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Abstract.

We study the dynamics of matter waves in an effectively one-dimensional Bose-

Einstein condensate in a double well potential. We consider in particular the case when

one of the double wells confines excited states. Similarly to the known ground state

oscillations, the states can tunnel between the wells experiencing the physics known for

electrons in a Josephson junction, or be self-trapped. As the existence of dark solitons

in a harmonic trap are continuations of such non-ground state excitations, one can

view the Josephson-like oscillations as tunnelings of dark solitons. Numerical existence

and stability analysis based on the full equation is performed, where it is shown that

such tunneling can be stable. Through a numerical path following method, unstable

tunneling is also obtained in different parameter regions. A coupled-mode system

is derived and compared to the numerical observations. Regions of (in)stability of

Josephson tunneling are discussed and highlighted. Finally, we outline an experimental

scheme designed to explore such dark soliton dynamics in the laboratory.
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1. Introduction

One fundamental physical phenomenon observable on a macroscopic scale is the

Josephson tunneling (JT) of electrons between two superconductors connected by a weak

link, predicted by Josephson in 1962 [1]. It is due to the macroscopic wave functions

with global phase coherence that have a small spatial overlap. The first observation of

this effect was reported by Anderson et al. [2].

Since the only requirement for the occurrence of JT is a weak coupling, other weakly

connected macroscopic quantum samples were also expected to admit such tunneling.

For neutral superfluids, JT has been observed in liquid 3He [4] and 4He [5]. In the context

of Bose-Einstein condensates (BECs) [6, 7, 8, 9, 10, 11], the prediction was made by

Smerzi et al. [12, 13, 14], followed by the experimental observation where a single [15, 16]

and an array [17] of short Bose-Josephson junctions (BJJs) were realized. The idea of

BJJs has also been extended to a long BJJ [18, 19], which mimics long superconducting

Josephson junctions. Such a junction can be formed between two parallel quasi one-

dimensional BECs linked by a weak coupling. Atomic Bose-Josephson vortices (BJVs)

akin to Josephson fluxons in superconducting long Josephson junctions [20] have been

proposed as well [18, 19]. Moreover, it was emphasized that a BJV can transform from

and to a dark soliton, due to the presence of a critical coupling at which the two solitonic

structures exchange their stability.

The study of JT in BECs considers the tunneling of the Thomas-Fermi cloud, i.e.

a continuation of the ground state. The tunneling dynamics has been explained using

a two-mode approximation [12, 14]. The validity of the approximation has been shown

in [34, 35]. To improve the applicability regime of such an approximation, modified

coupled-mode equations have been presented in, e.g., [30, 31, 32, 33].

It is important to note that in addition to the ground state, nonlinear excitations,

such as dark matter waves, can also be created in BECs. Dark soliton dynamics in

BECs with single well potentials has been studied theoretically (see a review [22])

and experimentally [23, 24, 25, 27]. Interesting phenomena on the collective behavior

of a quantum degenerate bosonic gas, such as soliton oscillations [24, 25, 26] and

frequency shifts due to soliton collisions [27] were observed. The evolution of solitons

is of particular interest as the extent to which their behavior can be described in a

particle picture is an open question and merits further experimental and theoretical

investigation. A combination of soliton physics with the dynamics at weak links within

double well potentials will shed light on the collective behavior of excited Bose-Einstein

condensates in non-trivial potentials. In this paper, we present an analysis of the

dynamics of dark matter waves in a double well potential. Static properties of such

a configuration have been recently studied in [28, 47]. Here, we show that dark matter

waves can also experience stable quantum tunneling between the wells. This implies

that localized excitations in higher dimensions, such as vortices, may also experience

JT. The (in)stability is obtained using numerical Floquet analysis, which is applied

for the first time in the study of JT. The numerical calculations are necessary as the
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stability of the observed tunneling is not immediately obvious. This is especially the

case because dark solitons are higher-order excited states. The possibility that modes

with lower energy will be excited is not ruled out by a coupled-mode approximation.

The present paper is outlined as follows. In Section 2, we discuss the governing

equation used in the current study. We then solve the equation numerically, where

we obtain stable and unstable Josephson tunneling through a numerical path following

method. The stability analysis is performed through calculating the Floquet multipliers

of the solutions. In Section 3, we derive a coupled-mode approximation describing the

tunneling dynamics. Good agreement between the numerics and the approximation is

obtained and shown. In Section 4 we present a possible experimental setup to explore

the results reported herein. Finally we conclude the work in Section 5.

2. Josephson tunnelings

2.1. Mathematical model

We consider the normalized nonlinear Schrödinger (NLS) equation modelling the BECs

(see, e.g., [29] for the scaling)

iψt + ψxx + s|ψ|2ψ − V (x)ψ = 0, (1)

where ψ is the bosonic field, and t and x is the time and position coordinate, respectively.

The parameter s = ±1 characterizes the attractive and repulsive nonlinear interaction,

respectively, and V (x) is the external double well potential, which for simplicity is taken

as

V =
1

2
Ω2(|x| − a)2, (2)

with the parameters Ω and a controlling steepness and position of the two minima. The

total number of atoms N in the trap is conserved with

N =

∫ +∞

−∞
|ψ|2 dx. (3)

Throughout the present paper, we set s = −1, i.e. we consider repulsive interactions

between particles.

For non-interacting particles (s = 0) in a single well potential (a = 0), the governing

equation (1) can be solved analytically to yield ψn = e−iEntϕn(x), where ϕn satisfies

ϕn+1 = (
Ω
4
√
2
x−

4
√
2

Ω
∂x)ϕn, n = 0, 1, 2, . . . , (4)

with

ϕ0 = e
− Ω

2
√

2
x2

,

and the chemical potential En is given by

En =
1

2

√
2(2n+ 1)Ω.
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The excitations ϕ0 can be continued to nonzero s, which has been considered in,

e.g., [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46] (see also [48] for discussions on stationary

solutions of the NLS equation with a multi-well potential that do not reduce to any of

the eigenfunctions of the linear Schrödinger problem). The existence and the stability

analysis of continuations of ϕn in a double-well potential has been presented in [21],

where it was shown that there is a symmetry breaking of the corresponding solutions,

i.e. a change of (in)stability from a symmetric to an asymmetric state. One typical

manifestation of the instability is a periodic transfer of atoms between the wells, i.e.

Josephson tunneling.

As most of Josephson tunneling studied in BECs considers the tunneling of the

Thomas-Fermi cloud, which is a continuation of the ground state solution ϕ0, here we

consider the tunneling of dark solitons, which can be viewed as continuations of excited

states ϕn>0.

2.2. Numerical periodic solutions

To look for solutions describing Josephson tunneling, we seek solutions that fulfills the

relation ψ(x, T ) = ψ(x, 0), with T being the period of the Josephson oscillations. Such

solutions posses double periodicity, i.e. one due to the solitonic nature with a period

2π/E, where E is the chemical potential (intra-well oscillations) and the other one

caused by the Josephson effect (inter-well oscillations). Consequently, we can express

the solutions in terms of a Fourier series multiplied by a factor related to the stationary

character of dark solitons

ψ(x, t) = exp(−iEt)
∞∑

k=−∞

zk(x) exp(ikωt), (5)

where ω = 2π/T is the Josephson oscillation frequency. These solutions are denoted as

commensurate if the commensurability condition E = (q/p)T = (2qπ)/(ωp) is fulfilled,

with {q, p} ∈ N. In what follows, we fix p = 1.

Commensurate solutions are consequently fixed points of the map ψ(x, 0) → ψ(x, T )

and can be found either by using shooting methods in real space or algebraic methods

in Fourier space. In order to do that, we will transform the problem into a discrete

one by means of a finite difference discretization with spatial step ∆x = 0.2 and apply

the techniques developed for discrete breathers in Klein-Gordon lattices [49, 50]. If a

shooting method were used, a time step ∆t = 0.02 would be necessary. As the considered

oscillations herein have periods about 1500 time units, this method would imply many

integration steps. In addition to that, the lack of an analytical Jacobian would also

imply the necessity of the numerical determination of this matrix. These facts suggest

the suitability of the proposed Fourier space method, which, apart from transforming

the set of differential equations into an algebraic one, provides an analytical expression

for the Jacobian.

Truncating the Fourier series at km, i.e. the maximum value of |k|, which has been

chosen to be 9 in most of the calculations due to computational reasons, Eq. (1) yields a
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set of nonlinear equations with the k-th component of the dynamical equation set given

by

Fk(x) ≡ (E−ωk)zk + ∂2xzk − V (x)zk − s

km∑
m=−km

km∑
n=−km

zmznzk−m+n = 0.(6)

We then obtain the following expression for each component of the Jacobian

∂Fk(x)

∂zn(x′)
=

{
[E − ωk − V (x)]δ(x− x′) + ∂2xx

}
δk,n

− sδ(x− x′)
∑
m

[
z∗mzk−n+m + zm(zk−m+n + z∗n+m−k)

]
, (7)

where we have written zk ≡ zk(x) in both equations.

Once a periodic solution, say Ψ(x, t), is obtained, to study its (linear) orbital

stability one needs to analyze the time evolution of a small perturbation ξ(x, t) to

Ψ(x, t). The equation satisfied to leading order by ξ(x, t) is

iξt + ξxx − s(2|Ψ|2ξ +Ψ2ξ∗)− V (x)ξ = 0. (8)

Then, the stability properties of commensurate solutions can be determined by means

of a Floquet analysis. It is performed by diagonalizing the monodromy matrix M which

is defined as [
Re(ξ(x, T ))

Im(ξ(x, T ))

]
= M

[
Re(ξ(x, 0))

Im(ξ(x, 0))

]
. (9)

The linear stability of the solutions requires that the monodromy eigenvalues (also called

Floquet multipliers) must be at the unit circle (see, e.g., [49, 51, 52] for details). In order

to get the monodromy with enough accuracy, the simulations must be performed using

a time step around ∆t = 0.001.

We have calculated commensurate solitons for Ω = 0.1 and a = 10 using the

method described above and analysed the stability of those solutions. Presented in the

top panels of Figure 1 are two periodic solutions that we obtained together with the

time evolution of a dark soliton in a double well potential. The left and right panel

respectively corresponds to JT and a transition to macroscopic quantum self-trapping,

similarly to the dynamics of the ground state oscillations [12, 14].

In the middle panels of Figure 1, we present the distribution of the Floquet

multipliers of the two solutions depicted in the top panels in the complex plane. Note

that we did not obtain a continuum spectrum of the monodromy due to the discretization

of the equations. It is worth noting that as there is a quartet of multipliers that do not lie

on the unit circle, one can conclude that the solution in the top right panel is unstable.

We show in the bottom panels of Figure 1 a longer time evolution of the solutions in the

top panels, where one can see that the solution in the top right panel is indeed unstable.

The instability we reported here is a clear evidence that the nonlinearity term in the

governing equation (1) plays an important role, as all the solutions would have been

stable otherwise. A typical instability dynamics is a repulsive interaction between the
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Figure 1. (Top) The first few oscillations of the atom density |ψ(x, t)|2 for dark

solitons in a double well potential with Ω = 0.1, a = 10, and (left) ω = 0.00450 and

(right) ω = 0.00520, which respectively corresponds to N = 0.0340 and N = 0.7677.

In both cases, the initial conditions are obtained from a numerical continuation with

q = 47 (see the text). (Middle) Floquet multiplier distributions corresponding to

solutions in the top left and right panel, respectively. (Bottom) Longer time evolutions

of the top panels where one can see that the solution in the top right panel is indeed

unstable.
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dark solitons in different wells so that they start to oscillate about the minimum of the

wells. This can be clearly observed in the bottom right panel of Figure 1.

We have also obtained periodic solutions for various parameter values. In the top

left panel of Figure 2 we show the dependence of the norm (number of atoms) N of

tunneling dark solitons when the inter-well oscillation frequency is varied. In the panel,

several representative values of q are considered. Note that the possible values of q are

not limited to those shown in the graph. As ω is increased further, there is a critical

value above which solutions are unstable. Unstable solutions are indicated as dashed

line in the top left panel. The solutions can also be continued for decreasing frequencies

ω down to a critical value for which the solutions transform into a non-oscillating one

(not shown here). In the top right panel of Figure 2 we show the dependence of the

growth rate (the logarithm of the maximum modulus of the Floquet multipliers) with

respect to ω for q = 47. We also present the growth rate of JT for a fixed ω and q and

varying separation distance between the two wells a in the bottom panels of the same

figure, i.e. ω = 0.0049 and q = 47. For small a, the solutions tend to a non-oscillating

one with one dark soliton in each well, analogously to what occurs for small ω and fixed

a.

3. Coupled-mode approximations and their validity

To describe dark soliton dynamics reported in the previous section, we will readily use

a two-mode approximation derived in [31]. Following [31], we write

ψ =
√
N (b2(t)Φ2(x) + b3(t)Φ3(x)) , Φ2,3 =

Φ+(x)± Φ−(x)√
2

, (10)

where Φ±(x) is a continuation of ϕ2,3 (4) for nonzero a satisfying

∂xxΦ± + β±Φ± − V (x)Φ± + sNΦ3
± = 0, (11)

with the constraint
∫ +∞
−∞ ΦjΦk dx = δj,k, i, j = +,−. Two examples of Φj, which

corresponds to the norm N in the Figure 1 are presented in Figure 3.

Next, for simplicity we write bj(t) = |bj(t)|eiθj(t). Equations (3) and (10) imply that

|b2(t)|2 + |b3(t)|2 = 1. Defining

z(t) = |b2(t)|2 − |b3(t)|2, ∆θ(t) = θ3(t)− θ2(t), (12)

one can obtain the equations satisfied by z and ∆θ [31]

dz

dt
= − ∂H

∂∆θ
,

d∆θ

dt
=
∂H

∂z
, (13)

where

H =
1

2
Az2 −B

√
1− z2 cos∆θ +

1

2
C(1− z2) cos 2∆θ, (14)

A =
10γ+− − γ++ − γ−−

4
, B = β− − β+ +

γ++ − γ−−

2
, (15)

C =
−2γ+− + γ++ + γ−−

4
, γjk = −sN

∫ ∞

−∞
Φ2

j(x)Φ
2
k(x) dx, (16)

(17)
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Figure 2. The top left panel presents the dependence of the norm with respect to

ω for dark solitons with a = 10. Dashed lines indicate unstable solutions. Here, q

sweeps the values between 40 and 50. The top right panel shows the dependence of

the growth rate with respect to ω for q = 47. Bottom panels depict the norm and the

growth mode of tunneling dark solitons with fixed ω = 0.0049 and q = 47 for varying

a.
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(dash-dotted) for (solid) N = 0.034 and (dashed) N = 0.7677, with s = −1.

with j, k = +,−.
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Figure 4. The phase-portraits of (13) for the two values of N in Figure 1, i.e. (left)

N = 0.0340 and (right) N = 0.7677. Thick symbols correspond to the periodic

solutions shown in Figure 1.

We plot the phase-portrait of (13) in Figure 4 for the two values of N in Figure 1.

To compare the two-mode approximation with the top panels of Figure 1, we calculate

the variable z from the numerics of the full equation (1) as [31]

z =

∫ 0

−∞ |ψ(x, t)|2 dx−N/2

NS
, S =

∣∣∣∣∫ 0

−∞
Φ+Φ− dx

∣∣∣∣ ,
where in the present case S ≈ 0.5. As ∆θ can be calculated immediately, one can

compare the numerics and the approximation right away. Shown in Figure 4 are the

comparisons, where satisfactory agreement is obtained. As for the instability of the

solution in the top right panel, that develops at a later time, it is beyond the validity

of any currently available two-mode approximations. One needs a better ansatz for the

approximations to capture the stability of the periodic solutions. We conjecture that

the invalidity of the approximation is caused by the assumption that the basis functions

Φ2 and Φ3 are thought to be stable (time-independent), which are not necessarily the

case. Note that the validity issue discussed herein is completely different from that in

[31]. In [31], the issue is related to the fact that the approximation does not capture the

Josephson oscillation of the full equation directly from the beginning, which typically

occurs when |sN | ≫ 1, while in our case |sN | < 1 and the approximation does capture

the existence, but not the stability.

One can observe that the phase portrait in the left panel of Figure 4 has two

families of periodic oscillations, i.e. one centred at ∆θ = 0 and the other at ±π. The

latter is known as π-oscillations [13]. The stable solution in the top left panel of Figure

2 with q = 50 and the same norm belongs to this family. With this, we predict that all

trajectories in the phase portrait are stable.

For the phase portrait in the right panel of Figure 4, one can observe that there

are two types of solutions, i.e. Josephson oscillations and running states. The latter

type is also referred to as macroscopically quantum self-trapped states. As we have seen

that the two-mode approach can provide a good approximation to periodic solutions,
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one can use the ansatz (10) and direct simulations of (1) to predict whether or not a

periodic solution is stable. From several simulations (not shown here), we expect that

all trajectories in the phase portrait are unstable.

Based on our analysis above, it is likely that all periodic solutions belonging to the

same phase portrait, i.e. having the same norms, will have the same stability property.

Nonetheless, one can easily notice in the top left panel of Figure 2 that the critical norms,

above which the corresponding solutions are unstable, for different values of ω are close,

but not exactly the same. Further analysis whether or not the discrepancy is caused by

the finite number of Fourier modes km is to be addressed in future investigations.

4. Experimental setup

Dark solitons can be created in a magnetic trap in various ways, including phase-

imprinting [23, 24, 27], merging of two condensates [25], and passing a penetrable barrier

through condensates [53]. In the context of condensate splitting and merging, a method

of applying oscillating radio-frequency (rf) fields in combination with static magnetic

fields has been recently proven to facilitate good experimental control over creating,

tuning, and manipulating double well potentials [54, 55, 56]. Without changing the

static field configuration that provides to very good approximation a parabolic single

well trap, for example in atom chip based microtraps [57], modifications of frequency

and amplitude of the rf field allow for raising and lowering a splitting potential barrier.

The barrier height between the wells is readily controlled in this type of setup. Moreover,

inhomogeneities of the rf field, introduced by locally producing the field by an additional

conductor on an atom chip [54], can be exploited to introduce an imbalance or slight

asymmetry between the two wells. Note that rf field engineering in the context of

microtraps with typical distances between trapped atoms and field sources on the order

of 10− 100µm is straightforward as the wavelength of the oscillating field (in the MHz

range) is by far sufficiently long to warrant a near-field treatment, with a DC calculation

yielding accurate results.

Figure 5 illustrates a possible scheme based on these methods to produce a soliton in

an originally harmonically trapped degenerate Bose gas and to observe its subsequent

Josephson oscillations in a double well potential. The protocol starts with a simple

harmonic magnetic trap, as can be produced on an atom chip by a Z-shaped wire [57].

The gas is then split with rf fields into a symmetric double well. The double well is then

slightly imbalanced so that after a time of typically a few ms, a relative phase difference

of the two clouds of ϕ = π will have accumulated. Merging the potentials will now

result in a solitonic excitation of the combined gas (see, e.g., [58]). Slight controllable

deviations ∆ϕ from π will produce a (slowly) oscillating soliton. After raising the barrier

once again, the tunneling dynamics of the soliton can now be studied. The scheme can

be extended to multiple solitons by splitting the potential in more than two wells, for

example by applying multiple frequency component rf fields [59], relevant in the study

of interactions of different numbers of dark solitons in each well.
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Figure 5. Schematic implementation of a protocol for controlled production of a

soliton in a double well potential (see text).

5. Conclusion and future work

We have studied dark soliton dynamics in a double well potential, where it has been

shown that dark solitons can experience JTs between the wells. A coupled-mode

approximation has been derived to explain the observations. Numerical stability analysis

based on the full governing equation has been performed to show that JTs can be

stable. Through path following methods, unstable solutions were also obtained. An

experimental scheme designed to explore such dark soliton dynamics in the laboratory

also has been outlined.

A natural problem to follow the tunneling reported above is when two different

numbers of dark solitons are loaded into each of the minima. We present in Figure

6 interactions between one and two dark solitons. One can observe that there is an

interference pattern analogous to the acoustic beating pattern in the interaction of two

continuous waves with slightly different frequencies. As shown in the left panel indicated

by the dashed ellipses, there are two levels of modulated patterns; the big ellipse shows

one tunneling period modulated by the oscillation in the small ellipse. In the right

panel, we zoom in on the small ellipse to show that a beating pattern also occurs on a

smaller scale. It can be calculated that the oscillation period in the small ellipse when

a≫ 1 is approximately T ≈ 2π/Ω, which is in accordance with the numerical result. A

multi-mode approximation can be obtained as before as briefly discussed in [31]. It is

then interesting to study the stability of such interactions. Together with the question

on a better ansatz that can predict the stability of periodic solutions reported herein,

this is currently under investigation and will be reported elsewhere.
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