. 10), but the end result is a rotating lat-
tice of four vortices. Here we see a different initial sym-
metry in the dominant unstable mode (which appears to
create a hexagonal modulation; see, e.g., the snapshots at
t = 10 and t = 20), but also a nonlinear intermediate step
in the evolution (see, e.g., snapshot at t = 30). It is nat-
urally expected that, as rm increases and the polariton
condensate accordingly grows, more vortices can be “ac-
commodated” therein, i.e., brought in the domain from
the outside, and hence larger lattices created; this is in
line also with the observations of Ref. 24. The evolution
typically starts with a modulation around the edge of the
cloud that starts rotating. Comparison with the profile
of the most unstable eigenvector suggests that the latter
is indeed responsible for this (increasing) modulation. It
eventually leads to one or more vortices spiralling (from
the periphery) to the central region of the cloud until a
stable and symmetric arrangement of vortices is achieved.
The number of vortices (in the parameter range studied)
can vary from one up to 21, either in a ring shape, with
one more at the center, or as a lattice when their number
grows.
The evolution of the CV solution features a similar be-
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FIG. 11: (Color online) Dynamical evolution of a CV state
for parameter values α = 2.0 and rm = 1.0, which is below
its stability region (see point A1 in Fig. 1).
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FIG. 12: (Color online) Dynamical evolution of a CV state
for parameter values α = 2.0 and rm = 3.2, which is just
outside (above) its stability region (see point D1 in Fig. 1).
The resulting configuration appears to ultimately lead to a
rotating square (cf. Fig. 10 for the same parameter values).

havior to the NC for parametric values beyond the upper
stability boundary of this solution. In the region below
the lower stability boundary, where the NC is generi-
cally stable, the CV typically decays to the NC (see, e.g.,
Fig. 11). Above the higher stability boundary of the
CV solution, the vortex decays to a lattice of vortices as
shown in Fig. 12. It is interesting to note that the original
evolution of the instability results in more vortices within
the cloud than the resulting asymptotic state, so there is
a “distilling” process taking place, which finally results
in the rotating square configuration observed at longer
times (cf. for the same parameters, the asymptotically
favored configuration of Fig. 10).
We now turn to the dynamical results for the evolution
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FIG. 13: (Color online) Dynamical evolution of a GR soliton
state for parameter values α = 4.2 and rm = 1.3, which is
above its stability region. The final excitation is a NC state.
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FIG. 14: (Color online) The top two rows show the dynamical
evolution of a GR soliton state for parameter values α = 4.2
and rm = 0.7, which is below its stability region. The final
excitation features axial symmetry and is a QS. The bottom
two rows show the dynamical evolution of a GR soliton state
for parameter values α = 6.9 and rm = 0.8, which is also
outside its stability region. Here, however, the final excitation
features triangular symmetry (TS).

of the GR soliton solutions. Above its stability region,
the GR soliton typically decays towards the NC, which
for this parametric region is well within its own range
of stability in the (α, rm) plane; this is shown, e.g., in
Fig. 13, for α = 4.2 and rm = 1.3. In contrast, below
the lower stability threshold of the GR, the latter may
decay to different solutions depending on the exact pa-
rameters (and perturbations) used. An example of a rel-
evant possibility is shown in the top two rows of Fig. 14
for α = 4.2 and rm = 0.7. This case reveals the possi-
bility that the symmetry breaking instability of the GR
soliton (cf. the discussion of the previous section) may
result into a quadrupolar configuration of the type ex-
plored in the previous section. On the other hand, the
bottom two rows of Fig. 14 illustrate a different scenario
for the parameter set α = 6.9 and rm = 0.8, which can
be identified as being within the region of the symme-
try breaking instability towards triangular solutions. In
particular, the symmetry breaking spontaneously mani-
fests itself dynamically resulting towards a configuration
with triangular symmetry, as may be expected based on
our existence/stability earlier findings. Solutions with
this symmetry were previously identified in other con-
texts, e.g., Ref. 46. Nevertheless, these results, and the
absence of vortex lattice formation in this case, are in
accordance with the results of the stability analysis of
the GR soliton presented above and its fundamentally
different instability mechanism in comparison to the NC
or CV configurations.
The evolution of the QS solutions shows a range of be-

haviors, from a decay towards a NC (for points D and G
in Fig. 7) to rotating lattices of vortices (A, B, C, and F).
Among these, we highlight, in particular, the scenario A
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FIG. 16: (Color online) Dynamical evolution of a QS for pa-
rameter values α = 2.5 and rm = 0.9 (not in Fig. 7). It
corresponds to an oscillatory instability.

(α = 0.2, rm = 2.5), shown in Fig. 15, where the final ro-
tating cloud is highly distorted, as if more vortices were
trying to join the 3 already in the central region of the
cloud. It can also display an oscillatory instability, as in
Fig. 16 (see relevant movie provided in the Supplemen-
tary Material, where this instability is more transpar-
ently demonstrated), where the two dips at the extrema
of the axial central lobe perform an oscillation, each pair
with opposite phase than the other. Yet another situa-
tion is exemplified in Fig. 17, where a lattice of vortices
results, but unlike all other so far shown herein the inner
vortices rotate at a different rate than the outer ones.
Finally, the case F (see Fig. 18) results in an excitation
where a lattice with 7 vortices (one at the center and an
hexagon of vortices around it) rotates very slowly.

We should remark here that the vortex lattices (with
different numbers of vortices) observed herein through
the unstable dynamical evolution of our states corre-
spond to the same states as reported earlier in Ref. 24
and further elaborated, e.g., in Ref. 26. Nevertheless,
our aim here is to show that such states arise from the
unstable dynamics of not only fundamental states (such
as the NC and CV) but also from more complex states
such as the quadrupole ones. In addition, our scope is
to also show that in regimes of drive where such lattices
may exist, it may also be possible to dynamically result
in other states including e.g. the ones with triangular
symmetry (as, e.g., in Fig. 14).
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FIG. 17: (Color online) Dynamical evolution of a QS for pa-
rameter values α = 1.0 and rm = 3.5 (see point labeled B in
Fig. 7). The final state is a rotating lattice of 10 vortices in a
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IV. CONCLUSIONS

In the present work, motivated by the intensely stud-
ied theme of polariton condensates, we offered a detailed
view of the existence and stability, as well as the non-
linear dynamical properties of some prototypical states
appearing in such systems. These states included fun-
damental earlier revealed waveforms such as the nodeless
cloud (NC) and the cloud with a central vortex (CV). For
these, we presented a systematic two-parametric analysis
of their stability properties and how these are reflected
in the corresponding nonlinear dynamics.
The fundamental (especially in the atomic BEC case)

nodeless state was found to be stable only in a limited
range of parameters. The most simple excited state, the
central vortex state (which is again generically robust in
atomic BECs), was found to, in fact, potentially exist as
a stable object for parameters where the NC is no longer
stable. Vice versa, the nodeless cloud was also stable
in regimes where the vortex was not, presenting a 2D
generalization of the stability inversions reported earlier
in 1D counterparts of the model40. Outside their sta-
bility ranges, they were both found to decay towards a
series of rotating vortex lattices, in line with earlier nu-
merical observations24. However, here the precise (Hopf)
nature of the instability was elucidated and the unusual
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associated morphology featuring the destabilization of an
entire band of continuous spectrum eigenfrequencies was
revealed.
As regards vortices, it should also be noted that we

attempted to identify doubly charged vortex solutions,
however, we were unable to obtain spectrally stable such
structures in the realm of the present model, i.e., such
states were identified yet were always found to be dy-
namically unstable.
Such fundamental nonlinear wave states are expected

to exist in this system, at a qualitative level, due to the
interplay of dispersion and effective nonlinearity (due to
the polariton-polariton interaction), as well as that of
gain (due to generation of the polaritons from the exci-
ton reservoir) and loss (due to the finite polariton life-
time). However, in our view, it is much harder to quali-
tatively explain the stability features observed, although
some relevant speculation can be offered. For instance,
it appears that the vortices can only be stabilized when
rm (the radius of the gain spot) is sufficiently large, i.e.,
it should be able to encompass a vortex core and any-
way should be larger than the healing length [of O(1)
in our setup]. On the other hand, for the NC to be ro-
bust, we need sufficiently high gain (so as to balance the
dissipation-induced loss), as well as a sufficiently large
radius of gain drive rm so as to favor the original radial
NC structure.
In addition to these simpler structures, we also ex-

plored more elaborate ones, especially in the form of a
gray ring (GR) soliton structure, which was connected
both to the NC but also to the ring dark soliton state of
atomic BECs. The inclusion of gain and loss in our com-
plex Ginzburg-Landau-like equation was found to play
a critical role in the potential stabilization of such ring
states. Their generic gray structure was also justified
by the flux induced by the gain/loss. Aside from iden-
tifying the stability islands of such GR soliton states,
their potential dynamical instabilities and associated bi-
furcations were also revealed. These were shown to lead
to symmetry-breaking events generating (and asymptot-
ing to) solutions of potentially triangular or quadrupolar
structure. These states, in turn, were also identified as
exact stationary solutions and their own two-parametric
stability properties were explored.
A different set of gray ring structures was found but

never stable, from what we could determine. This solu-
tion is mainly characterized by a central peak lower than
the outer ring. It exists in regions in parameter space
where other solutions exist stably. Thus for certain re-

gions of parameters it is possible to find a NC, a GR and
this other, always unstable gray ring soliton.

All the results reported were for the parameter σ =
0.35, as stated before. Both from our previous results
in the 1D setting, and from intuition and case examples
considered, we expect that extending the continuation
to other (nearby) values of σ yield qualitatively similar
results.

There are many directions towards which this explo-
ration could further proceed. On the one hand, in the
setting with the parabolic trap, it is interesting to ex-
plore the detailed stability of vortex clusters and pro-
gressively growing configurations towards vortex lattices.
Understanding these clusters is still a very active area of
research in atomic BECs47; extending relevant (vortex)
particle approaches (or distributional ones48) in order to
understand the properties and internal modes (in analogy
to the Tkachenko modes of atomic BECs49) of the sys-
tem of a few or of many vortices, would be of particular
interest in its own right. Yet another interesting direc-
tion, given the significant progress in imposing potentials
of different kinds including periodic ones and identifying
states critically supported by them (such as the gap soli-
tons of Ref. 18), would be to explore the interplay of
such clusters and lattices with external potentials and
their structural phase transitions between different ener-
getically preferred states as, e.g., the lattice parameters
of an external periodic potential are varied50. These and
other related topics are presently under consideration and
will be reported in future publications.
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cobino, A.V. Kavokin, and A. Bramati, Nature Photonics
4, 361 (2010).

20 S.I. Tsintzos, N.T. Pelekanos, G. Konstantinidis, Z. Hat-
zopoulos, and P.G. Savvidis, Nature 453, 372 (2008).

21 M. Wouters and I. Carusotto, Phys. Rev. Lett. 99, 140402
(2007).

22 M. Wouters, I. Carusotto, and C. Ciuti, Phys. Rev. B 77,
115340 (2008).

23 C. Ciuti and I. Carusotto, Phys. Stat. Sol. (b) 242, 2224
(2005).

24 J. Keeling and N.G. Berloff, Phys. Rev. Lett. 100, 250401
(2008).

25 M.O. Borgh, J. Keeling, and N.G. Berloff, Phys. Rev. B
81, 235302 (2010).

26 M.O. Borgh, G. Franchetti, J. Keeling, and N.G. Berloff,
Phys. Rev. B 86, 035307 (2012).

27 G. Tosi G. Christmann, N.G. Berloff, P. Tsotsis, T. Gao,
Z. Hatzopoulos, P.G. Savvidis, and J.J. Baumberg, Nature
Phys. 8, 190 (2012).

28 D.J. Frantzeskakis, J. Phys. A 43, 213001 (2010).
29 G. Herring, L.D. Carr, R. Carretero-González, P.G.
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