
Automated Analysis of Feature Models 20 Years Later: A Literature Review✩

David Benavides, Sergio Segura and Antonio Ruiz-Cortés

Dpto. de Lenguajes y Sistemas Informáticos, University ofSeville
Av. Reina Mercedes s/n, 41012, Seville - Spain

Abstract

Software product line engineering is about producing a set of related products that share more commonalities than
variabilities. Feature models are widely used for variability and commonality management in software product
lines. Feature models are information models where a set of products are represented as a set of features in a
single model. The automated analysis of feature models deals with the computer–aided extraction of information
from feature models. The literature on this topic has contributed with a set of operations, techniques, tools and
empirical results which have not been surveyed until now. This paper provides a comprehensive literature review
on the automated analysis of feature models 20 years after oftheir invention. This paper contributes by bringing
together previously-disparate streams of work to help shedlight on this thriving area. We also present a conceptual
framework to understand the different proposals as well as categorise future contributions. We finally discuss the
different studies and propose some challenges to be faced in the future.

Key words: Feature models, automated analyses, software product lines, literature review

1. Introduction

Mass productionis defined as the production of
a large amount of standardized products using stan-
dardized processes that produce a large volume of the
same product in a reduced time to market. Gener-
ally, the customers’ requirements are the same and
no customization is performed (think of Japanese
watches of the nineties). After the industrial revolu-
tion, large companies started to organise –and are still
organising– their production in a mass production en-
vironment.

However, in this highly competitive and segmented
market, mass production is not enough anymore and
mass customizationis due to become a must for mar-
ket success. According to Tseng and Jiao [83], mass
customization is about “producing goods and services
to meet individual customer’s needs with near mass
production efficiency”. There are two key parts in this
definition. Firstly, mass customization aims to meet as
many individual customer’s needs as possible (imag-
ine current mobile phones). Secondly, this has to be
done while maintaining the highest mass production
efficiency as possible. To achieve this efficiency, prac-

✩A very preliminay version of this paper was published in Jor-
nadas de Ingenierı́a del Software y Bases de Datos (JISBD’06)

Email address:{benavides,sergiosegura,aruiz}@us.es
(David Benavides, Sergio Segura and Antonio Ruiz-Cortés)

titioners propose building products from existing as-
sets that share more commonalities than singularities.

The information systems market is a peculiar
branch of industry compared to more traditional
branches. Making the parallelism with the history of
traditional industries, the industrialization of informa-
tion systems started with artisanal methods, evolved
to mass production and is now pursuing mass cus-
tomization to succeed in the market. In the software
engineering literature, the mass customization of soft-
ware products is known assoftware product lines[24]
or software product families[62]. In order to achieve
customer’s personalization,software product line en-
gineeringpromotes the production of a family of soft-
ware products from common features instead of pro-
ducing them one by one from scratch. This is the key
change: software product line engineering is about
producing families of similar systems rather than the
production of individual systems.

Software product lines have found a broad adop-
tion in several branches of software production such
as embedded systems for mobile devices, car embed-
ded software and avionics [85]. However, adopting
other types of software and systems applications such
as desktop, web or data–intensive applications is a cur-
rent challenge.

An organisation decides to set up a software product
line and faces the following issues, How is a particu-

Preprint submitted to Information Systems February 3, 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51388316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

lar product specified?, and How is the software prod-
uct line itself specified? When this question was first
posed, there was ample evidence for a solution: in
other industries product lines are specified in terms of
features. Products in a software product line are differ-
entiated by their features, where a feature is an incre-
ment in program functionality [7]. Individual products
are specified using features, software product lines are
specified usingfeature models.

Feature model languages are a common family of
visual languages to represent software product lines
[69]. The first formulation of a feature model lan-
guage is due by Kang et al. in 1990 [43]. A fea-
ture model captures software product line information
about common and variant features of the software
product line at different levels of abstraction. A fea-
ture model is represented as a hierarchically arranged
set of features with different relationships among those
features. It models all possible products of a software
product line in a given context. Unlike traditional in-
formation models, feature models not only represent a
single product but a family of them in the same model.

The automated analysis of feature models is about
extracting information from feature models using au-
tomated mechanisms [7]. Analysing feature models
is an error–prone and tedious task, and it is infeasible
to do manually with large–scale feature models. It is
an active area of research and is gaining importance
in both practitioners and researchers in the software
product line community [7, 9]. Since the introduction
of feature models, the literature has contributed with
a number of operations of analysis, tools, paradigms
and algorithms to support the analysis process.

In this article, we present a structured literature re-
view [46, 94] of the existing proposals for the auto-
mated analysis of feature models. The main contri-
bution of this article is to bring together previously–
scattered studies to set the basis for future research as
well as introduce new researchers and practitioners in
this thriving area. We present a conceptual framework
to understand the different proposals and classify new
contributions in the future. 53 primary studies were
analysed from where we report 30 operations of anal-
ysis and 4 different groups of proposals to automate
those operations. As a result of our literature review,
we also report some challenges that remain open to
research.

The main target audience of this literature review
are researchers in the field of automated analysis, tool
developers or practitioners who are interested in analy-
sis of feature models as well as researchers and profes-
sionals of information systems interested in software
product lines, their models and analyses.

The remainder of the paper is structured as follows:

Section 2 presents feature models in a nutshell. Sec-
tion 3 presents the method used in the literature re-
view. Section 4 describes the conceptual framework
that we use to classify primary studies and define re-
curring concepts in the paper. Section 5 presents the
different analysis operations. Section 6 presents the
automated techniques used for analysis. Section 7 dis-
cusses the results of performance analysis of feature
models. Section 8 discusses the results obtained and
describes some challenges to be faced in the future.
Finally, Section 9 presents some conclusions.

2. Feature Models

A feature model represents the information of all
possible products of a software product line in terms
of features and relationships among them. Feature
models are a special type of information model widely
used in software product line engineering. A feature
model is represented as a hierarchically arranged set
of features composed by:

1. relationships between a parent (or compound)
feature and its child features (or subfeatures).

2. cross–tree (or cross–hierarchy) constraints that
are typically inclusion or exclusion statements in
the form: if feature F is included, then features A
and B must also be included (or excluded).

Figure 1 depicts a simplified feature model inspired
by the mobile phone industry. The model illustrates
how features are used to specify and build software for
mobile phones. The software loaded in the phone is
determined by the features that it supports. According
to the model, all phones must include support forcalls,
and displaying information in either abasic, colour
or high resolutionscreen. Furthermore, the software
for mobile phones may optionally include support for
GPS and multimedia devices such ascamera, MP3
player or both of them.

Feature models are used in different scenarios of
software production ranging from model driven devel-
opment [81], feature oriented programming [6], soft-
ware factories [40] or generative programming [27],
all of them around software product line development.
Although feature models are studied in software prod-
uct line engineering, these information models can be
used in different contexts ranging from requirements
gathering [23] to data model structures, hence the po-
tential importance of feature models in the information
systems domain.

The termfeature modelwas coined by Kang et al.
in the FODA report back in 1990 [43] and has been
one of the main topics of research in software product

2

Mobile Phone

Calls GPS

ColourBasic

Screen Media

Camera MP3

Mandatory

Optional

Alternative

Or

Requires

Excludes

High resolution

Figure 1: A sample feature model

lines since then. There are different feature model lan-
guages. We refer the reader to [69] for a detailed sur-
vey on the different feature model languages. Below,
we review the most well known notations for those
languages.

2.1. Basic feature models

We group as basic feature models those allowing the
following relationships among features:

• Mandatory. A child feature has a mandatory re-
lationships with its parent when the child is in-
cluded in all products in which its parent fea-
ture appears. For instance, every mobile phone
system in our example must provide support for
calls.

• Optional. A child feature has an optional rela-
tionship with its parent when the child can be
optionally included in all products in which its
parent feature appears. In the example, software
for mobile phones may optionally include sup-
port forGPS.

• Alternative. A set of child features have an al-
ternative relationship with their parent when only
one feature of the children can be selected when
its parent feature is part of the product. In the ex-
ample, mobile phones may include support for a
basic, colour or high resolutionscreen but only
one of them.

• Or. A set of child features have an or-relationship
with their parent when one or more of them can
be included in the products in which its parent
feature appears. In Figure 1, wheneverMedia is
selected,Camera, MP3or both can be selected.

Notice that a child feature can only appear in a prod-
uct if its parent feature does. The root feature is a part
of all the products within the software product line. In

addition to the parental relationships between features,
a feature model can also contain cross-tree constraints
between features. These are typically in the form:

• Requires. If a feature A requires a feature B, the
inclusion of A in a product implies the inclusion
of B in such product. Mobile phones including
a cameramust include support for ahigh resolu-
tion screen.

• Excludes. If a feature A excludes a feature B,
both features cannot be part of the same product.
GPSandbasicscreen are incompatible features.

More complex cross-tree relationships have been
proposed later in the literature [5] allowing constraints
in the form of generic propositional formulas, e.g. “A
and B implies not C”.

2.2. Cardinality–based feature models

Some authors propose extending FODA feature
models with UML-like multiplicities (so-calledcar-
dinalities) [28, 65]. Their main motivation was driven
by practical applications [26] and “conceptual com-
pleteness”. The new relationships introduced in this
notation are defined as follows:

• Feature cardinality. A feature cardinality is a
sequence of intervals denoted [n..m] with n as
lower bound andm as upper bound. These in-
tervals determine the number of instances of the
feature that can be part of a product. This rela-
tionship may be used as a generalization of the
original mandatory ([1,1]) and optional ([0,1])
relationships defined in FODA.

• Group cardinality. A group cardinality is an in-
terval denoted〈n..m〉, with n as lower bound and
m as upper bound limiting the number of child
features that can be part of a product when its

3

Connectivity

WifiBluetooth

USB

Name: Cost
Domain: Real
Value: 85.5

Name: MaxSpeed
Domain: Real
Value: 3.6

Name: Memory
Domain: Real
Value: 725

Name: Memory
Domain: Real
Value: 425

Name: Cost
Domain: Real
Value: 50

Name: MaxSpeed
Domain: Real
Value: 2.1

Name: Cost
Domain: Real
Value: 35.50

Name: MaxSpeed
Domain: Real
Value: 12

Name: Memory
Domain: Real
Value: 179

Figure 2: A sample extended feature model

parent feature is selected. Thus, an alternative re-
lationship is equivalent to a〈1..1〉 group cardinal-
ity and an or–relationship is equivalent to〈1..N〉,
being N the number of features in the relation-
ship.

2.3. Extended feature models

Sometimes it is necessary to extend feature mod-
els to include more information about features. This
information is added in terms of so–calledfeature at-
tributes. This type of models where additional infor-
mation is included are calledextended, advanced or
attributed feature models.

FODA [43], the seminal report on feature models,
already contemplated the inclusion of some additional
information in feature models. For instance, relation-
ships between features and feature attributes were in-
troduced. Later, Kang et al. [44] make an explicit ref-
erence to what they call “non–functional” features re-
lated to feature attributes. In addition, other groups of
authors have also proposed the inclusion of attributes
in feature models [5, 7, 11, 12, 29, 30, 73, 96]. There
is no consensus on a notation to define attributes.
However, most proposals agree that an attribute should
consist at least of aname, adomainand avalue. Fig-
ure 2 depicts a sample feature model including at-
tributes using the notation proposed by Benavides et
al. in [11]. As illustrated, attributes can be used
to specify extra-functional information such as cost,
speed or RAM memory required to support the fea-
ture.

Extended feature models can also include complex
constraints among attributes and features like: “If at-
tribute A of feature F is lower than a value X, then
feature T can not be part of the product”.

3. Review method

We have carried out a literature review in order
to examine studies proposing automated analysis of
feature models. To perform this review we followed

a systematic and structured method inspired by the
guidelines of Kitchenham [46] and Webster et al. [94].
Below, we detail the main data regarding the review
process and its structure. For further details on the
method followed we refer the reader to [13].

3.1. Research questions
The aim of this review is to answer the following

research questions:

• RQ1: What operations of analysis on feature
models have been proposed?This question moti-
vates the following sub-questions:

– What operations have been formally de-
scribed?

• RQ2: What kind of automated support has been
proposed and how is it performed?This question
motivates the following sub-questions:

– Which techniques have been proposed to
automate the analysis?

– What is the feature modelling notation sup-
ported by each approach?

– Which analysis operations have been auto-
mated?

– Which proposals present a performance
evaluation of their results?

After reviewing all this information we also want to
answer a more general question:

• RQ3: What are the challenges to be faced in the
future?

3.2. Source material
As recommended by Webster et al. [94], we used

both manual and automated methods to make a selec-
tion of candidate papers in leading journals and con-
ferences and other related events. We reviewed 72 pa-
pers, 19 were discarded resulting in a total of53 pa-
pers that were in the scope of this review. These 53
papers are referred asprimary studies[46].

4

[43]

[88]
[51] [20,52,90] [86,102]

[10,89] [30,92]

[7,101]
[35,68]

[14,37,78]
[15]

[69,93]
[4,34,87]

[16]

[38,42,55,76]
[57,99,103]
[41,59,70,98]

[96]

[60,66,80,84]
[1�36�56�75�97�100][5,11,12,74,91]

Figure 3: Classification of papers per year and type of publication

Figure 3 classifies primary studies according to the
year and type of publication. Of the 53 papers in-
cluded in the review, 10 were published in journals,
25 in conferences, 16 in workshops, 1 in the formal
post–proceeding of a summer school and 1 in a tech-
nical report. The graph indicates that there was an im-
portant gap between 1990 and 2002 and since then the
tendency seems to be ascendant.

3.3. Inclusion and exclusion criteria

Articles on the following topics, published between
January 1st 1990 and December 31st 2009, were in-
cluded: i) papers proposing any analysis operation on
feature models in which the original model is not mod-
ified, ii) papers proposing the automation of any anal-
ysis on feature models, andiii) performance studies of
analysis operations.

Works of the same authors but with very similar
content were intentionally classified and evaluated as
separate primary studies for a more rigorous analysis.
Later, in the presentation of results, we grouped those
works with no major differences.

Some related works were discarded to keep the size
and complexity of the review at a manageable level,
namely: i) papers proposing operations where the in-
put feature model is modified by returning a new fea-
ture model, i.e. only operations proposing informa-
tion extraction where considered,ii) papers presenting
any application of the analysis of feature models rather
than proposing new analyses, andiii) papers dealing
with the analysis of other kinds of variability mod-
els like OVM [62], decision models [67] and further
extensions of feature models likeprobabilistic feature
models[31].

4. Conceptual framework

In this section, we propose a conceptual framework
that attempts to provide a high-level vision of the anal-
ysis process and clarify the meaning of various usually
ambiguous terms found in the literature. This is the re-
sult of the common concepts and practices identified
in the primary studies of our review.

As a result of the literature review we found that
the automated analysis of feature models can be de-
fined as thecomputer–aided extraction of information
from feature models. This extraction is mainly car-
ried out in a two–step process depicted in Figure 4.
Firstly, the input parameters (e.g. feature model) are
translated into a specific representation or paradigm
such as propositional logic, constraint programming,
description logic or ad–hoc data structures. Then, off–
the–shelf solvers or specific algorithms are used to au-
tomatically analyse the representation of the input pa-
rameters and provide the result as an output.

The analysis of feature models is performed in
terms ofanalysis operations. An operation takes a set
of parameters as input and returns a result as output.
In addition to feature models, typical input and output
parameters are:

• Configuration. Given a feature model with a set
of featuresF, a configuration is a 2–tuple of the
form (S,R) such thatS,R ⊆ F beingS the set of
features to be selected andR the set of features to
be removed such thatS ∩ R= ∅.

– Full configuration. If S∪R= F the config-
uration is calledfull configuration.

– Partial configuration. If S∪R⊂ F the con-
figuration is calledpartial configuration

As an example, consider the model in Figure 1
and the full (FC) and partial (PC) configurations
described below:

5

Figure 4: Process for the automated analysis of feature models

FC = ({MobilePhone,Calls,Screen,Colour},
{GPS,Basic,High resolution,Media,Camera,MP3})

PC = ({MobilePhone,Calls,Camera},{GPS})

• Product. A product is equivalent to a full config-
uration where only selected features are specified
and omitted features are implicitly removed. For
instance, the following product is equivalent to
the full configuration described above:

P = {MobilePhone,Calls,Screen,Colour}

5. Analysis operations on feature models

In this section, we answerRQ1 : What operations of
analysis on feature models have been proposed?For
each operation, its definition, an example and possible
practical applications are presented.

5.1. Void feature model

This operation takes a feature model as input and re-
turns a value informing whether such feature model is
void or not. A feature model isvoid if it represents
no products. The reasons that may make a feature
model void are related with a wrong usage of cross–
tree constraints, i.e. feature models without cross-tree
constraints cannot be void.

As an example, Figure 5 depicts a void feature
model. ConstraintC-1 makes the selection of the
mandatory featuresB and C not possible, adding a
contradiction to the model because both features are
mandatory.

The automation of this operation is especially help-
ful when debugging large scale feature models in
which the manual detection of errors is recognized
to be an error-prone and time–consuming task [5, 43,
76]. This operation is also referred to by some authors

A

B C
C-1

Figure 5: A void feature model

as “model validation”, “model consistency check-
ing” , “model satisfiability checking”, “model solv-
ability checking“and“model constraints checking”.

5.2. Valid product

This operation takes a feature model and a product
(i.e. set of features) as input and returns a value that
determines whether the product belongs to the set of
products represented by the feature model or not. For
instance, consider the productsP1 andP2, described
below, and the feature model of Figure 1.

P1={MobilePhone,Screen,Colour,Media,MP3}
P2={MobilePhone,Calls,Screen,High resolution,GPS}

ProductP1 is not valid since it does not include the
mandatory featureCalls. On the other hand, product
P2 does belong to the set of products represented by
the model.

This operation may be helpful for software prod-
uct line analysts and managers to determine whether
a given product is available in a software product
line. This operation is sometimes also referred to as
“valid configuration checking”,“valid single system”,
“configuration consistency”, “feature compatibility”,
“product checking” and “product specification com-
pleteness”.

5.3. Valid partial configuration

This operation takes a feature model and a partial
configuration as input and returns a value informing

6

whether the configuration is valid or not, i.e. a partial
configuration is valid if it does not include any con-
tradiction. Consider as an example the partial config-
urationsC1 andC2, described below, and the feature
model of Figure 1.

C1 = ({MobilePhone,Calls,Camera}, {GPS,High resolution})
C2 = ({MobilePhone,Calls,Camera}, {GPS})

C1 is not a valid partial configuration since it selects
support for the camera and removes the high resolu-
tion screen that is explicitly required by the software
product line. C2 does not include any contradiction
and therefore could still be extended to a valid full
configuration.

This operation results helpful during the product
derivation stage to give the user an idea about the
progress of the configuration. A tool implementing
this operation could inform the user as soon as a con-
figuration becomes invalid, thus saving time and ef-
fort.

5.4. All products

This operation takes a feature model as input and
returns all the products represented by the model.
For instance, the set of all the products of the feature
model presented in Figure 1 is detailed below:

P1 = {MobilePhone,Calls,Screen,Basic}

P2 = {MobilePhone,Calls,Screen,Basic,Media,MP3}

P3 = {MobilePhone,Calls,Screen,Colour}

P4 = {MobilePhone,Calls,Screen,Colour,GPS}

P5 = {MobilePhone,Calls,Screen,Colour,Media,MP3}

P6 = {MobilePhone,Calls,Screen,Colour,Media,MP3,GPS}

P7 = {MobilePhone,Calls,Screen,High resolution}

P8 = {MobilePhone,Calls,Screen,High resolution,Media,MP3}

P9 = {MobilePhone,Calls,Screen,High resolution,Media,MP3,Camera}

P10 = {MobilePhone,Calls,Screen,High resolution,Media,Camera}

P11 = {MobilePhone,Calls,Screen,High resolution,GPS}

P12 = {MobilePhone,Calls,Screen,High resolution,Media,MP3,GPS}

P13 = {MobilePhone,Calls,Screen,High resolution,Media,Camera,GPS}

P14 = {MobilePhone,Calls,Screen,High resolution,Media,Camera,MP3,GPS}

This operation may be helpful to identify new valid
requirement combinations not considered in the initial
scope of the product line. The set of products of a
feature model is also referred to in the literature as“all
valid configurations”and“list of products”.

5.5. Number of products

This operation returns the number of products rep-
resented by the feature model received as input. Note
that a feature model is void iff the number of products
represented by the model is zero. As an example, the
number of products of the feature model presented in
Figure 1 is14.

This operation provides information about the flex-
ibility and complexity of the software product line
[11, 30, 88]. A big number of potential products may
reveal a more flexible as well as more complex prod-
uct line. The number of products of a feature model is
also referred to in the literature as“variation degree”.

5.6. Filter

This operation takes as input a feature model and a
configuration (potentially partial) and returns the set of
products including the input configuration that can be
derived from the model. Note that this operation does
not modify the feature model but filters the features
that are considered.

For instance, the set of products of the feature
model in Figure 1 applying the partial configuration
(S,R) = ({Calls,GPS}, {Colour,Camera}), being S
the set of features to be selected andR the set of fea-
tures to be removed, is:

P1 = {MobilePhone,Calls,Screen,High resolution,GPS}

P2 = {MobilePhone,Calls,Screen,High resolution,Media,MP3,GPS}

Filtering may be helpful to assist users during the
configuration process. Firstly, users can filter the set
of products according to their key requirements. Then,
the list of resultant products can be inspected to select
the desired solution [30].

5.7. Anomalies detection

A number of analysis operations address the
detection of anomalies in feature models i.e. unde-
sirable properties such as redundant or contradictory
information. These operations take a feature model
as input and return information about the anomalies
detected. We identified five main types of anomalies
in feature models reported in the literature. These are:

Dead features. A feature isdeadif it cannot appear
in any of the products of the software product line.
Dead features are caused by a wrong usage of cross–
tree constraints. These are clearly undesired since they
give the user a wrong idea of the domain. Figure 6
depicts some typical situations that generate dead fea-
tures.

A

B C

D E

A

B C

D E

A

B C

Figure 6: Common cases of dead features. Grey features are dead

Conditionally dead features.A feature iscondition-
ally dead if it becomes dead under certain circum-
stances (e.g. when selecting another feature) [41].
Both unconditional and conditional dead features are
often referred to in the literature as“contradictions”
or “inconsistencies”. In Figure 7 featureB becomes
dead whenever featureD is selected. Note that, with
this definition, features in an alternative relationship
are conditionally dead.

7

A

B C D E

(B and D) implies C
C implies not B

Figure 7: An example of a conditionally dead feature

False optional features. A feature isfalse optional
if it is included in all the products of the product line
despite not being modelled as mandatory. Figure 8
depicts some examples of false optional features.

A

B C

D E

A

B C

D E

A

B C

Figure 8: Some examples of false optional features. Grey features
are false optional

Wrong cardinalities. A group cardinality is wrong
if it cannot be instantiated [80]. These appear in
cardinality–based feature models where cross–tree
constraints are involved. An example of wrong car-
dinality is provided in Figure 9. Notice that featuresB
andD exclude each other and therefore the selection
of three subfeatures, as stated by the group cardinality,
is not possible.

A

B C D

<1..3>

Figure 9: An example of wrong cardinality

Redundancies. A feature model contains redundan-
cies when some semantic information is modelled in
multiple ways [89]. Generally, this is regarded as a
negative aspect since it may decrease the maintainabil-
ity of the model. Nevertheless, it may also be used as
a means of improving readability and comprehensibil-
ity of the model. Figure 10 depicts some examples of
redundant constraints in feature models.

5.8. Explanations

This operation takes a feature model and an analysis
operation as inputs and returns information (so-called
explanations) about the reasons ofwhyor why notthe
corresponding response of the operation [80]. Causes
are mainly described in terms of features and/or rela-
tionships involved in the operation and explanations
are ofter related to anomalies. For instance, Figure 11

A

B C

D

A

B C

A

B C

Figure 10: Some examples of redundancies. Gray constraints are
redundant

presents a feature model with a dead feature. A possi-
ble explanation for the problem would be“Feature D
is dead because of the excludes constraint with feature
B” . We refer the reader to [80] for a detailed analysis
of explanation operations.

A

B C

D E
C-1

Figure 11: Grey feature is dead because relationship C–1

Explanations are a challenging operation in the con-
text of feature model error analysis, (a.k.a. feature
model debugging) [7, 76, 80]. In order to provide an
efficient tool support, explanations must be as accurate
as possible when detecting the source of an error, i.e. it
should be minimal. This becomes an even more chal-
lenging task when considering extended feature mod-
els and relationships between feature attributes.

5.9. Corrective explanations

This operation takes a feature model and an anal-
ysis operation as inputs and returns a set of correc-
tive explanations indicating changes to be made in the
original inputs in order to change the output of the op-
eration. In general, acorrective explanationprovides
suggestions to solve a problem, usually once this has
been detected and explained.

For instance, some possible corrective explanations
to remove the dead feature in Figure 11 would be“re-
move excludes constraint C-1”or “model feature B
as optional”. This operation is also referred to in the
literature as“corrections” .

5.10. Feature model relations

These operations take two different feature models
as inputs and returns a value informing how the
models are related. The set of features in both models
are not necessarily the same. These operations are
useful for determining how a model has evolved
over time. Tḧum et al. [75] classify the possible
relationships between two feature models as follows:

8

Refactoring. A feature model is a refactoring of
another one if they represent the same set of products
while having a different structure. For instance, model
in Figure 12(b) is a refactoring of model in Figure
12(a) since they represent the same products i.e.
{{A,B},{{A,B,C}, {A,B,D},{A,B,C,D}}. Refactorings are
useful to restructure a feature model without changing
its semantics. When this property is fulfilled the
models are often referred to as“equivalent”.

Generalization. A feature model,F, is a gener-
alization of another one,G, if the set of products
of F maintains and extends the set of products of
G. For example, feature model in Figure 12(c) is a
generalization of the model in Figure 12(a) because
it adds a new product ({A}) without removing an
existing one. Generalization occurs naturally while
extending a software product line.

Specialization.A feature model,F, is a specialization
of another one,G, if the set of products ofF is a
subset of the set of products ofG. For example,
Figure 12(d) depicts a specialization of the model
in Figure 12(a) since it removes a product from the
original model ({A,B,C,D}) and adds no new ones.

Arbitrary edit. There is no explicit relationship be-
tween the input models, i.e. there are non of the rela-
tionships defined above. Models in Figure 12(a) and
Figure 12(e) illustrate an example of this. Thüm et
al. [75] advise avoiding arbitrary edits and replacing
these by a sequence of specialization, generalizations
and refactorings edits for a better understanding of the
evolution of a feature model.

A

B C

D

(a) Original

A

B C D

(b) Refactoring

A

B C

D

(c) Generalization

A

B C

D

(d) Specialization

A

B C

E

(e) Arbitrary

Figure 12: Types of relationships between two feature models

5.11. Optimization

This operation takes a feature model and a so-called
objective function as inputs and returns the product
fulfilling the criteria established by the function. An
objective function is a function associated with an op-
timization problem that determines how good a solu-
tion is.

This operation is chiefly useful when dealing with
extended feature models where attributes are added to
features. In this context, optimization operations may
be used to select a set of features maximizing or min-
imizing the value of a given feature attribute. For in-
stance, mobile phones minimizing connectivity cost in
Figure 2 should include support forUSBconnectivity
exclusively, i.e.USBis the cheapest.

5.12. Core features

This operation takes a feature model as input and
returns the set of features that are part of all the prod-
ucts in the software product line. For instance, the set
of core features of the model presented in Figure 1 is
{MobilePhone,Calls,Screen}.

Core features are the most relevant features of the
software product line since they are supposed to ap-
pear in all products. Hence, this operation is useful to
determine which features should be developed in first
place [77] or to decide which features should be part
of the core architecture of the software product line
[61].

5.13. Variant features

This operation takes a feature model as input and
returns the set of variant features in the model [80].
Variant features are those that do not appear in all
the products of the software product line. For in-
stance, the set of variant features of the feature model
presented in Figure 1 is{Basic,Colour,High resolu-
tion,Media,Camera, MP3,GPS}.

5.14. Atomic sets

This operation takes a feature model as input and re-
turns the set of atomic sets of the model. Anatomic set
is a group of features (at least one) that can be treated
as a unit when performing certain analyses. The in-
tuitive idea behind atomic sets is that mandatory fea-
tures and their parent features always appear together
in products and therefore can be grouped without alter-
ing the result of certain operations. Once atomic sets
are computed, these can be used to create a reduced
version of the model simply by replacing each feature
with the atomic set that contains it.

Figure 13 depicts an example of atomic sets compu-
tation. Four atomic sets are derived from the original
model, reducing the number of features from 7 to 4.

9

Note that the reduced model is equivalent to the origi-
nal one since both represent the same set of products.

A

B D

F GE

C

AS-1={A,C,D}

AS-2={B,E} AS-3={F} AS-4={G}

Figure 13: Atomic sets computation

Using this technique, mandatory features are safely
removed from the model. This operation is used as an
efficient preprocessing technique to reduce the size of
feature models prior to their analysis [70, 102].

5.15. Dependency analysis

This operation takes a feature model and a partial
configuration as input and returns a new configura-
tion with the features that should be selected and/or
removed as a result of the propagation of constraints
in the model [55]. As an example, consider the in-
put and output configurations described below and the
model in Figure 1.

Input = ({MobilePhone,Calls,Camera}, {MP3})
Output =

({MobilePhone,Calls,Camera,Media,Screen,High resolution},
{MP3,Basic,Colour})

FeaturesScreenand High resolutionare added to
the configuration to satisfy the requires constraint with
Camera. Media is also included to satisfy the parental
relationship withCamera. Similarly, featuresBasic
and Colour are removed to fulfil the constraints im-
posed by the alternative relationship.

This operation is the basis for constraint propa-
gation during the interactive configuration of feature
models [55]

5.16. Multi–step configuration

A multi–step configuration problem is defined as
the process of producing a series of intermediate con-
figurations, i.e. a configuration path, going from a fea-
ture model configuration to another [97]. An analysis
operation solving a multi–step configuration problem
takes as input a feature model, an initial configuration,
a desired final configuration, a number of steps in the
configuration pathK, a global constraint that can not
be violated (usually referred to feature attributes) and
a function determining the cost to transition from one
configuration in stepT to another in stepU. As a re-
sult, the operation provides an ordered list ofK con-
figurations that determines the possible steps that can
be taken to go from the initial configuration to the de-
sired final configuration without violating the feature
model and global constraints. For a detailed example

and a rigorous definition of the operation we refer the
reader to [97].

5.17. Other operations

In this section, we group those operations that per-
form some computation based on the values of previ-
ous operations. We also classify in this group those
analysis operations proposed as part of other algo-
rithms.
Homogeneity. This operation takes a feature model
as input and returns a number that provides an indi-
cation of the degree to which a feature model is ho-
mogeneous [36]. A more homogeneous feature model
would be one with few unique features in one prod-
uct (i.e. a unique feature appears only in one product)
while a less homogeneous one would be one with a lot
of unique features. According to [36] it is calculated
as follows:

Homogeneity= 1−
#u f

#products

#u f is the number of unique features in one
product and #productsdenotes the total number of
products represented by the feature model. The range
of this indicator is [0,1]. If all the products have
unique features the indicator is 0 (lowest degree of
homogeneity). If there are no unique features, the
indicator is 1 (highest degree of homogeneity).

Commonality.This operation takes a feature model
and a configuration as inputs and returns the percent-
age of products represented by the model including the
input configuration. An as example, consider the par-
tial configurations described below and the model in
Figure 1:

C1 = {{Calls}, {}}
C2 = {{Calls},{MP3}}

The commonality of both configurations is calcu-
lated as follows:

Comm(C1) =
| f ilter(FM, {{Calls}, {}})|

#products(FM)
=

14
14
= 1

Comm(C2) =
| f ilter(FM, {{Calls}, {MP3}})|

#products(FM)
=

7
14
= 0.5

The range of this indicator is [0,1]. Configuration
C1 appears in 100% of the products whereasC2 is
included only in 50% of them.

This operation may be used to prioritize the order
in which the features are going to be developed [77]
or to decide which features should be part of the core
architecture of the software product line [61].

10

Variability factor. This operation takes a feature
model as input and returns the ratio between the num-
ber of products and 2n where n is the number of fea-
tures considered. In particular, 2n is the potential num-
ber of products represented by a feature model assum-
ing that any combination of features is allowed. The
root and non-leaf features are often not considered. As
an example, the variability of the feature model pre-
sented in Figure 1 taking into account only leaf fea-
tures is:

N.Products
2n

=
14
27
= 0.0625

An extremely flexible feature model would be one
where all its features are optionals. For instance, the
feature model of Figure 14 has the following variabil-
ity factor:

N.Products
2n

=
8
23
= 1

A

B DC

Figure 14: Sample feature model with three optional features

The range of this indicator would depend on the
features considered to calculate the factor. The
feature model variability can be used to measure the
flexibility of the feature model. For instance, a small
factor means that the number of combinations of
features is very limited compared to the total number
of potential products.

Degree of orthogonality. This operation takes a fea-
ture model and a subtree (represented by its root fea-
ture) as input and returns their degree of orthogonality.
Czarnecki et al. [30] defines thedegree of orthogonal-
ity as the ratio between the total number of products
of the feature model and the number of products of
the subtree. Only local constraints in the subtree are
considered for counting the products. For instance,
the formula below shows the degree of orthogonality
for the subtreeScreenin Figure 1.

Orthogonality(S creen) =
14
3
= 4.66

The range of this indicator is (0,∞). A high
degree of orthogonality indicates that decisions can
be taken locally without worrying about the influ-
ence in the configuration of other parts of the tree [30].

Extra Constraint Representativeness (ECR).This
operation takes a feature model as input and returns

the degree of representativeness of the cross-tree con-
straints in the tree. Mendonça et al. [57, 56] de-
fines theExtra Constraint Representativeness (ECR)
as the ratio of the number of features involved in cross-
tree constraints (repeated features counted once) to the
number of features in the feature tree. For instance,
ECR in Figure 1 is calculated as follows:

ECR=
4
10
= 0.4

The range of this indicator is [0,1]. This operation
has been used successfully to design and evaluate
heuristics for the automated analysis of feature models
[57].

Lowest Common Ancestor (LCA). This operation
takes a feature model and a set of features as input and
returns a feature that is the lowest common ancestor
of the input features. Mendonça et al. [57] defines
the Lowest Common Ancestor (LCA)of a set of
features,LCA(FM, { f1, ..., fn}), as the shared ancestor
that is located farthest from the root. In Figure 1,
LCA(FM, {Basic,Camera}) = MobilePhone.

Root features. This operation takes a feature model
and a set of features as inputs and returns a set of fea-
tures that are therootsfeatures in the model. Givenl =
LCA(FM, { f1, ..., fn}), Mendonça et al. [57] defines
the roots of a set of features,Roots(FM, { f1, ..., fn})
as the subset of child features ofl that are ancestors of
f1, ..., fn. In Figure 1,Roots(FM, {Basic,Camera}) =
{Media,S creen}.

6. Automated support

Previously, we presented the different analysis op-
erations that we found in the literature. In this section,
we addressRQ2: What kind of automated support has
been proposed and how is it performed?To answer
this question, we classified the primary studies in four
different groups according to the logic paradigm or
method used to provide the automated support. In
particular, we next present the group of approaches
usingPropositional Logic(PL), Constraint Program-
ming (CP),Description Logic(DL), and other contri-
butions not classified in the former groups proposing
ad–hoc solutions, algorithms or paradigms.

6.1. Propositional logic based analyses

A propositional formulaconsists of a set of prim-
itive symbols or variables and a set of logical con-
nectives constraining the values of the variables, e.g.
¬,∧,∨,⇒,⇔.

11

A SAT solveris a software package that takes as in-
put a propositional formula and determines if the for-
mula is satisfiable, i.e. there is a variable assignment
that makes the formula evaluate to true. Input formu-
las are usually specified inConjunctive Normal Form
(CNF). CNF is a standard form to represent proposi-
tional formulas that is used by most of SAT solvers
where only three connectives are allowed:¬,∧,∨. It
has been proved that every propositional formula can
be converted into an equivalent CNF formula [25].
SAT solving is a well known NP-complete problem
[25], however, current SAT solvers can deal with big
problems where in most of the cases the performance
is not an issue [53].

Similarly, a Binary Decision Diagram (BDD)
solver is a software package that takes a propositional
formula as input (not necessarily in CNF) and trans-
lates it into a graph representation (the BDD itself)
which allows determining if the formula is satisfi-
able and providing efficient algorithms for counting
the number of possible solutions [19]. The size of
the BDD is crucial because it can be exponential in
the worst case. Although it is possible to find a good
variable ordering that reduces the size of the BDD, the
problem of finding the best variable ordering remains
NP-complete [18].

The mapping of a feature model into a propositional
formula can change depending on the solver that is
used later for analysis. In general, the following steps
are performed:i) each feature of the feature model
maps to a variable of the propositional formula,ii)
each relationship of the model is mapped into one or
more small formulas depending on the type of rela-
tionship, in this step some auxiliary variables can ap-
pear, iii) the resulting formula is the conjunction of
all the resulting formulas of stepii plus and additional
constraint assigning true to the variable that represents
the root, i.e.root ⇐⇒ true.

Concrete rules for translating a feature model into
a propositional formula are listed in Figure 15. Also,
the mapping of our running example of Figure 1 is
presented. We may mention that the mapping of the
propositional formulas listed in Figure 15 into CNF is
straightforward (see [25]).

There are some works in the literature that pro-
pose the usage of propositional formulas for the au-
tomated analysis of feature models (see Table 3). In
these studies the analysis is performed in two steps.
Firstly, the feature model is translated into a proposi-
tional formula. Then, an off–the–shelf solver is used
to automatically analyse the formula and subsequently
the feature model. A summary of the solvers used for
analysis is shown in Table 1.

To underline the most important contributions in

Tool Primary study

SAT Solver [17] [5, 14, 16, 56, 70, 75]
Alloy [2] [37, 74]
BDD Solver [95] [14, 16, 30, 57, 70, 86,

87, 103, 100]
SMV [71] [101, 102]
Not specified [51, 52]

Table 1: Propositional logic based tools used for FM analysis

terms of innovation with respect to prior work we may
mention the following studies: Mannion et al. [51, 52]
was the first to connect propositional formulas and fea-
ture models. Zhang et al. [102] reported a method to
calculateatomic sets, later explored by Segura [70].
Batory [5] shows the connections among grammars,
feature models and propositional formulas, this was
the first time that a SAT solver was proposed to anal-
yse feature models. In addition, aLogic Truth Main-
tenance System(a system that maintains the conse-
quences of a propositional formula) was designed to
analyse feature models. Sun et al. [74] propose using
Z, a formal specification language, to provide seman-
tics to feature models. Alloy was used to implement
those semantics and analyse feature models. Bena-
vides et al.[14, 16, 70] propose using a multi–solver
approach where different solvers are used (e.g. BDD
or SAT solvers) depending on the kind of analysis op-
erations to be performed. For instance, they suggest
that BDD solvers seem to be more efficient in general
than SAT solvers for counting the number of prod-
ucts of a feature model. Mendonca et al. [57] also
used BDDs for analysis and compared different clas-
sical heuristics found in the literature for variable or-
dering of BDDs with new specific heuristics for the
analysis of BDDs representing feature models. They
experimentally showed that existing BDD heuristics
fail to scale for large feature models while their novel
heuristics can scale for models with up to 2,000 fea-
tures. Tḧum et al. [75] present an automated method
for classifying feature model edits, i.e. changes in
an original feature model, according to a taxonomy.
The method is based on propositional logic algorithms
using a SAT solver and constraint propagation algo-
rithms. Yan et al. [100] propose an optimization
method to reduce the size of the logic representation of
the feature models by removing irrelevant constraints.
Mendonca et al. [56] shows by means of an experi-
ment that the analysis of feature models with similar
properties to those found in the literature using SAT
solvers is computationally affordable.

12

��������	
�� �
 ������� ������ �
��� ��������������������������
��������� �������!�"#�$��! A B

A B

%&
↔ &%
→ '()))((*+ ,-. ∨∨∨↔

/0
→ 1/02

∧¬

''+()))((*(* ''+()))(*(* ''+()))(*(* .,-., ,.- ,-.
∧¬∧∧¬∧¬↔

∧∧¬∧∧¬↔
∧∧¬∧∧¬↔

−

P

C

P

C

P

C1 C2 Cn

P

C1 C2 Cn

%34456789:46&;8< ↔ =>?66<6789:46&;8< ↔ 6789:46&;8<@&=
→ 6789:46&;8<76A:3 → 'BC+(DEFGD*CFHID ∨↔

JKGFFL''(MNMGODPIK*QRIML*SITUGFPMN JKGFFL''RIMLSITUGFPMNQODPIK**(MNMG JKGFFL''RIMLSITUGFPMNQ(MNMG**ODPIK
∧¬∧¬↔

∧∧¬∧¬↔
∧∧¬∧¬↔

V:8<W:X;?6584Y%3Z6?3 → 'ODPIK[+J*
∧¬

Figure 15: Mapping from feature model to propositional logic

6.2. Constraint programming based analyses

A Constraint Satisfaction Problem(CSP) [82] con-
sists of a set of variables, a set of finite domains for
those variables and a set of constraints restricting the
values of the variables.Constraint programmingcan
be defined as the set of techniques such as algorithms
or heuristics that deal with CSPs. A CSP is solved by
finding states (values for variables) in which all con-
straints are satisfied. In contrast to propositional for-
mulas, CSP solvers can deal not only with binary val-
ues (true or false) but also with numerical values such
as integers or intervals.

A CSP solver is a software package that takes a
problem modelled as a CSP and determines whether
there exists a solution for the problem. From a mod-
elling point of view, CSP solvers provide a richer set
of modelling elements in terms of variables (e.g. sets,
finite integer domains, etc.) and constraints (not only
propositional connectives) than propositional logic
solvers.

The mapping of a feature model into CSP can vary
depending on the concrete solver that is used later for
the analysis. In general, the following steps are per-
formed: i) each feature of the feature model maps to
a variable of the CSP with a domain of 0..1 or TRUE,
FALSE, depending on the kind of variable supported

by the solver,ii) each relationship of the model is
mapped into a constraint depending on the type of re-
lationship, in this step some auxiliary variables can
appear,iii) the resulting CSP is the one defined by
the variables of stepsi and ii with the correspond-
ing domains and a constraint that is the conjunction of
all precedent constraints plus and additional constraint
assigning true to the variable that represents the root,
i.e. root ⇐⇒ true or root == 1, depending on the
variables’ domains.

Concrete rules for translating a feature model into a
CSP are listed in Figure 16. Also, the mapping of our
running example of Figure 1 is presented.

There are some works in the literature that pro-
pose the usage of constraint programming for the auto-
mated analysis of feature models (see Table 3). Anal-
yses are performed in two steps. Firstly, the feature
model is translated into a CSP. Then, an off–the–shelf
solver is used to automatically analyse the CSP and
subsequently the feature model. A summary of the
solvers used for analysis is shown in Table 2.

Benavides et al. were the first authors proposing
the usage of constraint programming for analyses on
feature models [10, 11, 12]. In those works, a set
of mapping rules to translate feature models into a
CSP were provided. Benavides et al. proposals pro-

13

\]^_`abcdeaf ghi j_ffack jbla^] iebc] mn_of^]pqrsqtuvwuxtyurqzuv
qzt{vrqty|{v{}~yv{�{��z~s{� A B

A B

P

C

P

C

P

C1 C2 Cn

P

C1 C2 Cn

P = C

if (P = 0)
 C = 0

if (P > 0)
 Sum(C1,C2,...Cn) in {1..n}
else
 C1= 0, C2=0,…., Cn=0

if (P > 0)
 Sum(C1,C2,...Cn) in {1..1}
else
 C1= 0, C2=0,…., Cn=0

if (A > 0)
 B>0

if (A > 0)
 B=0

 Mobilephone = Calls
 Mobilephone = Screen

if (Mobilephone = 0)
GPS = 0

if (Mobilephone = 0)
Media = 0

if (Media > 0)
 Sum(Camera,MP3) in {1..2}
else
 Camera = 0, MP3 = 0

if (Screen > 0)
 Sum(Basic,Colour,High resolution) in {1..1}
else
 Basic = 0,Colour = 0, High resolution = 0

if (Camera > 0)
 High resolution > 0

if (GPS > 0)
 Basic = 0

Figure 16: Mapping from feature model to CSP

Tool Proposals

JaCoP [33] [14, 15, 16, 70]
Choco [21] [15, 99, 97]
OPL studio [58] [10, 11, 12]
GNU Prolog [39] [34]
Not specified [78, 76]

Table 2: CSP based tools used for FM analysis

vide support for the analysis of extended feature mod-
els (i.e. including feature attributes) and the opera-
tion of optimization. The authors also provide tool
support [16, 79] and they have compared the per-
formance of different solvers when analysing feature
models [15, 14, 70]. Trinidad et al. [78, 76] focus
on the detection and explanation of errors in feature
models based on Reiter’s theory of diagnosis [64] and
constraint programming. Djebbi et al. [34] propose
a method to extract information from feature models
in terms of queries. A set of rules to translate feature
models to boolean constraints are given. They also
describe a tool under development enabling the anal-
ysis of feature models using constraint programming.
White et al. [99] propose a method to detect conflicts

in a given configuration and propose changes in the
configuration in terms of features to be selected or de-
selected to remedy the problem. Their technique is
based on translating a feature model into a CSP and
adding some extra variables in order to detect and cor-
rect the possible errors after applying optimization op-
erations. In [97], White et al. provide support for the
analysis of multi–step configuration problems.

6.3. Description logic based analyses

Description logicsare a family of knowledge rep-
resentation languages enabling the reasoning within
knowledge domains by using specific logic reason-
ers [3]. A problem described in terms of description
logic is usually composed by a set of concepts (a.k.a.
classes), a set of roles (e.g. properties or relationships)
and set of individuals (a.k.a. instances).

A description logic reasoner is a software package
that takes as input a problem described in description
logic and provides facilities for consistency and cor-
rectness checking and other reasoning operations.

We found four primary studies proposing the usage
of description logic to analyse feature models. Wang
et al. [92] were the first to propose the automated
analysis of feature models using description logic. In
their work, the authors introduce a set of mapping

14

rules to translate feature models into OWL-DL on-
tologies [32]. OWL-DL is an expressive yet decidable
sub language of OWL [32]. Then, the authors sug-
gest using description logic reasoning engines such as
RACER[63] to perform automated analysis over the
OWL representations of the models. In [93], the au-
thors extend their previous proposal [92] with support
for explanations by means of an OWL debugging tool.
Fan et al. [35] also propose translating feature mod-
els into description logic and using reasoners such as
RACER to perform their analyses. In [1], Abo Zaid
et al. propose using semantic web technologies to en-
able the analyses. They use OWL for modelling and
the Pellet [22] reasoner for the analysis.

6.4. Other studies

There are some primary studies that are not classi-
fied in the former groups, namely:i) studies in which
the conceptual logic used is not clearly exposed andii)
studies using ad–hoc algorithms, paradigms or tools
for analysis.

Kang et al. mentioned explicitly the automated
analysis of feature models in the original FODA re-
port [43, pag. 70]. A prolog–based prototype is
also reported. However, no detailed information is
provided to replicate their prolog coding. After the
FODA report, Deursen et al. [88] were the first au-
thors proposing some kind of automated support for
the automated analysis of feature models. In their
work, they propose a textual feature diagram algebra
together with a prototype implementation using the
ASF+SDF Meta-Environment [47]. Von der Massen
et al. [90] present Requiline, a requirement engi-
neering tool for software product lines. The tool is
mainly implemented by using a relational data base
and ad–hoc algorithms. Later, Von der Massen et al.
[91] propose a method to calculate a rough approxi-
mation of the number of products of a feature model,
which they callvariation degree. The technique is de-
scribed using mathematical expressions. In [4], Bach-
meyer et al. presentconceptual graph feature models.
Conceptual graphs are a formalism to express knowl-
edge. Using this transformation, they provide an al-
gorithm that is used to compute analysis. Hemaku-
mar [41] proposes a method to statically detect condi-
tional dead features. The method is based on model
checking techniques and incremental consistency al-
gorithms. Mendonça et al. [54, 55] study dependen-
cies among feature models and cross–tree constraints
using different techniques obtaining a noticeable im-
provement in efficiency. Gheyi et al. [38] present a
set of algebraic laws in feature models to check con-
figurability of feature model refactorings. They use
the PVS tool to do some analysis although this is

not the main focus of the paper. White et al. [96]
present an extension of their previous work [98]. The
same method is presented but giving enough details to
make it reproducible since some details were missed
in their previous work. The method is calledFiltered
Cartesian Flatteringwhich maps the problem of op-
timally selecting a set of features according to sev-
eral constraints to aMulti–dimensional Multi–choice
Knapsack Problemand then they apply several ex-
isting algorithms to this problem that perform much
faster while offering an approximate answer. Van den
Broek et al. [84] propose transforming feature mod-
els into generalised feature trees and computing some
of their properties. Ageneralised feature treeis a fea-
ture model in which cross-tree constraints are removed
and features can have multiple occurrences. Some al-
gorithms and an executable specification in the func-
tional programming language Miranda are provided.
The strength of their proposal lies in the efficiency of
the analysis operation. Fernandez et al. [36] propose
an algorithm to compute the total number of products
on what they callNeutral Feature Trees, trees that al-
low complex cross-tree constraints. Computing the to-
tal number of products the authors are also able to cal-
culate thehomogeneityof a feature tree as well as the
commonalityof a given feature. They finally compare
the computational complexity of their approach with
respect to previous work.

6.5. Summary and analysis of operations and support
A summary of the analysis operations (RQ1) and

automated support (RQ2) identified in the literature is
shown in Table 3. Operations are listed horizontally
and ordered by the total number of papers mentioning
it. Primary studies are listed vertically. Related works
of the same author are grouped in a single column. Pri-
mary studies are grouped according to the paradigm
they use for the analyses as follows:i) Propositional
Logic (PL), ii). Constraint Programming (CP)iii) De-
scription Logic (DL), iv) works that integrate more
than one paradigm and/or solver (Multi), v) studies
that use their own tools not categorized in the former
groups (Others), andvi) proposals that present differ-
ent operations but do not provide automated support
for them (No support).

The cells of the matrix indicate the information
about a primary study in terms of operations sup-
ported. Cells marked with ‘+’ indicate that the pro-
posal of the column provides explicit support for the
operation of the row. We use the symbol ‘∼’ for pro-
posals with no automated support for the correspond-
ing operation but explicit definition of it. We also
highlight the primary study that first proposed an op-
eration using the symbols ‘⊕’ (when support is pro-
vided) and ‘⊖’ (when no support is provided). To fully

15

B
at

or
y

[5
]

C
za

rn
ec

ki
e

ta
l.

[3
0]

G
he

yi
e

ta
l.

[3
7]

M
an

ni
on

e
ta

l.
[5

1,
52

]

M
en

do
nc

ae
ta

l.
[5

7]

M
en

do
nc

ae
ta

l.
[5

6]

S
un

e
ta

l.
[7

4]

T
hü

m
e

ta
l.

[7
5]

va
n

de
r

S
to

rm
[8

6,
87

]

Z
ha

ng
e

ta
l.

[1
02

,1
01

]

Z
ha

ng
e

ta
l.

[1
03

]

Y
an

e
ta

l.
[1

00
]

B
en

av
id

es
e

ta
l.

[1
0,

11
,1

2]

B
en

av
id

es
e

ta
l.

[1
5]

D
je

bi
ie

ta
l.

[3
4]

T
rin

id
ad

e
ta

l.
[7

8,
76

]

W
hi

te
e

ta
l.

[9
9]

W
hi

te
e

ta
l.

[9
7]

A
bo

Z
ai

d
e

ta
l.

[1
]

F
an

e
ta

l.
[3

5]

W
an

g
e

ta
l.

[9
2,

93
]

B
en

av
id

es
e

ta
l.

[1
4]

B
en

av
id

es
e

ta
l.

[1
6]

S
eg

ur
a

[7
0]

B
ac

hm
ey

er
e

ta
l.

[4
]

C
ao

e
ta

l.
[2

0]

F
er

na
nd

ez
e

ta
l.

[3
6]

H
em

ak
um

ar
[4

1]

G
he

yi
e

ta
l.

[3
8]

K
an

g
e

ta
l.

[4
3]

M
en

do
nc

ae
ta

l.
[5

5]

O
sm

an
e

ta
l.

[5
9,

60
]

S
al

in
es

ie
ta

l.
[6

6]

Va
n

de
n

B
ro

ek
e

ta
l.

[8
4]

Va
n

D
eu

rs
en

e
ta

l.
[8

8]

Vo
n

de
r

M
as

se
ne

ta
l.

[9
0]

Vo
n

de
r

M
as

se
ne

ta
l.

[9
1]

W
hi

te
e

ta
l.

[9
8,

96
]

B
at

or
y

e
ta

l.
[7

]

S
ch

ob
be

ns
e

ta
l.

[4
2,

68
,6

9]

T
rin

id
ad

e
ta

l.
[8

0]

Vo
n

de
r

M
as

se
ne

ta
l.

[8
9]

PL CP DL Multi Others No support
Void feature model + ⊕ + + + + + ∼ ∼

#Products + ⊕ + + + + + + + + ⊕ + ∼

Dead features ∼ + + + + + + ⊕ + + + ∼ ∼ ∼

Valid product + + + + + + + + ⊕ + ∼ ∼ ∼

All products + + ⊕ + + + + + ⊕ ∼

Explanations + ∼ + + + + ⊕ + + ∼ ∼

Refactoring + ⊕ + + + ∼ ∼

Optimization ⊕ + + + ∼ ∼

Commonality ⊕ + + + ∼

Filter + ⊕ + + ∼

Valid partial configuration + + + ⊕ ∼

Atomic sets + ⊕ + +

False optional features ⊕ + + ∼ ⊖

Corrective explanations + + ⊖

Dependency analysis ⊕ +

ECR ⊕ +

Generalization ⊕ +

Core features + ⊖

Variability factor ⊕ ∼

Arbitrary edit +

Conditional dead features +

Homogeneity +

LCA +

Muti–step configuration +

Roots features +

Specialization +

Degree of orthogonality ∼

Redundancies ∼

Variant features ∼

Wrong cardinalities ∼

Feature model notation B C B B B B B B B B C B B C C B B B B B B B C B B B C B B B C C C B B B B B B C C B
Extended feature model + + + + + + + + + +

Formalization + + + + + + + + + + + + + + + + +

+ Supported ∼ No support ⊕ Supported(first reference) ⊖ No support (first reference) B Basic feature model C Cardinality–based feature models

Table 3: Summary of operations and support

16

answer the research questions we also extracted some
additional information about different aspects of the
primary studies, namely:i) feature model notations
supported: ‘B’ (basic feature model), ‘C’ (cardinality–
based feature model)ii) whether the approach support
extended feature models or not, andiii) whether the
approach is described formally. This information is
also reported in the final rows of Table 3.

Table 4 depicts a chronological view of the data
presented in Table 3. More specifically, it shows the
amount of references to operations, notation, formal-
ization and kind of automated support found in the lit-
erature for each year. Vertically, we list all the years
where primary studies were published. The last col-
umn indicates the total number of primary studies re-
ferring the operation, the notation of feature models,
the formalization provided and the type of automated
support used for analysis. The table also shows the
number of new operations proposed each year.

As illustrated in Tables 3 and 4, there are 11 out
of 30 operations that only appeared in one primary
study. Likewise, 6 operations were treated in more
than 10 studies of which 4 were already mentioned in
the original FODA report back in 1990 [43]. This de-
notes, in our opinion, that FODA authors were quite
visionary in predicting the importance of automated
analysis of feature models and pinpointing some of the
most referred operations. We may remark that 11 new
operations were proposed in the last two years of our
study and 22 of them were referred in 2009 suggesting
that the analysis of feature models is an active research
field.

Regarding the notation used, 40 out of 53 primary
studies used basic feature model notation for the anal-
ysis of feature models. However, there seems to be an
increasing interest in the analysis of cardinality–based
and extended feature models since 2004.

With respect to automated support for analysis, 18
out of 53 studies used propositional logic while only
4 of them used description logic. Constraint program-
ming was referred to in 12 studies leaded by three dif-
ferent groups of authors. We remark that no support
for extended feature models was found in the studies
using propositional logic. There are also 16 studies
proposing ad–hoc solutions and this tendency seems
to be in progression in the last years which may sug-
gest that researchers are looking for more specific and
efficient algorithms to perform analysis operations.

We also found that there are 22 studies proposing
a formal or rigorous definition of analysis operations.
This tendency seems to be ascendant since 2004 which
may indicate that there is an increasing interest by the
research community to accurately define analysis op-
erations.

Explanations are acknowledged to be an important
operation for feature model error analysis in the liter-
ature [7, 80]. As presented in Sections 5.8 and 5.9,
these operations take as input a feature model and an
operation and return as a result the source of the er-
rors in the model and the possible actions to correct
them respectively. Table 5 shows a detailed view of
the operations that haven been used in explanations
and corrective explanations. As illustrated, there are
only four operations with support for explanations in
more than one study. All logical paradigms have been
used for explaining different analysis operations. We
found that explanations have been largely studied in
related problems in the communities of propositional
logic, constraint programming and description logic
for years. This has provided researchers with help-
ful guidelines and methods to assist them with the im-
plementation of explanations in the analysis of feature
models. We also remark that all the explanations op-
erations refer to the analysis of basic or cardinality–
based feature models while we have not found any
study dealing with explanations in extended feature
models. Only Trinidad et al. [80] attempted an ex-
planation of the optimization operation but no explicit
method to support this operation was presented.

7. Performance evaluation

Performance analyses play a key role in the evalua-
tion of the analysis techniques and tools. The results
obtained highlight the strengths and weaknesses of the
proposals, helping researchers to improve their solu-
tions, identify new research directions and show the
applicability of the analysis operations.

Table 7 summarizes the proposals reporting perfor-
mance results on the analysis of feature models. We
consider as performance results any data (e.g. time,
memory) suggesting how a proposal behaves in prac-
tice. Works based on propositional logic, constraint
programming and ad–hoc solutions have presented a
similar number of performance evaluations while only
one proposal has presented results of description logic
based support. Regarding operations, 18 out of 30
analysis operations identified in the literature have
been used in performance analyses. However, only
7 of them have been evaluated by more than one pro-
posal, providing some comparable results.

In general terms, the available results suggest that
CP-based and PL-based automated support provide
similar performance [14, 70]. PL-based solutions
relying on BDDs (Binary Decision Diagrams) seem
to be an exception as it provides much faster exe-
cution times than the rest of known approaches, es-
pecially when computing the number of solutions

17

1990 2002 2003 2004 2005 2006 2007 2008 2009 Total
Operations

Void feature model + + + + + + + + + 35
#Products + + + + + + + + 16
Dead features + + ∼ + + + 17
Valid product + + + + + + + ∼ 17
All products + + + + + + + 13
Explanations + + ∼ + + + 13
Refactoring + + + + + 9
Optimization + + ∼ + + + 9
Commonality + + + + 6
Filter + + + + 7
Valid partial configuration + + + ∼ 5
Atomic sets + + 4
False optional features + + + ∼ 6
Corrective explanations ∼ + 3
Dependency analysis + + 2
ECR + + 2
Generalization + + 2
Core features + 2
Variability + ∼ 3
Arbitrary edit + 1
Conditional dead features + 1
Homogeneity + 1
LCA + 1
Muti–step configuration + 1
Roots + 1
Specialization + 1
Degree of orthogonality ∼ 1
Redundancies ∼ 1
Variant features ∼ 1
Wrong cardinalities ∼ 1
New operations 6 2 0 6 4 1 0 4 7 30

Notation and formalization

Basic FMs + + + + + + + + + 40
Cardinality-based FMs + + + + + 13
Extended feature models + + + + + + + 13
Formalization + + + + + + 22

Support

Propositional logic + + + + + + + + 18
Constraint programming + + + + + + 12
Description logic + + + + 4
Others + + + + + + + 16

1 study 2-3 studies >3 studies

Table 4: Number of primary studies referring operations, notations and support for each year

B
at

or
y

[5
]

C
za

rn
ec

ki
et

al
.

[3
0]

S
un

et
al

.
[7

4]

T
rin

id
ad

et
al

.
[7

8,
76

]

W
hi

te
et

al
.

[9
9]

A
bo

Z
ai

d
et

al
.

[1
]

W
an

g
et

al
.

[9
2,

93
]

K
an

g
et

al
.

[4
3]

O
sm

an
et

al
.

[5
9,

60
]

Va
n

de
n

B
ro

ek
et

al
.

[8
4]

B
at

or
y

et
al

.
[7

]

T
rin

id
ad

et
al

.
[8

0]

Vo
n

de
r

M
as

se
n

et
al

.
[8

9]

PL CP DL Others No
Valid product + ∼ + + + + ∼ ∼

Void feature model + + + + + + ∼

Dead features + + + ∼ ∼

Valid partial configuration + ∼ + ∼

False optional + ∼ ∼

Dependency analysis +

Core features ∼

Optimization ∼

Redundancies ∼

Variant features ∼

Wrong cardinalities ∼

Table 5: Summary of the proposals reporting explanations

18

[14, 57, 70, 103]. The major drawback of this tech-
nique is the size of the BDD representing the feature
model that can be exponential in the worst case. Sev-
eral authors have worked in the development of new
heuristics and techniques to reduce the size of the
BDDs used in the analysis of feature models [57, 103].
Others focus on providing automated support using
different paradigms in order to combine the best of all
of them in terms of performance [14, 16].

A key aspect in the experimental work related to the
analysis of feature models is the type of subject prob-
lems used for the experiments. We found two main
types of feature models used for experimentation: re-
alistic and automatically generated feature models. By
realisticmodels we intend those modelling real–world
domains or a simplified version of them. Some of the
realistic feature models most quoted in the revised lit-
erature are: e-Shop [48] with 287 features, graph prod-
uct line [50] with up to 64 features, BerkeleyDB [45]
with 55 features and home integration system product
line [11] with 15 features.

Although there are reports from the industry of fea-
ture models with hundreds or even thousands of fea-
tures [7, 49, 72], only a portion of them is typically
published. This has led authors to generate feature
models automatically to show the scalability of their
approaches with large problems. These models are
generated either randomly [14, 15, 55, 60, 70, 96, 97,
99, 100, 103] or trying to imitate the properties of the
realistic models found in the literature [56, 75]. Sev-
eral algorithms for the automated generation of feature
models have been proposed [70, 75, 100].

In order to understand the relationship between real-
istic feature models and automatically generated mod-
els in experimentation, we counted the number of
works using each type by year. The results are shown
in Figure 17. For each type of model, we also show
the number of features of the largest feature model
for each year. The figure shows an increasing trend in
the number of empirical works since 2004 being spe-
cially notable in the last two years. The first works
used small realistic feature models in their experi-
ments. However, since 2006, far more automatically
generated feature models than realistic ones have been
used. Regarding the size of the problems, there is a
clear ascendant tendency ranging from the model with
15 features used in 2004 to the model with 20 000 fea-
tures used in 2009. These findings reflect an increas-
ing concern to evaluate and compare the performance
of different solutions using larger and more complex
feature models. This suggests that the analysis of fea-
ture models is maturing.

Figure 17: Type and maximum size of the feature models used in
performance evaluations for each year

8. Discussions and challenges

In this section, we discuss the results obtained from
the literature review. Based on these results, we iden-
tify a number of challenges (RQ3) to be addressed in
the future. Challenges are part of the authors’ own
personal view of open questions, based on the analy-
sis presented in this paper.

• Formal definition of analysis operations. As we
mentioned, most of the proposals define opera-
tions in terms of informal descriptions. To im-
plement a tool, it is desirable to have precise
definition of the operations. Formal definitions
of operations would facilitate both communica-
tion among the community and tool develop-
ment. Schobbens et al. [68, 69] and Benavides
[8] have made some progress in this direction.
Note that [8] was not included as a primary study
because it was not published in a peer reviewed
format.

Challenge 1: Formally describe all the oper-
ations of analysis and provide a formal
framework for defining new operations.

• Extended feature model analyses. Analysis on
basic or cardinality–based feature models are
covered by most of the studies. However, ex-
tended feature models where numerical attributes
are included, miss further coverage. When in-
cluding attributes in feature models the analy-
sis becomes more challenging because not only
attribute–value pairs can be contemplated, but
more complex relationships can be included
like “feature Camera requires Scree.resolution≥
640x480”. This type of relationships can affect
operations of analysis and can include new ones.
For instance, the number of products of a feature
model can be reduced or increased if these rela-
tionships are considered.

19

G
he

yi
et

al
.

[3
7]

M
en

do
nc

a
et

al
.

[5
6]

T
hü

m
et

al
.

[7
5]

Z
ha

ng
et

al
.

[1
03

]

Y
an

et
al

.
[1

00
]

B
en

av
id

es
et

al
.

[1
0,

11
,1

2]

B
en

av
id

es
et

al
.

[1
5]

W
hi

te
et

al
.

[9
9]

W
hi

te
et

al
.

[9
7]

W
an

g
et

al
.

[9
3]

B
en

av
id

es
et

al
.

[1
4]

S
eg

ur
a

[7
0]

H
em

ak
um

ar
[4

1]

M
en

do
nc

a
et

al
.

[5
5]

O
sm

an
et

al
.

[6
0]

W
hi

te
et

al
.

[9
8,

96
]

PL CP DL Multi Others
Void feature model + + + + + +

#Products + + +

Dead features +

Valid product + + +

All products + +

Explanations + +

Refactoring + +

Optimization +

Atomic sets +

Corrective explanations +

Dependency analysis +

Generalization + +

Arbitrary edit +

Conditional dead features +

Muti-step configuration +

Specialization +

Table 6: Summary of the studies reporting performance results for analysis operations

Challenge 2: Include feature attribute relation-
ships for analyses on feature models and
propose new operations of analysis leverag-
ing extended feature models.

• Performance and scalability of the operations.
Performance testing is being studied more and
more and recent works show empirical evidences
of the computational complexity of some analy-
sis operations. We believe that a more rigorous
analysis of computational complexity is needed.
Furthermore, a set of standard benchmarks would
be desirable to show how the theoretical compu-
tational complexity is run in practice.

Challenge 3: Further studies about computa-
tional complexity of analysis.

Challenge 4: Develop standard benchmarks for
analysis operations.

• Tools used for analysis.As mentioned in Sec-
tion 6, there are mainly three groups of solvers
used for analysis: constraint programming, de-
scription logic and propositional logic based
solvers. From the primary studies, we detected
that proposals using constraint programming–
based solvers are the most indicated to deal with
extended feature models, i.e. feature models with
attributes. Propositional logic–based solvers that
use binary decisions diagrams as internal repre-
sentations seem to be much more efficient for
counting the number of products but present seri-
ous limitations regarding memory consumption.

Description logic–based solvers have not been
studied in depth to show their strengths and lim-
itations when analysing feature models. Finally,
it seems clear that not all solvers and paradigms
will perform equally well for all the identified op-
erations. A characterisation of feature models,
operations and solvers seems to be an interesting
topic to be explored in the future.

Challenge 5: Study how propositional logic and
description logic–based solvers can be used
to add attributes on feature models.

Challenge 6: Compare in depth description
logic–based solvers with respect to analysis
operations and other solvers.

Challenge 7: Characterise feature models, anal-
ysis operations and solvers to select the best
choice in each case.

9. Conclusions

The automated analysis of feature models is thriv-
ing. The extended use of feature models together with
the many applications derived from their analysis has
allowed this discipline to gain importance among re-
searchers in software product lines. As a result, a num-
ber of analysis operations and approaches providing
automated support for them are rapidly proliferating.
In this paper, we revised the state of the art on the au-
tomated analysis of feature models by running a struc-
tured literature review covering 53 primary studies and
outlining the main advances made up to now. As a

20

main result, we presented a catalogue with 30 analy-
sis operations identified in the literature and classified
the existing proposal providing automated support for
them according to their underlying logical paradigm.
We also provided information about the tools used to
perform the analyses and the results and trends re-
lated to the performance evaluation of the published
proposals. From the analysis of current solutions, we
conclude that the analysis of feature models is matur-
ing with an increasing number of contributions, oper-
ations, tools and empirical works. We also identified
a number of challenges for future research mainly re-
lated to the formalization and computational complex-
ity of the operations, performance comparison of the
approaches and the support of extended feature mod-
els.

Acknowledments

We would like to thank Lamia Abo Zaid, Don Ba-
tory, Deepak Dhungana, David Fernández-Amoŕos,
Jose Galindo, Ruben Heradio, Christian Kästner, Ab-
delrahman Osman Elfaki, Anna Queralt, Fabricia C.
Roos, Ernest Teniente, Thomas Thum, Pablo Trinidad,
Pim Van den Broek and Wei Zhang for their helpful
commments in earlier versions of this article.

This work has been partially supported by the Eu-
ropean Commission (FEDER) and Spanish Govern-
ment under CICYT projects SETI (TIN2009-07366)
and WebFactories(TIN2006-00472) and by the An-
dalusian Government under ISABEL project (TIC-
2533)

References

[1] L. Abo, F. Kleinermann, and O. De Troyer. Applying se-
mantic web technology to feature modeling. InSAC ’09:
Proceedings of the 2009 ACM symposium on Applied Com-
puting, pages 1252–1256, New York, NY, USA, 2009. ACM.

[2] Alloy analyzer,http://alloy.mit.edu/. accessed Jan-
uary 2010.

[3] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, and
P.F. Patel-Schneider, editors.The description logic hand-
book: theory, implementation, and applications. Cambridge
University Press, New York, NY, USA, 2003.

[4] R. Bachmeyer and H. Delugach. A conceptual graph ap-
proach to feature modeling. InConceptual Structures:
Knowledge Architectures for Smart Applications, 15th Inter-
national Conference on Conceptual Structures, ICCS, pages
179–191, 2007.

[5] D. Batory. Feature models, grammars, and propositional
formulas. InSoftware Product Lines Conference, volume
3714 of Lecture Notes in Computer Sciences, pages 7–20.
Springer–Verlag, 2005.

[6] D. Batory. A tutorial on feature oriented programming and
the ahead tool suite. InSummer school on Generative and
Transformation Techniques in Software Engineering, 2005.

[7] D. Batory, D. Benavides, and A. Ruiz-Cortés. Automated
analysis of feature models: Challenges ahead.Communica-
tions of the ACM, December:45–47, 2006.

[8] D. Benavides.On the Automated Analyisis of Software Prod-
uct Lines using Feature Models. A Framework for Devel-
oping Automated Tool Support.PhD thesis, University of
Seville, 2007.

[9] D. Benavides, D. Batory, P. Heymans, and A. Ruiz-Cortés,
editors. First Workshop on Analyses of Software Product
Lines, September 2008.

[10] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Coping with
automatic reasoning on software product lines. InProceed-
ings of the 2nd Groningen Workshop on Software Variability
Management, November 2004.

[11] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated
reasoning on feature models. InAdvanced Information Sys-
tems Engineering: 17th International Conference, CAiSE,
volume 3520 ofLecture Notes in Computer Sciences, pages
491–503. Springer–Verlag, 2005.

[12] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Using con-
straint programming to reason on feature models. InThe Sev-
enteenth International Conference on Software Engineering
and Knowledge Engineering, SEKE 2005, pages 677–682,
2005.

[13] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated
analysis of feature models: A detailed literature review.
Technical Report ISA-09-TR-04, ISA research group, 2009.
Available athttp://www.isa.us.es/.

[14] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. A
first step towards a framework for the automated analysis of
feature models. InManaging Variability for Software Prod-
uct Lines: Working With Variability Mechanisms, 2006.

[15] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés.
Using java CSP solvers in the automated analyses of feature
models.LNCS, 4143:389–398, 2006.

[16] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés.
FAMA: Tooling a framework for the automated analysis of
feature models. InProceeding of the First International
Workshop on Variability Modelling of Software-intensive
Systems (VAMOS), pages 129–134, 2007.

[17] D. Le Berre. SAT4J solver,http://www.sat4j.org. ac-
cessed January 2010.

[18] B. Bollig and I. Wegener. Improving the variable ordering of
OBDDs is NP-complete.IEEE Transactions on Computers,
45(9):993–1002, 1996.

[19] R. Bryant. Graph-based algorithms for boolean functionma-
nipulation. IEEE Transactions on Computers, 35(8):677–
691, 1986.

[20] F. Cao, B. Bryant, C. Burt, Z. Huang, R. Raje, A. Olson, and
M. Auguston. Automating feature-oriented domain analysis.
In International Conference on Software Engineering Re-
search and Practice (SERP’03), pages 944–949, June 2003.

[21] CHOCO solver,http://choco.emn.fr/. accessed Jan-
uary 2010.

[22] Clark and Parsia. Pellet: the open source owl reasoner,
http://clarkparsia.com/pellet/. published on line.

[23] A. Classen, P. Heymans, and P.Y. Schobbens. What’s in a
feature: A requirements engineering perspective. InFunda-
mental Approaches to Software Engineering, volume 4961,
pages 16–30. Springer, 2008.

[24] P. Clements and L. Northrop.Software Product Lines: Prac-
tices and Patterns. SEI Series in Software Engineering.
Addison–Wesley, August 2001.

[25] S. Cook. The complexity of theorem-proving procedures.
In Conference Record of Third Annual ACM Symposium on
Theory of Computing, pages 151–158, 1971.

[26] K. Czarnecki, T. Bednasch, P. Unger, and U. Eisenecker.
Generative programming for embedded software: An in-
dustrial experience report. InGenerative Programming and
Component Engineering, ACM SIGPLAN/SIGSOFT Confer-
ence, GPCE, pages 156–172, 2002.

[27] K. Czarnecki and U.W. Eisenecker.Generative Program-

21

http://alloy.mit.edu/
http://www.isa.us.es/
http://www.sat4j.org
http://choco.emn.fr/

ming: Methods, Techniques, and Applications. Addison–
Wesley, may 2000. ISBN 0–201–30977–7.

[28] K. Czarnecki, S. Helsen, and U. Eisenecker. Formaliz-
ing cardinality-based feature models and their specialization.
Software Process: Improvement and Practice, 10(1):7–29,
2005.

[29] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configu-
ration through specialization and multilevel configurationof
feature models.Software Process: Improvement and Prac-
tice, 10(2):143–169, 2005.

[30] K. Czarnecki and P. Kim. Cardinality-based feature model-
ing and constraints: A progress report. InProceedings of the
International Workshop on Software Factories At OOPSLA
2005, 2005.

[31] K. Czarnecki, S. She, and A. Wasowski. Sample spaces and
feature models: There and back again. Inproceedings of
the Software Product Line Conference (SPLC), pages 22–31,
2008.

[32] M. Dean and G. Schreiber. OWL web ontology language
reference. W3C recommendation, W3C, February 2004.

[33] JaCoP development team. accessed January 2010.
[34] O. Djebbi, C. Salinesi, and D. Diaz. Deriving product line

requirements: the red-pl guidance approach. In14th Asia-
Pacific Software Engineering Conference (APSEC), pages
494–501, Los Alamitos, CA, USA, 2007. IEEE Computer
Society.

[35] S. Fan and N. Zhang. Feature model based on description
logics. InKnowledge-Based Intelligent Information and En-
gineering Systems, 10th International Conference, KES, Part
II , volume 4252 ofLecture Notes in Computer Sciences.
Springer–Verlag, 2006.

[36] D. Fernandez-Amoros, R. Heradio, and J. Cerrada. Inferring
information from feature diagrams to product line economic
models. InProceedings of the Sofware Product Line Confer-
ence, 2009.

[37] R. Gheyi, T. Massoni, and P. Borba. A theory for feature
models in alloy. InProceedings of the ACM SIGSOFY First
Alloy Workshop, pages 71–80, Portland, United States, nov
2006.

[38] R. Gheyi, T. Massoni, and P. Borba. Algebraic laws for
feature models. Journal of Universal Computer Science,
14(21):3573–3591, 2008.

[39] GNU prolog, http://www.gprolog.org. accessed Jan-
uary 2010.

[40] J. Greenfield, K. Short, S. Cook, and S. Kent.Software
Factories: Assembling Applications with Patterns, Models,
Frameworks, and Tools. Wiley, August 2004.

[41] A. Hemakumar. Finding contradictions in feature models. In
First International Workshop on Analyses of Software Prod-
uct Lines (ASPL’08), pages 183–190, 2008.

[42] P. Heymans, P.Y. Schobbens, J.C. Trigaux, Y. Bontemps,
R. Matulevicius, and A. Classen. Evaluating formal prop-
erties of feature diagram languages.Software IET, 2(3):281–
302, 2008.

[43] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peter-
son. Feature–Oriented Domain Analysis (FODA) Feasibility
Study. Technical Report CMU/SEI-90-TR-21, Software En-
gineering Institute, Carnegie Mellon University, November
1990.

[44] K. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh.
FORM: A feature–oriented reuse method with domain–
specific reference architectures.Annals of Software Engi-
neering, 5:143–168, 1998.

[45] C. Kastner, S. Apel, and D. Batory. A case study implement-
ing features using aspectj. InSPLC ’07: Proceedings of the
11th International Software Product Line Conference, pages
223–232, Washington, DC, USA, 2007. IEEE Computer So-
ciety.

[46] B. Kitchenham. Procedures for performing systematic re-

views. Technical report, Keele University and NICTA, 2004.
[47] P. Klint. A meta-environment for generating programming

environments.ACM Trans. Softw. Eng. Methodol., 2(2):176–
201, April 1993.

[48] S.Q. Lau. Domain analysis of e-commerce systems using
feature–based model templates. master’s thesis. Dept. of
ECE, University of Waterloo, Canada, 2006.

[49] F. Loesch and E. Ploedereder. Optimization of variability in
software product lines. InProceedings of the 11th Interna-
tional Software Product Line Conference, SPLC, pages 151–
162, Washington, DC, USA, 2007. IEEE Computer Society.

[50] R.E Lopez-Herrejon and D. Batory. A standard problem for
evaluating product-line methodologies. InGCSE ’01: Pro-
ceedings of the Third International Conference on Genera-
tive and Component-Based Software Engineering, pages 10–
24, London, UK, 2001. Springer-Verlag.

[51] M. Mannion. Using first-order logic for product line model
validation. InProceedings of the Second Software Product
Line Conference (SPLC’02), volume 2379 ofLecture Notes
in Computer Sciences, pages 176–187, San Diego, CA, 2002.
Springer–Verlag.

[52] M. Mannion and J. Camara. Theorem proving for product
line model verification. InSoftware Product-Family Engi-
neering (PFE), volume 3014 ofLecture Notes in Computer
Science, pages 211–224. Springer–Verlag, 2003.

[53] F. Marić. Formalization and implementation of modern sat
solvers. Journal of Automated Reasoning, 43(1):81–119,
June 2009.

[54] M. Mendonça, T.T. Bartolomei, and D. Cowan. Decision-
making coordination in collaborative product configuration.
In Proceedings of the 2008 ACM symposium on Applied com-
puting (SAC ’08), pages 108–113, New York, NY, USA,
2008. ACM.

[55] M. Mendonça, D.D. Cowan, W. Malyk, and T. Oliveira. Col-
laborative product configuration: Formalization and efficient
algorithms for dependency analysis.Journal of Software,
3(2):69–82, 2008.

[56] M. Mendonça, A. Wasowski, and K. Czarnecki. SAT–based
analysis of feature models is easy. InProceedings of the
Sofware Product Line Conference, 2009.

[57] M. Mendonça, A. Wasowski, K. Czarnecki, and D. Cowan.
Efficient compilation techniques for large scale feature mod-
els. In Generative Programming and Component Engi-
neering, 7th International Conference, GPCE , Proceedings,
pages 13–22, 2008.

[58] OPL studio,http://www.ilog.com/products/oplstudio/.
accessed January 2010.

[59] A. Osman, S. Phon-Amnuaisuk, and C.K. Ho. Knowledge
based method to validate feature models. InFirst Inter-
national Workshop on Analyses of Software Product Lines,
pages 217–225, 2008.

[60] A. Osman, S. Phon-Amnuaisuk, and C.K. Ho. Using first or-
der logic to validate feature model. InThird International
Workshop on Variability Modelling in Software-intensive
Systems (VaMoS), pages 169–172, 2009.

[61] J. Pena, M. Hinchey, A. Ruiz-Cortés, and P. Trinidad. Build-
ing the core architecture of a multiagent system product line:
With an example from a future nasa mission. In7th Inter-
national Workshop on Agent Oriented Software Engineering,
Lecture Notes in Computer Sciences. Springer–Verlag, 2006.

[62] K. Pohl, G. B̈ockle, , and F. van der Linden.Software Prod-
uct Line Engineering: Foundations, Principles, and Tech-
niques. Springer–Verlag, 2005.

[63] Racer Systems GmbH Co. KG. RACER,
http://www.racer-systems.com/. accessed Jan-
uary 2010.

[64] R Reiter. A theory of diagnosis from first principles.Artifi-
cial Intelligence, 32(1):57–95, 1987.

[65] M. Riebisch, K. B̈ollert, D. Streitferdt, and I. Philippow. Ex-

22

http://www.gprolog.org
http://www.ilog.com/products/oplstudio/
http://www.racer-systems.com/

tending feature diagrams with UML multiplicities. In6th
World Conference on Integrated Design& Process Technol-
ogy (IDPT2002), June 2002.

[66] C. Salinesi, C. Rolland, and R. Mazo. Vmware: Tool support
for automatic verification of structural and semantic correct-
ness in product line models. InThird International Work-
shop on Variability Modelling of Software-intensive Systems,
pages 173–176, 2009.

[67] K. Schmid and I. John. A customizable approach to full
lifecycle variability management.Science of Computer Pro-
gramming, 53(3):259–284, 2004.

[68] P. Schobbens, P. Heymans, J. Trigaux, and Y. Bontemps. Fea-
ture Diagrams: A Survey and A Formal Semantics. InPro-
ceedings of the 14th IEEE International Requirements Engi-
neering Conference (RE’06), Minneapolis, Minnesota, USA,
September 2006.

[69] P. Schobbens, J.C. Trigaux P. Heymans, and Y. Bontemps.
Generic semantics of feature diagrams.Computer Networks,
51(2):456–479, Feb 2007.

[70] S. Segura. Automated analysis of feature models using
atomic sets. InFirst Workshop on Analyses of Software Prod-
uct Lines (ASPL 2008). SPLC’08, pages 201–207, Limerick,
Ireland, September 2008.

[71] SMV system ,http://www.cs.cmu.edu/~modelcheck.
accessed January 2010.

[72] M. Steger, C. Tischer, B. Boss, A. M̈uller, O. Pertler,
W. Stolz, and S. Ferber. Introducing pla at bosch gasoline
systems: Experiences and practices. InSPLC, pages 34–50,
2004.

[73] D. Streitferdt, M. Riebisch, and I. Philippow. Detailsof for-
malized relations in feature models using OCL. InProceed-
ings of 10th IEEE International Conference on Engineering
of Computer–Based Systems (ECBS 2003), Huntsville, USA.
IEEE Computer Society, pages 45–54, 2003.

[74] J. Sun, H. Zhang, Y.F. Li, and H. Wang. Formal semantics
and verification for feature modeling. InProceedings of the
10th IEEE International Conference on Engineering of Com-
plex Computer Systems (ICECCS), 2005.

[75] T. Thüm, D. Batory, and C. K̈astner. Reasoning about edits
to feature models. InInternational Conference on Software
Engineering, pages 254–264, 2009.

[76] P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cort́es, and
M. Toro. Automated error analysis for the agilization of fea-
ture modeling.Journal of Systems and Software, 81(6):883–
896, 2008.

[77] P. Trinidad, D. Benavides, and A. Ruiz-Cortés. Improv-
ing decision making in software product lines product plan
management. InProceedings of the V ADIS 2004 Workshop
on Decision Support in Software Engineering, volume 120.
CEUR Workshop Proceedings (CEUR-WS.org), 2004.

[78] P. Trinidad, D. Benavides, and A. Ruiz-Cortés. A first step
detecting inconsistencies in feature models. InCAiSE Short
Paper Proceedings, 2006.

[79] P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura, and
A.Jimenez. FaMa framework. In12th Software Product
Lines Conference (SPLC), 2008.

[80] P. Trinidad and A. Ruiz Cortés. Abductive reasoning and
automated analysis of feature models: How are they con-
nected? InThird International Workshop on Variabil-
ity Modelling of Software-Intensive Systems. Proceedings,
pages 145–153, 2009.

[81] S. Trujillo, D. Batory, and O. D́ıaz. Feature oriented model
driven development: A case study for portlets. InInterna-
tional Conference on Software Engineering, pages 44–53,
2007.

[82] E. Tsang.Foundations of Constraint Satisfaction. Academic
Press, 1995.

[83] M. Tseng and J. Jiao.Handbook of Industrial Engineering:
Technology and Operations Management, chapter Mass Cus-

tomization, page 685. Wiley, 2001.
[84] P. van den Broek and I. Galvao. Analysis of feature models

using generalised feature trees. InThird International Work-
shop on Variability Modelling of Software-intensive Systems,
number 29 in ICB-Research Report, pages 29–35, Essen,
Germany, January 2009. Universität Duisburg-Essen.

[85] F. van der Linden, K. Schmid, and E. Rommes.Software
Product Lines in Action: The Best Industrial Practice in
Product Line Engineering. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2007.

[86] T. van der Storm. Variability and component composition.
In Software Reuse: Methods, Techniques and Tools: 8th
International Conference, ICSR 2004. Proceedings, volume
3107 ofLecutre Notes in Computer Sciences, pages 157–166.
Springer, July 2004.

[87] T. van der Storm. Generic feature-based software compo-
sition. In Software Composition, volume 4829 ofLecture
Notes in Computer Sciences, pages 66–80. Springer–Verlag,
2007.

[88] A. van Deursen and P. Klint. Domain–specific language de-
sign requires feature descriptions.Journal of Computing and
Information Technology, 10(1):1–17, 2002.

[89] T. von der Massen and H. H. Lichter. Deficiencies in feature
models. In Tomi Mannisto and Jan Bosch, editors,Workshop
on Software Variability Management for Product Derivation
- Towards Tool Support, 2004.

[90] T. von der Massen and H. Lichter. Requiline: A requirements
engineering tool for software product lines. In F. van der
Linden, editor,Proceedings of the Fifth International Work-
shop on Product Family Engineering (PFE), volume 3014
of Lecture Notes in Computer Sciences, Siena, Italy, 2003.
Springer–Verlag.

[91] T. von der Massen and H. Litcher. Determining the variation
degree of feature models. InSoftware Product Lines Confer-
ence, volume 3714 ofLecture Notes in Computer Sciences,
pages 82–88. Springer–Verlag, 2005.

[92] H. Wang, Y. Li, J. Sun, H. Zhang, and J. Pan. A seman-
tic web approach to feature modeling and verification. In
Workshop on Semantic Web Enabled Software Engineering
(SWESE’05), November 2005.

[93] H. Wang, Y.F. Li, J. un, H. Zhang, and J. Pan. Verifying Fea-
ture Models using OWL.Journal of Web Semantics, 5:117–
129, June 2007.

[94] J. Webster and R. Watson. Analyzing the past to prepare
for the future: Writing a literature review.MIS Quarterly,
26(2):xiii–xxiii, 2002.

[95] J. Whaley. JavaBDD,
http://javabdd.sourceforge.net/. accessed January
2010.

[96] J. White, B. Doughtery, and D. Schmidt. Selecting highly
optimal architectural feature sets with filtered cartesian flat-
tening. Journal of Systems and Software, 82(8):1268–1284,
2009.

[97] J. White, B. Doughtery, D. Schmidt, and D. Benavides. Au-
tomated reasoning for multi-step software product-line con-
figuration problems. InProceedings of the Sofware Product
Line Conference, pages 11–20, 2009.

[98] J. White and D. Schmidt. Filtered cartesian flattening: Anap-
proximation technique for optimally selecting features while
adhering to resource constraints. InFirst International Work-
shop on Analyses of Software Product Lines (ASPL), pages
209–216, 2008.

[99] J. White, D. Schmidt, D. Benavides P. Trinidad, and A. Ruiz-
Cortes. Automated diagnosis of product-line configuration
errors in feature models. InProceedings of the Sofware Prod-
uct Line Conference, 2008.

[100] H. Yan, W. Zhang, H. Zhao, and H. Mei. An optimiza-
tion strategy to feature models’ verification by eliminating
verification-irrelevant features and constraints. InICSR,

23

http://www.cs.cmu.edu/~modelcheck
http://javabdd.sourceforge.net/

pages 65–75, 2009.
[101] W. Zhang, H. Mei, and H. Zhao. Feature-driven require-

ment dependency analysis and high-level software design.
Requirements Engineering, 11(3):205–220, June 2006.

[102] W. Zhang, H. Zhao, and H. Mei. A propositional logic-based
method for verification of feature models. In J. Davies, ed-
itor, ICFEM 2004, volume 3308 ofLecture Notes in Com-
puter Sciences, pages 115–130. Springer–Verlag, 2004.

[103] Wei Zhang, Hua Yan, Haiyan Zhao, and Zhi Jin. A bdd–
based approach to verifying clone-enabled feature models’
constraints and customization. InHigh Confidence Software
Reuse in Large Systems, 10th International Conference on
Software Reuse, ICSR, Proceedings, volume 5030 ofLec-
ture Notes in Computer Sciences, pages 186–199. Springer–
Verlag, 2008.

24

	Introduction
	Feature Models
	Basic feature models
	Cardinality--based feature models
	Extended feature models

	Review method
	Research questions
	Source material
	Inclusion and exclusion criteria

	Conceptual framework
	Analysis operations on feature models
	Void feature model
	Valid product
	Valid partial configuration
	All products
	Number of products
	Filter
	Anomalies detection
	Explanations
	Corrective explanations
	Feature model relations
	Optimization
	Core features
	Variant features
	Atomic sets
	Dependency analysis
	Multi--step configuration
	Other operations

	Automated support
	Propositional logic based analyses
	Constraint programming based analyses
	Description logic based analyses
	Other studies
	Summary and analysis of operations and support

	Performance evaluation
	Discussions and challenges
	Conclusions

