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Abstract

In the present work, we propose a new set of coherent structures that arise in
nonlinear dynamical lattices with more than one component, namely interlaced
solitons. In the anti-continuum limit of uncoupled sites, these are waveforms whose
one component has support where the other component does not. We illustrate
systematically how one can combine dynamically stable unary patterns to create
stable ones for the binary case of two-components. For the one-dimensional setting,
we provide a detailed theoretical analysis of the existence and stability of these
waveforms, while in higher dimensions, where such analytical computations are
far more involved, we resort to corresponding numerical computations. Lastly, we
perform direct numerical simulations to showcase how these structures break up,
when they are exponentially or oscillatorily unstable, to structures with a smaller
number of participating sites.

1 Introduction

One of the highly active areas in the investigation of Hamiltonian nonlinear
systems over the past decade has been the examination of nonlinear dynamical
lattices of the discrete nonlinear Schrödinger (DNLS) type. This development
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has arisen chiefly due to the multitude of applications of pertinent models that
have emerged in areas such as nonlinear optics and atomic physics.

More specifically, in the optical context, the setting of fabricated AlGaAs
waveguide arrays [1] has been one of the most prototypical ones for the appli-
cation of DNLS models. There, the interplay of discreteness and nonlinearity
revealed many interesting features including Peierls-Nabarro potential barri-
ers, diffraction and diffraction management [2], and gap solitons [3], among
others. More recently, higher dimensional phenomena such as two-dimensional
discrete diffraction [4], and soliton formation [5] have been observed in square
(but also in non-square [6]) femtosecond laser written waveguide arrays in
fused silica; see also the reviews [7,8] and references therein.

Another recent development, which also promoted the analysis of discrete
systems in connection with nonlinear optics was the proposal [9] and creation
[10,11] of optically induced photonic lattices in photorefractive crystals such
as SBN. This paved the way for the observation of a large set of exciting
nonlinear wave-related phenomena in such crystals. As a representative subset,
we mention here the formation of patterns such as dipole [12], quadrupole [13]
and necklace [14] solitary waves, impurity modes [15], discrete vortices [16,17],
rotary waves [18], higher order Bloch modes [19] and gap vortices [20], two-
dimensional (2D) Bloch oscillations and Landau-Zener tunneling [21], wave
formation in honeycomb [22], hexagonal [23] and quasi-crystalline lattices [24],
and recently the study of Anderson localization in disordered photonic lattices
[25]. Although this setting is mostly studied in the continuum context with
a periodic potential (and sometimes in the presence of the inherent crystal
anisotropy), it has also spurred a number of studies in the DNLS context with
the saturable photorefractive nonlinearity [26,27].

A further physical realization of such nonlinear dynamical lattices arose over
the past few years in atomic physics through the examination of Bose-Einstein
condensates (BECs) trapped in periodic potentials. There, once again, a reduc-
tion of the relevant model can be formulated in the tight-binding approxima-
tion within the mean-field limit, reducing the so-called Gross-Pitaevskii equa-
tion with a periodic potential to a genuinely discrete nonlinear Schrödinger
equation [28].

In both the nonlinear optical and in the atomic physics settings discussed
above, multi-component systems were also examined in recent investigations.
In particular, the first observations of discrete vector solitons in optical waveg-
uide arrays were reported in [29], the emergence of multipole patterns in vector
photorefractive crystals were presented in [30], while numerous experiments
with BECs were directed towards studies of mixtures of different spin states
of 87Rb [31,32] or 23Na [33] and even ones of different atomic species such
as 41K–87Rb [34] and 7Li–133Cs [35]. It should be noted that while the above

2



BEC experiments did not include the presence of an optical lattice, the ad-
dition of such an external optical potential is certainly feasible within the
present experimental capabilities [36].

Our aim in the present work is to propose and analyze a family of solutions
particular to multicomponent (in particular, binary) systems of DNLS equa-
tions, although generalizations to a higher number of components are certainly
possible. We dub these proposed solutions “interlaced” discrete solitons and
vortices. The name stems from the feature that the profiles of the modes in
the two interacting components will have a vanishing intersection of excited
sites in the extreme discrete limit of zero coupling between adjacent nodes
of the lattice. In these structures, the first component will be excited where
the second component is not and vice-versa. In the one-dimensional case, we
show how to interlace in a stable fashion simple, as well as more elaborate,
bound states of the system [37]. For such solutions, we consider their exis-
tence and stability properties also from an analytical point of view, using as a
starting point the anti-continuum limit (of no-coupling between the sites). We
then generalize our considerations to higher dimensional settings, showcasing
the potentially stable interlacing of more elaborate structures, such as discrete
vortices [38] (and also of vortices with non-vortical structures). We present de-
tailed stability diagrams of such interlaced structures, and also examine their
dynamics when they are found to be unstable.

Our presentation is structured as follows. In section II, we present the model
and general mathematical setup. In section III, we illustrate both analytically
and numerically the properties of such structures in 1d settings. In section
IV, we generalize these considerations to a numerical investigation of higher
dimensional settings. Finally, in section V, we summarize our findings and
present our conclusions.

2 Model Equations and Mathematical Setup

We consider a set of coupled DNLS equations

iU̇n + (g11|Un|2 + g12|Vn|2)Un + C∆DUn = 0,

iV̇n + (g12|Un|2 + g22|Vn|2)Vn + C∆DVn = 0, (1)

where n is a D-Dimensional index and ∆D is the discrete Laplacian in D
dimensions. We look for stationary solutions {un}, {vn} through the relations

Un(t) = exp(iΛ1t)un, Vn(t) = exp(iΛ2t)vn. (2)
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The dynamical equations (1) then transform into

−Λ1un + (g11|un|2 + g12|vn|2)un + C∆Dun = 0,

−Λ2vn + (g12|un|2 + g22|vn|2)vn + C∆Dvn = 0. (3)

The stability is determined in a frame rotating with frequency Λ1 for Un(t)
and Λ2 for Vn(t), i.e., we suppose that

Un(t) = exp(iΛ1t)[un + ξ(1)
n (t)], Vn(t) = exp(iΛ2t)[vn + ξ(2)

n (t)]. (4)

The small perturbations ξ(k)
n (t), with k = 1, 2, can be expressed as

ξ(1)
n (t) = an exp(iλt) + bn exp(−iλ∗t), ξ(2)

n (t) = cn exp(iλt) + dn exp(−iλ∗t),(5)

leading to the linear stability equations

λJξn = Mnξn + C(ξn+1 + ξn−1), (6)

with

ξn = (an b∗n cn d∗n)T , J =




1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1




, (7)

Mn =




K1,n g11u
2
n g12unv∗n g12unvn

g11(u
2
n)∗ K1,n g12u

∗
nv∗n g12u

∗
nvn

g12u
∗
nvn g12unvn K2,n g22v

2
n

g12u
∗
nv∗n g12unv∗n g22(v

2
n)∗ K2,n




, (8)

K1,n =−Λ + 2g11|un|2 + g12|vn|2 − 2C,

K2,n =−Λ + 2g22|vn|2 + g12|un|2 − 2C.

Soliton and vortex solutions are calculated using methods based on the anti-
continuous limit. Upon calculating these solutions at C = 0, we continue them
to finite coupling by varying C for different values of the other parameters
(such as the interspecies nonlinearity strength g12).
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We are interested in interlaced solitons (ISs) in 1D lattices and interlaced
vortices (IVs) in 2D and 3D lattices. The excited sites at C = 0 have the
freedom of a phase factor exp(iφ), while it should be noted that unvn = 0 at
the corresponding excited site (i.e., the two species are never excited on the
same site for our interlaced waveforms). These values are

ũ = 0,
√

Λ1/g11, ṽ = 0,
√

Λ2/g22. (9)

In what follows, we choose Λ1 = Λ2 ≡ Λ and g11 = g22 = 1. We also choose
g12 ≤ 1 since for g12 > 1 interlaced solitons and vortices are unstable for every
value of C.

3 Analytical and Numerical Results for 1d Interlaced Solitons

3.1 Existence and stability

We consider interlaced solitons which are labeled by |AB >≡ |A > |B >,
where A,B = 0, 1, 2, . . .. This number indicates the “order” of the excited
state at the anti-continuous limit, whose phase φ = 0, π is chosen so that the
isolated solitons (i.e. when g12 = 0) are stable for any small C. For instance,
the ground state |0 > means un = ũδn,0 and the first excited state |1 > will
be taken to mean un = ũ(δn,1 − δn,−1) at the AC limit. Thus, the state |01 >
corresponds to un = ũδn,0, vn = ṽ(δn,1−δn,−1) and |12 > to un = ũ(δn,1−δn,−1),
vn = ṽ(δn,2 + δn,−2)− δn,0.

We first analyze the |01 > state, which is stable for C < C0. At C = C0

the ISs become unstable through Hopf bifurcations (the value of C0 differs
as a function of the rest of the system parameters such as g12, however the
above scenario is robust). Cascades of this type of bifurcations arise as C
increases and, when, C ≥ C1, the ISs become also exponentially unstable.
There is a special region for g12 ∈ [0.27, 0.37] where the system experiences
an inverse Hopf bifurcation recovering the stability in a window. The system
becomes unstable again through Hopf bifurcations for g12 ∈ [0.27, 0.34] and
exponential instabilities for g12 ∈ [0.35, 0.37]. Besides, for g12 ∈ [0.38, 0.47]
there exist windows with only exponential instabilities. Fig. 1 illustrates all
of the above features, by showcasing a typical example of the |01 > state,
a typical continuation of its principal linearization eigenfrequencies λ, and a
full two-parameter diagram of the stability of this state in the two-parameter
plane (C, g12).

For |12 > states, the scenario is essentially similar to the |01 > case, although,
in practice, it is considerably simpler due to the absence of any inverse Hopf
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Fig. 1. (a-b) Profiles of |01〉 interlaced solitons with g12 = 0.5 and C = 0.15.
(c-d) Dependence on C of the real and imaginary parts of eigenfrequencies of small
perturbations about |01 > with g12 = 0.5. Dashed lines correspond to the analytical
predictions of equations (17), and (18). (e) Two-parameter stability diagram in
the plane of intersite (C) and inter-component (g12) coupling, indicating regions of
occurrence of Hopf bifurcations (H), exponential instability (E), and the domain of
stability (S).

bifurcations and restabilization windows. Fig. 2 shows the corresponding fea-
tures for |12 >, similarly to Fig. 1 for the |01 > case.
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Fig. 2. (a-b) Profiles and (c-d) dependence on C of the real and imaginary parts
of eigenfrequencies of small perturbations of |12〉 showing the same features and
for the same parameters as in Fig 1. Dashed lines correspond to the theoretical
predictions of equations (20), and (18). (e) Two-parameter stability diagram in the
plane of intersite (C) and inter-component (g12) coupling.

3.2 Dynamics of unstable solitons

First, we analyze the dynamics of |01 > ISs. Fig. 3 shows the evolution of
a typically unstable (i.e. oscillatory unstable) |01 > IS with g12 = 0.2 and
C = 0.6. The oscillatory evolution of the instability eventually transforms the
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mode into a |00 > state, which is a stable state of the system. The final excited
site is typically the same for the {Un} and {Vn} coordinates, although in some
cases, the asymptotic excited site is not necessarily the same. However, the
amplitude of the nth site is not identical, i.e. |un| 6= |vn|. In a similar vein,
Fig. 4 shows the evolution of an oscillatorily unstable |12 > IS with g12 = 0.2
and C = 0.4, and, analogously to the |01 > case, the IS evolves to a |00 >
state (although the finally populated site is not the central one of the original
configuration).

Some insight in the evolution can be established from an energy analysis of
the different stationary solutions coexisting with the same norm for a given
value of C and g12. The energy is given by:

H =
∑
n

C

2
(|un+1 − un|2 + |vn+1 − vn|2)− g11

2
|un|4 − g12|un|2|vn|2 − g22

2
|vi|4(10)

Fig. 3c shows the energy of |00 > and |01 > states versus C. The |00 > states
have been calculated fixing the norm of each component and enforcing that
it is the same as that of the corresponding |01 > states. It is observed that
|00 > states are always more energetically favorable than |01 >. A similar
analysis can be performed for |12 > states. It shows that the energy for |12 >
is higher than that of, in turn, |01 > and |00 > states, justifying the dynamical
evolution of Figs. 3 and 4.

3.3 Perturbation analysis

In this subsection, we attempt to understand in some more detail the above
observed results of the numerical computations in connection with the stabil-
ity properties of the interlaced soliton solutions. More specifically, we evaluate
explicit expressions of the interlaced solitons’ eigenvalues for the configura-
tions discussed above. The method is based on the expansion in the coupling
constant C in the vicinity of the anti-continuum limit.

In the limit of C = 0, as illustrated above, there are two types of solutions,
i.e. un = vn = 0, and the non-zero solutions given by Eqs. (9). In this limit,
one can also easily notice that the eigenvalue problem (6) will give

λ = ±Λ, ±Λ(1− g12/g11), ±Λ(1− g12/g22) (11)

for the zero solutions and

λ = ±0 (12)

8



(a) (b)

n

t

|U
n
|2

 

 

−10 −5 0 5 10
0

20

40

60

80

100

120

140

160

180

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

n

t

|V
n
|2

 

 

−10 −5 0 5 10
0

20

40

60

80

100

120

140

160

180

0.5

1

1.5

2

2.5

(c)

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

|01>

|00>

E
ne

rg
y

C

Fig. 3. (a) and (b) Time evolution of the density of the two components for a slightly
perturbed unstable |01 > IS with g12 = 0.2 and C = 0.6. (c) Energy dependence
with respect to C of |01 > and |00 > states. For a given value of C, the |00 >
state has the same norm as the |01 > state. The dashed line represents the unstable
solitons.

for the non-zero solutions (9).

It can be directly inferred from the analysis of the underlying linear problem
that the stable eigenvalues λ = ±Λ will expand creating a band of continuous
spectrum when C is increased. Therefore, this eigenvalue will not be discussed
further. The instability for a soliton solution will then be determined by the
bifurcation of the remaining eigenvalues.

Let us now first consider the profile of |01 > ISs. It is clear that for finite C
the solutions will be deformed from their AC-limit profile. The solution up to
O(C) is then found to be

u0 =
√

Λ
g11

+ C√
Λg11

, u1 = u−1 = C√
Λg11(1−g12/g22)

,

v0 = 0, v1 = −v−1 =
√

Λ
g22

+ C√
Λg22

.
(13)
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Fig. 4. (a) and (b) Time evolution of the density of the two components for a slightly
perturbed unstable |12 > IS with g12 = 0.2 and C = 0.4. (c) Energy dependence
with respect to C of |12 >, |01 > and |00 > states. For a given value of C, the |01 >
and |00 > states have the same norm as the |12 > state. The dashed line represents
the unstable solitons.

The next step is to consider the stability problem when the coupling is turned
on. To leading order, the eigenvalue problem of this particular configuration
is given by

MΞ = λσ Ξ, (14)

where
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σ = diag(J), Ξ =




ξ−2

ξ−1

ξ0

ξ1

ξ2




, (15)

M =




M−2 CId4×4 0 0 0

CId4×4 M−1 CId4×4 0 0

0 CId4×4 M0 CId4×4 0

0 0 CId4×4 M1 CId4×4

0 0 0 CId4×4 M2




, (16)

and Id4×4 is the identity matrix of size 4× 4.

Since we have expanded un and vn in a power series of C, then it is natural
that we also expand all the involved quantities in C. Performing a regular
perturbation analysis to each order in C of the eigenvalue problem (14) (see
the Appendix), one can show that for the stability of (13) there is a pair of
eigenvalues bifurcating from zero given by

λ = ±2C

√
g11

g11 − g12

+O(C2), (17)

and two pairs of eigenvalues

λ = ±(1− g12/g22)(Λ + 2C), ±(1− g12/g11)(Λ + 2C). (18)

The same procedure can also be similarly and immediately applied to the
configuration |12 > ISs. The only difference is that for that solution one will
obtain a stability matrix M of size 28× 28.

For |12 >ISs, we can obtain the solution in a power series of C as

u0 = 0, u1 = −u−1 =
√

Λ
g11

+ C√
Λg11

, u2 = −u−2 = C√
Λg11(1−g12/g22)

,

v0 = −v2 = −v−2 = −
√

Λ
g22
− C√

Λg22
, v1 = v−1 = 0.

(19)

Continuing the search for eigenvalues, we will also immediately obtain eigen-
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values of (19) bifurcating from zero as

λ = ±
√

2

1− g12/g11

C, ±
√

6

1− g12/g11

C, ±
√

4

1− g12/g22

C. (20)

Bifurcations from the non-zero eigenvalues for this case can also be shown to
yield Eq. (18).

The above analytical expressions give us a detailed handle on the dependence
of the relevant eigenalues on the system parameters. Comparisons of the ana-
lytical results obtained here with the numerical ones are presented in Figs. 1-2
where one can see that the analytical expressions are in fairly good agreement
with the numerical results. It should be noted that although such analyt-
ical considerations are procedurally straightforward to generalize in higher
dimensions, the relevant calculations are extremely tedious and will thus not
be pursued here. Instead, we now turn to numerical computations to show-
case the existence and potential stability of interlaced solitons and vortices in
higher-dimensional settings.

4 Numerical Results for Interlaced Structures in Higher Dimen-
sions

For the case of 2D lattices, we consider two different interlaced structures.
On the one hand, we examine interlaced vortices (IVs) whose configurations
in the AC limit are given by u0,1 = ũ, u0,−1 = −ũ, u1,0 = iũ, u−1,0 = −iũ;
v1,1 = −iṽ, v1,−1 = ṽ, v−1,−1 = iṽ, v−1,1 = −ṽ. On the other hand, we also
study a discrete soliton interlaced with a vortex (IVSs) whose configurations
in the AC limit are given by u0,1 = ũ, u0,−1 = −ũ, u1,0 = iũ, u−1,0 = −iũ,
v0,0 = 1.

IVs experience a set of bifurcation scenaria which are qualitatively similar to
those of the |12 > ISs. The structures are stable for low values of the coupling
and for g12 < 1. For larger values of C (or respectively g12) they destabilize
due to a Hamiltonian Hopf bifurcation, while further increase of the relevant
parameters will induce a mixture of both Hopf and exponential instabilities, as
shown in Fig. 5. IVSs experience the same same basic bifurcation phenomena,
with the principal difference that they appear to exist for all values of C
(within the range examined i.e., up to C = 2) for g ≤ 0.4. Also, notably,
the IVSs experience solely Hopf bifurcations in a fairly small region inside the
exponential+Hopf region. Figs. 5 and 6 summarize the corresponding findings
in a way similar to that of the 1d configurations, presenting not only typical
profiles of the modes, but also typical mono-parametric continuations, as well
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as their full two-parameter stability diagram in the space of inter-site and inter-
species coupling. An important conclusion of the figures that it is relevant to
highlight is that both interlaced vortices and interlaced soliton-vortex bound
states may be stable for sufficiently small coupling and interspecies interaction
strength.

In the case of 3D lattices, we consider two interlaced vortices conjoined in the
shape of a cube. In the AC limit, this cube is given by u−1,1,1 = ũ, u1,−1,1 =
−ũ, u−1,−1−1 = iũ, u1,1,−1 = −iũ; v1,−1,−1 = ṽ, v−1,1,−1 = −ṽ, v1,1,1 = iṽ,
v−1,−1,1 = −iṽ. The structure is stable near the AC limit, with the size of
the window of stability diminishing as g12 approaches 1, and with instability
setting in via Hopf bifurcations. In the 2-parameter continuation results shown
in Fig. 7, the coupling is only continued to C = 0.75, but it is observed that
for values between g12 ≈ 0.703 and g12 = 1, the instability further degenerates
into Hopf and exponential instabilities. It should also be noted that within the
region of instability, there exist isolated points or very narrow regions where
inverse Hopf bifurcations may be observed, which have been omitted from the
graph for clarity. Let us note in passing here that the interlaced vortices in
the “vortex cube” shown in Fig. 7 are perhaps not the prototypical interlaced
structure that one would expect in 3D; instead one might expect a structure
where each vortex is confined in a diagonal plane within the cube (with the
two such planes intersecting transversally). We were, however, unable to trace
such a structure even in the vicinity of the anti-continuum limit.

4.1 Dynamics of unstable structures

The dynamics of the oscillatorily unstable IVs in 2D lattices with g12 = 0.2 and
C = 0.3 is shown in Fig. 8. The evolution results in the transformation of the
original structure into single-peaked or multi-peaked solitons. Excited peaks
do not coincide for Un and Vn. The vorticity is lost in the process (recall that
the vorticity needn’t be conserved in the case of the lattice). Fig. 9 shows the
dynamics of an oscillatorily unstable interlaced vortex-soliton structure with
g12 = 0.2 and C = 0.45. This mode evolves spontaneously towards single-
peaked solitons. The excited peaks are on the same site in both lattices in this
example.

Dynamics of the interlaced cube with g12 = 0.85 is shown in Fig. 10. Here the
coupling is continued to C = 0.6. This is well past the threshold of stability
for this value of g12, and takes the configuration into the region of both ex-
ponential and oscillatory instabilites. It is observed that when a peturbation
of magnitude 0.01 is applied, only a single site survives for long times (in this
case for V field).
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Fig. 5. (a-d) Plot of real and imaginary parts of interlaced vortices with g12 = 0.5 and
C = 0.1. (e-f) Dependence on C of the real and imaginary parts of eigenfrequencies
of small perturbations about such solutions with g12 = 0.5. (g) Two-parameter
stability diagram in the plane of intersite (C) and inter-component (g12) coupling.
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Fig. 7. (a) The top set of four panels show an interlaced cube (g = 0.85) in a
grid of size 11 × 11 × 11 that has been continued to coupling C = 0.20. The level
contours shown correspond to Re(un,m,l) = Re(vn,m,l) = ±0.5max {un,m,l}, in blue
and red (dark gray and gray, in the black-and-white version) respectively, while the
imaginary ones, Im(un,m,l) = Im(vn,m,l) = ±0.5max {un,m,l}, are shown by green
and yellow (light and very light gray, in the black-and-white version) respectively.
The bottom panel shows the real eigenfrequencies of small perturbation. (b) The
top panel shows the stability diagram, while the bottom panel shows the imaginary
eigenfrequencies of small perturbations.

Although these are prototypical results of the dynamical evolution, which we
have generically observed to lead to less elaborate (and often purely single-
peaked) structures in this setting, it should be stressed that the specific details
of the unstable dynamical evolution of each structure depend considerably on
the values of the parameters, as well as partially on the type/strength of the
perturbation.

5 Conclusions and Future Challenges

In the present work, we have illustrated the possibility to successfully inter-
lace structures which are stable in each one of the components (either simple
ones, such as single site solitary waves, or more elaborate ones, such as bound
states and vortices) in order to produce stable multi-component interlaced
solitons/vortices. We have continued the resulting structures from the anti-
continuum limit of no inter-site coupling to finite coupling and illustrated the
intervals of stability, as well as the ones of both exponential and oscillatory
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t = 65 t = 95 t = 125 t = 155 t = 185 t = 215

Fig. 8. Snapshots showing (top) |Un(t)|2 and (bottom) |Vn(t)|2 for unstable IVs with
g12 = 0.2 and C = 0.3.

(Hopf) instabilities. We have given detailed two-parameter diagrams of the sta-
ble ranges of the solutions as a function of the inter-site and inter-component
couplings. These revealed that the linear stability of the interlaced structures
necessitates sufficiently weak coupling (typically no larger than 0.4, with the
relevant range decreasing as the inter-component interaction is increased) and
sufficiently weak inter-component interaction (i.e., g12 < 1). It can naturally
be assumed that the instability of interlaced states for g12 > 1 can be at-
tributed to the destabilizing effect of strong nonlinear attraction between the
two components. Finally, we examined the dynamical evolution of the insta-
bility of such interlaced structures, which typically resulted in the destruction
of the waveforms, in favor of simpler, more stable dynamical patterns.

Nevertheless, there is still a number of important open questions for future
consideration. For instance, it would be particularly interesting to examine
whether it would be possible for the inter-component coupling to actually
stabilize structures that are dynamically unstable in the single-component
setting. Also, it would be useful to possess a systematic classification of the so-
lutions (interlaced and non-interlaced ones) available in the multi-component
system setting, similarly to the one-component classifications of [37,38]. Such
efforts are currently underway and will be reported in future publications.
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t = 85 t = 90 t = 95 t = 100 t = 105 t = 110

Fig. 9. Snapshots showing (top) |Un(t)|2 and (bottom) |Vn(t)|2 for unstable inter-
laced vortex-solitons with g12 = 0.2 and C = 0.45.

(a) (b)

−2 0 2−202
−2

0

2

n

t=4

m

l

−2 0 2−202
−2

0

2

n

t=9

m

l

−2 0 2−202
−2

0

2

n

t=12

m

l

−2 0 2−202
−2

0

2

l

nm

t=45

−2 0 2−202
−2

0

2

n

t=4

m

l

−2 0 2−202
−2

0

2

n

t=9

m

l

−2 0 2−202
−2

0

2

n

t=12

m

l

−2 0 2−202
−2

0

2

n

t=45

m

l

Fig. 10. Snapshots showing evolution of the (a) U(t) and (b) V (t) fields for
the interlaced cube with g12 = 0.85 in a grid of size 11 × 11 × 11 where the
coupling has been continued to C = 0.6. All iso-contour plots are defined as
Re(un,m,l) = Re(vn,m,l) = ±0.75 = Im(un,m,l) = Im(vn,m,l), where in the figure,
dark gray (blue) and gray (red) colors pertain to iso-contours of the real part of
the solutions, while the light gray (green) and very light gray (yellow) colors corre-
spond to the iso-contours of the imaginary part. The configuration was pertubed by
a random noise of amplitude 0.01 in order to expedite the onset of the instability.
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A Analytical calculations of the eigenvalues of 1D interlaced soli-
tons

Here we will discuss in more detail the analytical calculations we performed
to calculate the eigenvalues of |01 > ISs and |12 > ISs presented above.

To solve the eigenvalue problem (14) perturbatively for the eigenvalues of (13),
we start by writing M = M0 + CM1 + C2M2 + O(C3), Ξ = Ξ0 + CΞ1 +
C2Ξ2 +O(C3) and λ = λ0 + Cλ1 + C2λ2 +O(C3). It can be checked that M0

is a singular self-adjoint matrix.

Substituting the expansions to the eigenvalue problem will give us to the
leading order

M0 Ξ0 = λ0 σ Ξ0, (A.1)

from which one will obtain that λ0 is given by Eqs. (11) and (12). In the
following, let us first consider the case of λ0 = 0 which are of three pairs,
with the corresponding eigenvalues of M0 Ξ0 = 0 denoted by ej, j = 1, 2, 3.
Therefore, one can write

Ξ0 =
3∑

j=1

cj ej.

The next order equation of (14) gives us

M0 Ξ1 = λ1 σ Ξ0 −M1 Ξ0. (A.2)

Using the Fredholm alternative theorem, the above equation will have a solu-
tion if the right hand side is orthogonal to the null space of M0, which it is.
Hence, the value of the correction λ1 cannot be obtained yet and a solution
Ξ1 of (A.2) can therefore be calculated for any λ1.

The equation of order O(C2) from (6) can be easily deduced to be

M0 Ξ2 = λ2 σ Ξ0 + λ1 σ Ξ1 −M1 Ξ1 −M2 Ξ0. (A.3)

Projecting the equation above to ej, j = 1, 2, 3, i.e. basis of the null space of
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M0, will give us the following eigenvalue matrix



−2g11

(g11−g12)Λ
0 −2g11

(g11−g12)Λ

0 0 0

−2g11

(g11−g12)Λ
0 −2g11

(g11−g12)Λ







c1

c2

c3




= −λ2
1

Λ




c1

c2

c3




, (A.4)

which can be immediately solved to yield

λ1 = ±0, ±0, ±2

√
g11

g11 − g12

. (A.5)

This illustrates that there is a pair of eigenvalues bifurcating from zero given
by (17) above.

The same procedure can be applied to bifurcations of the non-zero eigenvalues.
In this case, the calculation is even simpler as applying the Fredholm alterna-
tive to the O(C) equation of (14) already gives us a solvability condition from
which we obtain the bifurcating eigenvalues (18).

For the stability of |12 > ISs, one can perform the same analysis as above.
Following the same procedures, one will obtain that for the profile (19) the
reduced eigenvalue matrix is given, in place of (A.4), by




−2g11

(g11−g12)Λ
0 −2g11

(g11−g12)Λ
0 0

0 −2g22

(g22−g12)Λ
0 −2g22

(g22−g12)Λ
0

−2g11

(g11−g12)Λ
0 −4g11

(g11−g12)Λ
0 −2g11

(g11−g12)Λ

0 −2g22

(g22−g12)Λ
0 −2g22

(g22−g12)Λ
0

0 0 −2g11

(g11−g12)Λ
0 −2g11

(g11−g12)Λ







c1

c2

c3

c4

c5




= −λ2
1

Λ




c1

c2

c3

c4

c5




,(A.6)

which finally yields (20).

Bifurcations of the non-zero eigenvalues of the configuration (19) can be cal-
culated similarly to the case of |01 > ISs above from which one will also obtain
the same expression as (18).
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Appl. Phys. B 82, 507 (2006).

[7] D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424, 817-
823 (2003); A. A. Sukhorukov, Yu. S. Kivshar, H. S. Eisenberg, and Y.
Silberberg, IEEE J. Quant. Elect. 39, 31 (2003); F. Lederer, G.I. Stegeman,
D.N. Christodoulides, G. Assanto, M. Segev and Y. Silberberg, Phys. Rep.
463, 1 (2008).

[8] S. Aubry, Physica 103D, 201 (1997); S. Flach and C. R. Willis, Phys. Rep.
295, 181 (1998);

[9] N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev
Phys. Rev. E 66, 046602 (2002).

[10] J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Nature
422, 147 (2003).

[11] J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N.
Christodoulides, Phys. Rev. Lett. 90, 023902 (2003).

[12] J. Yang, I. Makasyuk, A. Bezryadina, and Z. Chen, Opt. Lett. 29, 1662 (2004).

[13] J. Yang, I. Makasyuk, A. Bezryadina, and Z. Chen, Stud. Appl. Math. 113, 389
(2004).

[14] J. Yang, I. Makasyuk, P. G. Kevrekidis, H. Martin, B. A. Malomed, D. J.
Frantzeskakis, and Z. Chen, Phys. Rev. Lett. 94, 113902 (2005).

[15] F. Fedele, J. Yang, and Z. Chen, Opt. Lett. 30, 1506 (2005).

[16] D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Yu. S. Kivshar, H. Martin,
I. Makasyuk, and Z. Chen, Phys. Rev. Lett. 92, 123903 (2004).

[17] J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D.
N. Christodoulides, Phys. Rev. Lett. 92, 123904 (2004).

[18] Y.V. Kartashov, V.A. Vysloukh and L. Torner, Phys. Rev. Lett. 93, 093904
(2004); X. Wang, Z. Chen, and P. G. Kevrekidis, Phys. Rev. Lett. 96, 083904
(2006).

21
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[21] H. Trompeter, W. Królikowski, D.N. Neshev, A.S. Desyatnikov, A.A.
Sukhorukov, Yu.S. Kivshar, T. Pertsch, U. Peschel and F. Lederer, Phys. Rev.
Lett. 96, 053903 (2006).

[22] O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev and D.N.
Christodoulides, Phys. Rev. Lett. 98, 103901 (2007).

[23] C.R. Rosberg, D.N. Neshev, A.A. Sukhorukov, W. Krolikowski and Yu.S.
Kivshar, Opt. Lett. 32, 397 (2007).

[24] B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D.N. Christodoulides and J.W.
Fleischer, Nature 440, 1166 (2006).

[25] T. Schwartz, G. Bartal, S. Fishman and M. Segev, Nature 446, 52 (2007).

[26] L. Hadzievski, A. Maluckov, M. Stepić and D. Kip, Phys. Rev. Lett. 93, 033901
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