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Moving breathers in bent DNA with realistic parameters
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Recent papers have considered moving breathers (MBs) in DNA models including long
range interaction due to the dipole moments of the hydrogen bonds. We have recal-

culated the value of the charge transfer when hydrogen bonds stretch using quantum
chemical methods which takes into account the whole nucleoside pairs. We explore the
consequences of this value on the properties of MBs, including the range of frequencies
for which they exist and their effective masses. They are able to travel through bending

points with fairly large curvatures provided that their kinetic energy is larger than a
minimum energy which depends on the curvature. These energies and the corresponding
velocities are also calculated in function of the curvature.
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1. Introduction

Breathers are localized oscillations in coupled networks of nonlinear oscillators 1.

They have been extensively studied in the last years 2,3,4,5,6. Under some conditions

they can move easily along the network while maintaining their localization 7,8.

A physical system where they may play a significant role is DNA, because the

hydrogen bonds between nucleotides are highly nonlinear and their openings can

be related to biological processes such as transcription, replication and, in the case

of MBs, with the transport of information, energy and charge 9,10.

DNA is also a flexible chain, and the question arises of to what extent MBs

are hindered in their movement by the points of bending, or if, on the other hand,
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these points may have a biological role by trapping breathers and accumulating

their energy.

The shape of the DNA molecule is felt because the hydrogen bond is a polar one,

and the dipolar interaction between the dipoles is a long-range one which depends

on the distances and orientations of the dipoles, and, therefore, on the shape.

Soliton properties in the Discrete Nonlinear Schrödinger Equation framework

with dipole-dipole interaction have been considered in Refs. 11,12, among others,

whereas MBs in DNA Klein-Gordon models have been studied in Ref. 13 and their

interaction with bending points in Ref. 14. A problem for these studies is the fairly

large number of physical parameters that are not well known, among them, cru-

cially, the coefficient of dipole interaction. In this paper we present new quantum

chemical calculation that lead to the value of this parameter and investigate its

consequences. Moreover, the reduction of the number of parameters allow us to

explore the variation of another one, the breather frequency, which previously was

considered as fixed.

2. Quantum chemical calculation of the charge transfer

The only quantity that it is needed to implement the dipole–dipole interaction is

the charge transfer q. It is defined in the following way: if p0 is the dipole moment

of a Watson-Crick hydrogen bond at the equilibrium distance, and it is stretched

by a small amount u, the new dipole moment is given to the first order in u by

p = p0 + q u. The relevant estimations have been obtained in Ref. 13, yielding q

values between −0.0014 e and −0.0183 e for an A-T base pair and between −0.025 e

and −0.055 efor a G-C base pair, depending on the quantum-chemical method used.

However, these values were obtained only for Watson-Crick base pairs in vacuo. In

the present work we significantly extend our model, in that we take into account

a) the variation of the dipole moment of the whole nucleoside (base + deoxyri-

bose) pair,

b) the influence of the DNA duplex environment on dipole moments of the

nucleoside pairs in question.

We also consider the helical structure of the DNA double strand. The procedure

now is as follows: we consider regular homogeneous stacked trimers of nucleoside

pairs, namely, adeninosine-thymidine (AT) and guanosine-cytidine (GC) pairs in

the following arrangement: AT/AT/AT and GC/GC/GC. We take the ’effective’

dipole moment of a nucleoside base pair to be one third of the trimer dipole mo-

ment. Then we stretch and squeeze H-bonds by gradually adding or subtracting of

up to 0.1 Angstrom to the equilibrium spacing between A and T (or G and C) in

the central pair of the trimer, with the two flanking pairs remaining in the stan-

dard B-DNA-conformation. At each of the H-bond stretching/squeezing states, the

’effective’ dipole moment of a nucleoside pair was estimated using semiempirical

quantum chemistry. The relevant computational details are published elsewhere 15.

We evaluate a linear regression of the ’effective’ dipole moment (p) onto the
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nucleotide spacing change (u) in the Watson-Crick pairs (p = p0 + q u), where the

coefficient q, delivers the desired estimate. As a result, we have obtained p0 = 1.84D,

q = −0.09 e, for the AT pair and p0 = 3.15D, q = −0.10 e, for the GC pair.

The Watson-Crick H-bond stretching diminishes the effective dipole moment of

nucleoside pairs, which ought to be connected with the proper changes in the purine-

pyrimidine molecular orbital overlap included into quantum-chemical evaluations of

dipole moments. If we take into account only the conventional electrostatic charge

distributions, increasing the spacing between the partners in the Watson-Crick base

pair should lead to the increase in the dipole moment. Note that the values of q

obtained in this way are substantially larger than the ones obtained in Ref. 13 and

very similar for both the A-T and G-C pairs, in spite of the different number of

hydrogen bonds. This could be explained by the appreciable influence of the DNA

duplex surrounding on the Watson-Crick A-T and G-C base pair dipole moments.

We agree that taking an ”effective” dipole moment of the stacked base pair trimer

is only an approximation. We intended to include the coupling between the nearest

neighbours in the DNA stack. That the ”effective” dipole moment values differ

from those of the isolated base pairs is actually a significant result showing that we

were right to include the DNA stacking interactions at least approximately into our

model. As to the Coulomb electron-electron interaction, it was considered at our

Hartree-Fock-level quantum-chemical calculations in the form of Pauli correlations,

where electrons of the same spin are repellent. Note also that being the values of

q for both homopolynucleotide duplexes very similar we should not expect q to

change significatively for heterogeneous DNA.

3. The model

The Hamiltonian system also used in Ref. 13,14 is a Peyrard–Bishop model 16 aug-

mented with long-range interaction. It can be written as:

H =

N∑
n=1

(1
2
mu̇2

n +D (e−b un − 1)2 +

1

2
k (un+1 − un)

2 +
1

2

∑
i

Jinui un

)
. (1)

The explanation of the terms and variables is as follows: un is the stretching

of the n-th hydrogen bond; m is the reduced mass of a nucleotide pair; the Morse

potential D (e−b un − 1)2, represents the energy of a hydrogen bond between a

pair of nucleotides; 1
2k (un+1 − un)

2 is the stacking energy between neighboring

bonds; 1
2

∑
i Jinui un is the energy of the dipole–dipole interaction; if r⃗n is a vector

that denotes the position of each particle in the 2-d space, Jin = J/|r⃗n − r⃗i|3, for
i ̸= n and 0 otherwise, where J , hereafter referred to as the dipole parameter, is

given by J = q2/(4πϵ0 d
3), q and d = 3.4 Å, being the charge transfer and the

distance between neighbouring base pairs, respectively, as deduced in Ref. 13. We
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Fig. 1. Range of existence of moving breathers. The upper limit corresponds to the bifurcation
of stability inversion. The lower limit is the top frequency of the phonon band. The dispersion is
smaller if closer to the upper limit.

approximate the shape of the molecule in the vicinity of a bending point by a

parabola with curvature κ embedded in a plane, and consider the dipoles with the

same orientation and orthogonal to it. We consider fixed geometry as the H–bond

vibrations are much faster than the bending movement. Thus, r⃗n = (xn, yn) with

yn = κx2
n/2. We also neglect the heterogeneity of DNA.

The values of the parameters are taken from Ref. 13, i.e., D = 0.04 eV,

b = 4.45 Å−1 and m = 300 amu. As discussed in the same reference, k can take

values between 0.01 eV/Å2 and 10 eV/Å2 and, in consequence, we consider it as

an adjustable parameter in that range. The value of J for a charge transfer q inter-

mediate between the A-T and G-C base pairs is J = 0.0031 eV/Å2.

4. Moving breathers in a straight chain

Breathers, exact to machine precision, are calculated numerically using techniques

based in the anti-continuous limit 17. MBs with good movability properties, i.e., low

dispersion, are obtained for values of the parameters in the vicinity of a bifurcation

point, called inversion of stability, where a single breather becomes unstable and a

double one stable, or vice versa, and perturbing them with a vector collinear to the

eigenvector that becomes unstable 7,8.

The particles of the breather oscillate coherently with a frequency νb. For the

sake of simplicity, we define the non-dimensional frequency Ωb = νb/νo, where νo,

defined through

νo =
1

2π

√
2b2D

m
= 1.13 THz (2)

is the linear frequency of the isolated oscillators in Eq. 1. As the on–site potential

is soft, Ωb < 1. We have limited its values to the interval (0.65, 0.95) because lower
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Fig. 2. Dependence of the effective mass m∗ with respect to the breather frequency for three
different values of the coupling constant k: 0.2376, 0.2693 and 0.3010 eV/Å2 from bottom to top.
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Fig. 3. Dependence of the critical translational energy Kc with respect to κ for k = ks. The
frequencies Ωb of the breathers are (from up to down) 0.95, 0.90, 0.85, and 0.80. Smaller values

of κ are not shown as Kc is very small and no accurate results can be obtained.

frequencies brings about breathers difficult to move, due to their small width, and

MB with larger ones develop frequencies which interact with the phonon band. The

latter is due to the fact that MBs are a wave packet with frequencies around the

one of the perturbed static breather.

For a given value of the breather frequency Ωb, MBs exist for values of k above

a critical one ks = ks(νb), for which the inversion of stability takes place. This value

has to be calculated numerically.

The phonon band is composed of the frequencies of the linear modes, given
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Fig. 4. Same as Fig. 3 but for the critical initial translational velocity (vc).

by 13,12:

Ω2
ph =

(
ωph

ωo

)2

= 1 +
4k

mω2
o

sin2
q

2
+

2J

mω2
o

F3(ℜ(eiq)), (3)

where q is the wave number, ωo = 2π νo and Fs(z) =
∑

k>1 z
k/k2 is the Polylog-

arithmic or Jonquière function. They exist for increasing values of k > ks until an

upper limit km = km(νb), for which the top of the phonon band, at q = π, reaches

the second harmonic of the breather. km is given by

km =

(
Ω2

b − 1

4

)
mω2

o +
3

8
J ζ(3) , (4)

where ζ(s) is the Riemann’s zeta-function. This is also the upper limit for MBs

existence. Fig. 1 shows the range of existence of MBs. It can be seen that they

exist for a wide range of frequencies, but they have much smaller dispersion at the

vicinity of the inversion stability curve and we will restrict often our study to them.

Static breathers in the above mentioned region have an energy between KBT

and 3.7 KBT, with T = 310 K. The dipolar energy of these breathers oscillates

between 0.006 KBT and 0.023 KBT. The energy depends monotonically with the

frequency, corresponding the highest energy to the smallest frequency.

Moving breathers behave as quasiparticles, having an effective mass m∗ related

with the kinetic energy of the breather by K = 1
2m

∗ v2, with v being the trans-

lational velocity of the breather 7,8. K ∈ (1.5, 50) × 10−4 KBT is also the kinetic

energy added to the static breather. m∗ is approximately constant as long as v is

small enough and, therefore, emits small phonon radiation. Fig. 2 shows the de-

pendence of the mass with respect to the frequency for three different values of

k.

Thus, MBs have an effective mass m∗ between 30 and 46 amu, depending on

the value of frecuency and the stacking parameter.
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5. Moving breathers in bent chains

In order to study the effect of the curvature on breather mobility, we launch a

breather through the bending point. The bending acts as a potential barrier 14 in

accordance to the trapping hypothesis formulated in Ref. 18 (for a discussion of

this last point see Ref. 19). It implies that breathers are reflected when reaching the

bending point as long as their translational energy K is below a critical point Kc.

Fig. 3 shows the dependence of this value with respect to κ for several frequencies.

The dependence of the critical initial velocity is also shown in Fig. 4. Kc, which is

also the amount of energy given to a static breather to start its movement, is fairly

small compared to the thermal energy at physiological temperature of 0.027 eV.

Therefore, it seems likely that it can be given easily by the environment, and most

MBs are able to pass through bending points without being reflected.

6. Conclusion

In this paper we consider a model for DNA with long–range interaction due to the

dipole moments of the hydrogen bonds among nucleotides. The dipole parameter

J has been obtained through quantum chemical calculations including the whole

nucleoside. The consequences for moving breathers in straight and bent DNA chains

have been analyzed. These can be summarize as: 1) For each different value of the

stacking parameter there exist MBs with different frequencies, including an upper

limit, determined numerically for the inversion of stability curve, and a lower limit

determined both numerically and analytically by the top of the phonon band. 2)

MBs breather have a fairly large effective mass of 30–50 amu. 2) The values of J ,

though small, are large enough for the MBs to feel the the bending of DNA. 3) We

have calculated the minimum kinetic energy and the velocity of a breather to be

able to pass over a bending point in function of the curvature. As the minimum

kinetic energy is small, it seems plausible that most MBs will have enough energy

to pass through bending points, although the ones with low energy will be reflected.
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References

1. R S MacKay and S Aubry. Proof of existence of breathers for time-reversible or
Hamiltonian networks of weakly coupled oscillators. Nonlinearity, 7:1623, 1994.

2. S Aubry. Breathers in nonlinear lattices: Existence, linear stability and quantization.
Physica D, 103:201, 1997.

3. S Flach and C R Willis. Discrete breathers. Phys. Rep., 295:181, 1998.
4. Localization in nonlinear lattices. Physica D, 119:1–238, 1999. Focus issue edited by

S. Flach and R. S. Mackay.



March 27, 2015 0:1 WSPC/INSTRUCTION FILE realistic5

8

5. R S MacKay. Discrete breathers: classical and quantum. Physica A, 288:175, 2000.
6. Nonlinear localized modes: physics and applications. Chaos, 13:586–799, 2003. Focus

issue edited by Yu. S. Kivshar and S. Flach.
7. Ding Chen, S Aubry, and G P Tsironis. Breather mobility in discrete ϕ4 lattices.

Phys. Rev. Lett., 77:4776, 1996.
8. S Aubry and T Cretegny. Mobility and reactivity of discrete breathers. Physica D,

119:34, 1998.
9. M Peyrard and J Farago. Nonlinear localization in thermalized lattices: application

to DNA. Physica A, 288:199, 2000.
10. M Peyrard. Nonlinear dynamics and statistical physics of DNA. Nonlinearity, 17:R1–

R40, 2004.
11. P L Christiansen and et al. Solitary excitations in discrete two-dimensional nonlinear

schrödinger models with dispersive dipole-dipole interactions. Phys. Rev. B, 57:11308,
1998.

12. Yu B Gaididei, S F Mingaleev, P L Christiansen, and K Ø Rasmussen. Effects of
nonlocal dispersive interactions on self-trapping excitations. Phys. Rev. E, 55:6141–
6150, 1997.

13. J Cuevas, J F R Archilla, Yu B Gaididei, and F R Romero. Moving breathers in a
DNA model with competing short- and long-range dispersive interactions. Physica D,
163:106, 2002.

14. J Cuevas, F Palmero, J F R Archilla, and F R Romero. Moving breathers in a bent
DNA model. Phys. Lett. A, 299:221, 2002.

15. D Hennig, E Starikov, J F R Archilla, and F Palmero. Charge transport in poly(dG–
poly(dC) and poly(dA)-poly(dT) DNA polymers. Jou. Bio. Phys., 2003. To appear,
arXiv:nlin.PS/0308003.

16. M Peyrard and A R Bishop. Statistical mechanics of a nonlinear model for DNA
denaturation. Phys. Rev. Lett., 62:2755, 1989.
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