
Integrating Semantic Web Services Ranking Mechanisms Using a Common
Preference Model

José Maŕıa Garćıaa,∗, Martin Junghansb, David Ruiza, Sudhir Agarwalb, Antonio Ruiz-Cortésa

aUniversity of Seville, Spain
bKarlsruhe Institute of Technology, Germany

Abstract

Service ranking has been long-acknowledged to play a fundamental role in helping users to select the best offerings
among services retrieved from a search request. There exist many ranking mechanisms, each one providing ad hoc
preference models that offer different levels of expressiveness. Consequently, applying a single mechanism to a particular
scenario constrains the user to define preferences based on that mechanism’s facilities. Furthermore, a more flexible
solution that uses several independent mechanisms will face interoperability issues because of the differences between
preference models provided by each ranking mechanism. In order to overcome these issues, we propose a Preference-
based Universal Ranking Integration (PURI) framework that enables the combination of several ranking mechanisms
using a common, holistic preference model. Using PURI, different ranking mechanisms are seamlessly and transparently
integrated, offering a single façade to define preferences using highly expressive facilities that are not only decoupled
from the concrete mechanisms that perform the ranking process, but also allow to exploit synergies from the combination
of integrated mechanisms. We also thoroughly present a particular application scenario in the SOA4All EU project and
evaluate the benefits and applicability of PURI in further domains.

Keywords: Semantic Web Services, Service Retrieval, Service Ranking, Systems Integration, Preference Models

1. Introduction

Service Oriented Computing [1] has brought a paradigm
shift where complex applications are now built upon soft-
ware components – services – that can be reached over
the Internet. Although most services are exploited within
large corporations nowadays, the number of publicly avail-
able services is envisioned to increase in the future [2].
Precisely, the combination of service oriented computing
and semantic technologies, which is known as Semantic
Web Services (SWS), provides tools to properly manage
that amount of available knowledge [3]. Service retrieval
is a key process in this vision, where SWS offerings are
retrieved from repositories with respect to a concrete user
request [4].

In this current scenario, where service repositories are
being actively developed [5, 6] in order to cope with the
growth in the number of services, ranking mechanisms
have been long-acknowledged to be required for the se-

∗Corresponding author. Address: ETS Ingenieŕıa Informática.
Av. Reina Mercedes, s/n. 41012 Sevilla (Spain). Tel.: (+34) 9545
59814. Fax: (+34) 9545 57139

Email addresses: josemgarcia@us.es (José Maŕıa Garćıa),
martin.junghans@kit.edu (Martin Junghans), druiz@us.es
(David Ruiz), sudhir.agarwal@kit.edu (Sudhir Agarwal),
aruiz@us.es (Antonio Ruiz-Cortés)

URL: http://www.isa.us.es/josemaria.garcia
(José Maŕıa Garćıa)

lection of the best retrieved offerings with respect to cer-
tain user-defined preferences. Although there exist several
approaches on SWS ranking, there is a lack of a generic
and flexible preference model that offers a comprehensive
collection of facilities to define user preferences related to
the services to be selected. In turn, each ranking mecha-
nism provides an ad hoc preference model that constrains
the expressiveness of user preferences, which are tightly
coupled with the underlying ranking mechanism applied.

However, in order to allow the expression of complex
preferences for end users, they should be provided with
more flexibility to define preferences, so a service retrieval
and ranking system may integrate several ranking mech-
anisms, providing a higher number of facilities to state
user preferences. Nevertheless, interoperability issues be-
tween preference models may appear, as they cannot be
easily combined, and potential synergies may remain un-
exploited.

In this article, we present a preference-based ranking in-
tegration framework named PURI, which provides a solu-
tion to previously identified issues. Our integrated rank-
ing solution gives both developers and end users control
on how the ranking process should be performed, because
user-specified preferences can combine every facility that
the integrated ranking mechanisms provide, seamlessly in-
tegrating them and making the most of each ranking ap-
proach, according to the user’s particular needs. The main
contributions of our proposed integrated ranking solution

Preprint submitted to Knowledge-Based Systems April 13, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51388223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

can be summarized in the following four key features:

1. Our solution provides a simple entry point for the
end user to define preferences for service ranking us-
ing a common preference model based on an upper
ontology that is sufficiently expressive to combine
more specific preference models from concrete rank-
ing mechanisms.

2. The proposed framework provides a high expressive-
ness and flexibility because it allows developers to
integrate any available ranking mechanisms, provided
that they adapt their models to be defined in terms
of our common preference model.

3. The resulting service retrieval and ranking system of-
fers a lightweight and integrated solution, as it
does not add a noticeable penalty on the performance
of the integrated ranking mechanisms, whose results
are combined without altering their accuracy.

4. Our proposal has been validated in different scenar-
ios, including a use case within the SOA4All EU FP7
project1 that is presented in this article, along with
a discussion on the applicability of PURI to several
domains. The discussed use case shows a success-
ful application of PURI that provides a holistic inte-
grated ranking that combines three different ranking
approaches from SOA4All.

The rest of this article is organized as follows. Firstly,
in Section 2 we identify the challenges in SWS ranking to
motivate our proposal. In Section 3 related work on service
retrieval approaches and preference models is discussed.
Then, our SWS retrieval and integrated ranking proposal
is presented in Section 4. A concrete application of this
proposal is discussed in Section 5, contextualizing it in
the SOA4All EU FP7 project, which serves the purpose
of validating our presented solution. Finally, Section 6
enumerates the conclusions of this work.

2. Challenges in Semantic Web Service Ranking

In the following, we motivate our proposal by present-
ing an example that allows the identification of some chal-
lenges in the SWS ranking field that need to be addressed.
Let a sample user request be informally defined as:

“I want to look for services that can send some
SMS messages to my friends, preferring the
cheaper ones though the number of messages they
can deliver at the same invocation should also be
fair enough.”

1http://www.soa4all.eu

In this request, the user not only states the desired
functionality (to send SMS messages), but the preferences
about some service properties. Concretely, the user is look-
ing for services with the lowest possible price per message,
but also considering that the number of simultaneous mes-
sages allowed to send in a single request should be fair. Af-
ter retrieving the compliant services with respect to func-
tionality, a ranking process has to be performed in order to
rank the result list in terms of the user preferences, simpli-
fying the selection of the best service for the user. These
preferences have to be expressed in terms of some model
of a particular ranking mechanism that has to be chosen
in order to perform that process.

On the one hand, the lowest price preference can be
modeled using ranking approaches that allow definition of
the desired tendency of a given attribute, usually a non-
functional property (NFP) of a service, such as price per
message in the example. Thus, retrieved services should
be ranked according to the price value in ascending or-
der. NFP-based simple ordering proposals [7] or multi-
criteria ranking approaches [8, 9] that offer simpler pref-
erence modeling and more efficient ranking mechanisms
can be directly applied to evaluate this kind of preference.
In turn, more expressive approaches, such as those based
on utility functions [10, 11] or fuzzy logics [12, 13], are less
suitable because they exhibit a lower ranking performance,
in general, though they provide more complex preference
modeling facilities.

On the other hand, in order to model the preference
on the number of simultaneously sent messages, we need
to define what is considered to be a fair number for the
user. For instance, a user may specify that a fair num-
ber of messages is a value between 3 and 5. In this case,
a desired tendency definition (as in the price preference
discussed before) cannot be used because services are pre-
ferred if the NFP value is around the desired interval, in-
stead of preferring a minimum or maximum value. In turn,
a fuzzy based ranking mechanism offers means to express
this more complex preference, provided that a fuzzy mem-
bership function defines to which extent an NFP value can
be considered to be fair. Furthermore, mechanisms based
on utility functions can be also applied, as a fuzzy mem-
bership function can be considered as a particular case of
a utility function.

Desirably, both preferences should be defined and com-
bined using a unique preference model, so a single ranking
mechanism should be chosen to help the user to select the
best service [14]. However, if a multi-criteria, tendency
based ranking mechanism is chosen, the second preference
on the number of messages cannot be properly described.
In turn, a utility function or fuzzy based ranking approach
allows to define both preferences, however it may also im-
ply more modeling effort to express the price preference as
well as a lower global performance compared to a tendency
based approach. From the user’s perspective, it would be
more valuable if they could flexibly choose between expres-
siveness and performance for each preference description.

2

http://www.soa4all.eu

Consequently, in order to rank services according to
a combination of both preferences, different ranking ap-
proaches could be used correspondingly for price and num-
ber of messages preferences (e.g. a tendency based and a
fuzzy logic based approach), although the user then has to
define each part of the preference using a different model.
However, as preference models cannot be directly com-
bined at the conceptual level, results from each ranking
mechanism have to be manually analyzed so that the user
can come up with a global rank. In consequence, there
exists an actual challenge on how to combine several
preference models so that ranking results obtained from
corresponding ranking mechanisms can be automatically
integrated, transparently returning a global rank to the
user. This broad challenge can be divided into three more
specific challenges or issues that should be addressed in
order to provide a complete solution:

(C1) Expressiveness when defining preferences.
When using a particular ranking mechanism, users
are constrained to define their preferences using the
specific model offered by that mechanism only. In
the previous example, if users choose one particu-
lar mechanism to rank, they will be able to define
their preferences using either NFP tendencies or fuzzy
rules. A more expressive model is necessary to define
preferences using different facilities offered by existing
mechanisms.

(C2) Interoperability of preference models. As pref-
erence models and associated ontologies are mostly
coupled with their corresponding ranking formalisms,
each preference model provides different facilities to
define preference terms that cannot be combined in
general. In other words, there are interoperability is-
sues between preference models, mainly because there
is no common model to define and combine prefer-
ences.

(C3) Integration of ranking mechanisms. The inter-
operability issues at the conceptual level are also re-
flected at the implementation level. In order to com-
bine preferences from different ranking mechanisms,
they have to be integrated in a seamless and efficient
way so that a single entry point for the ranking pro-
cess is presented to the user.

PURI framework accounts for these issues, providing a
solution that fulfills the identified challenges, as discussed
in Section 4.

3. Related work

In this section we review existing solutions in SWS rank-
ing with respect to their provided degree of expressiveness
(C1), interoperability (C2), and integrability (C3) in order
to analyze how they deal with our identified challenges and
to what extent they present the associated issues. Table

1 sums up our review, comparing the analyzed propos-
als. Works are presented in chronological order, showing
the evolution with respect to the addressing of the iden-
tified challenges. Basically, earlier proposals are charac-
terized by low expressiveness and low integrability, while
later ones provide more support for those issues. Interop-
erability remains similar between analyzed works, as they
all use semantic approaches for service ranking, taking ad-
vantage of the inherently better interoperability provided
by ontologies and semantic definitions.

In particular, expressiveness (C1) is measured amongst
proposals as the amount of facilities their associated pref-
erence models offer, and the complexity of preferences that
can be described with them. A low expressiveness in Table
1 means that ranking mechanisms do not provide a sepa-
rate model to let users define their own preferences, as in
early works [15, 16, 17], which compute a ranking based on
matching or similarity degrees between service offers and
requests described using a SWS framework such as OWL-S
or WSMO. Note that there is also a more recent proposal
[5] that does not provide a preference model, because it is
primarily aimed at solving interoperability issues between
SWS definitions.

Precisely, SWS definitions are extended by several pro-
posals in order to provide more facilities to express prefer-
ences. [18] presents different extensions that allow for the
definition of NFP properties and measurements, that can
be used by its ranking mechanisms. However, as the user
cannot control how NFP values are used to rank SWSs
(i.e. they cannot express preferences with respect to those
NFPs), we assign to this proposal a low degree of expres-
siveness. Similarly, other proposals present fully-fledged
NFP models, but low expressiveness for preferences, be-
cause they rely on externally defined preference models
instantiated by the user, as in [19, 7].

In turn, [20] allows to define relative weights directly in
WSMO user requests, so that we consider they provide a
medium expressiveness, offering some simple facilities to
define preferences. Furthermore, [9] and more recently [8]
propose extensions to annotate WSMO user requests with
both relative weights and NFP tendencies, allowing the
user to express if a concrete NFP is preferred to yield the
lowest or the highest possible value. A higher expressive-
ness is provided in [11], as the authors extended [8] by
facilities to express preferences as utility functions.

The flexibility and expressiveness of utility functions are
also provided by some proposals [22, 10], though this kind
of preference can be considered to be too complex to be
defined by a regular user [25]. Thus, other approaches
offer more user-friendly facilities to combine these prefer-
ences, define NFP-based policies [23, 24], and to express
qualitative preferences [21].

Concerning interoperability (C2), early approaches [15,
16, 17] do not provide a separate semantic model to define
user preferences, so they cannot be combined and reused
with models proposed by the rest of the proposals, pro-
ducing a low interoperability. Furthermore, the preference

3

Table 1: Summary of the related works and their capabilities with respect to the challenges.

Proposal C1 C2 C3

Early approaches (2003-04) [15, 16, 17] Low Low Low
Zhou et al. (2004) [18] Low Medium Low
Maximilien & Singh (2004) [19] Low Medium Low
Dobson et al. (2005) [7] Low Medium Low
Vu et al. (2006) [20] Medium Medium Medium
Wang et al. (2006) [9] Medium Medium Low
Siberski et al. (2006) [21] High Low Medium
Kritikos et al. (2006) [22] High Medium Low
Toma et al. (2007) [8] Medium Medium Low
Lamparter et al. (2007) [10] High Medium Medium
Garćıa et al. (2008) [11] High Medium Low
Carenini et al. (2008) [23] High Medium High
Palmonari et al. (2009) [24] High Medium Medium
Pedrinaci et al. (2010) [5] Low High Medium

model in [21] described as a SPARQL extension also offers
a low degree of interoperability.

In turn, most analyzed approaches have a medium inter-
operability as they semantically define their models using
separate ontologies or extensions to existing ones. How-
ever, some transformations and mappings [26] are needed
in order to fully combine different models in a single pref-
erence definition, as discussed in Section 2. Nevertheless,
[5] provides a higher interoperability due to the fact that
its SWS definition model is based on Linked Data prin-
ciples, enabling easy reuse and combination of ontologies
[27].

With respect to integrability (C3), we measure how dif-
ficult it is to integrate each ranking mechanism with other
ranking implementations. Proprietary and difficultly ex-
tensible proposals are rated to have a low integrability,
because their underlying ranking mechanisms are very dif-
ferent, particularized for each retrieval scenario they try
to solve, and their APIs are not extensively documented.
Proposals that provide components that are easier to in-
tegrate, because they offer hybrid architectures [20, 24]
or SPARQL endpoints [21, 10, 5] are rated with medium
degree of integrability. Finally, [23] is highly integrable
because it defines a component-based, hybrid architecture
that allows the user to customize the service retrieval and
ranking processes.

4. Our proposal

As discussed above, there are several interoperability is-
sues between ranking mechanisms that constrain the flex-
ibility of semantic service ranking systems, which tend to
be designed eclectically, i.e. allowing the application of a
single ranking mechanism that provides a limited set of
facilities to define preferences. In the following we present
an integrated solution to semantic service retrieval and
ranking that offers a common, highly expressive preference

Figure 1: User requests and service descriptions upper ontology.

model that allows for the integration of several ranking
mechanisms into the service retrieval and ranking system.

4.1. System Architecture Overview

In order to integrate both service retrieval and ranking
mechanisms, we first need to define what we consider as
user requests and service descriptions. Figure 1 presents
an upper ontology that simply interprets both user re-
quests and service descriptions as a set of terms that are
related to a certain concept from a domain ontology. Each
term may specify different aspects from service descrip-
tions and user requests, such as functionality and user
preferences. Thus, a functionality term of a service de-
scription may specify its inputs, outputs, pre-conditions
and effects of a service, e.g. described by OWL-S [28] or
WSMO [29]. In turn, a user request will specify similar
terms to define its desired functionality. Therefore, the
related domain concepts consist on the types of input and
output parameters, and those involved in pre-conditions
and effects.

4

Figure 2: Integrated service retrieval and ranking system architecture.

Furthermore, preference terms pertaining to a user re-
quest give information about how to rank the retrieved
services to obtain the best one. Those preferences usually
refer to domain concepts that represent NFP, whose actual
values are also included within NFP terms individuals of
service descriptions. In the rest of this section, service de-
scriptions and user requests are described in more detail,
presenting the different involved terms.

Applying our interpretation of a user request to the ser-
vice retrieval and ranking scenario, we can separate terms
depending on their belonging class, so that functionality
terms can be forwarded to the service retrieval component,
while preference terms will be solely used by the integrated
ranking [30]. Figure 2 showcases the hybrid architecture
of our proposed service retrieval and ranking system.

Firstly, a user sends a request (UR) to the system
(Step 1). The access interface analyzes the request and dif-
ferentiates functionality (FT) and preference terms (PT)
depending on their belonging class. Then, the service
retrieval component searches in a service repository in
order to retrieve matching services (S) with respect to
functionality-related terms (Steps 2, 3, and 4). The access
interface component passes this set of retrieved services
(Step 5) to the preference-based integrated ranking compo-
nent (Step 6) that analyzes the previously identified pref-
erence terms and the corresponding ranking mechanisms
are executed (Step 7) and combined (Step 8). Finally, the
combined results from the integrated ranking mechanisms
are returned as the response to the user (Steps 9 and 10),
who obtains a ranking of the services (RS) that provide
the desired functionality ordered according to the speci-
fied preferences. The following subsections discuss each
main component in detail, as the access interface compo-
nent simply routes relevant terms from the user request to
both retrieval and ranking components.

For instance, Listing 1 shows a simplified user request
in RDF Turtle syntax [31] for a SMS messaging service to
illustrate the workflow of our proposed architecture. Thus,
the access interface analyzes the ex:request, routing the

functionality term ex:sendSMS and its descriptive state-
ments to the retrieval component as they define the re-
quired functionality of a desired service with an operation
to send an SMS message2. Then, that component retrieves
a set of SMS messaging services, as requested. After that,
ex:userPreference is further analyzed by the integrated
ranking component, ranking the previous set of services
with respect to user preferences. Section 4.3 explains in
detail the analysis of preferences for the integrated ranking
process.

4.2. Service Retrieval based upon Functional and Non-
Functional Properties

Service descriptions consist of functional and non-
functional terms in order to express respective service
properties. Each service property is represented by a key-
value pair. Retrieval focuses on the matchmaking of the
service functionality described by property term with a
complex value structure. Services not only provide in-
formation but may also cause changes in the information
state of the service provider. Therefore, we consider a
state-based model of the behavior. A service execution
is a sequence of states and state transitions that denote
information change. The behavior of atomic services is
described by the functionality terms comprising input and
output parameters, pre-condition, and effects. Services
with an atomic behavior are distinguished by only two
possible interactions: the consumption of input param-
eters at service invocation and the return of outputs at
service completion. In addition, we allow for a classifica-
tion of services in functionality classes. Formal definition
of classes allow for automatic and correct classification of
services, which can be exploited as an indexing structure
in order to speed up the retrieval process [32].

2The sample telco ontology that models several concepts of the
SMS messaging domain can be found at http://www.isa.us.es/

soa4all-integrated-ranking/downloads/sms.owl

5

http://www.isa.us.es/soa4all-integrated-ranking/downloads/sms.owl
http://www.isa.us.es/soa4all-integrated-ranking/downloads/sms.owl

Listing 1: An excerpt of a sample user request.

@pre f ix pur i : <http ://www. i s a . us . e s / s oa 4a l l −i n t eg ra ted−ranking / onto#> .
@pref ix posm : <http ://www. wsmo . org /ns/posm /0 .1#> .
@pref ix t e l c o : <http ://www. semanticweb . org / o n t o l o g i e s /SMS. owl#> .
@pref ix ex : <http :// example . org / onto#> .

ex : r eque s t a pur i : UserRequest ;
pur i : hasRequirements ex : sendSMS , ex : u s e rPr e f e r enc e .

ex : sendSMS a posm : Operation , pur i : Functional ityTerm ;
pur i : r e f e r sTo t e l c o : Message .
#. . . f u r t h e r s ta tements s p e c i f y i n g s e r v i c e inputs , outputs , and other informat ion

ex : u s e rPr e f e r enc e rd f : type pur i : PreferenceTerm .
#. . . f u r t h e r s ta tements s p e c i f y i n g the user pre f e rence (see L i s t i n g 3)

Service Descriptions. For the description of services we
use ontologies based on the logical formalism of descrip-
tion logics [33]. This allows us to use existing ontology
reasoners to reason about Web service properties while
not forcing a global set of property names. The vocabu-
lary used for the description of service properties is inher-
ited from WSMO-Lite [34], SA-WSDL [35], and POSM3.
In addition, a domain ontology that provides the means to
model service resources in the description shall be given.

An ontology individual w of class posm:Service repre-
sents a service w in the respective service description ontol-
ogy. The service w has operations with each of it described
by input and output parameters, as well as pre-conditions
and effects. POSM provides the concept of message parts
in order to model the parameters in simple part-whole re-
lations4. Pre-condition and effects are logical axioms de-
scribing the start and the end state of a service execution
respectively. In our implementation, the domain ontology
is modeled in the WSML-Core ontology language. Logical
axioms are expressed in the WSML-Flight language [36].
Furthermore, services and operations can have multiple
NFPs modeled as ontology object or data type properties.
Listing 2 shows an excerpt of a service description exam-
ple of a SMS messaging service (prefixes are the same as
in Listing 1), where posm:hasOperation is a sub-property
of puri:hasFeatures. NFPs can be added as additional
featured terms that define, for instance, the price and the
number of messages sent simultaneously (see Listing 4).

Listing 2: Simplified description of a sample SMS service.

ex : smsServ ice1
a posm : S e r v i c e , pur i : S e r v i c e D e s c r i p t i o n ;
posm : hasOperation ex : sendBatchSMS .

ex : sendBatchSMS
a posm : Operation , pur i : Functional ityTerm ;
pur i : r e f e r sTo t e l c o : Message .

3The Procedure-Oriented Service Model (POSM) ontology is a
lightweight approach to the structural description of procedure-
oriented Web services, compatible with WSMO-Lite annotation. See
http://www.wsmo.org/ns/posm/0.1 for details.

4See http://www.w3.org/2001/sw/BestPractices/OEP/

SimplePartWhole for details on partonomic modeling

Service Retrieval. The identification of desired services
from a repository that satisfy functional and non-
functional constraints is a filtering step that typically pre-
cedes service ranking. A service request is expressed in
a constraint specification formalism that also reflects the
property-based structure of service descriptions, but dif-
fers as it specifies constraints over desired property value
sets (as opposed to service descriptions that specify con-
crete property values) [37]. Property names are defined in
ontologies. The chosen ontology language may support the
specification of sets and ranges of values, otherwise they
can be modeled by individuals and classes, too. Thus,
a semantics of a service request corresponds to a set of
services such that each service in this set fulfills the con-
straints specified in the request.

The matchmaker compares each service description with
the user request by checking for each property whether
its value is in the desired set of values for the property.
The desired functionality is described by queries over the
elements inputs IR, outputs OR, pre-condition φR, and
effects ψR, where IR, OR, φR, and ψR are logical expres-
sions describing a set of desired values. For example, IR
specifies the set of desired input parameter combinations.
Each such combination corresponds to a possible model of
the query IR [38]. The functionality matchmaking con-
sists of checking whether the inputs Iw, outputs Ow, pre-
conditions φw, and postconditions ψw of service w are con-
tained in IR, OR, φR, and ψR respectively. That is, func-
tionality (Iw, Ow, φw, ψw) of a service w fulfills the desired
functionality (IR, OR, φR, ψR) specified in a request R if
Iw |= IR, Ow |= OR, φw |= φR, and ψw |= ψR. Analo-
gously, NFPs of a service are verified by checking whether
their values are in the respective sets of desired values.

4.3. Preference-Based Integrated Ranking

In order to provide users a high flexibility when defin-
ing service preferences, several ranking mechanisms can be
integrated into the previously discussed service retrieval
and ranking scenario. However, as each mechanism usu-
ally provides an ad hoc preference model, there is a need
for a generic, common definition framework that allows
the user to combine preferences to be evaluated by dif-
ferent available mechanisms, as discussed in Section 2.

6

http://www.wsmo.org/ns/posm/0.1
http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole
http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole

Figure 3: Upper ontology for user preferences.

Our preference-based integrated ranking proposal man-
ages those two levels of integration, providing (1) a com-
mon preference model that integrates preference defini-
tions from each mechanism, and (2) a framework that inte-
grates corresponding ranking implementations depending
on that model. In the following both the common model
and integration framework are presented.

4.3.1. An Upper Ontology to Model Preferences

Our proposed preference model, which is an adaptation
of the model introduced in [39], is used as an upper on-
tology so that individual preference terms from each in-
tegrated ranking mechanism are expressed using common
concepts from a single preference ontology, enabling inter-
operability between rankers. Figure 3 presents a UML rep-
resentation of the upper ontology of our preference model,
where the user basically can express atomic preferences us-
ing different preference terms that are handled internally
by the corresponding ranking mechanism. Then, compos-
ite preferences can be used to compose those terms, defin-
ing the relationship between previously expressed atomic
preferences. Note that composite preferences are also han-
dled by a ranking mechanism that offers facilities to com-
bine simpler atomic preferences.

In particular, atomic preferences are related to a
domain-specific concept that usually represents a NFP
that should be optimized to fulfill the user preference over
it. Figure 4 outlines some of the available preference terms
from our model. Thus, a Lowest (a Highest) preference
means that the user prefers a lower (higher) NFP value.
A Score preference expresses that the NFP value will be
evaluated using a scoring function. This function returns
a real value between 0 and 1, which expresses to what ex-
tent the referred NFP value is preferred against others.
Additionally, the preference model supports other facili-
ties to express preferences, not only including quantitative
but also qualitative preferences [39]. However, we only fo-
cus on the described preference terms in this article, since
they are applied in Section 5. A formal description of
both atomic and composite preferences of our model is
presented in [40]

Figure 4: Selected preference terms from the model.

Concerning composite preferences, our proposed model
contemplates three facilities that may be extended to refine
their semantics. First, a Balanced preference P combines
preference terms P1, . . . , Pn using the Pareto-optimality
principle, which considers that combined preferences Pi

are equally important for the user, balancing their fulfill-
ment. Therefore, a service wl is considered better than
another service wm with respect to P if wl is better than
wm with respect to any Pi such that wl is not worse than
wm with respect to the rest of the combined preferences
Pj with i 6= j.

Second, a Prioritized preference combines preferences
in importance order, i.e. if a list of preference terms
P1, P2, . . . , Pn is combined using a prioritized preference,
services will be ranked first in terms of P1. Then, services
that cannot be compared (or are equally preferred) using
P1 are ranked in terms of P2, and so on.

Finally, a Numerical preference is the combination of
preferences using a real function to obtain a numerical
score value for each service. Consequently, services are
ranked in terms of their score values. However, this com-
posite preference can only combine quantitative prefer-
ences that can be evaluated to a score value by their cor-
responding ranking mechanism.

The adaptation of this common preference model to a
concrete service selection scenario enables interoperabil-
ity between ranking mechanisms, using it as a preference
meta-model, which provides a higher expressiveness com-
pared to each mechanism isolated. Consequently, the first
two challenges concerning the expressiveness and the in-
teroperability (C1 and C2 in Section 2) are addressed by
the application of this upper model, while the integration
(C3) is solved by the PURI framework described below.
See also Section 5.2 for a particular example.

4.3.2. PURI: A Framework to Integrate Ranking Mecha-
nisms

Our integrated preference based ranking solution uses
preferences defined in terms of the presented model in or-
der to rank a set of matching services. As described above,

7

each preference term is handled by a particular ranking
mechanism. In order to correctly call each mechanism,
compose the results, and manage in general the integrated
ranking process, we propose the use of the PURI frame-
work, which is described in the following.

PURI stands for Preference-based Universal Ranking In-
tegration framework and provides facilities to integrate
several ranking mechanisms by using the previously de-
scribed common preference model. Essentially, its inte-
grated ranking solution takes a set of retrieved services
and a user preference, which is evaluated in order to ob-
tain the needed combination of ranking mechanisms that
have to be invoked such that a given set of services is or-
dered according to the preferences. The returned service
ranking is interpreted as a strict partial order, because
some services may not be able to be compared to each
other.

Algorithm 1: Function rank(S, u) : S′

Input: A set of services S and the user preference
instance u

Output: A strict partially ordered set of services S′

1 Instantiate R such that hasRankingMechanism(u,R)
2 if AtomicPreference(u) then
3 S′ ← doAtomicRank(S,u) of R

4 else if
BalancedPreference(u) t NumericalPreference(u)
then

5 foreach ui such that hasOperands(u, ui) do
6 Si ← rank(S, ui)

7 S′ ← compose(u, S1, . . . , Sn)

8 else if PrioritizedPreference(u) then
9 S′ ← S

10 i← 1
11 while S′ is not completely ordered and

hasOperands(u, ui) do
12 S′ ← rank(S′, ui)
13 i← i+ 1

14 return S′

The core functionality of the integrated ranking pro-
cess is implemented by the rank function presented in
Algorithm 1. Within this process, PURI dynamically
instantiates the appropriate ranking mechanism for a
given user preference u, as denoted by its correspond-
ing hasRankingMechanism relation (line 1). If u directly
corresponds to an AtomicPreference, the doAtomicRank

function of the instantiated ranking mechanism is executed
(line 3) and the partially ordered set S′ of services is re-
turned (line 14).

If u is a composite preference, each of its n components
are obtained from the hasOperands relation. In this case,
PURI applies two different workflows depending on the
concrete type of u in order to optimize the global execution

time of composed mechanisms:

1. Balanced and Numerical preference terms fork the
ranking execution in order to evaluate their compo-
nent preferences in parallel (line 6). After all the cor-
responding rank calls finish their execution, results
are properly composed in terms of the concrete com-
posite preference u, as described in Section 4.3.1, to
obtain a strict partial order (line 7). This final com-
position is performed in constant time (Numerical)
or linear time (Balanced) on the number of compo-
nent preferences, and it does not affect the accuracy
of results obtained from the integrated ranking mech-
anisms.

2. Prioritized preference terms sequentially evaluate
each component term, so that the execution is termi-
nated as soon as the evaluation of the corresponding
component term returns an ordering over all the re-
trieved services, or there is no more component terms
to be evaluated (line 11). As with previous composite
preferences, this evaluation does not affect the accu-
racy of results obtained separately from the composed
mechanisms.

For instance, the ranking of a set of services S is com-
puted for the preference described in Section 2, which com-
poses a LowestPreference and a Score Preference us-
ing a BalancedPreference (see Listing 3). Algorithm 1
is executed as follows: PURI firstly detects that the
topmost preference u is a composite one, specifically a
BalancedPreference. Consequently, it recursively calls
the rank function (line 6) over each operand u1 and u2,
with both being atomic ones. Thus, for u1, which is
a LowestPreference, the associated ranking mechanism
(the tendency based mechanism described in Section 2)
is instantiated in line 1 and executed over S in line 3.
The other atomic preference u2 is similarly evaluated, and
the results obtained from the two corresponding ranking
mechanisms (ordering S1 computed by the tendency based
mechanism and ordering S2 by the fuzzy logic based one,
respectively) are then composed in line 7 as defined by
the Balanced composite preference, in order to obtain the
global ordering S′ of the original set of services S returned
in line 14.

Concerning the selection of the appropriate ranking
mechanism for a given preference term, the PURI frame-
work presents a protected variation point [41]. Therefore,
domain experts and developers, who hold the responsibil-
ity for the adaptation of PURI to a particular scenario,
have to design and implement a concrete ranking mech-
anism selection strategy. In our use case application dis-
cussed in Section 5, we explicitly define at design time,
within the adapted preference model, which specific rank-
ing mechanism have to be instantiated to evaluate each
concrete preference term. Thus, the evaluation of the
hasRankingMechanism relation performed in line 1 of the

8

Algorithm 1 always returns a unique, predetermined rank-
ing mechanism in our use case.

However, if another application scenario provides vari-
ous ranking mechanisms that can be used to evaluate the
same preference term, developers responsible for the con-
crete adaptation of PURI to this scenario have to imple-
ment a concrete strategy to select the appropriate mecha-
nism. For instance, Quality-of-Service (QoS) properties
of available mechanisms can be monitored so that the
best one can be chosen at run time, depending on current
QoS values of selected properties, such as response time or
availability [42]. Consequently, in this case, line 1 of the
Algorithm 1 may return a different ranking mechanism for
each rank call over the same preference term.

There are some key features that the framework offers
for developers to extend and adapt PURI to their par-
ticular needs. First, ranking mechanisms can be dynami-
cally registered into a factory that is utilized to transpar-
ently instantiate them when needed to evaluate specific
preferences. Second, each ranking implementation can be
adapted to handle several preference terms from the upper
model, which in turn can be also extended to fulfill partic-
ular requirements of each scenario. Third, the default im-
plementation for composite preferences handles the aggre-
gation of atomic quantitative and qualitative preferences
automatically, because every preference will finally pro-
duce a strict partial order over services [39, 40]. Finally,
developers can also change the PURI implementation of
the returned ranking, provided that it successfully repre-
sents a strict partial order.

Consequently, a PURI adaptation that already provides
an integrated ranking system can be also extended, inte-
grating additional ranking mechanisms to support other
preference facilities or provide higher performance. Al-
though the use case application described in Section 5 fo-
cuses on integrating three different mechanisms, another
ranking implementation may be added seamlessly, pro-
vided that its preference model is mapped to our common
model (as discussed in Section 5.2), and a corresponding
adapter is implemented, so that PURI can properly access
and integrate that mechanism with the existing ones.

For instance, in order to integrate a Constraint Pro-
gramming (CP) based ranking mechanism that allows
the user to define preferences by defining utility func-
tions [11], we have to identify utility functions definitions
as instances of ScorePreference terms from our common
model. Concretely, utility functions are directly mapped
as the real function associated to a ScorePreference.
Concerning the adapter, we register its implementation in
PURI as a new ranking mechanism that is able to evalu-
ate a ScorePreference. Consequently, this adapter has to
translate real functions defined within ScorePreference

terms to a Constraint Satisfaction Optimization Problem
that is internally handled by the original CP-based rank-
ing mechanism as described in [11]. The obtained results
are again handled by the ranking adapter so that it returns
to PURI a strict partial order that may be transparently

combined with other ranking mechanisms results.

5. SOA4All Integrated Ranking: A Use Case Ap-
plication

In the SOA4All FP7 European project5, a fully-fledged,
semantically-enhanced infrastructure to describe, search,
compose, and execute services is proposed to offer effec-
tive, scalable, and usable solutions in an envisioned world
of billions of available services [2]. The service retrieval and
ranking scenario proposed in SOA4All provides three dif-
ferent ranking approaches, namely objective, multi-criteria
and fuzzy ranking mechanisms [43]. Each approach pro-
vides different user interfaces and preference expressive-
ness depending on the applied ranking mechanism. As a
consequence, a SOA4All user cannot combine preferences
from the three ranking mechanisms offered.

Comparing the three approaches with the challenges
identified in Section 2, we conclude that, though they pro-
vide different levels of expressiveness, there exist interoper-
ability issues between them that prevent their integration.
Furthermore, users cannot choose which ranking mecha-
nism (or combination of them) should be applied to differ-
ent service requests, depending on the expressiveness and
performance needed, for instance.

In order to take full advantage of the three developed
ranking mechanisms in SOA4All, the PURI framework was
applied to this scenario, so an integrated ranking was im-
plemented using those mechanisms, adapting and extend-
ing the previously discussed preference model and develop-
ing a single user interface to perform the service retrieval
and ranking scenario as a whole, allowing the definition of
preferences based on the adapted common model. In the
following, we introduce the SOA4All ranking mechanisms
and show how we applied the PURI framework in order to
integrate them into a single service retrieval and ranking
solution.

5.1. SOA4All Ranking Mechanisms

In the subsequent paragraphs we give an overview of the
three ranking methods developed in SOA4All. As we show
at the end of this section, each approach has benefits and
drawbacks in comparison to the other approaches.

5.1.1. Ontology-based Feature Aggregation for Multi-
valued Ranking

The first approach ranks services based on objective fea-
tures of Web services that can be automatically crawled
and monitored [44]. For WSDL services, three indepen-
dent ranking values are calculated. The values are based
on (i) crawl meta-data like the number of related docu-
ments, (ii) verboseness of WSDL documents (esp. docu-
menting parts), and (iii) monitoring data like availability
and response time. These values are then combined with

5http://www.soa4all.eu

9

http://www.soa4all.eu

equal weights to one global rank. For Web APIs, a confi-
dence score of a Web page describing a Web API is taken
into account, only.

The global rank of services is independent of the user
preferences and can be directly derived from the individ-
ual scores. Objective preferences can be applied for typi-
cal Web service meta-data such as the related documents
score, since it is mostly valid to prefer services with a high
number of documents on the Web strongly related to them
over services with less related documents. Further, the
WSDL metrics rank favors services with comments and
descriptions in their WSDL service descriptions and the
monitoring rank promotes services with high availability.
The confidence score of a Web API denotes the likelihood
of a Web resource to be a Web API [44].

Related Documents Rank. This rank is based on the crawl
meta-data that is delivered by the crawler, and is calcu-
lated based on the following information: (i) How many
related documents does a service have? We need to check
the document annotations that belong to a service and
then count the unique documents that are tied to the an-
notations (as more annotations can refer to the same doc-
ument). (ii) How is the document related to a specific ser-
vice? Documents can be direct inlinks or direct outlinks of
the WSDL documents that describe a service, or the con-
nection to the service can be determined by a term vector
analysis of the documents and the service. In a first step,
the number of related documents per service is calculated.
Considering the number of document annotations only is
not adequate because one document might have several
annotations (e.g. a document that has a DirectOutLink

annotation and a TermVectorSimilarityAssociation).
Therefore, all DirectInLink, DirectOutLink, and
TermVectorSimilarityAssociation annotations are first
extracted in order to obtain the identifiers of all documents
that correspond to the annotations. The number of multi-
ple occurrences of the same document is counted, and then
stored using the hasNumberOfRelatedDocuments property
of the seekda Ranking Ontology. The single values that
are used for the single kinds of related documents to calcu-
late the temporary rank are currently experimental. These
might be changed on a frequent basis until we discover the
values that seem optimal for our needs. The final rank
is stored for each service using the hasRelatedDocsRank

property of the seekda Ranking Ontology.

WSDL Metrics Rank. This rank is based on metrics ex-
tracted from the WSDL documents. Currently, the met-
rics takes into account (a) the documentation of the ser-
vice element, and (b) the documentation of the opera-
tions. The rank computation puts more importance on
the documentation of the single operations than on ser-
vice documentation, because it is more likely that oper-
ations contain useful information regarding the function-
ality provided by the operation as well as regarding their
invocation. The final rank is stored for each service using

the hasWSDLMetricRank property of the seekda Ranking
Ontology.

Monitoring Rank. This rank is based on the liveliness in-
formation of a service, e.g. is the server reachable, does it
correctly implement the SOAP protocol, etc. This liveli-
ness information is delivered by seekda on a weekly basis.
The availability score is a number between 0 and 1. Its
value is set depending on the endpoint check result. For
example, the score is 0 for read timeouts or errors, and
1 if based on the resulting payload (e.g., XML fault), it
is very likely that communication with the WSDL service
over SOAP messages is functioning. Other score values
are set mostly based on the HTTP response code to re-
flect situations such as pages that are not found, or pages
that require a login or an authentication, etc. The av-
erage service availability score is derived from scores for
different time periods: last week, last month and last 6
months. It was assumed that the long-time availability of
a service is more relevant than only the short-time avail-
ability over one week. It is important to note that this
rank does not state anything about whether the function-
ality that the service announces is correctly implemented
or not. The calculated rank is stored for each service using
the hasMonitoringRank property of the seekda Ranking
Ontology.

Web API Confidence Score. The ranking of Web APIs
is derived from the seekda Web API confidence score.
This score is calculated based on two classifiers within the
crawler that check whether a Web resource might be a Web
API or not. First, a classifier based on a support vector
machine trained on a given data set is used for automatic
classification of Web documents. Second, the Web API
Evaluator performs structural and term vector analyses of
the Web API resources, documentation Web pages, and
related Web documents. The Web API Evaluator calcu-
lates indicators for the likelihood of the three Web resource
categories of describing a Web API. The Web API rank is
derived from the combination of the both confidence scores
whereas more importance is given to the score of the SVM
classifier. The applied weighting of the classifiers was de-
termined by earlier evaluation results.

Obviously, services with higher values for this score are
preferred. The global rank aggregates the individual val-
ues with equal weights. Then, it is normalized to the in-
terval [0, 1] and is finally added as an additional service
property to the service description. For Web APIs, the
Web API rank is at the same time the global rank of the
service.

5.1.2. Multi-criteria Ranking based on Non-Functional
Properties

The second approach bases the service ranking on user
defined preferences [8]. NFPs in offers and requests are
specified by means of logical rules using terms of given

10

NFP ontologies. The NFP model of descriptions is as fol-
lows.

Class NonFunctionalProperty
hasAnnotations type Annotation
hasDefinition type Axiom

NFPs specified in the user request and service descrip-
tions are formalized by means of logical rules using terms
from NFP ontologies. The logical rules used to model
NFPs of services are evaluated, during the ranking pro-
cess, by a reasoning engine. Additional data is required
during this process: (i) which NFPs the user is interested
in, (ii) the importance of each of these NFPs, (iii) how
the list of services should be ordered (i.e., ascending or
descending), and (iv) concrete instance data. The NFP
values obtained by evaluating the logical rules are sorted
and the ordered list of services is built.

First, a set of terms containing NFPs and their associ-
ated importance is extracted from the user request. If no
importance is specified, the default value is consider to be
0.5, which stands for a moderate interest in the respective
NFP. The importance is a numeric value ranging from 0 to
1, where 1 encodes the fact that the user is extremely in-
terested in the NFP and 0 encodes the opposite. Instance
data from the goal is extracted and a knowledge base is
created. The last step in extracting relevant information
for the ranking process is to identify how the results should
be ordered, either ascending or descending.

Once the preprocessing is completed, each service is as-
sessed in order to determine whether the NFPs specified
in the user request are available in the service description.
If this is the case, the algorithm extracts the correspond-
ing logic rules and evaluates them using a reasoning en-
gine that supports WSML rules (e.g. IRIS6). A quadruple
structure containing the computed value and its impor-
tance for each service and NFP is built. An aggregated
score is computed for each service by summing the nor-
malized values of NFPs weighted by importance values.
The results are collected in a set of tuples, where each
tuple contains the service id and the computed score. Fi-
nally, the scores are ordered as specified by the user and
the final list of services is returned.

The novelties of the second ranking approach are the
combined use of ontological representation of NFPs with
multiple NFP dimensions and the possibility to justify the
computed ranking by the provision of provenance informa-
tion [43].

5.1.3. Fuzzy Logic Based Ranking Approach

The third service ranking mechanism advances the ex-
pressiveness of user preferences from the second approach.
The fuzzy logic based ranking mechanism features the
following abilities: (i) express vagueness while formulat-
ing preferences using linguistic terms instead of crisp val-
ues, (ii) assign crisp property values to different categories

6http://www.iris-reasoner.org

d

M

1

0
5 10

low fair high

Figure 5: Example of membership functions that define the mem-
bership degree d per category for the number M of messages.

by specifying overlapping fuzzy set membership functions
that model these categories, and (iii) create complex pref-
erences constructed by the combination of simple terms.

User preferences are expressed by fuzzy rules, which are
an efficient way to compute an approximative solution,
often more efficiently than classical approximation meth-
ods [45]. Intuitively, a fuzzy rule describes which com-
bination of property values a user is willing to accept to
which degree. A rule head assigns a linguistic term that
represents the degree of acceptance to the distinguished
linguistic variable acceptance. The degree of acceptance
holds for the service if the condition in the rule body holds.
Similarly, a rule body contains expressions that assign cat-
egories, represented by linguistic terms and modeled by
fuzzy sets, to service properties. Conjunctions, disjunc-
tions, and negations of these expressions are also allowed
in the body.

In our example, the rule

if numberOfMessages = fair
then acceptance = super

is part of the intended preference. Preferences contain
those NFPs that a service should fulfill in order to be
accepted for further consideration. Fuzzy set member-
ship functions specify different levels (categories) of ac-
ceptance. The linguistic term fair is specified by a fuzzy
set representing a range of number of messages (instead
of a crisp value). A corresponding fuzzy set definition for
this property is given in Figure 5. Three membership func-
tions defining the terms low, fair, and high are specified by
three overlapping trapezoid-shaped fuzzy sets with vary-
ing number of messages in horizontal and the degree of
membership d, between 0 and 1, in the vertical direction.
The linguistic terms allow users to refer to the sets in-
stead of using values in the rule base. If the given fuzzy
set definitions cannot be reused for a preference, users may
customize or create them according to their needs with a
Web based visual interface.

The process of computing a fuzzy logic based rank of ser-
vices is composed of four main steps: a) fuzzification, b) in-
ferencing, c) aggregation, and d) defuzzification. In step
a), crisp NFP values of service descriptions are fuzzified,
i.e. their membership in corresponding categories modeled
by fuzzy sets are computed. During the inferencing step
b), a degree of fulfillment for each fuzzy rule defined in the
preference is computed. Then, the fuzzy set of the head
of each rule is chopped at the level equal to the degree of

11

http://www.iris-reasoner.org

fulfillment of the rule’s premise. In step c), the chopped
fuzzy sets of the rule heads are aggregated. The aggre-
gated set denotes the service rank as another fuzzy set,
which is finally defuzzified to a value between 0 and 1 in
step d). A more detailed description of the computational
process along with an example was provided in [43].

Membership degree. In step a) and b), the degree of mem-
bership of a service property and the degree of fulfillment
of a fuzzy rule, respectively, are computed as follows. Let
O be the concept that represents the acceptance and let
O be divided into k categories O1, ..., Ok. Then, there ex-
ist (at most) k rules in the rule base {R1, ..., Rj |j ≤ k},
where any rule Ri has Oi in the rule head. Each rule is
processed in the inferencing step b) as follows. For each
Ri, the degree dwOi

to that a service w fulfills the body
of Ri is determined. The membership degree dwOi

of the
whole premise is derived from the degrees of the individual
terms by using the following semantics suggested by Zadeh
in [46]. Let µA and µB denote two membership functions,
then

(µA ∧ µB)(w) ≡ min{µA(w), µB(w)},

(µA ∨ µB)(w) ≡ max{µA(w), µB(w)},

¬µA(w) ≡ 1− µA(w).

The membership of w to µ is calculated by obtaining the
value of y for x, which lies on the line passing through
(x1, y1) and (x2, y2). As each membership function is de-
scribed by several lines, the value of y is only obtained
from the line that passes through (x, y) between the line’s
end points (x1, y1) and (x2, y2).

y =
y2 − y1
x2 − x1

(x− x1) + y1

At the end of step b), a new membership function µw
Oi

is
computed from dwOi

and the fuzzy set Oi representing the
linguistic term in the rule head. Therefore, the part of the
membership function µw

Oi
that is higher than dwOi

is cut.
In the aggregation step c), the fuzzy sets µw

Oi
computed

in step b) are aggregated into one fuzzy set µw
O, which

represents the solution of the problem. The solution µw
O

simply takes the maximum of all the µw
Oi

functions. Fig-
ure 6 illustrates the result of step b) for a rule base with
two rules for the good and super acceptance categories.
The degree of fulfillments of the rule bodies are 0.5 and
0.8 respectively. The membership function µw

O shown in
Figure 7 is the result of the aggregation of both functions
µw
Oi

in Figure 6.
In the final step d), the fuzzy set µw

O is defuzzified to
obtain a crisp value between 0 and 1, which represents the
actual rank [12]. Again, while there are various defuzzifi-
cation techniques available in the literature, the center of
gravity method is perhaps the most widely used. Accord-
ing to [47], there is no systematic procedure for choosing
a defuzzification strategy. Hence, other strategies like the
max criterion, mean of maximum, or center of area method

dwOi

Rank

0.8

0.5

0
10 20 30

good

super

Figure 6: Example set of membership functions generated
in step b) from two fuzzy if-then rules.

d

Rank

0.8

0.5

0
10 20 30

µw
O

cg

Figure 7: Aggregated membership function derived from
the example in Figure 6. cg denotes the center of gravity.

are also applicable. In our approach, the x coordinate of
the center of gravity (illustrated by cg in the example of
Figure 7) determines the overall acceptance of a service w
and is computed as follows.

x =

∑n
i=1 xiyi∑n
i=1 yi

5.1.4. Comparison of Ranking Methods

The first approach (objective) is clearly distinguished
by its simplicity. It is similar to Google Web site ranking
as the global rank can be computed off-line and indepen-
dently from user preferences. Therefore, the ranking can
be further exploited by other components like other rank-
ing or retrieval mechanisms if top-k algorithms are applied.
That is, the k most promising services (with a high global
rank) are processed exclusively or in a privileged manner
such that results can be delivered faster. The downside
of the first mechanism is its limitation to a given set of
properties that are observable by the crawler as well as
the lacking ability of user customization, i.e., the expres-
siveness of available preferences is constrained.

The second ranking method (multi-criteria) overcomes
the shortcoming of the previous one by providing a pref-
erence model and taking any ontologically defined NFPs
into account. It provides users simple means to express
preferences on ascending and descending orderings with
weighted aggregation into a global rank. However, this ap-
proach relies on the assumption of independent property
preferences. That is, it cannot be expressed that a user
accepts a higher price if a high quality is offered, for in-
stance. The limited expressiveness of the preference model
is therefore the motivation for the third method.

Fuzzy if-then preferences have a higher expressiveness.
Dependencies between different desired properties as well
as desired fuzzy value ranges can be specified. Further,
users can express rather vague preferences by fuzzy sets.

12

Figure 8: SOA4All adaptation of the preference model.

On the downside of this third approach is the increased
computational effort that is required to compute a ranking,
and the complexity of the preference definition.

As a conclusion, each SOA4All ranking mechanism
serves a particular purpose depending on the level of ex-
pressiveness and flexibility the user needs when defining
preferences for service ranking. For instance, in order
to model the example discussed in Section 2, the multi-
criteria ranking can be used to define and efficiently eval-
uate the price preference, whereas the fuzzy logic based
approach is useful to express the preference on the num-
ber of messages. However, the combination of those two
preferences is not possible in this use case, as it has al-
ready been identified in Section 2 as a challenge in SWS
ranking. In this scenario, our PURI framework can be
applied to overcome the associated issues and effectively
combine SOA4All ranking mechanisms, as described in the
following.

5.2. Preference Model Adaptation

Before instantiating the PURI framework to provide
an integrated ranking solution for the SOA4All use case,
the different preference models offered by each ranking
mechanism have to be integrated into our previously pre-
sented common preference model. Therefore, similarities
between our preference model facilities and those provided
by SOA4All ranking mechanisms have to be identified.
Figure 8 shows the extended preference model that sup-
ports SOA4All facilities, where new preference terms with
respect to the basic model shown in Figure 4 are depicted
in italics.

In the first case, objective multi-valued ranking is based
on metrics and derived ranks that can be used to order
the retrieved services, where the resulting ranking should
present services with higher ranking values for the chosen
metric at its top. Consequently, we simply interpret a
preference on a concrete ObjectiveMetric as a particular
case of a HighestPreference that constrains the domain
concept that can be referred to the available monitored
metrics. For instance, a request may contain a preference
where the user prefers services with higher global rank.

Concerning the NFP-based multi-criteria ranking mech-
anism, its own preference model allows to define the NFP
of interest, which is identified as the DomainConcept that
a preference refers to in our model as depicted in Fig-
ure 3. Depending on the desired ordering, the preference
can be considered as a Lowest or a Highest one in the
common model, which is extended by including an as-
sociated operand that can be used to define the relative
importance as a float value. This importance value can
be used itself to compose several ascending or descend-
ing preferences, because it is used in the normalization
and aggregation stage of this ranking mechanism. There-
fore, we added a composite numerical preference called
WeightedPreference that can combine several Lowest or
Highest preferences provided that they define a corre-
sponding importance value. Note that objective multi-
valued ranking metrics can be also used as the referred
NFP so that both ranking mechanisms can be easily com-
bined using a WeightedPreference.

Finally, the fuzzy logic based ranking mechanism pro-
vides fuzzy rules and membership functions as the ba-
sic constructs to define preferences. On the one hand,
a fuzzy rule is interpreted as a specialization of a
NumericalPreference whose combining function is de-
fined by the fuzzy ranking algorithm. A FuzzyRule-

Preference contains a premise (rule body) and a conclu-
sion (rule head). Premises may contain fuzzy logic nega-
tions, disjunctions and conjunctions that are also consid-
ered to be specializations of NumericalPreferences7 as
they can combine different fuzzy set membership func-
tions. A conclusion also contains a fuzzy set member-
ship function that is interpreted as the fuzzy score of
the rule. Furthermore, rules can also be combined in a
FuzzyGoalPreference, that is interpreted as a particular
NumericalPreference, too.

On the other hand, fuzzy set membership functions are
considered atomic preferences because they provide means
to obtain a fuzzy score value depending on the value of
a referred domain concept, such as price or number of
messages. In our common model, there exists a generic
preference called ScorePreference that is defined after a
real function that computes the score used to rank ser-
vices [39]. Therefore, we model fuzzy membership func-
tions as a particular case of a ScorePreference (denoted
as FuzzyMemFuncPreference in Figure 8), whose scoring
function is precisely that membership function.

For instance, the example discussed in Section 2 can be
modeled using the adapted common preference model as
follows. In that example there are two atomic preferences
that can be modeled using (1) a LowestPreference on the
price per message, as provided by the NFP-based multi-
criteria ranking mechanism; and (2) a fuzzy membership
function (FuzzyMemFuncPreference), which models the

7In order to simplify Figure 8, all fuzzy preference composite con-
structors (rules, goals, negations, disjunctions and conjunctions) are
denoted as Fuzzy* Preference.

13

preference on the fair number of simultaneously sent mes-
sages, evaluated by the fuzzy logic based approach. Fur-
thermore, both atomic preferences can be composed using
a BalancedPreference (directly implemented by PURI),
so that they are considered equally important for the
user. A partial representation of this example is presented
in Listing 3, deliberately omitting hasRankingMechanism

values as they have been described previously, as well as
prefixes already defined in previous listings. Note that the
fuzzy membership function has to be included within a
fuzzy goal, which is also partially represented.

Listing 3: Instance of the user preference from Section 2.

ex : u s e rPr e f e r enc e
a pur i : Ba lancedPre ference ;
pur i : hasOperands ex : p r i c e P r e f e r e n c e ,

ex : numberOfMessagesPreference .
ex : p r i c e P r e f e r e n c e

a pur i : LowestPre ference ;
pur i : r e f e r sTo t e l c o : UnitCost .

ex : numberOfMessagesPreference
a pur i : FuzzyGoalPreference ;
pur i : hasOperands ex : superRule ,

ex : goodRule .
ex : superRule a pur i : FuzzyRulePreference ;

pur i : hasOperands ex : superRuleBody ,
ex : superRuleHead .

ex : superRuleBody
a pur i : FuzzyMemFuncPreference ;
pur i : r e f e r sTo t e l c o : NumberOfMessages ;
pur i : hasScor ingFunct ion

ex : fa irMembershipFunction .

The PURI framework analyzes this preference and
the referred NFP values of service descriptions (e.g.
telco:UnitCost and telco:NumberOfMessages as in
Listing 4) in order to rank a set of previously retrieved
services. For instance, Listing 4 describes the NFP values
of ex:smsService1 service from Listing 2.

Listing 4: NFP terms of a service description.

@pre f ix wl : <http ://www. wsmo . org /ns/wsmo− l i t e#> .

ex : smsServ ice1
a posm : S e r v i c e , pur i : S e r v i c e D e s c r i p t i o n ;
pur i : hasFeatures ex : p r i c e S e r v i c e 1 ,

ex : messagesServ i ce1 .
ex : p r i c e S e r v i c e 1

a wl : NonFunctionalParameter ,
pur i : NonFunctionalTerm ;

pur i : r e f e r sTo t e l c o : UnitCost ;
t e l c o : hasAmount ” 0 .03 ”ˆˆ xsd : double .

ex : messagesServ i ce1
a wl : NonFunctionalParameter ,

pur i : NonFunctionalTerm ;
pur i : r e f e r sTo t e l c o : NumberOfMessages ;
t e l c o : hasAmount ”10”ˆˆ xsd : i n t e g e r .

In our example, a preference over the num-
ber of message that a service is able to send
with one invocation is expressed in the fuzzy goal
ex:numberOfMessagesPreference. Two categories
good and super for the objective function are used and
formulated as follows.

if numberOfMessages = low or
numberOfMessages = high
then acceptance = good

if numberOfMessages = fair
then acceptance = super

Super acceptance is preferred over good acceptance.
In order to determine the degree of acceptance, the
specified membership function for the service property
NumberOfMessages allows to determine the membership
of each service to each category (low, fair, or high). For
the given example offer, the membership degree d for each
category is d(low) = 0, d(fair) = 1, d(high) = 0. There-
fore, the example offer falls into the acceptance category
super of the objective function which is specified in the
preference of Listing 3.

5.3. Applying PURI to SOA4All Integrated Ranking Im-
plementation

Starting from the model adaptation discussed in the
previous paragraphs, the actual implementation of the
SOA4All integrated ranking approach involves the appli-
cation and extension of the PURI framework to develop a
holistic solution to service retrieval that allows the com-
bination of several ranking mechanisms, exploiting syner-
gies and providing a single, unified user interface to the
SOA4All service retrieval scenario.

First of all, each ranking mechanism interface was
adapted to PURI ranking API. Essentially, each adapter
supports the corresponding preference terms that are han-
dled by each ranking mechanism. Using a dynamic instan-
tiation, PURI is able to identify which adapters have to
be used to rank a set of retrieved services in terms of a
user provided preference. Furthermore, PURI is also re-
sponsible to orchestrate those adapters in order to combine
ranking results from different ranking mechanisms in the
event that composite preferences are specified by the user.

The developed SOA4All integrated ranking was de-
ployed as a Web service itself, so that it could be eas-
ily integrated within the global SOA4All service retrieval
and ranking solution and is simultaneously offered as a
standalone component which allows to define preferences
based on the discussed common model for the three rank-
ing mechanisms proposed in SOA4All.

Finally, in order to apply our holistic solution to the
SOA4All use case, it is necessary to put together both
service retrieval and integrated ranking implementations,
integrating both components using a common user inter-
face to the global SOA4All service retrieval system. A user
can first enter criteria in order to filter the result set. A
set of functionality classes from a tree-structured hierarchy
can be selected. Multiple selections are interpreted such
that retrieved services are member of all selected classes.
Furthermore, the user may refine the desired service func-
tionality with logic expressions describing inputs, outputs,
pre-conditions, and effects. The desired values of NFPs
can be constrained, too. Based on these requirements, the

14

Figure 9: Screenshot of the preference definition user interface.

SOA4All retrieval component is able to determine the set
of matching service descriptions.

In a second step, the user may specify preferences in
order to rank services. Therefore, as depicted in Fig-
ure 9, the Web-based interface guides the user in express-
ing preferences with minimal knowledge about the syn-
tax. The preference type (see Figure 4) is chosen from
a predefined list and the referred NFP concept as well
as operands are entered in dedicated text fields. Finally
a name is assigned to the preference that allows to con-
struct composite preference structures more conveniently.
Upon submit, the services are presented to the user in
the ranked order. The prototype implementation of the
integrated ranking component can be reached at http:

//www.isa.us.es/soa4all-integrated-ranking/.

5.4. Discussion

In order to evaluate the validity of our proposal, we an-
alyze its effectiveness in fulfilling the challenges identified
in Section 2. Table 2 presents a qualitative analysis of
the SOA4All Integrated Ranking implementation, though
we discuss in the following how each challenge can be also
analyzed in more generic scenarios.

Concerning the expressiveness of each proposal (C1),
the integrated ranking approach using PURI allows the
user to define preferences using any of the facilities pro-
vided by each other ranking mechanism. Consequently,
it offers a higher expressiveness even when compared to
the SOA4All fuzzy based approach, because of the pos-
sibility to combine other mechanisms8 provided by our
user-centric, strict partial order interpretation of prefer-
ences [48].

In addition to the SOA4All PURI application that val-
idates our proposal, we have also evaluated that our com-
mon preference model provides a high flexibility and ex-
pressiveness by applying it to additional validation sce-
narios. Thus, our model was successfully applied to de-
scribe different discovery scenarios described by the re-

8See Section 5.1 for a comparison of their corresponding degrees
of expressiveness

search community within the SWS Challenge9. In partic-
ular, we validated an early version of our common model
using the Shipment Discovery scenario [11], in addition
to the complete description of the more complex Logistics
Management scenario presented in [39].

In turn, the interoperability degree (C2) has been mea-
sured by evaluating both the kind and number of prefer-
ences that can be combined. Although in the SOA4All
application each ranking mechanism uses semantic mod-
els to define preferences, the lack of an upper model made
their interoperation at the description level difficult, show-
ing a medium interoperability in Table 2. Using our com-
mon preference model, facilities from any ranking mech-
anism can be composed together, exploiting its synergies
and providing the user with more control over the service
retrieval and ranking process.

In particular, we evaluated what kind of combinations
are enabled by our model. Because of its inductive defini-
tion, the number of preferences that can be combined to-
gether is not limited. Composite preferences are composed
of several preference terms that can be either atomic or
composite preferences, allowing the user to express com-
plex desires that combine an arbitrary number of pref-
erences. Thus, we performed experiments that gener-
ated random combinations of preferences with an arbitrary
depth, showing that the execution time of the analysis per-
formed by PURI on every combination is at most linear
with respect to the number of preference terms, regardless
of their tree structure and depth. However, it is worth
noting that real user preferences only contains two to six
terms, in general [49].

Finally, at implementation level, we analyzed the in-
tegrability degree (C3). In the SOA4All scenario, both
multi-criteria and fuzzy logic based ranking mechanisms
cannot be easily integrated because of the different un-
derlying formalisms (i.e. they offer a low integrability de-
gree), though the objective ranking can be transparently
integrated with the service retrieval component, retriev-
ing services already ordered by the computed global rank,
that can be further processed by any of the other ranking

9http://sws-challenge.org

15

http://www.isa.us.es/soa4all-integrated-ranking/
http://www.isa.us.es/soa4all-integrated-ranking/
http://sws-challenge.org

Table 2: Comparison between eclectic and holistic SOA4All service
ranking.

Ranking Approach C1 C2 C3

Objective Ranking Low Medium Medium
Multi-criteria Ranking Medium Medium Low
Fuzzy based Ranking High Medium Low

Integrated Ranking High High High

mechanisms.

However, the integrated ranking approach implemented
using PURI is not only able to integrate the three avail-
able ranking mechanisms into a unique service retrieval
and ranking system, but also to orchestrate the ranking
execution workflow in terms of the concrete preferences
defined by the user, providing a high integrability (C3).
Furthermore, as the integrated ranking solution is based
on the internal ranking mechanisms, the integrated rank-
ing performance depends on those mechanisms. As we
measured in our SOA4All application, the workflow or-
chestration provided by the framework does not add a
significant penalty to the total execution time, because it
redirects ranking requests to relevant mechanisms and sub-
sequently combines the results of internal rankers. Latter
step takes linear time with respect to the number of results
of each composite preference. If preferences are composed
using PrioritizedPreference terms, the overall execu-
tion time may be less as some services may not need to
be compared with respect to second and subsequent com-
posed preferences. Moreover, as preferences composed us-
ing BalancedPreference terms are evaluated in parallel,
the whole composition performed by PURI usually takes
less time than the individual evaluation of composed pref-
erences by their corresponding ranking mechanisms, sub-
sequently.

In addition to the previous validation of our proposal
within our use case scenario, we also performed a reusabil-
ity analysis of PURI, in order to evaluate the ease-of-
use and extensibility of our proposed framework. Table
3 present a subset of the metrics we computed in order to
analyze the reusability of a framework according to [50].
We evaluated both PURI framework and the adaptation
described in this section to SOA4All project, although in
Table 3 we only represent values from the multi-criteria
ranking adaptation in order to better analyze the cost of
integrating a mechanism.

According to the measured values, the number of meth-
ods (NOM), attributes (NAT), and parameters per method
(NPM) for each class in both cases are low, offering a
streamlined, understandable architecture that helps devel-
opers to easily extend the framework and implement new
adaptations. Concerning actual number of lines of code in
methods (MLC) and their algorithmic complexity (WMC),
our PURI framework obtain low values showing that it has
been designed to be simple enough to facilitate its reusabil-

ity. The adaptation is inherently more complex, since it
deals with the concrete ranking mechanism implementa-
tion. However, in both cases the maximum McCabe cy-
clomatic complexity is 9, below the recommended thresh-
old [51]. Finally, both PURI framework and the evaluated
adaptation do not present lack of cohesion, and coupling
degrees are contained, especially in the case of the adap-
tation, which only depends on the PURI framework and
the concrete ranking mechanism being adapted.

Nevertheless, our proposal presents two particular lim-
itations. On the one hand, in order to extend the inte-
grated ranking system by adding other ranking mecha-
nisms, a proper adapter has to be implemented, possibly
extending the preference model so that facilities provided
by new mechanisms are integrated into the common model.
According to the presented metrics, this extension is not
costly. On the other hand, if several ranking mechanisms
can evaluate the same preference term, the user cannot
specifically state which concrete mechanism should be used
to rank with respect to that term, as that is pre-defined
at design time as discussed in Section 4.3.2. While the
former issue can be solved at design time by solution de-
velopers, the latter can be considered a particular instance
of a service ranking. Using this interpretation, the differ-
ent ranking mechanisms should be described as candidate
services, so that they could be ranked according to the user
preferences on them. For instance, a user may prefer to
rank services using more expressive ranking mechanisms
instead of faster ones.

6. Conclusions

Current service retrieval systems have to perform a sub-
sequent ranking so that they can return an ordered list of
services in terms of defined preferences, in order to obtain
the best service that fulfills the request. However, ranking
mechanisms are coupled with ad hoc preference models
that constrain the expressiveness of user preferences. Fur-
thermore, these models are not interoperable in general,
so a service retrieval system cannot combine several rank-
ing mechanisms to provide more flexible and expressive
facilities to define preferences.

Our proposal solves these identified issues of the ser-
vice retrieval scenario by providing a common and highly
expressive semantic preference model that enables the in-
tegration of different ranking mechanisms adapting the
PURI framework, which is presented in this article. Con-
sequently, our contribution offers a series of features that
can be summed up as follows:

• Flexibility. The integration of any ranking mech-
anism using a common preference model allows end
users to choose which preference facilities need for
each request, without knowing the underlying ranking
mechanisms that will be instantiated to actually rank
retrieved services.

16

Table 3: Software metrics for PURI framework and its SOA4All adaptation.

PURI PURI - SOA4All Adaptation

Metric Total Mean Dev. Max Total Mean Dev. Max

NOM 43 4.30 2.45 10 33 4.71 2.86 10
NAT 9 0.90 0.70 2 5 0.71 0.45 1
NPM – 1.05 0.85 3 – 0.79 0.80 3
MLC 209 4.75 5.43 18 460 16.43 18.51 54
WMC 81 8.10 5.41 18 91 13 13.48 44
LCM – 0.10 0.20 0.50 – 0 0 0
AFC – 3.50 2.06 7 – 1 0 1
EFC – 2.50 0.50 3 – 3.50 2.50 6

NOM=number of methods in classes and interfaces; NAT=number of attributes in classes; NPM=number
of parameters per method; MLC=number of lines in methods; WMC=weighted sum of McCabe cyclomatic
complexity for all methods in a class; LCM=lack of cohesion of methods; AFC=afferent coupling; EFC=efferent
coupling.

• High expressiveness. The preference model offers
a comprehensive set of preference terms that can be
easily combined and adapted in order to define com-
plex preferences to rank services.

• Ease of use. Users do not need to access each rank-
ing mechanism separately if they want to combine
their results. A single entry point is provided in our
solution that allows users to define their preferences
and process them to rank the retrieved services.

• Lightweight. PURI provides a lightweight integra-
tion solution that does not add any noticeable perfor-
mance penalty to the ranking process performed by
each mechanism alone.

• Reusability. Our proposed framework can be ex-
tended and applied to other scenarios with low effort,
enabling a seamless integration of new ranking mech-
anisms.

Furthermore, we have presented a validation of our pro-
posal contextualized in the SOA4All EU FP7 project, in
addition to other validation scenarios where PURI have
been successfully applied, such as public administration
service infrastructures and proposed scenarios from the
SWS Challenge. Particularly, in SOA4All, we have inte-
grated three different ranking mechanisms, namely objec-
tive multi-valued ranking, NFP-based multi-criteria rank-
ing, and fuzzy logic based ranking. Furthermore, our so-
lution to this scenario provides a single user interface to
define requirements and preferences, simplifying their def-
inition and offering a unique entry point for the whole ser-
vice retrieval and ranking system, no matter what ranking
mechanisms will be needed in the process.

Finally, we have also identified other scenarios where
PURI can be useful to provide a holistic, integrated rank-
ing approach. Specifically, we successfully adapted our

framework to the PLATINA-FAST service trading system
that is being implemented for Regional Administration in
Andalusia, Spain. Furthermore, PURI is being adopted as
the ranking framework for a series of local and European
research project proposals from different domains, such as
service agreements, dynamic configurators, and e-learning
platforms.

Having successfully validated and applied PURI to the
service ranking domain, we further plan to investigate how
our approach can be applied to the more general ranking
problem in the domain of information retrieval. Any struc-
tured information featuring property descriptions can be
considered for a ranking. For instance, Web sites like the
ones returned upon submitting a Web search query (e.g.,
to Google Web search) can be ranked with PURI based
on user specific preferences on properties like popularity,
degree of connectivity, etc.

We have already identified the requirements to adapt
PURI to more general information retrieval domains. In
principle, the preference model does not need to be mod-
ified to support different domains, because it is already
generic. Conversely, the API should be modified to accept
any item that is able to be ranked. As a consequence, rank-
ing mechanisms have to be adapted to allow the ranking of
those domain-dependent items, and to return a properly
typed ranking result, too. Finally, PURI abstract factory
should be changed to accept multiple ranking mechanisms
adapted to the specific domain to that PURI is going to
be applied to.

Acknowledgements

This work has been partially supported by the Euro-
pean Commission (FEDER) and Spanish Government un-
der CICYT projects SETI (TIN2009-07366) and TAPAS
(TIN2012-32273), by the Andalusian Government under
projects ISABEL (TIC-2533) and THEOS (TIC-5906), by

17

the EU FP7 IST project 27867 SOA4All, and by the EC
FP7 Network of Excellence 215483 S-CUBE.

The authors would like to thank the reviewers for their
invaluable opinions and recommendations that improved
this work substantially, and Rafael Z. Frantz for his helpful
support and revisions.

[1] M. Papazoglou, D. Georgakopoulos, Service-Oriented Comput-
ing, Communications of the ACM 46 (10) (2003) 25–28.

[2] J. Davies, M. Potter, M. Richardson, S. Stincic, J. Domingue,
C. Pedrinaci, D. Fensel, R. González-Cabero, Towards the Open
Service Web, BT Technology Journal 26 (2).

[3] A. M. Fardin, N. B. Naser, N. M. Ali, Empower Service Direc-
tories with Knowledge, Knowledge-Based Systems 30 (0) (2012)
172–184.

[4] K. Sycara, M. Paolucci, A. Ankolekar, N. Srinivasan, Au-
tomated Discovery, Interaction and Composition of Semantic
Web services, Journal of Web Semantics: Science, Services and
Agents on the World Wide Web 1 (1) (2003) 27–46.

[5] C. Pedrinaci, D. Liu, M. Maleshkova, D. Lambert, J. Kopecký,
J. Domingue, iServe: a Linked Services Publishing Platform,
in: Ontology Repositories and Editors for the Semantic Web
Workshop, Vol. 596 of CEUR Workshop Proceedings, 2010.

[6] N. Steinmetz, H. Lausen, M. Brunner, Web Service Search on
Large Scale, in: L. Baresi, C.-H. Chi, J. Suzuki (Eds.), Proceed-
ings of the 7th International Conference on Service-Oriented
Computing and 2nd Service Wave, Vol. 5900 of Lecture Notes
in Computer Science, 2009, pp. 437–444.

[7] G. Dobson, R. Lock, I. Sommerville, QoSOnt: a QoS Ontol-
ogy for Service-Centric Systems, in: Proceedings of the 31st
Euromicro Conference on Software Engineering and Advanced
Applications, IEEE Computer Society, 2005, pp. 80–87.

[8] I. Toma, D. Roman, D. Fensel, B. Sapkota, J. Gomez,
A Multi-criteria Service Ranking Approach Based on Non-
Functional Properties Rules Evaluation, in: B. Krämer, K.-J.
Lin, P. Narasimhan (Eds.), Proceedings of the 5th International
Conference on Service-Oriented Computing, Vol. 4749 of Lec-
ture Notes in Computer Science, Springer, 2007, pp. 435–441.

[9] X. Wang, T. Vitvar, M. Kerrigan, I. Toma, A QoS-Aware Selec-
tion Model for Semantic Web Services, in: A. Dan, W. Lamers-
dorf (Eds.), Proceedings of the 4th International Conference
on Service-Oriented Computing, Vol. 4294 of Lecture Notes in
Computer Science, Springer, 2006, pp. 390–401.

[10] S. Lamparter, A. Ankolekar, R. Studer, S. Grimm, Preference-
based Selection of Highly Configurable Web Services, in: C. L.
Williamson, M. E. Zurko, P. F. Patel-Schneider, P. J. Shenoy
(Eds.), Proceedings of the 16th International Conference on
World Wide Web, ACM, 2007, pp. 1013–1022.

[11] J. M. Garćıa, I. Toma, D. Ruiz, A. Ruiz-Cortés, A Service
Ranker based on Logic Rules Evaluation and Constraint Pro-
gramming, in: 2nd Non-Functional Properties and Service Level
Agreements in Service Oriented Computing Workshop, Vol. 411
of CEUR Workshop Proceedings, Dublin, Ireland, 2008.

[12] S. Agarwal, M. Junghans, B. Norton, J. M. Garćıa, Second
Service Ranking Prototype, Deliverable 5.4.3, SOA4All (2011).
URL http://www.soa4all.eu/file-upload.html?func=

fileinfo&id=261

[13] H. Jin, X. Ning, W. Jia, H. Wu, G. Lu, Combining Weights
with Fuzziness for Intelligent Semantic Web Search, Knowledge-
Based Systems 21 (7) (2008) 655–665.

[14] M. Dastani, N. Jacobs, C. M. Jonker, J. Treur, Modelling User
Preferences and Mediating Agents in Electronic Commerce,
Knowledge-Based Systems 18 (7) (2005) 335–352.

[15] L. Li, I. Horrocks, A Software Framework For Matchmaking
Based on Semantic Web Technology, in: Proceedings of the
12th International Conference on World Wide Web, ACM Press,
2003, pp. 331–339.

[16] B. Benatallah, M.-S. Hacid, C. Rey, F. Toumani, Semantic Rea-
soning for Web Services Discovery, in: Workshop on E-Services
and the Semantic Web, 2003.

[17] K. Sycara, M. Paolucci, J. Soudry, N. Srinivasan, Dynamic Dis-

covery and Coordination of Agent-Based Semantic Web Ser-
vices, IEEE Internet Computing 8 (3) (2004) 66–73.

[18] C. Zhou, L. Chia, B. Lee, DAML-QoS Ontology for Web Ser-
vices, in: IEEE International Conference on Web Services, 2004,
pp. 472–479.

[19] E. Maximilien, M. Singh, A Framework and Ontology for Dy-
namic Web Services Selection, IEEE Internet Computing 8 (5)
(2004) 84–93.

[20] L. H. Vu, M. Hauswirth, F. Porto, K. Aberer, A Search Engine
for QoS-enabled Discovery of Semantic Web Services, Interna-
tional Journal of Business Process Integration and Management
1 (4) (2006) 244–255.

[21] W. Siberski, J. Z. Pan, U. Thaden, Querying the Semantic
Web with Preferences, in: I. F. Cruz, S. Decker, D. Allemang,
C. Preist, D. Schwabe, P. Mika, M. Uschold, L. Aroyo (Eds.),
Proceedings of the 5th International Semantic Web Conference,
Vol. 4273 of Lecture Notes in Computer Science, Springer, 2006,
pp. 612–624.

[22] K. Kritikos, D. Plexousakis, Semantic QoS Metric Matching,
in: Proceeding of the 4th IEEE European Conference on Web
Services, IEEE Computer Society, 2006, pp. 265–274.

[23] A. Carenini, D. Cerizza, M. Comerio, E. D. Valle, F. de Paoli,
A. Maurino, M. Palmonari, A. Turati, GLUE2: A Web Service
Discovery Engine with Non-Functional Properties, in: Proceed-
ings of the 6th IEEE European Conference on Web Services,
IEEE Computer Society, 2008, pp. 21–30.

[24] M. Palmonari, M. Comerio, F. de Paoli, Effective and Flexi-
ble NFP-Based Ranking of Web Services, in: L. Baresi, C.-H.
Chi, J. Suzuki (Eds.), Proceedings of the 7th International Con-
ference on Service-Oriented Computing and 2nd Service Wave,
Vol. 5900 of Lecture Notes in Computer Science, Springer, 2009,
pp. 546–560.

[25] A. Ruiz-Cortés, O. Mart́ın-Dı́az, A. D. Toro, M. Toro, Improv-
ing the Automatic Procurement of Web Services Using Con-
straint Programming, International Journal of Cooperative In-
formation Systems 14 (4) (2005) 439–468.

[26] C. R. Rivero, I. Hernández, D. Ruiz, R. Corchuelo, Generat-
ing SPARQL Executable Mappings to Integrate Ontologies, in:
Proceedings of the 30th ER International Conference on Con-
ceptual Modeling, 2011, pp. 118–131.

[27] C. Bizer, T. Heath, T. Berners-Lee, Linked Data - The Story
So Far, International Journal on Semantic Web and Information
Systems 5 (3) (2009) 1–22.

[28] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott,
Others, OWL-S: Semantic Markup for Web Services, Tech. Rep.
1.2, DAML (2006).
URL http://www.ai.sri.com/daml/services/owl-s/1.2/

[29] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stoll-
berg, A. Pollers, C. Feier, C. Bussler, D. Fensel, Web Service
Modeling Ontology, Journal of Applied Ontology 1 (2005) 77–
106.

[30] J. M. Garćıa, D. Ruiz, A. R. Cortés, O. Mart́ın-Dı́az,
M. Resinas, An Hybrid, QoS-Aware Discovery of Semantic Web
Services Using Constraint Programming, in: B. J. Krämer, K.-
J. Lin, P. Narasimhan (Eds.), Proceedings of the 5th Interna-
tional Conference on Service-Oriented Computing, Vol. 4749 of
Lecture Notes in Computer Science, Springer, 2007, pp. 69–80.

[31] Turtle - Terse RDF Triple Language, W3C Team Submission
(2008).
URL http://www.w3.org/TeamSubmission/turtle/

[32] S. Agarwal, M. Junghans, Meaningful Service Classifications for
Flexible Service Descriptions, in: Proceedings of The 7th IEEE
2011 World Congress on Services (SERVICES 2011), IEEE,
Washington DC, 2011, pp. 85–86.

[33] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F.
Patel-Schneider (Eds.), The Description Logic Handbook: The-
ory, Implementation, and Applications, Cambridge University
Press, 2003.

[34] T. Vitvar, J. Kopecký, J. Viskova, D. Fensel, WSMO-Lite An-
notations for Web Services, in: Proceedings of the 5th European
Semantic Web Conference on The Semantic Web: Research and

18

http://www.soa4all.eu/file-upload.html?func=fileinfo&id=261
http://www.soa4all.eu/file-upload.html?func=fileinfo&id=261
http://www.soa4all.eu/file-upload.html?func=fileinfo&id=261
http://www.soa4all.eu/file-upload.html?func=fileinfo&id=261
http://www.ai.sri.com/daml/services/owl-s/1.2/
http://www.ai.sri.com/daml/services/owl-s/1.2/
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TeamSubmission/turtle/

Applications, ESWC’08, Springer, 2008, pp. 674–689.
[35] J. Farrell, H. Lausen, Semantic Annotations for WSDL and

XML Schema, Recommendation, W3C (2007).
URL http://www.w3.org/TR/sawsdl/

[36] J. de Bruijn, D. Fensel, M. Kerrigan, U. Keller, H. Lausen,
J. Scicluna, Modeling Semantic Web Services: The Web Service
Modeling Language, Springer, 2008.

[37] M. Junghans, S. Agarwal, Web Service Discovery Based on Uni-
fied View on Functional and Non-functional Properties, in: Pro-
ceedings of the 4th IEEE International Conference on Semantic
Computing, IEEE, 2010, pp. 224–227.

[38] M. Junghans, S. Agarwal, R. Studer, Towards Practical Se-
mantic Web Service Discovery, in: L. Aroyo, G. Antoniou,
E. Hyvönen, A. ten Teije, H. Stuckenschmidt, L. Cabral, T. Tu-
dorache (Eds.), ESWC (2), Vol. 6089 of Lecture Notes in Com-
puter Science, Springer, 2010, pp. 15–29.

[39] J. M. Garćıa, D. Ruiz, A. Ruiz-Cortés, A Model of User
Preferences for Semantic Services Discovery and Ranking, in:
L. Aroyo, G. Antoniou, E. Hyvönen, A. ten Teije, H. Stucken-
schmidt, L. Cabral, T. Tudorache (Eds.), ESWC (2), Vol. 6089
of Lecture Notes in Computer Science, Springer, 2010, pp. 1–14.

[40] J. M. Garćıa, D. Ruiz, A. Ruiz-Cortés, An Intuitive and Formal
Description of Preferences for Semantic Web Service Discovery
and Ranking, Tech. Rep. ISA-12-TR-07 (Dec 2012).
URL http://www.isa.us.es/sites/default/files/

josemgarcia-tr-soup_0.pdf

[41] C. Larman, Design - Protected Variation: The Importance of
Being Closed, IEEE Software 18 (3) (2001) 89–91.

[42] H. Q. Yu, S. Reiff-Marganiec, Non-Functional Property Based
Service Selection: A Survey and Classification of Approaches,
in: F. de Paoli, I. Toma, A. Maurino, M. Tilly, G. Dobson
(Eds.), NFPSLA-SOC’08, Vol. 411 of CEUR Workshop Pro-
ceedings, CEUR-WS.org, 2008.

[43] I. Toma, S. Steinmetz, H. Lausen, S. Agarwal, M. Junghans,
First Service Ranking Prototype, Deliverable 5.4.1, SOA4All
(2009).
URL http://www.soa4all.eu/file-upload.html?func=

fileinfo&id=143

[44] N. Steinmetz, H. Lausen, Ontology-Based Feature Aggregation
for Multi-valued Ranking, in: A. Dan, F. Gittler, F. Toumani
(Eds.), ICSOC/ServiceWave Workshops, Vol. 6275 of Lecture
Notes in Computer Science, Springer, 2009, pp. 258–268.

[45] L. A. Zadeh, Outline of a New Approach to the Analysis of
Complex Systems and Decision Processes, IEEE Trans. on Sys-
tems, Man, and Cybernetics SMC-3 (1973) 28–44.

[46] G. J. Klir, B. Yuan (Eds.), Fuzzy Sets, Fuzzy Logic, And Fuzzy
Systems: Selected Papers by Lotfi A. Zadeh, World Scientific
Publishing Co., Inc., River Edge, NJ, USA, 1996.

[47] C. Lee, Fuzzy Logic in Control Systems: Fuzzy Logic Controller.
II, Systems, Man and Cybernetics, IEEE Transactions on 20 (2)
(1990) 419 –435. doi:10.1109/21.52552.

[48] W. Kießling, Foundations of Preferences in Database Systems,
in: Proceedings of the 28th International Conference on Very
Large Data Bases, Morgan Kaufmann, 2002, pp. 311–322.

[49] S. Holland, M. Ester, W. Kießling, Preference Mining: A Novel
Approach on Mining User Preferences for Personalized Applica-
tions, in: N. Lavrac, D. Gamberger, H. Blockeel, L. Todorovski
(Eds.), PKDD, Vol. 2838 of Lecture Notes in Computer Science,
Springer, 2003, pp. 204–216.

[50] K. Erni, C. Lewerentz, Applying Design-Metrics to Object-
Oriented Frameworks, in: Proceedings of METRICS ’96, IEEE,
1996.

[51] T. J. McCabe, A Complexity Measure, IEEE Trans. Software
Eng. 2 (4) (1976) 308–320.

19

http://www.w3.org/TR/sawsdl/
http://www.w3.org/TR/sawsdl/
http://www.w3.org/TR/sawsdl/
http://www.isa.us.es/sites/default/files/josemgarcia-tr-soup_0.pdf
http://www.isa.us.es/sites/default/files/josemgarcia-tr-soup_0.pdf
http://www.isa.us.es/sites/default/files/josemgarcia-tr-soup_0.pdf
http://www.isa.us.es/sites/default/files/josemgarcia-tr-soup_0.pdf
http://www.isa.us.es/sites/default/files/josemgarcia-tr-soup_0.pdf
http://www.soa4all.eu/file-upload.html?func=fileinfo&id=143
http://www.soa4all.eu/file-upload.html?func=fileinfo&id=143
http://www.soa4all.eu/file-upload.html?func=fileinfo&id=143
http://dx.doi.org/10.1109/21.52552

	Introduction
	Challenges in Semantic Web Service Ranking
	Related work
	Our proposal
	System Architecture Overview
	Service Retrieval based upon Functional and Non-Functional Properties
	Preference-Based Integrated Ranking
	An Upper Ontology to Model Preferences
	PURI: A Framework to Integrate Ranking Mechanisms

	SOA4All Integrated Ranking: A Use Case Application
	SOA4All Ranking Mechanisms
	Ontology-based Feature Aggregation for Multi-valued Ranking
	Multi-criteria Ranking based on Non-Functional Properties
	Fuzzy Logic Based Ranking Approach
	Comparison of Ranking Methods

	Preference Model Adaptation
	Applying PURI to SOA4All Integrated Ranking Implementation
	Discussion

	Conclusions

