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Universitaria Politécnica, C/ Virgen de África, 7, 41011 Sevilla, Spain

jcuevas@us.es

Abstract

In this paper, we construct, by means of similarity transformations, explicit solu-
tions to the cubic quintic nonlinear Schrödinger equation with potentials and non-
linearities depending both on time and spatial coordinates. We present the general
approach and use it to calculate bright and dark soliton solutions for nonlinearities
and potentials of physical interest in applications to Bose-Einstein condensates and
nonlinear optics.

Key words: Cubic-quintic nonlinear Schrödinger equations, transformations,
bright and dark solitons, Bose-Einstein condensates.

1 Introduction

During the past several years, there have been a great deal of theoretical
and experimental investigations in models based on the nonlinear Schrödinger
equation (NLSE). The physical models of this type emerge in various nonlinear
physical phenomena, such as nonlinear optics [1,2], Bose-Einstein condensates
[3], biomolecular dynamics [4], and others [5,6].

One of the simplest extensions of the cubic NLSE is the so-called cubic-quintic
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nonlinear Schrödinger (CQNLS) model, which, in normalized units and 1D, is

i
∂ψ

∂t
= −∂

2ψ

∂x2
+G1|ψ|2ψ +G2|ψ|4ψ (1)

The CQNLS equation is another universal mathematical model describing
many situations of physical interest and approximating other more compli-
cated ones. It arises in plasma physics [7], condensed matter physics [8], nu-
clear physics [9], Bose-Einstein condensates [10], nonlinear optics [11], etc.
In the case of Bose-Einstein condensates, the cubic and quintic nonlinear-
ity terms appear as a consequence of the two- and three-body interactions,
respectively. Efimov resonances, which are responsible for three-body interac-
tions have been observed in an ultra-cold gas of cesium atoms [12]. In optics,
the CQNLS equation can describe the propagation of an electromagnetic wave
in photorefractive materials as long as variable t represents the propagation
coordinate of the wave. The cubic-quintic nonlinearity occurs due to an in-
trinsic nonlinear resonance in the material, which also gives rise to strong
two-photon absorption [13].

In the past decade, techniques for managing nonlinearity [14] have attracted
cosiderable attention. For instance, nonlinearity management arises in optics
for transverse beam propagation in layered optical media [15], as well as in
atomic physics for the Feshbach resonance of the scattering length of inter-
atomic interactions in BECs [16]. In these situations, one has to deal with
the governing equations with the nonlinearity coefficients being functions of
time [16,17] , or equivalently, the variable representing the propagation dis-
tance [14,18–20]. In a recent reference [21], by using similarity transformations,
the authors went beyond previous studies considering space and time depen-
dent nonlinearities, and constructed explicit solutions of the cubic nonlinear
Schrödinger equation with coefficients depending on time and on the spatial
coordinates, which are experimentally feasible due to the flexible and precise
control of the scattering length achievable in quasi-one-dimensional BECs with
tunable interactions.

The aim of the present paper is to study explicit solutions of the cubic-quintic
nonlinear Schrödinger equation with time and space dependent potentials and
nonlinearities, which can be written in the following dimensionless form

iut = −uxx + V (t, x)u+ g1(t, x)|u|2u+ g2(t, x)|u|4u (2)

In the case of Bose-Einstein condensates, u(t, x) represents the macroscopic
wave function, V (t, x) is an external potential, g1(t, x) and g2(t, x) are the
cubic and quintic nonlinear coefficients, corresponding to the two-body and
three-body interactions, respectively. The signs of g1(t, x) and g2(t, x) can be
positive or negative, indicating that the interactions are repulsive or attrac-
tive, respectively. Thus, in this paper, we construct different types of explicit
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solutions such as bright and dark soliton solutions. In order to do that, we
resort to the similarity transformation technique, and analyze a general class
of potentials V (t, x) and nonlinearity functions g1(t, x) and g2(t, x).

The paper is organized as follows. In Section 2, we introduce the general ap-
proach of similarity transformations. In Sections 3 and 4, we use the method
for constructing explicit solutions of the time dependent cubic-quintic nonlin-
ear Schrödinger equation. Section 5 contain a remark on the stability of the
previous solutions and the conclusions of our results.

2 General Theory

We consider the cubic-quintic nonlinear Schrödinger equation with time and
space dependent coefficients g1(t, x), g2(t, x), V (t, x), Eq. (2).

Our first goal is to transform Eq. (2) into the stationary CQNLS equation

EU = −UXX +G1 |U |2 U +G2 |U |4 U, (3)

where both U ≡ U(X) and X ≡ X(t, x) are real functions, E denotes the
eigenvalue of the nonlinear equation (which correspond to the chemical po-
tential in the Bose–Einstein condensates framework and the propagation con-
stant in nonlinear optics), and G1 and G2 are the (constant) nonlinearity
parameters.

To connect solutions of Eq. (2) with those of Eq. (3) we will use the transfor-
mation

u(t, x) = r(t, x)U [X(t, x)] , (4)

requiring U(X) to satisfy Eq. (3) and u(t, x) to be a solution of Eq. (2).
The potential V (t, x) and the nonlinearities g1(t, x) and g2(t, x) are deter-
mined after the transformation is applied. Although the methodology of this
transformation has been explained in reference [21] for the cubic nonlinear
Schrödinger equation, for the sake of completeness we show here the method.
Moreover, the CQNLSE presents an extra term with respect to the CNLSE,
which implies extra complications in the treatment of the solutions. Other
similarity transformations have been studied for NLS equations in different
contexts [22,23].

In our calculations, it is convenient to introduce the polar form for the complex
modulating function r = r(t, x)

r(t, x) = ρ(t, x)eiφ(t,x), (5)

where ρ and φ are real functions (ρ is also non-negative). Upon substitution
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of Eq. (4) into Eq. (2), we impose the following system of conditions on g1, g2
and V :

g1(t, x)=G1
X2

x

ρ2
, (6)

g2(t, x)=G2
X2

x

ρ4
, (7)

V (t, x)=
ρxx
ρ

− φt − φ2
x − EX2

x, (8)

together with


ρρt + (ρ2φx)x = 0,

(ρ2Xx)x = 0,

Xt + 2φxXx = 0,

(9)

in order to arrive at a set of nontrivial solutions to Eq. (2). By solving (9) one
gets

Xx(t, x) =
γ2(t)

ρ2(t, x)
, (10)

(γ(t) is an arbitrary positive definite function of time) and

XtxXx −XtXxx =
γt
γ
X2

x. (11)

This last equation yields (
Xt

Xx

)
x

=
γt
γ
, (12)

which, after integration, results in

X(t, x) = F (ξ), ξ(t, x) = γ(t)x+ δ(t), (13)

where both γ(t) and δ(t) are differentiable functions.

Thus, we have proven the following result: the substitution

u(t, x) = ρ(t, x)eiφ(t,x)U [X(t, x)] , (14)

where

ρ(t, x)=

√
γ

F ′(ξ)
, (15)

φ(t, x)=− γt
4γ
x2 − δt

2γ
x+ ε, (16)
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and ε(t) is a differentiable arbitrary function, leads to Eq. (2), with

g1(t, x)=G1
γ4

ρ6
, (17)

g2(t, x)=G2
γ4

ρ8
, (18)

V (t, x)=
ρxx
ρ

− φt − φ2
x − E

γ4

ρ4
(19)

where the function ρ(x, t) must be sign definite and C2 (i.e. twice continuously
differentiable) for g1(t, x), g2(t, x) and V (t, x) to be properly defined. There-
fore, choosing δ(t), γ(t) and F (ξ) (or equivalently ρ(x, t)) we can generate
g1(t, x), g2(t, x) and V (t, x) for which the solutions of Eq. (2) can be obtained
from those of Eq. (3) via Eqs. (4). We will exploit this fact to construct soliton
solutions exhibiting interesting nontrivial behavior.

3 Exact Solutions I

In this section, we first address solutions to Eq. (2) when the potential V (t, x)
depends both on time and space while the nonlinearities are of the form

g1(t, x)=G1γ(t) (20)

g2(t, x)=G2 (21)

These nonlinearities can be derived by taking

ρ(t, x) =
√
γ(t), (22)

which corresponds to the choice F (ξ) = ξ. From Eq. (19), one finds that the
potential can be cast as

V (t, x) = f(t)x2 + h(t)x−
(
εt +

δ2t
4γ

+ Eγ2
)
, (23)

where

f(t)=
γttγ − 2γ2t

4γ2
, (24)

h(t)=
δttγ − 2δtγt

2γ2
. (25)
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Moreover, X(t, x) becomes

X(t, x) =
∫ ξ

0

γ

ρ2
dξ = ξ = γ(t)x+ δ(t). (26)

On the other hand, many solutions of Eq. (3) are known. In this paper, we
use the bright soliton, given by

U =
η(√

1− β cosh(2
√
−Ex) + 1

)1/2 (27)

where

η =

√
4E

G1

, β =
−16EG2

3G2
1

(28)

Since we assume that G2 > 0 and E < 0 we have that G1 < 0. Thus, a
restriction on β is that 0 ≤ β < 1. Another solution, representing a dark
soliton is given by the following expression:

U =
√
a1(sech(µX)− 1) (29)

with

µ2 = −4

5
E, (30)

and

G1 =
8E

5a1
, G2 =

3E

5a21
, (31)

and a1 < 0 being an arbitrary constant. Thus G1 is positive while G2 is
negative.

In what follows, we deal with different cases which turn out to be of physical
relevance. It is worth remarking that the solutions which will be shown below
cannot be calculated in the pure cubic equation, since in the cubic-quintic
NLSE, nonlinearities compete each other when they have different signs. Thus,
the cubic quintic NLS equation, in some sense, generalizes the cubic case.

3.1 Solutions in the free space with constant nonlinearities

We take

γ(t) = 1, δ(t) = υt (32)

with v ∈ R and ε = −(υ2/4 + E)t. Hence, the external potential and the
nonlinearities become

V (t, x) = 0, g1(t, x) = G1, g2(t, x) = G2 (33)
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0 t 50

(a)

0 t 50

(b)

Fig. 1. [Color online] (a) Pseudocolor plot of |u(t, x)|2 where u(t, x) is the solu-
tion of Eq. (2), for V (t, x) = 0 and g1(t, x) = G1, g2(t, x) = G2, and for (a)
bright soliton profiles (E = −1, G1 = −2, G2 = 0.5) and (b) dark soliton profiles
(E = −1, a1 = −1). In both cases x ∈ [−20, 20] and υ = 0.1.

The solution is then given by

u(t, x) = eiφ(t,x)U [ξ(t, x)], (34)

with φ(t, x) = −(υ/2)x− (υ2/4 + E)t and ξ(t, x) = x + υt, where U is given
by Eq. (27), in the case of bright soliton, and Eq. (29), in the case of dark
soliton. In Figs. 1(a) and (b), we plot these solutions corresponding to Eq.
(34), for υ = 0.1.

This case, which corresponds to a soliton moving in the free space with a veloc-
ity υ, reproduces the Galilean invariance of the system providing consequently
a validation of the similarity transformation for the trivial case.

3.2 Solitons with linear potential and constant nonlinearities

If we choose

γ(t) = 1, δ(t) = υt2 (35)

the external potential and the nonlinearities become

V (t, x) = υx, g1(t, x) = G1, g2(t, x) = G2 (36)

The solution is then given by

u(t, x) = eiφ(t,x)U [ξ(t, x)], (37)

with φ(t, x) = −υtx− υ2t3/3−Et and ξ(t, x) = x+ υt2, where U is given by
Eq. (27), in the case of bright soliton, and Eq. (29), in the case of dark soliton.
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0 t 50

(a)

0 t 50

(b)

Fig. 2. [Color online] (a) Pseudocolor plot of |u(t, x)|2 where u(t, x) is the solu-
tion of Eq. (2), for potential and nonlinearities given by Eqs. (36), and for (a)
bright soliton profiles (E = −1, G1 = −2, G2 = 0.5) and (b) dark soliton profiles
(E = −1, a1 = −1). In both cases x ∈ [−20, 20] and υ = 0.01.

In Figs. 2(a) and (b), we plot these solutions corresponding to Eq. (37), for
υ = 0.01.

3.3 Solitons with a linear potential modulated by a time sinusoidal function
and constant nonlinearities

Taking γ(t) = 1 and δ(t) = − cos(Ωt+ β0), we obtain

v(t, x) =
Ω2

2
cos(Ωt+ β0)x, g1(t, x) = G1, g2(t, x) = G2. (38)

With this choice, the solution is given by

u(t, x) = eiφ(t,x)U [ξ(t, x)], (39)

where

φ(t, x) = −Ω

2
sin(Ωt+ β0)x−

Ω2

8
t+

Ω

16
sin(2Ωt+ 2β0)− Et (40)

and U is given by Eq. (27), for the bright soliton, and Eq. (29), for the dark
soliton. In Figs. 3(a) and (b), we plot these solutions corresponding to Eq.
(39).
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(a)

0 t 500 t 50

(b)

Fig. 3. [Color online] (a) Pseudocolor plot of |u(t, x)|2 where u(t, x) is the solu-
tion of Eq. (2), for potential and nonlinearities given by Eqs. (38), and for (a)
bright soliton profiles (E = −1, G1 = −2, G2 = 0.5) and (b) dark soliton profiles
(E = −1, a1 = −1). In both cases x ∈ [−20, 20].

4 Exact solutions II

In this section, we show two extra examples among the vast amount of in-
homogeneous models. The first one is the case of localized nonlinearities in
space and time with no potential. In the second case, we calculate solutions
for Eq. (2) with both periodic potential and nonlinearities. We think that our
results can be applied to Bose–Einstein condensates with optically controlled
interactions [24].

4.1 Localized Nonlinearities in space and time

In this subsection, we address to nonlinearities localized in space and time.
We focus on the localized nonlinearities:

g1(t, x) = G1γ(t)(sech(ξ))
3, g2(t, x) = G2(sech(ξ))

4 (41)

being the external potential

V (t, x) =
γ2(t)

4

(
1 + (1− 4E)(sech(ξ))2

)
+ f(t)x2 + h(t)x+m(t) (42)

where f(t) and h(t) are given by Eqs. (24) and

m(t) = −
(
εt +

δ2t
4γ2(t)

)
(43)
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Our choice corresponds to

ρ(t, x) =
√
γ(t) cosh(ξ) (44)

The potential V (t, x) vanishes by taking E = 1/4, γ(t) = 1, δ(t) = 0 and
ε(t) = t/4. A solution of Eq. (3) with E = 1/4 is given by

U =
sn(µX, k)√

a0 + a1 dn
2(µX, k)

(45)

with the requirement a0 > |a1|, k being the modulus of the Jacobian elliptic
functions,

µ =

√
−E(a0 + a1)

2k2a1 − k2a0 − a0 − a1
(46)

and

G1 =
2Ek2(a20 − 2a1a0k

2 − a21 + a21k
2)

a0k2 + a0 − 2k2a1 + a1
(47)

G2 =
3Ea1a0k

4(a0 + a1 − k2a1)

k2a0 + a0 − 2k2a1 + a1
(48)

We demonstrate below that Eq. (2) in the free space with localized nonlinear-
ities given by Eq. (41), can support bound states with an arbitrary number of
solitons, resembling the results of Ref. [21].

In this particular case, as

X(t, x) =
∫ ξ

0

γ(t)

ρ2(t, x)
dξ (49)

one can obtain cosX = − tan(ξ), thus 0 < X < π. In order to meet the bound-
ary conditions ψ(±∞) = 0 one has to impose U(0) = U(π) = 0. Evidently,
U(0) = 0 is satisfied for the solution (45) and in order to meet U(π) = 0, the
condition µπ = 2nK(k) where K(k) is the elliptic integral

K(k) =
∫ π/2

0

dx√
1− k2 sin2(x)

(50)

must hold. Hence for every n, we can find a value of k leading to the following
family of solutions

ψ(t, x) =
√
cosh(ξ)eit/4U(X(t, x)) (51)

where X(t, x) is given by Eq. (49) and U is given by Eq. (45). The solutions
corresponding to n = 1, 2, 3 are depicted in Fig. 4. It is observed that ψ has
exactly n− 1 zeros.
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(a)

x t

(b)

x t

(c)

x t

Fig. 4. [Color online] Plots of |u(t, x)|2 for solutions of Eq. (2), given by Eq. (51), cor-
responding to (a) n=1 (b) n=2 and (c) n=3. In all cases, x ∈ [−7, 7] and t ∈ [0, 50].

4.2 Periodic potential and nonlinearities

Finally, as a last application of our method, we take ρ(t, x) =
√
γ(t)(1 + α cos(ωξ)).

In this way, nonlinearities g1(t, x) and g2(t, x) are given by

g1(t, x)=G1γ(t)(1 + α cos(ωξ))−3 (52)

g2(t, x)=G2(1 + α cos(ωξ))−4 (53)

If, moreover, we take E = −αω/2, with 0 < α < 1 and ω > 0, the external
potential is given by

V (t, x) = −αω
2γ2

2

2 + α cos(ωξ)

(1 + α cos(ωξ))2
+ f(t)x2 + h(t)x− εt −

δ2t
4γ

(54)

Taking γ = 1, δ = υt, for υ ∈ R and ε = −υ2t/4, we get the periodic potential

V (t, x) = −αω
2

2

2 + α cos(ωξ)

(1 + α cos(ωξ))2
(55)

and the nonlinearities finally are given by

g1(t, x)=G1(1 + α cos(ωξ))−3 (56)

g2(t, x)=G2(1 + α cos(ωξ))−4 (57)

where ξ = x+υt. For small α these nonlinearities are approximately harmonic

g1(x) ≃ G1(1− 3α cos(ωξ)), g2(x) ≃ G2(1− 4α cos(ωξ)), α ≪ 1 (58)

We can construct our canonical transformation by using Eq. (49) and obtain

tan(
ω

2

√
1− α2X(t, x)) =

√
1− α

1 + α
tan(

ωξ

2
) (59)

Again, we use the Eqs. (27) and (29) as solutions of Eq. (3).
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(a)

x
t

(b)

x t

Fig. 5. [Color online] Plots of |u(t, x)|2 for different solutions of Eq. (2), given by Eq.
(60), corresponding to υ = 0, ω = 1 for (a) bright soliton solution, with α = 0.5 and
(b) dark soliton solution, with α = 0.1. In both cases, x ∈ [−15, 15] and t ∈ [0, 120].

Thus, solutions of Eq. (2) are given by

ψ(t, x) =
√
1 + α cos(ωξ)eiφ(t,x)U(X) (60)

where φ(t, x) = −υx/2 + ε and U(X) is given by Eq. (27) or (29).

In Fig. 5, we have draw different solutions of Eq. (2) corresponding to bright
and dark soliton solutions for υ = 0.

5 Conclusions

In this paper, we have used similarity transformations to find exact solutions
of the cubic-quintic nonlinear Schrödinger equation with time and space mod-
ulated nonlinearities and potentials. We have explicitly calculated bright and
dark soliton solutions of Eq. (2), with nonlinearities and potentials of physical
interest in applications to Bose-Einstein condensates and nonlinear optics. The
ideas contained in this paper can also be extended to study multicomponent
systems, higher-dimensional profiles, etc. We hope that this paper will stimu-
late further research on those topics and help to understand the behaviour of
nonlinear waves in systems where, not only the potentials, but the nonlinear-
ities are inhomogeneous in space and time.

We have also tried to study the stability of these exact solutions by means of
a direct simulation, taking as initial condition u(0, x). Those simulations were
performed by means of a finite-difference discretization of the spatial deriva-
tives together with a 5th order Dormand–Prince integrator (i.e. a Runge–
Kutta scheme with stepsize control). Simulations prove the stability of the
bright and dark solitons in the free space (34) and with a linear potential
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(37). However, simulations for time modulated potentials [that is, (39) and
those of Section 4] are cumbersome as they need a special choice of boundary
conditions. We are currently working in this issue and in the orbital stablity
of solitons in time periodic potentials. The results of these studies will be the
aim of further publications.
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Discrete and Continuous Dynamical Systems - Series B 9, 221-233 (2008).

[20] J. Belmonte-Beitia, J. Phys. A: Math. Theor. 42 (2009) 035208.
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