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Abstract

Software product line engineering is about producing a setlated products that share more commonalities than
variabilities. Feature models are widely used for varigbé&ind commonality management in software product
lines. Feature models are information models where a setaafugts are represented as a set of features in a
single model. The automated analysis of feature models agti the computer—aided extraction of information
from feature models. The literature on this topic has cbuotdd with a set of operations, techniques, tools and
empirical results which have not been surveyed until nows paper provides a comprehensive literature review
on the automated analysis of feature models 20 years afteewnfinvention. This paper contributes by bringing
together previously-disparate streams of work to help $igation this thriving area. We also present a conceptual
framework to understand theffirent proposals as well as categorise future contributidfesfinally discuss the
different studies and propose some challenges to be faced ttine.f
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1. Introduction titioners propose building products from existing as-
sets that share more commonalities than singularities.

The information systems market is a peculiar
branch of industry compared to more traditional
branches. Making the parallelism with the history of
traditional industries, the industrialization of informa
tion systems started with artisanal methods, evolved
to mass production and is now pursuing mass cus-
tomization to succeed in the market. In the software
engineering literature, the mass customization of soft-
ware products is known aoftware product Iine@]
or software product familie@]. In order to achieve
customer’s personalizatiospftware product line en-
gineeringpromotes the production of a family of soft-
ware products from common features instead of pro-
ducing them one by one from scratch. This is the key
change: software product line engineering is about

Mass productionis defined as the production of
a large amount of standardized products using stan-
dardized processes that produce a large volume of the
same product in a reduced time to market. Gener-
ally, the customers’ requirements are the same and
no customization is performed (think of Japanese
watches of the nineties). After the industrial revolu-
tion, large companies started to organise —and are still
organising— their production in a mass production en-
vironment.

However, in this highly competitive and segmented
market, mass production is not enough anymore and
mass customizatiois due to become a must for mar-
ket success. According to Tseng and Jiao [83], mass
customization is aboutgroducing goods and services
to meet individual customer’s needs with near mass . " -
production gficiency. There are two key parts in this produu_ng fa”.‘"'e.s. of similar systems rather than the
definition. Firstly, mass customization aims to meet as production of individual systems.
many individual customer’s needs as possible (imag- Software product lines have found a broad adop-
ine current mobile phones). Secondly, this has to be tion in several branches of software production such
done while maintaining the highest mass production as embedded systems for mobile devices, car embed-

efficiency as possible. To achieve thiigency, prac-  ded software and avionics [85]. However, adopting
other types of software and systems applications such

as desktop, web or data—intensive applications is a cur-
U A very preliminay version of this paper was published in Jor- rent challenge_
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lar product specified?, and How is the software prod- Sectior 2 presents feature models in a nutshell. Sec-
uct line itself specified? When this question was first tion[3 presents the method used in the literature re-
posed, there was ample evidence for a solution: in view. Section 4 describes the conceptual framework
other industries product lines are specified in terms of that we use to classify primary studies and define re-
features Products in a software product line aréeli- curring concepts in the paper. Sectidn 5 presents the
entiated by their features, where a feature is an incre- different analysis operations. Sectjon 6 presents the
ment in program functionality [7]. Individual products —automated techniques used for analysis. Section 7 dis-
are specified using features, software product lines arecusses the results of performance analysis of feature
specified usindeature models models. Sectioh 8 discusses the results obtained and
Feature model |anguages are a common fam||y of describes some Challenges to be faced in the future.
visual languages to represent software product lines Finally, Section 9 presents some conclusions.
[@]. The first formulation of a feature model lan-
guage is due by Kang et al. in 19%[43]. A fea-
ture model captures software product line information
about common and variant features of the software ) )
product line at dierent levels of abstraction. A fea- A feature model represents the information of all
ture model is represented as a hierarchically arrangedP0Ssible products of a software product line in terms
set of features with dierent relationships among those  Of features and relationships among them. Feature
features. It models all possible products of a software Models are a special type of information model widely
product line in a given context. Unlike traditional in- USed in software product line engineering. A feature
formation models, feature models not only represent a model is represented as a hierarchically arranged set
single product but a family of them in the same model. ©f features composed by:

The automated analysis of feature models is about
extracting information from feature models using au-
tomated mechanisms [7]. Analysing feature models
is an error—prone and tedious task, and it is infeasible
to do manually with large—scale feature models. It is
an active area of research and is gaining importance
in both practitioners and researchers in the software
product line communitﬂﬂ 9]. Since the introduction
of feature models, the literature has contributed with
a number of operations of analysis, tools, paradigms
and algorithms to support the analysis process.

2. Feature Models

1. relationships between a parent (or compound)
feature and its child features (or subfeatures).

2. cross—tree (or cross—hierarchy) constraints that
are typically inclusion or exclusion statements in
the form:if feature F is included, then features A
and B must also be included (or excluded)

Figurd 1 depicts a simplified feature model inspired
by the mobile phone industry. The model illustrates
how features are used to specify and build software for
g ) . mobile phones. The software loaded in the phone is

In this article, we present a structured literature re- qetermined by the features that it supports. According
view [46, 94] of the existing proposals for the auto- 4 the model, all phones must include supporidais,
mated analysis of feature models. The main contri- g4nq displaying information in either basic colour
bution of this article is to bring together previously— high resolutionscreen. Furthermore, the software

scattered studies to set the basis for future research agy, mobile phones may optionally include support for
well as introduce new researchers and practitioners in Gps and multimedia devices such aamera MP3
this thriving area. We present a conceptual framework player or both of them.

to understand the fierent proposals and classify new
contributions in the future. 53 primary studies were
analysed from where we report 30 operations of anal-

ysis and 4 d_ferent groups of propos:_;lls to autom.ate ware factories@O] or generative programming [27],
those operations. As a result of our literature review, 4| of them around software product line development.
we also report some challenges that remain open 10 pjthough feature models are studied in software prod-
research. _ . o ~uctline engineering, these information models can be
The main target audience of this literature review ysed in dfferent contexts ranging from requirements
are researchers in the field of automated analysis, tool gathering] to data model structures, hence the po-
developers or practitioners who are interested in analy- tential importance of feature models in the information
sis of feature models as well as researchers and professystems domain.
sionals of information systems interested in software  The termfeature modeivas coined by Kang et al.
product lines, their models and analyses. in the FODA report back in 1990 [43] and has been
The remainder of the paper is structured as follows: one of the main topics of research in software product
2

Feature models are used inffdrent scenarios of
software production ranging from model driven devel-
opment ], feature oriented programmiﬁb [% soft-
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Figure 1: A sample feature model

lines since then. There ardi@irent feature model lan-  addition to the parental relationships between features,

guages. We refer the reader@[69] for a detailed sur- a feature model can also contain cross-tree constraints

vey on the diferent feature model languages. Below, between features. These are typically in the form:

we review the most well known notations for those

languages. e Requires. If a feature A requires a feature B, the
inclusion of A in a product implies the inclusion
of B in such product. Mobile phones including
acameramust include support for lhigh resolu-

tion screen.

2.1. Basic feature models

We group as basic feature models those allowing the
following relationships among features:

e Excludes. If a feature A excludes a feature B,
both features cannot be part of the same product.
GPSandbasicscreen are incompatible features.

e Mandatory. A child feature has a mandatory re-
lationships with its parent when the child is in-
cluded in all products in which its parent fea-
ture appears. For instance, every mobile phone
system in our example must provide support for
calls.

More complex cross-tree relationships have been
proposed later in the literature [5] allowing constraints
in the form of generic propositional formulas, e.g. “A

e Optional. A child feature has an optional rela- and B implies not C".

tionship with its parent when the child can be
optionally included in all products in which its
parent feature appears. In the example, software
for mobile phones may optionally include sup-
port for GPS

2.2. Cardinality—based feature models

Some authors propose extending FODA feature
models with UML-like multiplicities (so-callecar-
dinalities) [@@5} Their main motivation was driven
« Alternative. A set of child features have an al- by practical applications [26] and “conceptual com-

ternative re|ati0nship with their parent when 0n|y pleteneSS”. The new relationShipS introduced in this

one feature of the children can be selected when notation are defined as follows:

its parent feature is part of the product. In the ex-

ample, mobile phones may include support for a

basig colour or high resolutionscreen but only

e Feature cardinality. A feature cardinality is a
sequence of intervals denoted.fn] with n as

one of them.

e Or. Asetofchild features have an or-relationship
with their parent when one or more of them can
be included in the products in which its parent
feature appears. In Figure 1, wheneiediais
selectedCamera MP3 or both can be selected.

Notice that a child feature can only appear in a prod-
uct if its parent feature does. The root feature is a part
of all the products within the software product line. In
3

lower bound andn as upper bound. These in-
tervals determine the number of instances of the
feature that can be part of a product. This rela-
tionship may be used as a generalization of the
original mandatory ([11]) and optional ([01])
relationships defined in FODA.

Group cardinality. A group cardinality is an in-
terval denotedn..m), with n as lower bound and
m as upper bound limiting the number of child
features that can be part of a product when its
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Figure 2: A sample extended feature model

parent feature is selected. Thus, an alternative re-
lationship is equivalent tod...1) group cardinal-

ity and an or—relationship is equivalent{tb.Ny),
being N the number of features in the relation-
ship.

2.3. Extended feature models

Sometimes it is necessary to extend feature mod-
els to include more information about features. This
information is added in terms of so—callézhture at-
tributes This type of models where additional infor-
mation is included are calleeixtended, advanced or
attributed feature models

FODA [43], the seminal report on feature models,
already contemplated the inclusion of some additional
information in feature models. For instance, relation-
ships between features and feature attributes were in-
troduced. Later, Kang et aﬁ44] make an explicit ref-
erence to what they call “non—functional” features re-
lated to feature attributes. In addition, other groups of
authors have also proposed the inclusion of attributes
in feature modelsﬁi ﬁﬂ@@ 73, 96]. There
iS no consensus on a notation to define attributes.
However, most proposals agree that an attribute should
consist at least of aame adomainand avalue Fig-
ure[2 depicts a sample feature model including at-
tributes using the notation proposed by Benavides et
al. in m]. As illustrated, attributes can be used
to specify extra-functional information such as cost,
speed or RAM memory required to support the fea-
ture.

Extended feature models can also include complex
constraints among attributes and features likéat-
tribute A of feature F is lower than a value X, then
feature T can not be part of the prodtict

3. Review method

We have carried out a literature review in order
to examine studies proposing automated analysis of
feature models. To perform this review we followed

4

a systematic and structured method inspired by the
guidelines of KitchenhanhT46] and Webster et al. [94].

Below, we detail the main data regarding the review
process and its structure. For further details on the
method followed we refer the reader @[13].

3.1. Research questions
The aim of this review is to answer the following
research questions:

e RQ1: What operations of analysis on feature
models have been proposetiRis question moti-
vates the following sub-questions:

— What operations have been formally de-
scribed?

e RQ2: What kind of automated support has been
proposed and how is it performedhis question
motivates the following sub-questions:

— Which techniques have been proposed to
automate the analysis?

— What is the feature modelling notation sup-
ported by each approach?

— Which analysis operations have been auto-
mated?

— Which proposals present a performance
evaluation of their results?

After reviewing all this information we also want to
answer a more general question:

e RQ3: What are the challenges to be faced in the
future?

3.2. Source material

As recommended by Webster et 5[94], we used
both manual and automated methods to make a selec-
tion of candidate papers in leading journals and con-
ferences and other related events. We reviewed 72 pa-
pers, 19 were discarded resulting in a totab8fpa-
pers that were in the scope of this review. These 53
papers are referred asimary studieg46].
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Figure 3: Classification of papers per year and type of pabta

Figurd 3 classifies primary studies according to the 4. Conceptual framework
year and type of publication. Of the 53 papers in-
cluded in the review, 10 were published in journals,
25 in conferences, 16 in workshops, 1 in the formal

In this section, we propose a conceptual framework
that attempts to provide a high-level vision of the anal-

post—proceeding of a summer school and 1 in a tech- ysis process and clarify the meaning of various usually
ambiguous terms found in the literature. This is the re-

nical report. The graph indicates that there was an im- . . i
portant gap between 1990 and 2002 and since then thesult of the common concepts and practices identified

tendency seems to be ascendant in the primary studies of our review.
y ’ As a result of the literature review we found that

the automated analysis of feature models can be de-
fined as theeomputer—aided extraction of information
3.3. Inclusion and exclusion criteria from feature models This extraction is mainly car-
ried out in a two-step process depicted in Figure 4.
Firstly, the input parameters (e.g. feature model) are
Articles on the following topics, published between translated into a specific representation or paradigm
January 1st 1990 and December 31st 2009, were in-such as propositional logic, constraint programming,
cluded:i) papers proposing any analysis operation on description logic or ad-hoc data structures. Théi o
feature models in which the original model is not mod- the—shelf solvers or specific algorithms are used to au-
ified, i) papers proposing the automation of any anal- tomatically analyse the representation of the input pa-

ysis on feature models, aiiit) performance studies of ~ rameters and provide the result as an output.
analysis operations. The analysis of feature models is performed in

terms ofanalysis operationsAn operation takes a set

content were intentionally classified and evaluated as IOf ng'?‘tmetfrsf ast Input %n? r(?[tur.nsla_l restult Zs o?tpltﬂ'
separate primary studies for a more rigorous analysis. h addl |ton 0 ef"‘ ure modets, typical input and outpu
Later, in the presentation of results, we grouped those parameters are.

Works of the same authors but with very similar

works with no major dferences. e Configuration Given a feature model with a set

Some related works were discarded to keep the size ~ Of featuresF, a configuration is a 2—tuple of the
and complexity of the review at a manageable level, form (S,R) such thatS,R ¢ F being$S the set of
put feature model is modified by returning a new fea- be removed such th&n R = o.

ture model, i.e. only operations proposing informa-
tion extraction where considerdd), papers presenting
any application of the analysis of feature models rather
than proposing new analyses, aiiidl papers dealing
with the analysis of other kinds of variability mod-

— Full configuration If SUR = F the config-
uration is calledull configuration

— Partial configuration If SUR c F the con-
figuration is callegartial configuration

els like OVM @], decision modelﬁé?] and further As an example, consider the model in Figure 1
extensions of feature models likgobabilistic feature and the full (FC) and partial (PC) configurations
modelsﬂSl]. described below:
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Figure 4: Process for the automated analysis of feature models

FC = ({MobilePhone,Calls,Screen,Colour},
{GPS,Basic,High resolution,Media,Camera,MP3})

PC = ({MobilePhone,Calls,Camera},{GPS})

e Product A product is equivalent to a full config-
uration where only selected features are specified
and omitted features are implicitly removed. For
instance, the following product is equivalent to as “model validation”, “model consistency check-
the full configuration described above: ing”, “model satisfiability checking” “model solv-

ability checking“and“model constraints checking”

Figure 5: A void feature model

P = {MobilePhone,Calls,Screen,Colour}

5.2. Valid product

5. Analysis operations on feature models This operation takes a feature model and a product
(i.e. set of features) as input and returns a value that
In this section, we answ&Q1 : What operations of  determines whether the product belongs to the set of
analysis on feature models have been proposédf?  products represented by the feature model or not. For
each operation, its definition, an example and possible instance, consider the produd®$ andP2, described
practical applications are presented. below, and the feature model of Figlre 1.

P1={MobilePhone,Screen,Colour,Media,MP3}
P2={MobilePhone,Calls,Screen,High resolution,GPS}

5.1. Void feature model
This operation takes a feature model as input and re-
turns a value informing whether such feature modelis ~ ProductPl is not valid since it does not include the
void or not. A feature model igoid if it represents ~ Mandatory featur€alls. On the other hand, product
no products. The reasons that may make a feature P2 does belong to the set of products represented by
model void are related with a wrong usage of cross— the model.
tree constraints, i.e. feature models without cross-tree  This operation may be helpful for software prod-
constraints cannot be void. uct line analysts and managers to determine whether
As an example, Figure 5 depicts a void feature @ given product is available in a software product
model. ConstrainiC-1 makes the selection of the line. This operation is sometimes also referred to as
mandatory feature® and C not possible, adding a  “Vvalid configuration checking;valid single system;
contradiction to the model because both features are “configuration consistency,™feature compatibility”,
mandatory. “product checking” and“product specification com-
The automation of this operation is especially help- Pleteness!
ful when debugging large scale feature models in
which the manual detection of errors is recognized 5-3. Valid partial configuration
to be an error-prone and time—consuming I%EQFE, 43, This operation takes a feature model and a partial
\76]. This operation is also referred to by some authors configuration as input and returns a value informing
6



whether the configuration is valid or not, i.e. a partial 5.6. Filter

configuration is valid if it does not include any con-  Thjs operation takes as input a feature model and a
tradiction. Consider as an example the partial config- configuration (potentially partial) and returns the set of
urationsC1 andC2, described below, and the feature products including the input configuration that can be
model of Figure 1. derived from the model. Note that this operation does
({MobilePhone,Calls,Camera}, {GPS,High resolution}) not mOdIfy the feature model but filters the features
({MobilePhone,Calls,Camera}, {GPS}) that are considered.

) ) ) i . For instance, the set of products of the feature

Clis notavalid partial configuration since it selects ,o4el in Figuré 1L applying the partial configuration
support for the camera and removes the high resolu- (S,R) = ({Calls GPS}, {Colour,Camera), being S

tion screen that is explicitly required by the software he set of features to be selected dithe set of fea-
product line. C2 does not include any contradiction  ,res to be removed. is:

and therefore could still be extended to a valid full
configuration. P2 - Nabi1ePhone,Galls. Soresn. Figh seselurion, Nedis, O3, 3}

This operation results helpful during the product
derivation stage to give the user an idea about the Filtering may be helpful to assist users during the
progress of the configuration. A tool implementing configuration process. Firstly, users can filter the set
this operation could inform the user as soon as a con- of products according to their key requirements. Then,
figuration becomes invalid, thus saving time and ef- the list of resultant products can be inspected to select
fort. the desired solution [30].

C1
c2

5.4. All products 5.7. Anomalies detection

This operation takes a feature model as input and A number of analysis operations address the
returns all the products represented by the model. detection of anomalies in feature models i.e. unde-
For instance, the set of all the products of the feature sirable properties such as redundant or contradictory
model presented in Figure 1 is detailed below: information. These operations take a feature model

as input and return information about the anomalies
N detected. We identified five main types of anomalies
P2 = {MobilePhone,Calls,Screen,Basic, odia, P3} in feature models reported in the literature. These are:

P3 = {MobilePhone,Calls,Screen,Colour}
P4 = {MobilePhone,Calls,Screen,Colour,GPS}
P5 = {MobilePhone,Calls,Screen,Colour,Media,MP3}

PG = {Habi1ePhone, GelLs, Screen,Colour Hedia, P9, G75} Dead features. A feature isdeadif it cannot appear
= {MobilePhone,Calls,Screen,High resolution . .
P8 = {lobilePhone,Calls, Screen igh resolution,Vedia,HP3} in any of the products of the software product line.
P9 = {MobilePhone,Calls,Screen,High resolution,Media,MP3,Camera}
F10 = Dichilerhone,Galle,Sexaan.High Tesclution.Kedis, Comarnl Dead features are caused by a wrong usage of cross—
P12 = {HobilePhons ,Calls, Screen, High resolution,Media, iP3,GPS) tree constraints. These are clearly undesired since they
P13 = {Mob11ePhone,Calls,Screen,ngh resolution,Media,Camera,GPS} . . . .
P14 = {MobilePhone,Calls,Screen,High resolution,Media,Camera,MP3,GPS} g|Ve the user a Wrong Idea Of the domall’l. Fldﬁre 6
. . . . ) depicts some typical situations that generate dead fea-
This operation may be helpful to identify new valid tures

requirement combinations not considered in the initial
scope of the product line. The set of products of a
feature model is also referred to in the literaturéedls
valid configurations”and“list of products”.

5.5. Number of products

This operation returns the number of products rep-
resented by the feature model received as input. Note Figure 6: Common cases of dead features. Grey features are dead
that a feature model is voidfithe number of products
represented by the model is zero. As an example, the Conditionally dead features. A feature iscondition-
number of products of the feature model presented in ally dead if it becomes dead under certain circum-
Figure 1 isl4. stances (e.g. when selecting another feattln@) [41].

This operation provides information about the flex- Both unconditional and conditional dead features are
ibility and complexity of the software product line often referred to in the literature &sontradictions”
[[1,@,@8]. A big number of potential products may or “inconsistencies” In Figurel 7 featurd8 becomes
reveal a more flexible as well as more complex prod- dead whenever featui2 is selected. Note that, with
uct line. The number of products of a feature model is this definition, features in an alternative relationship
also referred to in the literature griation degree”. are conditionally dead.

7



(B and D) implies C
C implies not B

Figure 7: An example of a conditionally dead feature

Figure 10: Some examples of redundancies. Gray constraiats ar
. . . redundant
False optional features. A feature isfalse optional

if it is included in all the products of the product line ) )
despite not being modelled as mandatory. Figure 8 Presents a feature model with a dead feature. A possi-

depicts some examples of false optional features. ble explanation for the problem would Beeature D
is dead because of the excludes constraint with feature

B”. We refer the reader tﬂSO] for a detailed analysis
of explanation operations.

Figure 8: Some examples of false optional features. Greyrestu
are false optional

Wrong cardinalities. A group cardinality is wrong Figure 11: Grey feature is dead because relationship C-1
if it cannot be instantiated [80]. These appear in
cardinality—based feature models where cross—tree

constraints are involved. An example of wrong car- text of feature_ model error analysis, (a.k.a. feature
dinality is provided in Figure]9. Notice that featuigs ~ M0del debugging) 7, 76, 80]. In order to provide an

andD exclude each other and therefore the selection Efficient tool support, explanations must be as accurate

of three subfeatures, as stated by the group cardinality, @S POSSible when detecting the source of an error, i.e. it
is not possible. should be minimal. This becomes an even more chal-

lenging task when considering extended feature mod-
els and relationships between feature attributes.

Explanations are a challenging operation in the con-

5.9. Corrective explanations

This operation takes a feature model and an anal-
ysis operation as inputs and returns a set of correc-
tive explanations indicating changes to be made in the
original inputs in order to change the output of the op-
eration. In general, aorrective explanatiomprovides
suggestions to solve a problem, usually once this has
been detected and explained.

For instance, some possible corrective explanations
to remove the dead feature in Figlre 11 wouldiee
move excludes constraint C-I8r “model feature B
as optional”. This operation is also referred to in the
literature as’corrections”.

Figure 9: An example of wrong cardinality

Redundancies. A feature model contains redundan-
cies when some semantic information is modelled in
multiple ways [@9]. Generally, this is regarded as a
negative aspect since it may decrease the maintainabil-
ity of the model. Nevertheless, it may also be used as
a means of improving readability and comprehensibil-
ity of the model. Figurée 10 depicts some examples of
redundant constraints in feature models.

5.10. Feature model relations

These operations take twofidirent feature models
This operation takes a feature model and an analysisas inputs and returns a value informing how the
operation as inputs and returns information (so-called models are related. The set of features in both models

5.8. Explanations

explanations) about the reasonsadfy or why notthe are not necessarily the same. These operations are
corresponding response of the operat@] [80]. Causesuseful for determining how a model has evolved
are mainly described in terms of features /andela- over time. THim et al. ] classify the possible

tionships involved in the operation and explanations relationships between two feature models as follows:
are ofter related to anomalies. For instance, Figure 11
8



Refactoring. A feature model is a refactoring of

5.11. Optimization

another one if they represent the same set of products  Thjs operation takes a feature model and a so-called

while having a diferent structure. For instance, model
in Figure 12(b) is a refactoring of model in Figure

12(a) since they represent the same products i.e.

{{A,B},{{A,B,G, {A,B,D},{A,B,C,D}. Refactorings are
useful to restructure a feature model without changing
its semantics. When this property is fulfilled the
models are often referred to &xuivalent”.

Generalization. A feature model,F, is a gener-
alization of another oneG, if the set of products
of F maintains and extends the set of products of
G. For example, feature model in Figure 12(c) is a
generalization of the model in Figure 12(a) because
it adds a new product{A}) without removing an
existing one. Generalization occurs naturally while
extending a software product line.

Specialization. A feature modelF, is a specialization
of another onegG, if the set of products of is a
subset of the set of products &. For example,
Figure| 12(d) depicts a specialization of the model
in Figure[ 12(a) since it removes a product from the
original model (A,B,C,D}) and adds no new ones.

Arbitrary edit. There is no explicit relationship be-
tween the input models, i.e. there are non of the rela-
tionships defined above. Models in Figlre 12(a) and
Figure[ 12(e) illustrate an example of this. {rh et

al. [ﬂ] advise avoiding arbitrary edits and replacing

these by a sequence of specialization, generalizationsreturns the set of variant features in the mo

objective function as inputs and returns the product
fulfilling the criteria established by the function. An
objective function is a function associated with an op-
timization problem that determines how good a solu-
tion is.

This operation is chiefly useful when dealing with
extended feature models where attributes are added to
features. In this context, optimization operations may
be used to select a set of features maximizing or min-
imizing the value of a given feature attribute. For in-
stance, mobile phones minimizing connectivity cost in
Figure 2 should include support fafSBconnectivity
exclusively, i.e USBis the cheapest.

5.12. Core features

This operation takes a feature model as input and
returns the set of features that are part of all the prod-
ucts in the software product line. For instance, the set
of core features of the model presented in Figure 1 is
{MobilePhone,Calls,Screg¢n

Core features are the most relevant features of the
software product line since they are supposed to ap-
pear in all products. Hence, this operation is useful to
determine which features should be developed in first
place [WJV] or to decide which features should be part
of the core architecture of the software product line

[61].

5.13. Variant features

This operation takes a feature model as input and
[80].

and refactorings edits for a better understanding of the Variant features are those that do not appear in all

evolution of a feature model.

(a) Original (b) Refactoring (c) Generalization

(d) Specialization (e) Arbitrary

Figure 12: Types of relationships between two feature models

the products of the software product line. For in-
stance, the set of variant features of the feature model
presented in Figure] 1 igBasic,Colour,High resolu-
tion,Media,Camera, MP3,GRS

5.14. Atomic sets

This operation takes a feature model as input and re-
turns the set of atomic sets of the model. &omic set
is a group of features (at least one) that can be treated
as a unit when performing certain analyses. The in-
tuitive idea behind atomic sets is that mandatory fea-
tures and their parent features always appear together
in products and therefore can be grouped without alter-
ing the result of certain operations. Once atomic sets
are computed, these can be used to create a reduced
version of the model simply by replacing each feature
with the atomic set that contains it.

Figurd 13 depicts an example of atomic sets compu-
tation. Four atomic sets are derived from the original
model, reducing the number of features from 7 to 4.



Note that the reduced model is equivalent to the origi-

nal one since both represent the same set of products.

# [ AS-ZB,E) | [ As-3=F} | [ As-2=(G}]
I t
L ___4

Figure 13: Atomic sets computation

Using this technique, mandatory features are safely
removed from the model. This operation is used as an

efficient preprocessing technique to reduce the size of

feature models prior to their analy[@OZ].

5.15. Dependency analysis

This operation takes a feature model and a partial
configuration as input and returns a new configura-
tion with the features that should be selected/and
removed as a result of the propagation of constraints
in the model ES]. As an example, consider the in-
put and output configurations described below and the
model in Figure 1.

Input = ({MobilePhone,Calls,Camera}, {MP3})

Output =
({MobilePhone,Calls,Camera,Media,Screen,High resolution},
{MP3,Basic,Colour})

FeaturesScreenand High resolutionare added to
the configuration to satisfy the requires constraint with
Camera Mediais also included to satisfy the parental
relationship withCamera Similarly, featuresBasic
and Colour are removed to fulfil the constraints im-
posed by the alternative relationship.

This operation is the basis for constraint propa-
gation during the interactive configuration of feature

models[EE]

5.16. Multi-step configuration

A multi-step configuration problem is defined as
the process of producing a series of intermediate con-
figurations, i.e. a configuration path, going from a fea-
ture model configuration to another [97]. An analysis
operation solving a multi-step configuration problem
takes as input a feature model, an initial configuration,
a desired final configuration, a number of steps in the
configuration pattK, a global constraint that can not
be violated (usually referred to feature attributes) and
a function determining the cost to transition from one
configuration in sted to another in stepJ. As a re-
sult, the operation provides an ordered listkoton-

and a rigorous definition of the operation we refer the
reader to [97].

5.17. Other operations

In this section, we group those operations that per-
form some computation based on the values of previ-
ous operations. We also classify in this group those
analysis operations proposed as part of other algo-
rithms.

Homogeneity. This operation takes a feature model
as input and returns a number that provides an indi-
cation of the degree to which a feature model is ho-
mogeneoumB]. A more homogeneous feature model
would be one with few unique features in one prod-
uct (i.e. a unigue feature appears only in one product)
while a less homogeneous one would be one with a lot
of unique features. According IF[36] it is calculated
as follows:

#uf

Homogeneity=1 - —
9 ¥ #products

#uf is the number of unique features in one
product and froductsdenotes the total number of
products represented by the feature model. The range
of this indicator is [0,1]. If all the products have
unique features the indicator is 0 (lowest degree of
homogeneity). If there are no unique features, the
indicator is 1 (highest degree of homogeneity).

Commonality.This operation takes a feature model
and a configuration as inputs and returns the percent-
age of products represented by the model including the
input configuration. An as example, consider the par-
tial configurations described below and the model in
Figure 1:

C1
Cc2

{{calls}, {}}
{{Calls},{MP3}}

The commonality of both configurations is calcu-
lated as follows:

_ Ifilter(FM, {{Calls}, (1))l _ 14 _
Comn(C1) = #product§F M) =1t

_ Ifilter(FM, {{Calls}, {(MP3}})| l B
Comn(C2) = #productgF M) 1298

The range of this indicator is [0,1]. Configuration
C1 appears in 100% of the products wher€ssis
included only in 50% of them.

This operation may be used to prioritize the order

figurations that determines the possible steps that canin which the features are going to be develo@ [77]

be taken to go from the initial configuration to the de-

sired final configuration without violating the feature

model and global constraints. For a detailed example
10

or to decide which features should be part of the core
architecture of the software product line [61].



Variability factor. This operation takes a feature the degree of representativeness of the cross-tree con-
model as input and returns the ratio between the num- straints in the tree. Mendonca et alr[ﬁ 56] de-
ber of products and™where n is the number of fea- fines theExtra Constraint Representativeness (ECR)
tures considered. In particulafl B the potential num-  as the ratio of the number of features involved in cross-
ber of products represented by a feature model assum-tree constraints (repeated features counted once) to the
ing that any combination of features is allowed. The number of features in the feature tree. For instance,
root and non-leaf features are often not considered. As ECR in Figure 1 is calculated as follows:

an example, the variability of the feature model pre-

sented in Figure]l taking into account only leaf fea- ECR= 4 _ 0.4
tures is: 10
N.Products _ 14 _ 0.0625 The range of this indicator is [0,1]. This operation
n 7 has been used successfully to design and evaluate

An extremely flexible feature model would be one heuristics for the automated analysis of feature models

where all its features are optionals. For instance, the 57].

feature model of Figure 14 has the following variabil- _ )
ity factor: Lowest Common Ancestor (LCA). This operation

takes a feature model and a set of features as input and
N.Products: 8 returns a feature that is the lowest common ancestor
2 23 of the input features. Mendonca et al. [57] defines
the Lowest Common Ancestor (LCAf a set of
featuresLCA(FM, {f4, ..., f,}), as the shared ancestor
that is located farthest from the root. In Figure 1,
LCA(FM, {Basic Camerd) = MobilePhone

Root features. This operation takes a feature model

and a set of features as inputs and returns a set of fea-
The range of this indicator would depend on the tures that are theotsfeatures in the model. ledr_a:

features considered to calculate the factor. The LCAFM.(fi,... fa)), Mendonga et al. [57] defines

feature model variability can be used to measure the (he roots of a set of featureRootgFM, {fi, ..., fn})
flexibility of the feature model. For instance, a small 2S the subset of child featureslahat are ancestors of

factor means that the number of combinations of [ fn. In Figure 1,RootgFM, {Basic Camerd) =
features is very limited compared to the total number {Media Screen.
of potential products.

Figure 14: Sample feature model with three optional features

. : . 6. Automated support
Degree of orthogonality. This operation takes a fea-

ture model and a subtree (represented by its root fea- Previously, we presented theffidrent analysis op-
ture) as input and returns their degree of orthogonality. grations that we found in the literature. In this section,
Czarnecki et aI.@O] defines tlieegree of orthogonal- we addres®Q2: What kind of automated support has
ity as the ratio between the total number of products paap proposed and how is it performed® answer

of the feature model and the number of products of is question, we classified the primary studies in four
the subtree. Only local constraints in the subtree are yigerent groups according to the logic paradigm or
considered for counting the products. For instan(_:e, method used to provide the automated support. In
the formula below shows the degree of orthogonality particular, we next present the group of approaches

for the subtrecScreerin Figure 1. usingPropositional Logic(PL), Constraint Program-
) ming (CP), Description Logic(DL), and other contri-
Orthogonality(S creef = 3 4.66 butions not classified in the former groups proposing

L i ) ad-hoc solutions, algorithms or paradigms.
The range of this indicator is &). A high

degree of orthogonality indicates that decisions can
be taken locally without worrying about the influ-
ence in the configuration of other parts of the tree [30]. A propositional formulaconsists of a set of prim-
itive symbols or variables and a set of logical con-
Extra Constraint Representativeness (ECR).This nectives constraining the values of the variables, e.g.
operation takes a feature model as input and returns—, A, v, =, .
11

6.1. Propositional logic based analyses



A SAT solveis a software package that takes as in-
put a propositional formula and determines if the for-
mula is satisfiable, i.e. there is a variable assignment
that makes the formula evaluate to true. Input formu-
las are usually specified i@onjunctive Normal Form
(CNF). CNF is a standard form to represent proposi-
tional formulas that is used by most of SAT solvers
where only three connectives are allowedA, v. It
has been proved that every propositional formula can
be converted into an equivalent CNF form[25].
SAT solving is a well known NP-complete problem
@3], however, current SAT solvers can deal with big
problems where in most of the cases the performance
is not an issuéﬂi%].

Similarly, a Binary Decision Diagram (BDD)
solver is a software package that takes a propositional
formula as input (not necessarily in CNF) and trans-
lates it into a graph representation (the BDD itself)
which allows determining if the formula is satisfi-
able and providing féicient algorithms for counting

Tool Primary study

SAT Solver [17] E@@Eﬁ]

Alloy [2] [37,74 -

BDD Solver [95] F@' , 30, 57, 70, 86,
87,103, 100]

SMV [71] 101, 102]

Not specified 5]]152]

Table 1: Propositional logic based tools used for FM analysi

terms of innovation with respect to prior work we may
mention the following studies: Mannion et éd—[ﬁ 52]
was the first to connect propositional formulas and fea-
ture models. Zhang et ai%OZ] reported a method to
calculateatomic setslater explored by Segurﬂ?O].
Batory B] shows the connections among grammars,

the number of possible solutions [19]. The size of feature models and propositional formulas, this was
the BDD is crucial because it can be exponential in the first time that a SAT solver was proposed to anal-
the worst case. Although it is possible to find a good YS€ feature models. In additionLagic Truth Main-
variable ordering that reduces the size of the BDD, the t€nance Systerta system that maintains the conse-
problem of finding the best variable ordering remains duénces of a propositional formula) was designed to
NP-compIete@S]. analyse feature mpdgls. Sunetal.| [74] propose using
The mapping of a feature model into a propositional Z, a formal specification language, to provide seman-

formula can change depending on the solver that is :;::s to featuret'modelds. Allloy W?S ;Jsed o (ljmlplenéent
used later for analysis. In general, the following steps 0se semantics and analyse Tealure models. bena-

are performed:i) each feature of the feature model vides et alﬁ4[16i70] propose using a multi-solver
maps to a variable of the propositional formuig, approach where ﬂ’erent_ solvers are used (e.g. BDD
each relationship of the model is mapped into one or or S.AT solvers) depending on the Kind of analysis op-
more small formulas depending on the type of rela- erations to be performed. For mstalnce,.they suggest
tionship, in this step some auxiliary variables can ap- that BDD solvers seem to be mortieient in general
pear,iii) the resulting formula is the conjunction of &N SAT solvers for counting the numl;% of prod-
all the resulting formulas of stépplus and additional ~ UCtS Of @ feature model. Mendonca et al. |[57] also

constraint assigning true to the variable that representsu.S e? :13 DD.St.f or ?nalﬁs]s ta;]ndlfomtparefMent. ctl)?s—
the root, i.e root true. sical heuristics found in the literature for variable or-

) , dering of BDDs with new specific heuristics for the
Concrete rules for translating a feature model into

" X e analysis of BDDs representing feature models. They
a proposn'lonal formula are listed in F'g,15' AIS(_)’ experimentally showed that existing BDD heuristics
the mapping of our running example of Figure 1 is ¢, 15 scale for large feature models while their novel
presented. We may mention that the mapping of the

o ) Lo . .~ heuristics can scale for models with up to 2,000 fea-
proposmonal formulas listed in Figure 15 into CNF is tures. Thim et al. [WS] present an automated method
straightforward (seﬂZS]).

for classifying feature model edits, i.e. changes in
There are some works in the literature that pro- an original feature model, according to a taxonomy.
pose the usage of propositional formulas for the au- The method is based on propositional logic algorithms
tomated anaIySiS of feature models (See Tgble 3) In using a SAT solver and constraint propagation a_|go_
these studies the analysis is performed in two steps.ithms. Yan et al. W)O] propose an optimization
Firstly, the feature model is translated into a proposi- method to reduce the size of the logic representation of
tional formula. Then, anfb-the—shelf solver is used  the feature models by removing irrelevant constraints.
to automatically analyse the formula and subsequently Mendonca et al. @6] shows by means of an experi-
the feature model. A summary of the solvers used for ment that the analysis of feature models with similar
analysis is shown in Table 1. properties to those found in the literature using SAT
To underline the most important contributions in solvers is computationallyf@rdable.
12



Relationship PL Mapping Mobile Phone Example
>
g [P ] o MobilePhone « Calls
< o
% MobilePhone « Screen
2 [P ] GPS - MobilePhone
g C-P . .
£ Media — MobilePhone

L7 ]

g P - (G 0C, 0..0C,) Media ~ (Camera JMP3)
E [ ] (C, - (-C,C..C-C, CP)LC (Basic « (= Color - Highresolution OScreen))
e o (C, o (=C, 0..0-C, OP)) O (Color « (—~Basic O-Highresolution (Screen))[]
4
E (C, - (~C,0~C, 0...0-C,_, OP)) (Highresolution « (= Basic (= Color OScreen))
§ [Af—]e] A-B Camera — Highresolution
4]
S| [afe—e] ~(ACB) ~(GPS OBasic)
"
53]

Figure 15: Mapping from feature model to propositional logic

6.2. Constraint programming based analyses by the solver,ii) each relationship of the model is

. . . mapped into a constraint depending on the type of re-
_,i\C(;nstra![nthat@f%(l:tlon Proltale;@?S_tP) ] cpn-f lationship, in this step some auxiliary variables can
fr:S S0 a_ssl 0 Va(;'a e?, ?se c; !nle otm_atl_ns tc;]r appear,iii) the resulting CSP is the one defined by
0SE€ vanables and a Set of constraints restricling i€y, 4 japles of steps andii with the correspond-

values of the variablesConstraint programmingan

ing domains and a constraint that is the conjunction of

be defined as the set of techniques such as algorlthmsa" precedent constraints plus and additional constraint

]?rg_eurls;uc;s that Ideal ¥V'th CSF;)T A .CSPh'_ShSOII\IIEd by assigning true to the variable that represents the root,
inding states (values for variables) in which all con- i.e. root < trueorroot == 1, depending on the

straints are satisfied. In contrast to proposmonal for- variables’ domains.
mulas, CSP solvers can deal not only with binary val- . .
Concrete rules for translating a feature model into a

ues (true or false) but also with numerical values such : -S> .
CSP are listed in Figufe 16. Also, the mapping of our

as integers or intervals. . le of Fi . d
A CSP solver is a software package that takes a running example of Figufe 1 is presented.

problem modelled as a CSP and determines whether There are some works in the literature that pro-
there exists a solution for the problem. From a mod- Pose the usage of constraint programming for the auto-
elling point of view, CSP solvers provide a richer set mated analysis of feature models (see Table 3). Anal-
of modelling elements in terms of variables (e.g. sets, Yses are performed in two steps. Firstly, the feature
finite integer domains, etc.) and constraints (not only model is translated into a CSP. Then, @f-the—shelf
propositional connectives) than propositional logic Solver is used to automatically analyse the CSP and
solvers. subsequently the feature model. A summary of the
The mapping of a feature model into CSP can vary Solvers used for analysis is shown in Table 2.
depending on the concrete solver that is used later for Benavides et al. were the first authors proposing
the analysis. In general, the following steps are per- the usage of constraint programming for analyses on
formed: i) each feature of the feature model maps to feature modelsEl(Ell#lz]. In those works, a set
a variable of the CSP with a domain of 0..1 or TRUE, of mapping rules to translate feature models into a
FALSE, depending on the kind of variable supported CSP were provided. Benavides et al. proposals pro-
13



Relationship CSP Mapping Mobile Phone Example
>
]
g n _ Mobilephone = Calls
< P=C . B
Mobilephone = Screen
:
=
if (Mobilephone = 0)
% ﬂ if (P =0) GPS =0
£ o Cc=0 if (Mobilephone = 0)
© Media =0
ﬂ if (P > 0) if (Media > 0)
& Sum(C1,C2,...Cn) in {1..n} Sum(Camera,MP3) in {1..2}
else else
C1=0, C2=0,...., Cn=0 Camera =0, MP3=0
z 7] it (P > 0) if (Screen > 0)
% “F Sum(C1,C2,...Cn) in {1..1} Sum(Basic,Colour,High resolution) in {1..1}
5] o llalle else else
; - - - C1=0, C2=0,...., Cn=0 Basic = 0,Colour = 0, High resolution = 0
v
A Lo if (A>0) if (Camera > 0)
g B>0 High resolution > 0
172]
53] .
g A e if (A > 0) if (GPS > 0)
g B=0 Basic =0
53

Figure 16: Mapping from feature model to CSP

Tool Proposals in a given configuration and propose changes in the
JaCoPE3] 114,15, 16, 70] configuration in terms of features to be _selecteq or dg—
selected to remedy the problem. Their technique is
Choco [21] [15, 99, 97] ) .
. based on translating a feature model into a CSP and
OPL studio [58 10, 11, 12] . i \
adding some extra variables in order to detect and cor-
GNU Prolog [39] [34] rect the possible errors after applying optimization op-
Not specified [78, 76] P pplying op P

erations. In@ﬁ], White et al. provide support for the
analysis of multi—step configuration problems.

Table 2: CSP based tools used for FM analysis

6.3. Description logic based analyses

Description logicsare a family of knowledge rep-
vide support for the analysis of extended feature mod- resentation languages enabling the reasoning within
els (i.e. including feature attributes) and the opera- knowledge domains by using specific logic reason-
tion of optimization. The authors also provide tool ers [E%]. A problem described in terms of description
support [16, 79] and they have compared the per- logic is usually composed by a set of concepts (a.k.a.
formance of diterent solvers when analysing feature classes), a set of roles (e.g. properties or relationships)
models [15, 14, 70]. Trinidad et al. [78, 76] focus and set of individuals (a.k.a. instances).
on the detection and explanation of errors in feature A description logic reasoner is a software package
models based on Reiter’s theory of dia@dﬂ [64] and that takes as input a problem described in description
constraint programming. Djebbi et al. [34] propose logic and provides facilities for consistency and cor-
a method to extract information from feature models rectness checking and other reasoning operations.
in terms of queries. A set of rules to translate feature ~ We found four primary studies proposing the usage
models to boolean constraints are given. They also of description logic to analyse feature models. Wang
describe a tool under development enabling the anal- et al. [92] were the first to propose the automated
ysis of feature models using constraint programming. analysis of feature models using description logic. In
White et al. [99] propose a method to detect conflicts their work, the authors introduce a set of mapping
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rules to translate feature models into OWL-DL on- not the main focus of the paper. White et ar[%]
tologies [E?]. OWL-DL is an expressive yet decidable present an extension of their previous work [98]. The
sub language of OWLT[:%Z]. Then, the authors sug- same method is presented but giving enough details to
gest using description logic reasoning engines such asmake it reproducible since some details were missed

RACERI[63] to perform automated analysis over the
OWL representations of the models. In [93], the au-
thors extend their previous propoﬁ[%] with support
for explanations by means of an OWL debugging tool.
Fan et al. ] also propose translating feature mod-

in their previous work. The method is call&tdtered
Cartesian Flatteringwhich maps the problem of op-
timally selecting a set of features according to sev-
eral constraints to dMulti-dimensional Multi—choice
Knapsack Problemand then they apply several ex-

els into description logic and using reasoners such asisting algorithms to this problem that perform much

RACER to perform their analyses. In [1], Abo Zaid

et al. propose using semantic web technologies to en-

able the analyses. They use OWL for modelling and
the Pellet[EZ] reasoner for the analysis.

6.4. Other studies

There are some primary studies that are not classi-
fied in the former groups, namely) studies in which
the conceptual logic used is not clearly exposedignd
studies using ad—hoc algorithms, paradigms or tools
for analysis.

Kang et al. mentioned explicitly the automated
analysis of feature models in the original FODA re-
port @ pag. 70]. A prolog—based prototype is
also reported. However, no detailed information is
provided to replicate their prolog coding. After the
FODA report, Deursen et alﬁ88] were the first au-
thors proposing some kind of automated support for
the automated analysis of feature models. In their
work, they propose a textual feature diagram algebra
together with a prototype implementation using the
ASF+SDF Meta-Environment [47]. Von der Massen
et al. 50] present Requiline, a requirement engi-
neering tool for software product lines. The tool is
mainly implemented by using a relational data base
and ad-hoc algorithms. Later, Von der Massen et al.
ﬁl] propose a method to calculate a rough approxi-
mation of the number of products of a feature model,
which they callvariation degree The technique is de-
scribed using mathematical expressions[ln [4], Bach-
meyer et al. presembnceptual graph feature models
Conceptual graphs are a formalism to express knowl-
edge. Using this transformation, they provide an al-
gorithm that is used to compute analysis. Hemaku-
mar El] proposes a method to statically detect condi-

faster while dfering an approximate answer. Van den
Broek et al. [@4] propose transforming feature mod-
els into generalised feature trees and computing some
of their properties. Ageneralised feature treis a fea-

ture model in which cross-tree constraints are removed
and features can have multiple occurrences. Some al-
gorithms and an executable specification in the func-
tional programming language Miranda are provided.
The strength of their proposal lies in th&ieiency of

the analysis operation. Fernandez etal. [36] propose
an algorithm to compute the total number of products
on what they calNeutral Feature Tregdrees that al-

low complex cross-tree constraints. Computing the to-
tal number of products the authors are also able to cal-
culate thehomogeneityf a feature tree as well as the
commonalityof a given feature. They finally compare
the computational complexity of their approach with
respect to previous work.

6.5. Summary and analysis of operations and support

A summary of the analysis operations (RQ1) and
automated support (RQ2) identified in the literature is
shown in Tablé 3. Operations are listed horizontally
and ordered by the total number of papers mentioning
it. Primary studies are listed vertically. Related works
of the same author are grouped in a single column. Pri-
mary studies are grouped according to the paradigm
they use for the analyses as followi}:Propositional
Logic (PL),ii). Constraint Programming (CH)) De-
scription Logic (DL),iv) works that integrate more
than one paradigm ayat solver (Multi), v) studies
that use their own tools not categorized in the former
groups (Others), and) proposals that presentftér-
ent operations but do not provide automated support
for them (No support).

The cells of the matrix indicate the information

tional dead features. The method is based on modelabout a primary study in terms of operations sup-

checking techniques and incremental consistency al-

gorithms. Mendonca et aIﬁEW,SS] study dependen-

ported. Cells marked with+’ indicate that the pro-
posal of the column provides explicit support for the

cies among feature models and cross—tree constraintsoperation of the row. We use the symbel for pro-

using diferent techniques obtaining a noticeable im-
provement in #iciency. Gheyi et al. @8] present a
set of algebraic laws in feature models to check con-
figurability of feature model refactorings. They use
the PVS tool to do some analysis although this is
15

posals with no automated support for the correspond-
ing operation but explicit definition of it. We also
highlight the primary study that first proposed an op-
eration using the symbolsp' (when support is pro-
vided) and &' (when no support is provided). To fully
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Core features + o
Variability factor )
Arbitrary edit +
Conditional dead featureg +
Homogeneity +
LCA +
Muti—step configuration +
Roots features +
Specialization +
Degree of orthogonality ~
Redundancies
Variant features
Wrong cardinalities ~
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4L
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4
4
+
+
4
4
+
4L
+
4
4
4L
4
4
4
4
+
1
1

+ +
+
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+
+
+
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+

+

+

+
ax
+
4
4
4
2
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® + + +
+
+
+
&
+
+
2
2

+
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+
+
+
2
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Formalization + + |+ |+ | + + | + + + + + + + +

B
Extended feature model + + + |+ || + + + + || + +
+ + +
+ Supported ~  No support @ Supported(first reference) ©  No support (first reference) B Basic feature model C Cardindlased feature models

Table 3: Summary of operations and support
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answer the research questions we also extracted some Explanations are acknowledged to be an important

additional information about fierent aspects of the
primary studies, namelyi) feature model notations
supported: ‘B’ (basic feature model), ‘C’ (cardinality—
based feature modadl) whether the approach support
extended feature models or not, aifid whether the
approach is described formally. This information is
also reported in the final rows of Table 3.

Table[4 depicts a chronological view of the data
presented in Table 3. More specifically, it shows the
amount of references to operations, notation, formal-
ization and kind of automated support found in the lit-
erature for each year. Vertically, we list all the years
where primary studies were published. The last col-
umn indicates the total number of primary studies re-
ferring the operation, the notation of feature models,
the formalization provided and the type of automated

operation for feature model error analysis in the liter-
ature [7, 80]. As presented in Sections]5.8 and 5.9,
these operations take as input a feature model and an
operation and return as a result the source of the er-
rors in the model and the possible actions to correct
them respectively. Table/ 5 shows a detailed view of
the operations that haven been used in explanations
and corrective explanations. As illustrated, there are
only four operations with support for explanations in
more than one study. All logical paradigms have been
used for explaining dierent analysis operations. We
found that explanations have been largely studied in
related problems in the communities of propositional
logic, constraint programming and description logic
for years. This has provided researchers with help-
ful guidelines and methods to assist them with the im-

support used for analysis. The table also shows the Plementation of explanations in the analysis of feature

number of new operations proposed each year.

As illustrated in Tables 3 arld 4, there are 11 out
of 30 operations that only appeared in one primary
study. Likewise, 6 operations were treated in more
than 10 studies of which 4 were already mentioned in
the original FODA report back in 1990 [43]. This de-
notes, in our opinion, that FODA authors were quite
visionary in predicting the importance of automated
analysis of feature models and pinpointing some of the

models. We also remark that all the explanations op-
erations refer to the analysis of basic or cardinality—
based feature models while we have not found any
study dealing with explanations in extended feature
models. Only Trinidad et al. [80] attempted an ex-
planation of the optimization operation but no explicit
method to support this operation was presented.

7. Performance evaluation

most referred operations. We may remark that 11 new
operations were proposed in the last two years of our
study and 22 of them were referred in 2009 suggesting tio

that the analysis of feature models is an active researchObtained highlight the strengths and weaknesses of the

field. ) . . proposals, helping researchers to improve their solu-
Regarding the notation used, 40 out of 53 primary tjons, identify new research directions and show the
studies used basic feature model notation for the anal- 4y jicability of the analysis operations.

ysis of feature models. However, there seems to be an Table 7 summarizes the proposals reporting perfor-
increasing interest in the analysis of cardinality—based ,5nce results on the analysis of feature models. We
and extended feature models since 2004. consider as performance results any data (e.g. time,
With respect to automated support for analysis, 18 memory) suggesting how a proposal behaves in prac-
out of 53 studies used propositional logic while only tice. Works based on propositional logic, constraint
4 of them used description logic. Constraint program- programming and ad—hoc solutions have presented a
ming was referred to in 12 studies leaded by three dif- similar number of performance evaluations while only
ferent groups of authors. We remark that no support one proposal has presented results of description logic
for extended feature models was found in the studies based support. Regarding operations, 18 out of 30
using propositional logic. There are also 16 studies analysis operations identified in the literature have
proposing ad-hoc solutions and this tendency seemsheen used in performance analyses. However, only
to be in progression in the last years which may sug- 7 of them have been evaluated by more than one pro-
gest that researchers are looking for more specific and posal, providing some comparable results.
efficient algorithms to perform analysis operations. In general terms, the available results suggest that
We also found that there are 22 studies proposing CP-based and PL-based automated support provide
a formal or rigorous definition of analysis operations. similar performanceEMDO]. PL-based solutions
This tendency seems to be ascendant since 2004 whichrelying on BDDs (Binary Decision Diagrams) seem
may indicate that there is an increasing interest by the to be an exception as it provides much faster exe-
research community to accurately define analysis op- cution times than the rest of known approaches, es-
erations. pecially when computing the number of solutions
17

Performance analyses play a key role in the evalua-
n of the analysis techniques and tools. The results
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Void feature model

4s
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16

Dead features

48

17

Valid product

17
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+
2
|+ ]+
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Explanations
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13
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e
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5
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AR FA N
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+
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|+ |+ |+

Corrective explanations

13

Dependency analysis

ECR
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Generalization

Core features

Variability

Arbitrary edit
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Degree of orthogonality
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Variant features
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New operations
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Notation and formalization

Basic FMs

Cardinality-based FMs
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Formalization
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Constraint programming
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Others

.

+
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+

+ |+ |+

1 study

2-3studies [N

Table 4: Number of primary studies referring operations, timta and support for each year

>3 studies

Batory [5]

Sun et al. [74]

Trinidad et al. [78, 76]

Wang et al. [92, 93]
Kang et al. [43]
Osman et al. [59, 60]

Abo Zaid et al. [1]

Van den Broek et al. [84]

Batory et al. [7]

Von der Massen et al. [89]

2| Czarnecki et al. [30]

(@]
g
-

Others

Valid product

Dead features
False optional
Core features

Optimization
Redundancies

Variant features
Wrong cardinalities

Void feature model

Valid partial configuration|

Dependency analysis

+ o+

+ o+

+| °| White et al. [99]

o
1

+ +
+

+ +

v | Z| Trinidad et al. [80]

Table 5: Summary of the proposals reporting explanations
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[14, 57, 70, 103]. The major drawback of this tech-
nigue is the size of the BDD representing the feature
model that can be exponential in the worst case. Sev-
eral authors have worked in the development of new
heuristics and techniques to reduce the size of the
BDDs used in the analysis of feature models ’ﬁ 103].
Others focus on providing automated support using
different paradigms in order to combine the best of all
of them in terms of performancglz 16].

A key aspect in the experimental work related to the
analysis of feature models is the type of subject prob-
lems used for the experiments. We found two main
types of feature models used for experimentation: re-
alistic and automatically generated feature models. By
realisticmodels we intend those modelling real-world
domains or a simplified version of them. Some of the
realistic feature models most quoted in the revised lit-
erature are: e-Shoﬂ48] with 287 features, graph prod-
uct line @] with up to 64 features, BerkeleyDB [45]
with 55 features and home integration system product
line El] with 15 features.

Although there are reports from the industry of fea-
ture models with hundreds or even thousands of fea-
tures @,@952], only a portion of them is typically
published. This has led authors to generate feature
models automatically to show the scalability of their
approaches with large problems. These models are

enerated either randomll[ 15, 55, 60, 70, 96, 97,
@,@0@3} or trying to imitate the properties of the
realistic models found in the Iiteratur&[@ 75]. Sev-
eral algorithms for the automated generation of feature
models have been propos@ ﬂﬂ 75, 100].

In order to understand the relationship between real-
istic feature models and automatically generated mod-
els in experimentation, we counted the number of
works using each type by year. The results are shown
in Figurel 17. For each type of model, we also show
the number of features of the largest feature model
for each year. The figure shows an increasing trend in
the number of empirical works since 2004 being spe-
cially notable in the last two years. The first works
used small realistic feature models in their experi-
ments. However, since 2006, far more automatically

generated feature models than realistic ones have been

used. Regarding the size of the problems, there is a
clear ascendant tendency ranging from the model with
15 features used in 2004 to the model with 20 000 fea-
tures used in 2009. These findings reflect an increas-
ing concern to evaluate and compare the performance
of different solutions using larger and more complex
feature models. This suggests that the analysis of fea-
ture models is maturing.

19
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Figure 17: Type and maximum size of the feature models used in
performance evaluations for each year

8. Discussions and challenges

In this section, we discuss the results obtained from
the literature review. Based on these results, we iden-
tify a number of challenges (RQ3) to be addressed in
the future. Challenges are part of the authors’ own
personal view of open questions, based on the analy-
sis presented in this paper.

e Formal definition of analysis operation#\s we
mentioned, most of the proposals define opera-
tions in terms of informal descriptions. To im-
plement a tool, it is desirable to have precise
definition of the operations. Formal definitions
of operations would facilitate both communica-
tion among the community and tool develop-
ment. Schobbens et a‘i[ 8, 69] and Benavides
E] have made some progress in this direction.
Note that[S] was not included as a primary study
because it was not published in a peer reviewed
format.

Challenge 1: Formally describe all the oper-
ations of analysis and provide a formal
framework for defining new operations.

Extended feature model analysesnalysis on
basic or cardinality—based feature models are
covered by most of the studies. However, ex-
tended feature models where numerical attributes
are included, miss further coverage. When in-
cluding attributes in feature models the analy-
sis becomes more challenging because not only
attribute—value pairs can be contemplated, but
more complex relationships can be included
like “feature Camera requires Scree.resolution
640x480". This type of relationships carffact
operations of analysis and can include new ones.
For instance, the number of products of a feature
model can be reduced or increased if these rela-
tionships are considered.
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\oid feature model + + | + + + | +
#Products + | +
Dead features +
Valid product + + +
All products + +
Explanations + +
Refactoring + +
Optimization +
Atomic sets +
Corrective explanations +
Dependency analysis +
Generalization + +
Arbitrary edit +
Conditional dead features +
Muti-step configuration +
Specialization +
Table 6: Summary of the studies reporting performance resultsfalysis operations
Challenge 2: Include feature attribute relation- Description logic—based solvers have not been
ships for analyses on feature models and studied in depth to show their strengths and lim-
propose new operations of analysis leverag- itations when analysing feature models. Finally,
ing extended feature models. it seems clear that not all solvers and paradigms
will perform equally well for all the identified op-
Performance and scalability of the operations. erations. A characterisation of feature models,
Performance testing is being studied more and operations and solvers seems to be an interesting
more and recent works show empirical evidences topic to be explored in the future.
of the computational complexity of some analy-
sis operations. We believe that a more rigorous Challenge 5: Study how propositional logic and
analysis of computational complexity is needed. description logic—based solvers can be used
Furthermore, a set of standard benchmarks would to add attributes on feature models.

be desirable to show how the theoretical compu-

. e . . Challenge 6: Compare in depth description
tational complexity is run in practice.

logic—based solvers with respect to analysis

Challenge 3: Further studies about computa- operations and other solvers.

tional complexity of analysis. Challenge 7: Characterise feature models, anal-
ysis operations and solvers to select the best

Challenge 4: Develop standard benchmarks for L
choice in each case.

analysis operations.

Tools used for analysisAs mentioned in Sec- 9. Conclusions
tion[6, there are mainly three groups of solvers
used for analysis: constraint programming, de-  The automated analysis of feature models is thriv-
scription logic and propositional logic based ing. The extended use of feature models together with
solvers. From the primary studies, we detected the many applications derived from their analysis has
that proposals using constraint programming— allowed this discipline to gain importance among re-
based solvers are the most indicated to deal with searchers in software product lines. As aresult, a num-
extended feature models, i.e. feature models with ber of analysis operations and approaches providing
attributes. Propositional logic—based solvers that automated support for them are rapidly proliferating.
use binary decisions diagrams as internal repre- In this paper, we revised the state of the art on the au-
sentations seem to be much mon@ogent for tomated analysis of feature models by running a struc-
counting the number of products but present seri- tured literature review covering 53 primary studies and
ous limitations regarding memory consumption. outlining the main advances made up to now. As a
20



main result, we presented a catalogue with 30 analy-
sis operations identified in the literature and classified
the existing proposal providing automated support for
them according to their underlying logical paradigm.

We also provided information about the tools used to
perform the analyses and the results and trends re
lated to the performance evaluation of the published
proposals. From the analysis of current solutions, we
conclude that the analysis of feature models is matur-
ing with an increasing number of contributions, oper-

ations, tools and empirical works. We also identified

a number of challenges for future research mainly re-
lated to the formalization and computational complex-

ity of the operations, performance comparison of the
approaches and the support of extended feature mod-
els.
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