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Universidad de Sevilla, C/ Virgen de África, 7, 41011-Sevilla, Spain

J. C. Eilbeck 2

Department of Mathematics, Heriot-Watt University. Riccarton, Edinburgh, EH14
4AS, UK

Abstract

We study the symmetric collisions of two mobile breathers/solitons in a model for
coupled wave guides with a saturable nonlinearity. The saturability allows the ex-
istence of breathers with high power. Three main regimes are observed: breather
fusion, breather reflection and breather creation. The last regime seems to be exclu-
sive of systems with a saturable nonlinearity, and has been previously observed in
continuous models. In some cases a “symmetry breaking” can be observed, which
we show to be an numerical artifact.
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1 Introduction

Since the 1960’s, a great number of papers have considered the properties of
solitons in nonlinear optic media with a Kerr-type (cubic) nonlinearity. This
media can be modelled by the cubic Nonlinear Schrödinger (NLS) Equation.
As it is well known, the NLS equation is integrable and, in consequence, soli-
tons interact elastically [1].
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More recently, several authors have studied the properties of solitons in photo-
refractive media [2]. In this case, the equation describing these media is a
modification of the original NLS, which consists in substituting the Kerr non-
linearity term by another one of saturable type. This Saturable (SNLS) Equa-
tion is nonintegrable and the soliton collision processes are inelastic, leading
to annihilation, fusion or creation of solitons [3]. This last phenomena consists
of the appearance of three solitons after the collision of only two of them.
Another important feature of the SNLS is that the behaviour of the solutions
is quite generic, being independent of the details of the mathematical model.

The discrete version of the NLS equation can be used to describe nonlinear
waveguide arrays within the tight binding approximation [4]. The existence
and properties of mobile discrete breathers/solitons in DNLS lattices has been
considered in a number of studies (We use the terms breathers and solitons
interchangeably in this context, also intrinsic localized modes). An early brief
study [5] showed that breathers could propagate along the lattice with a small
loss of energy, and could become trapped by inhomogeneities in the lattice.
Later, a more detailed study [6] suggested that “exact” travelling breathers
might exist, at least for some parameter ranges. The reviews [7,8] refer to many
other papers in this area. More recently, work has concentrated on breathers
with infinite oscillating tails [9], although the question of the existence of exact
breather solutions which tend to zero as n → ±∞ has not yet been resolved.
Given the long history of mobile breather solutions of this equation, it is
rather surprising that a systematic study of the collision of two breathers in
the DNLS model has only recently been carried out [10]. (We mention also
that collisions have been studied in generalised nearly integrable DNLS model
in [11,12]).

Recently, some studies have considered the existence of mobile breathers in
waveguide arrays in photo-refractive crystal, described by a DNLS equation
with saturable nonlinearity [13,14]. In particular, these papers considered a
discrete version of the Vinetskii-Kukhtarev model [2,15]. This model system,
which we consider in this paper, is governed by the following equation of
motion

iu̇n − β
un

1 + |un|2 + (un+1 − 2un + un−1) = 0. (1)

The key difference between the cubic DNLS equation and the saturable DNLS
equation is that in the later, the Peierls–Nabarro barrier (the energy difference
between a bond-centred and a site-centred breather with the same power) is
bounded and, in most cases, smaller than in the former [16]. It allows the
existence of mobile breathers of high power.

It is worth noting that there is another saturable DNLS equation in the liter-
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ature, namely

iψ̇n +
ν|ψn|2

1 + µ|ψn|2ψn + (ψn+1 − 2ψn + ψn−1) = 0. (2)

For example, Khare et al. [17] have recently published an exact stationary
breather solution for (2), although in fact the stationary solution of this equa-
tion is just the solution to an integrable map first published by McMillan in
1971 [18]. Maluckov et al. [19] have also recently studied stationary solutions
of (2). However, the two models are not independent, solutions of (2) can be
mapped into solutions of (1) by the (invertible) transformation

ψn(t) =
1√
µ

exp{iνt/µ}un(t), β = ν/µ.

The aim of the present paper is to study breather-breather collisions in the
saturable DNLS equation (1) and to compare the results with those obtained
in the continuous SNLS and the discrete cubic equation.

2 Numerical results

This model (1) has two conserved quantities: the Hamiltonian H =
∑

n[β log(1+
|un|2) + |un−1 − un|2] and the power (or norm) P =

∑
n |un|2.

In order to reduce the dimension of the large parameter space to be consid-
ered, we have fixed β to β = 2. Higher values of β lead to solutions that only
can be moved for a restricted set of power values [13]. Note that the localized
stationary breather solution of [17] only exists for β > 2, and hence are not
relevant to our discussions which focus on the β = 2 case. It would be inter-
esting to extend the calculations in this paper to other values of β to see if
the presence of these stationary solutions affected the results given here.

A moving breather vn(t) is obtained by adding a thrust q to a stationary
breather un, so that:

vn(0) = un exp(i q n). (3)

Notice that this procedure of obtaining moving breathers is similar to the
marginal mode method introduced in [20,21] for Klein–Gordon lattices.

In the following, we consider the collision of two identical breathers moving
in opposite directions with the same thrust q. Analogously to Ref. [10], we
consider both inter-site (IS) and on-site (OS) collisions.
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The collision scenario we observe for small P is quite simple: there exists a
critical value qc below which breathers form a bound state, and above which,
breathers are reflected (See Fig. 1a-b for examples of these two cases). It can be
observed that the bound state “oscillates” after the collision. The amplitude
of these oscillations decreases when approaching to the critical point, whereas
their “period” increases. (Note that the “reflection” case could equally be
regarded as a transmission case as the two breathers are indistinguishable.
In the case of reflection/transmission, there is some loss of energy of the two
breathers).

For high values of P , the above scenario takes place, except that, for high
values of q, breather creation is observed. Figure 1c shows an example of such
a collision. This behaviour is similar to the soliton creation observed in the
saturable continuous models and will be analyzed in more detail below. The
different regimes in the (P, q) plane are depicted in Figure 2, for both IS and
OS collisions. Furthermore, Fig. 3 shows the values of the critical value of q
separating merging and reflecting regimes, as a function of the power P . It
can be seen that, for most choices of P , both values are close. This is different
from the cubic DNLS case [10] where the critical values of the OS case is an
order of magnitude higher than the ones for the IS case. The likely explanation
is that in the saturable case, the PN barrier is small (for our choice β = 2, the
absolute value of the barrier is smaller than 0.01).

For high values of P , we have also observed the merging of two breathers
with symmetry breaking, as reported in [10]. This symmetry breaking man-
ifests as a movement of the final bound state to left or to the right ac-
companied by the appearance of a total lattice momentum, defined by p =
i
∑

n(ψn+1ψ
∗
n − ψ∗n+1ψn). Since the equation, the initial conditions, and the

boundary conditions are symmetric, this state must be a numerical artifact, as
suggested in [10]. To test this hypothesis further, we performed some runs with
either (a) increased numerical accuracy in the numerical integration routines,
or (b), the addition of some very small random noise to the initial conditions.
In case (a), the onset of symmetry breaking is shifted to longer times, whereas
in case (b), symmetry breaking is observed at shorter times. These numerical
results confirm that symmetry breaking is a numerical artifact caused by ran-
dom rounding errors breaking the symmetry of the problem. However these
“spurious” results are interesting in their own right as they suggest that at
these higher values of P , the stationary breather formed after collision is more
easily set into motion by a very small perturbation. To check that the other
phenomena we observe is not due to numerical artifacts, we have carried out
similar tests on other runs showing different phenomena. No such sensitivity
to random errors of the accuracy of the integrators is observed.
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3 Breather creation

We proceed to analyze the breather creation process, as it is most noteworthy
phenomenon that appears in the saturable case in comparison to the cubic
one. From Figs. 2 and 4 we can conclude that the conditions for breather
creation are that P and q are above a threshold value.

This result can be explained with the aid of Fig. 5, where the density power of
the collision point, for the cases of reflection and breather creation, is shown.
It can be seen that the power density oscillates after the collision, and its
minimum is zero for the case of no creation. The minimum power density
after the collision for all the simulations (neglecting the trapping regime) is
represented in Fig. 4. In consequence, the trapped power must be above a
threshold so that breather creation occurs. It can be explained by the fact
that, for a stationary breather to have a “saturable” behaviour, its power
should be higher than a threshold value. This phenomenon is similar to the
soliton bistability observed for SNLS solitons in [22]. It consists of the existence
of a minimum in the dependence of the soliton width with respect to the peak
intensity. This dependence is monotonically decreasing in the cubic NLS, and
thus the soliton in a saturable medium has a Kerr behaviour for small peak
intensities (or power). In the discrete case, as the width is less well-defined,
we have considered instead W = |u1|2/|u0|2, where n = 0 is chosen as the
centre (or peak) of the breather. Fig. 6 shows W versus P displaying a similar
behaviour as in the continuous case.

The analysis given above also explain why the results of [10] (i.e. only merge
and reflection regimes take place) are found for small values of the power. We
note also that this creation process may be related to the phenomena of the
fission of a coupled two-breather state into a stationary and a moving breather
in the DNLS equation [21].

4 Effect of phase in breather collisions

To complete the paper, we give a brief study of the effect of considering a
phase difference between the breathers, in a similar fashion to Ref. [11]. This
is achieved by introducing a factor exp(iφ) in one of the breathers. Fig. 7 shows
the final amplitudes A1,2 and velocities V1,2 of both breathers as a function of
φ.

It appears that the final velocities are smooth functions of φ, showing a strong
phase effect, with the V2 curve following the V1 curve, phase-shifted by π. The
V values vary from around 0.2 to 0.8. The amplitude dependence, on the
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other hand, is much smaller but shows a much more irregular behaviour as a
function of φ. Clearly the discreteness of the lattice is featuring strongly here
in this latter case.

Finally, in Fig. 8, we show the relation between the outgoing velocities as φ
varies through 2π, analogously to Fig. 3 of [11]. Here the relatively smooth
behaviour over a large range of V values is clearly shown.

5 Conclusions

We have analyzed the collisional behaviour in a saturable DNLS model, finding
close analogies to the continuous NLS equation. Breathers can merge, reflect
or be created (although breather annihilation is not observed). The extra
power available to breathers in the SDNLS case results in the new phenomena
of breather creation in a discrete model. Additionally, the scenario in the
saturable DNLS case seems to be much “cleaner” than in the cubic DNLS case
on a coarse scale, with a strong but simpler threshold effect. These facts may
be an advantage in some applications, such as multi-port optical switching.
There are still a number of details in the fine-scale structure which are as yet
unexplained. These may perhaps be understood through the application of a
future variational study. It would also be interesting to extend this study to
consider the collision of two non-identical breathers.

6 Acknowledgements

One of us (JC) acknowledges financial support from the MECD/FEDER
project FIS2004-01183. The other (JCE) would like to acknowledge the hospi-
tality of the University of Seville for hosting research visits during which this
work was discussed.

References

[1] V. E. Zakharov, and A. B. Shabat. Sov. Phys. JETP, 34:62, 1972.
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Fig. 1. Typical power density plots for (a) bound state formation (P = 10, q = 0.1),
(b) reflection (P = 10, q = 0.2), and (c) breather creation (P = 70, q = 0.5). In all
cases, OS collisions are considered, although these pictures do not vary considerably
for IS collisions.
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Fig. 2. Different regimes observed in (a) IS and (b) OS collisions. The colours
represent the following: white-merge to a single breather; black-reflection; and
red-breather creation
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Fig. 3. Critical value of the initial thrust q for (a) IS and (b) OS collisions versus
P .
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Fig. 4. Minimum value of the power density at the collision point after collision as
a function of P and q. Left (right) panel corresponds to inter-(on-) site collisions.
We have supposed that the power trapped in the trapping regime is zero in order
to clarify the figure.
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Fig. 5. Time evolution of the power density at the collision point (|u0|2). The left
panel corresponds to a reflection case (q = 0.3, P = 70) and the right panel to a
creation case (q = 0.7, P = 70).
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Fig. 6. Representation of the “breather width” W (defined as W = |u1|2/|u0|2) ver-
sus the power of a stationary site-centred (left) and a bond-centred (right) breather.
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Fig. 7. Final velocities (a) and amplitudes (b) with respect to the phase for breathers
with P = 20 and q = 0.25 and an OS collision.
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Fig. 8. Relation between the final velocities for breathers with q = 0.25 and (a)
P = 20; (b) P = 10. OS collisions are considered in both cases
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