
Improving Semantic Web Services Discovery Using SPARQL-Based Repository

Filtering

José Maŕıa Garćıa∗, David Ruiz, Antonio Ruiz-Cortés

University of Seville, ETSI Informática, Av. Reina Mercedes, s/n, 41012 Sevilla, Spain

Abstract

Semantic Web Services discovery is commonly a heavyweight task, which has scalability issues when the number of
services or the ontology complexity increase, because most approaches are based on Description Logics reasoning. As
a higher number of services becomes available, there is a need for solutions that improve discovery performance. Our
proposal tackles this scalability problem by adding a preprocessing stage based on two SPARQL queries that filter service
repositories, discarding service descriptions that do not refer to any functionality or non-functional aspect requested by
the user before the actual discovery takes place. This approach fairly reduces the search space for discovery mechanisms,
consequently improving the overall performance of this task. Furthermore, this particular solution does not provide yet
another discovery mechanism, but it is easily applicable to any of the existing ones, as our prototype evaluation shows.
Moreover, proposed queries are automatically generated from service requests, transparently to the user. In order to
validate our proposal, this article showcases an application to the OWL-S ontology, in addition to a comprehensive
performance analysis that we carried out in order to test and compare the results obtained from proposed filters and
current discovery approaches, discussing the benefits of our proposal.

Keywords: Semantic Web Services, Service Discovery, Scalability, Service Repositories, Semantic Web Query
Languages

1. Introduction

Current Semantic Web Services (SWS) discovery solu-
tions often suffer from scalability issues, so large and com-
plex service repositories cannot be properly handled by
them. Although the research community is putting ef-
fort into improving discovery mechanisms, the underlying
reasoning facilities do not scale well in general [1]. The ap-
proach taken in this paper does not consist on yet another
discovery mechanism, but on the inclusion of a preprocess-
ing stage that filters service repositories using two different
queries, so that the search space for discovery processes is
reduced in our experiments, on average, from 12.5% of the
original repository size up to 1.1%, depending on the con-
crete query used and the nature of the repository and user
request. Consequently, service discovery execution time is
greatly improved, performing the whole process, when us-
ing our proposed filters, at least 9.1 times faster and up to
44.7 times faster, with a contained penalty on precision,
depending on each corresponding query and the underly-
ing discovery mechanism chosen.

∗Corresponding author. Tel.: +34 9545 59814. Fax: +34 9545
57139

Email addresses: josemgarcia@us.es (José Maŕıa Garćıa),
druiz@us.es (David Ruiz), aruiz@us.es (Antonio Ruiz-Cortés)

URL: http://www.isa.us.es/josemaria.garcia
(José Maŕıa Garćıa)

The number of currently available services in public
repositories1 is expected to explode in the future, so that
billions of services will be able to be consumed in the
Web [2]. Furthermore, currently available semantic de-
scriptions, in terms of SWS classical ontologies such as
OWL-S or WSMO, present a high complexity for defining
and processing them. Both issues lead to a scenario where
discovery mechanisms based on different logic formalisms
have scalability issues. Consequently, current research ef-
forts focus on providing improvements and optimizations
of those mechanisms, using lightweight semantic technolo-
gies, in order to enhance the usability of SWS [3, 4].
In order to alleviate the scalability problem on seman-

tic discovery mechanisms, there are some proposals that
provide different techniques to improve the discovery per-
formance, such as indexing or caching descriptions [5], us-
ing several matchmaking stages [6], and hybrid approaches
that include non-semantic techniques [7]. Our proposal
takes a novel approach of reducing the input for discovery
mechanisms, so that the resulting process is more stream-
lined, only reasoning about services which actually matter
with respect to the user request. Thus, our solution filters
services that can be discarded a priori, because they are

1At the moment of writing, seekda! service crawler has indexed
28,606 services, ProgrammableWeb has registered 3,287 web APIs,
and iServe repository contains 2,193 SWS descriptions.

Preprint submitted to Journal of Web Semantics July 18, 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51388221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


not related at all with requirements and preferences stated
by the user, considerably reducing the search space before
actual discovery.
For example, consider the following scenario: a semantic

service repository contains thousands of services from sev-
eral travel-related domains, such as hotel bookings, plane
tickets, car rentals, and travel insurances. If a user looks
for a service that returns hotels given a particular city and
a country, it is not necessary to process the whole reposi-
tory to discover candidate services for the user request, but
only consider the portion of services that are specifically
related to the hotel lookup domain concepts that appear
on the request, in this case. Thus, using lightweight tech-
nologies to preprocess the repository, the search space can
be reduced in order to save computational resources and
improve discovery performance.
For the proposed preprocessing, our proposal analyzes

the user request in order to extract the concepts that are
being used in its semantic definition (in the above exam-
ple, some of them could be City, Country or Hotel, for
instance). Then, the repository is filtered so that only ser-
vices that use those concepts or related ones are selected to
become the input for the subsequent discovery process (e.g.
services whose definitions refer to City, Country and/or
Hotel concepts, in the latter case).
Two different SPARQL [8] queries perform the filtering

in our approach, namely Qall and Qsome. The former re-
turns only those services whose definitions contain all the
concepts referred by a user request, assuming that services
have to fulfill every term of the request in order to be useful
for the user. In turn, the latter query selects service def-
initions that refer to some (at least one) of the concepts
referred by a user request, assuming that those services
may satisfy its requirements and/or preferences to some
extent, despite the missing information.
Our solution does not pretend to provide yet another

discovery mechanism, but to introduce a preprocessing fil-
tering stage, based on an accepted standard, that yields a
notable improvement on heavyweight semantic processes,
such as matchmaking of services. Furthermore, our pro-
posed filtering does not add a noticeable amount of execu-
tion time with respect to matchmaking, because SPARQL
queries used present a linear complexity on the size of the
dataset and graph patterns included [9].
To the best of our knowledge, there are no proposals on

filtering semantically-enhanced service repositories, but it
is acknowledged that some sort of preprocessing can al-
leviate discovery and ranking tasks performed on those
repositories [6]. To sum up, the main contributions of the
proposal presented in this article are the following:

1. We propose a technique to improve semantic service
discovery performance, based on a preprocessing stage
that filters repositories in order to reduce the search
space of subsequent discovery processes.

2. Our proposal is applicable to any discovery mecha-
nism because it is performed before actual discovery

occurs, and it allows interoperability with existing ser-
vice repositories. In this work, we use OWLS-MX hy-
brid matchmaker [7] to illustrate this point, though
our proposal has been also applied to other discovery
mechanisms [10].

3. Filtering is performed automatically from user re-
quests, analyzing them and obtaining standard
SPARQL queries without user interaction. Two dif-
ferent queries are presented, enabling two filtering lev-
els, depending on the user needs and the character-
istics of service repositories. We analyze and thor-
oughly discuss each query throughout the article.

4. In order to assess the actual impact of our proposal,
we carried out a comprehensive, experimental study.
Using a widely-used test collection (OWLS-TC), we
applied our proposed filters to several discovery mech-
anisms, evaluating and discussing performance im-
provements using the Semantic Web Service Match-
maker Evaluation Environment (SME2).

The rest of the article is structured as follows. Firstly,
Section 2 presents some background information to contex-
tualize and motivate the proposal. In Section 3 we show
how to use SPARQL-based filtering within a discovery sce-
nario, presenting both restrictive and relaxed filters that
can be applied in different cases. Section 4 discuss the in-
tegration and implementation of our proposal applied to
SWS frameworks, specifically OWL-S. Then, in Section 5
the performed experimental study is explained, analyzing
the results and discussing the advantages of our proposal.
Section 6 outlines the related work on this field. Finally,
in Section 7 we discuss the conclusions.

2. Background

Using a Semantic Web query language is a natural fit
for performing SWS discovery and ranking processes in
terms of user requests, because, essentially, these processes
search for elements in some sort of persistent storage us-
ing selection and ordering criteria. However, current query
languages present shortcomings with respect to the level of
inference and computation needed for SWS discovery and
ranking. In the following we introduce the background ele-
ments of our proposal in order to contextualize and further
motivate our work.

2.1. Querying the Semantic Web

There are three main approaches for Semantic Web
query languages: graph-based, rule-based, and DL-based
query languages [11, 12, 13]. Firstly, graph-based query
languages allow to fetch RDF [14] triples based on match-
ing triple patterns with RDF graphs. Secondly, rule-based
query languages propose logic rules to define queries, sup-
porting RDF reasoning systems. Finally, DL-based query
languages allow to query Description Logics (DL) ontolo-
gies described in OWL-DL [15], being able to search for
concepts, properties, and individuals. In general, rule- and

2



DL-based query languages provide more reasoning mech-
anisms than graph-based ones, though it depends on the
entailment regime applied to the concrete triple store and
querying system. However, the former are not mature
enough and they are in early stages of development [11],
so the latter are more widely used, especially SPARQL [8],
which is the current W3C Recommendation.
There are several graph-based query languages with dif-

ferent features [11], but SPARQL is the only language that
is a W3C Recommendation [8]. In fact, it is fully sup-
ported in several implementations2. As a consequence,
SPARQL (and its extensions) is the most widely used
query language for the Semantic Web. There are sev-
eral SPARQL implementations, such as Virtuoso, Sesame
and ARQ,3 which is included in the Jena Semantic Web
Framework for Java. The latter is the chosen one for our
evaluation tests presented in Section 5.
SPARQL, as a graph-based query language, explicitly

accounts for the definition of labelled directed graphs by
RDF triples, which conforms the very foundations of a Se-
mantic Web ontology. Its main approach to query seman-
tic repositories is to define graph patterns involving triple
patterns, matching RDF triples, which are usually denoted
(s, p, o), where s is the subject, p the predicate, and o the
object. In order to work with said repositories, SPARQL
has four different types of queries: SELECT, CONSTRUCT,
DESCRIBE and ASK. Each type serves for a different pur-
pose: SELECT queries return variables and their bindings
with respect to the stored RDF triples; CONSTRUCT queries
build an RDF graph based on a template defined in the
query; ASK queries test whether a pattern has any solu-
tion or not; and DESCRIBE queries return a graph made
up of triples relating to a nominated resource, in some
preconfigured way, according to the querying system im-
plementation.
Essentially, each SPARQL query is defined by a graph

pattern expression, based on Turtle notation [16], that is
matched against an RDF dataset in order to bind the vari-
ables used in triple patterns involved in that expression.
Variables may substitute the subject, predicate, and / or
object of any triple pattern, that ranges over matching
RDF triples, binding variables accordingly. A basic graph
pattern containing a set of triple patterns can be filtered
using built-in conditions that restrict variable bindings,
or combined with other patterns that may be matched
optionally (not rejecting solutions if variables included in
an optional graph pattern cannot be bound) or alterna-
tively (one or more of several alternative graph patterns
may match). Finally, a list of modifiers can be applied to
SPARQL queries solutions, so that they can be returned
ordered by a defined criteria, ensuring that solutions are
unique, or limiting the number of them, for instance.

2http://www.w3.org/2001/sw/DataAccess/tests/

implementations
3Virtuoso: http://www.openlinksw.com/virtuoso/; Sesame:

http://www.openrdf.org/; ARQ: http://jena.sourceforge.net/

ARQ/

Current SPARQL recommendation offers a very simple
entailment that does not support proper reasoning. For
instance, if a graph pattern looks for an RDF resource of
a given class A, it does not match with resources whose
classes are subclasses of A, though intuitively they should
match. To solve this issue, SPARQL querying systems im-
plement various entailment regimes, some of them being
formalized byW3C for the next version of SPARQL recom-
mendation4. However, if simple entailment, as defined in
[8], is the only available regime in the SPARQL implemen-
tation being used, two approaches can be taken: (1) the
implicit knowledge, such as subclassing, can be made ex-
plicit by adding corresponding RDF triples to the dataset
prior to SPARQL query execution; or (2) subclasses can be
made explicit directly in the graph patterns of the query.
The latter solution is chosen for our proposal evaluation
as discussed in Section 4.3.
Currently, the SPARQL recommendation is being re-

vised to apply some other extensions already identified,
such as insert/update/delete queries, access to collection
members, or aggregate functions (COUNT, SUM, GROUP BY,
etc). Furthermore, different authors propose extensions to
further improve reasoning features [17], expressiveness of
queries [18], or even approaches that add DL-based lan-
guages features [13]. However, in this work we stick to
SPARQL 1.0 (the recommendation at the time of writ-
ing) to improve discovery processes, though some of the
extensions discussed can be also applied (see Section 6).

2.2. Semantic Web Services

SWS are often defined using specific semantic frame-
works, which add extensions to non-semantic service de-
scriptions as in SAWSDL [19], or provide ontologies, such
as OWL-S [20], WSMO [21], or WSMO-Lite [22], that
serve as the foundations for tools to discover and rank
services in terms of user requests described using their
provided facilities. Furthermore, these ontologies can be
extended to improve those tasks using other ontologies
[23, 24, 25], so that service descriptions may include in-
formation about quality-of-service and preferences, for in-
stance.
Essentially, a service description, whether it is defined

using OWL-S, WSMO, SAWSDL, or WSMO-Lite, is com-
posed of several statements or terms that define service
features, which can describe functionality (such as input
and output parameters) or non-functional aspects. These
terms refer to several related domain concepts. Similarly,
user requests are composed of a number of terms that de-
scribe the requirements the requested service has to meet.
Each requirement is also related to one or more particular
concepts.
For instance, OWL-S service descriptions feature the

service functionality within service profiles, where differ-
ent types of terms describe inputs, outputs, preconditions

4http://www.w3.org/TR/sparql11-entailment/

3

http://www.w3.org/2001/sw/DataAccess/tests/implementations
http://www.w3.org/2001/sw/DataAccess/tests/implementations
http://www.openlinksw.com/virtuoso/
http://www.openrdf.org/
http://jena.sourceforge.net/ARQ/
http://jena.sourceforge.net/ARQ/
http://www.w3.org/TR/sparql11-entailment/


Listing 1: OWL-S service profile example.

1 @prefix profile :

2 <http://www.daml.org/services /owl -s/1.1/
3 Profile .owl#>.
4 @prefix process :

5 <http://www.daml.org/services /owl -s/1.1/
6 Process .owl#>.

7 @prefix portal:
8 <http://purl.org/iserve/ontology /owlstc/

9 portal .owl#>.
10 @prefix travel:
11 <http://purl.org/iserve/ontology /owlstc/

12 travel .owl#>.
13

14 :CityCountryHotelProfile a profile :Profile ;
15 profile :hasInput :CityInput;
16 profile :hasInput :CountryInput;

17 profile :hasOutput :HotelOutput.
18

19 :CityInput a process :Input;
20 process :parameterType portal:City.

21 :CountryInput a process :Input;
22 process :parameterType portal:Country .
23 :HotelOutput a process :Output;

24 process :parameterType travel:Hotel.

and results, correspondingly. In turn, WSMO service de-
scriptions are defined by a capability and interfaces, that
contains a number of terms describing preconditions, as-
sumptions, postconditions, effects; and inputs, outputs
and transition rules, respectively.

In order to develop an abstract and interoperable solu-
tion, decoupled from concrete SWS ontologies, our filters
are defined in Section 3 using an abstract vocabulary of
terms and their referred domain concepts. Concrete appli-
cations to existing SWS frameworks can be consequently
developed by identifying correspondences between this vo-
cabulary and the corresponding SWS ontology so that pro-
posed filters can be implemented using SPARQL queries
over SWS ontologies (see Section 4).

Consequently, we assume that service descriptions and
user requests are defined in terms of concepts from some
domain ontologies, which depend on the concrete scenario.
As an example, consider the scenario described in Section
1, where a repository contains several services related to
travel domains. Service descriptions may feature several
statements or terms defining their provided functionality
and non-functional properties using concepts from travel
domain ontologies. Thus, a hotel lookup service descrip-
tion (showcased as an OWL-S profile in Listing 1, using
Turtle notation) will contain terms that refer to concepts
like City, Country or Hotel, for instance.

2.3. Discovering and Ranking

The common use case for discovery and ranking of SWS
is depicted in Figure 1: Starting from a service repository
(S) containing definitions either using OWL-S, WSMO,
SAWSDL, or WSMO-Lite, for instance, that conforms the
search space, the discovery process searches for these avail-
able service definitions, which are described in terms of do-
main ontologies (O), that match with a user request (U).

Discovered
Services

Discovery

Ranking

User Request
Ranked
Services

Service
Repository

Domain 
Ontologies

�

�

�

Figure 1: Semantic discovery and ranking processes.

This matchmaking is usually performed using logic rea-
soning techniques, such as DL reasoners [26, 27, 28], logic
programming [25, 29], or hybrid approaches [7, 30, 31].
The resulting discovered services are a subset of the initial
repository, where each instance of this subset is considered
to be compliant with the user request, to some extent.

Concerning user requests for SWS discovery and rank-
ing, there are several approaches on how to define them.
Thus, in standard WSMO they are described as goals,
where the functionality requested by a user is defined by
means of capabilities and interfaces. They can be used to
match corresponding services in the discovery stage taking
into account preconditions, effects, inputs, and outputs,
among other description elements pertaining to capabili-
ties and interfaces.

Furthermore, some authors extend WSMO goals to re-
fine non-functional properties descriptions, so that they
can be used to rank previously discovered services [25, 31].
Therefore, using both discovered services and preferences
described in the user request [23], the ranking process re-
turns an ordered list of those services in terms of stated
preferences. Altough user requests used in our evaluation
only contains information about inputs and outputs, more
complex user requests can also take benefit of our proposal
[10].

SWS discovery techniques particularly suffer from per-
formance and scalability issues in this context. The un-
derlying logic formalisms are not sufficiently scalable for
the current Web [1], so there is a need for lightweight ap-
proaches to SWS discovery or optimizations over currently
available solutions. The main motivation of this work is
to come out with a solution that effectively improves dis-
covery and ranking, turning them into more lightweight
processes, while making the most of currently available
matchmakers.

3. Preprocessing Service Repositories using
SPARQL

As discussed before, current SWS discovery and ranking
tend to be complex, heavyweight processes. In the follow-
ing we present our abstract filtering proposal and how it
can be implemented using standard, automatically gener-
ated SPARQL 1.0 queries.

4



Filtering Filtered
Repository

Discovered
Services

Discovery

Ranking

User Request
Ranked
Services

Service
Repository

Domain 
Ontologies

�

�

�

�’

Figure 2: Service procurement architecture including a
SPARQL filtering stage.

3.1. Filtering a Service Repository

Figure 2 showcases our proposed architecture as an al-
ternative to the one described in Figure 1. Our solution
adds a new preprocessing stage, previous to the discovery
process, that filters the service repository, using SPARQL
queries as described in Section 3.2. The aim of the filtering
stage is to obtain S ′ services from the original repository
S that may be possibly matched with the user request U
in the discovery process, discarding those ones that cannot
fulfill that request at all.
In a general scenario, our proposed filtering stage dis-

criminates service descriptions depending on whether con-
cepts referenced within their terms are present in the user
request or not. To this extent, two different filters can be
applied, offering different filtering levels. On the one hand,
one of the filters (Qall) only returns service descriptions
that refer to the whole set of related concepts described
in the user request. On the other hand, a more relaxed
filter (Qsome) returns those service descriptions that refer
to some (at least one) of the concepts that are also referred
by the user request. In turn, both filters discard services
whose terms do not refer to any of the related concepts
referred in the requirements of the user request, because
in that case it can be inferred that they are not related to
the service the user is searching for.
Considering that a service description is defined using

a series of terms that refer to several domain concepts,
we can describe our generic proposal as follows. Let D =
(O,S,U) be a 3-tuple that represent a discovery scenario
as outlined in Figure 2, where each element of the tuple is
defined in the following.

Domain ontologies (O). Let Oi be a certain domain
ontology whose concepts can be referred by the user re-
quest and service descriptions from a certain discovery
scenario D. The set of domain ontologies O is defined
as the set of ontologies that can be used to define the rest
of the elements from that scenario, i.e. the user request
and service descriptions.

O = O1 ∪ · · · ∪ On

Service repository (S). Let OSi
be a subset of O. A

service repository S is a set of service descriptions Si that

are defined by several terms tij . Each term refer to a set of
concepts Cij defined in the ontology OSi

. Therefore, each
Si is represented as a set of tuples that relate terms with
their corresponding set of referred concepts:

Si = {(ti1, Ci1), . . . , (tin, Cin) : Ci1 ∪ · · · ∪ Cin ⊆ OSi
}

User request (U). Similarly, a user request U contains
requirements in the form of terms that refer to some subset
of concepts from a domain ontology OU ⊆ O:

U = {(t1, C1), . . . , (tn, Cn) : C1 ∪ · · · ∪ Cn ⊆ OU}

In order to better illustrate previous definitions, con-
sider an scenario where a user is searching for a hotel
lookup service like the described in Listing 1. The cor-
responding user request U is defined as follows:

U = {(inputT ermu1, {portal:City}),

(inputT ermu2, {portal:Country}),

(outputT ermu1, {travel:Hotel})}

This user is going to search for services described in a
repository S that contains three services related to travel
domains, such that:

S1 = {(inputT erm11, {portal:City}),

(outputT erm11, {travel:LuxuryHotel})}

S2 = {(inputT erm21, {portal:City}),

(inputT erm22, {portal:Country}),

(outputT erm21, {travel:Hotel})}

S3 = {(inputT erm31, {travel:Surfing}),

(outputT erm31, {travel:Beach})}

Finally, the global domain ontology in this ex-
ample could be simply considered as the set
of concepts involved in previous descriptions:
O = {portal:City, portal:Country, travel:LuxuryHotel,
travel:Beach, travel:Hotel, travel:Surfing}.
Once the elements that conform the discovery scenario

D = (O,S,U) are properly defined, the two previously
introduced filters can be used alternatively to obtain an
S ′ ⊆ S so that the subsequent discovery process defined
by D′ = (O,S ′,U) performs better.
In order to simplify both filters definitions, we denote

with CSi
the subset of concepts from OSi

that are actually
referred in the terms featured in Si. Equivalently, CU is
the subset of referred concepts in U .

CSi
= {c ∈ OSi

: ∃(tij , Cij) ∈ Si|c ∈ Cij}

CU = {c ∈ OU : ∃(tj , Cj) ∈ U|c ∈ Cj}

5



Consequently, in the example described before, the cor-
responding concepts subsets of O for the service descrip-
tions in S and the user request U are the following:

CS1
= {portal:City, travel:LuxuryHotel}

CS2
= {portal:City, portal:Country, travel:Hotel}

CS3
= {travel:Surfing, travel:Beach}

CU = {portal:City, portal:Country, travel:Hotel}

The application of both filters to a service repository S
return a subset S ′ depending on the corresponding filter
applied. In the case that S ′ = Qall(S,U), the application
of the filter returns a subset of S only containing services
whose referred concepts are a superset of those referred
by a user request U , i.e. all concepts referred by the user
request are referred by returned service descriptions.

Qall(S,U) = {Si ∈ S : CU ⊆ CSi
}

In turn, if we identify S ′ = Qsome(S,U), the filter se-
lects those services from S that share at least one referred
concept with the user request U , so the intersection of cor-
responding referred concepts sets cannot be empty.

Qsome(S,U) = {Si ∈ S : CU ∩ CSi
6= ∅}

Results of applying both filters to the described example
are, in the first proposed filter case: Qall(S,U) = {S2},
and in the second case: Qsome(S,U) = {S1,S2}.
Although Qall effectively reduces the discovery search

space (Qall(S,U) ⊆ S) and, consequently, processing time,
it may excessively restrict the candidate services to be con-
sidered for the subsequent discovery process, whose resul-
tant precision and/or recall may be affected, as we cor-
roborate in our experiments in Section 5. Thus, the pro-
posed Qsome filter relaxes the former one by considering
each concept referenced in the user request as a matching
alternative within the set of concepts referred by service
description terms. In this case, service descriptions that
do not refer to any concept used in the user request are
discarded for the following discovery stage. In general,
Qall(S,U) ⊆ Qsome(S,U) ⊆ S, so filtering repositories us-
ing Qsome, the amount of services that are considered for
discovery (and ranking) is reduced less than in theQall sce-
nario. However, the overall performance improvement is
also high, while it slightly affects the process precision/re-
call relation, as analyzed in Section 5.

3.2. A SPARQL Implementation for Filters

The abstract description of our proposed filters Qall

and Qsome introduced previously can be implemented in
any existing SWS discovery scenario using SPARQL SE-
LECT queries. Given a concrete user request defined using
an existing SWS framework, both filters can be instanti-
ated as SPARQL queries that select corresponding ser-
vices from an RDF-based repository, which contains de-
scriptions based on the same SWS framework. In this

case, generated queries have to be also based on graph
patterns ranging over that SWS framework RDF represen-
tation. Nevertheless, to better account for interoperability
some proposals that integrate SWS framework definitions
[32, 33, 34] can also apply our proposed filters (see Section
6).

Queries need to be instantiated for each user request U ,
because they depend on the structure of that request. In
order to compose Qall and Qsome filters, the implementa-
tion has to analyze which concrete concepts referred by the
user request are going to be included in the corresponding
SPARQL query. Specifically, query generation depends
not only on the structure of the ontology our proposal is
being applied to, but also on the concrete instance U of
the user request itself, especially on the concepts referred
by its terms (CU ). As a consequence, queries have to be
tailored depending on the corresponding instances man-
aged by each discovery process. However, the generation
of Qall and Qsome SPARQL queries can be done automat-
ically, maintaining the transparency for the user of our
proposed filtering stage within the discovery process.

On the one hand, Qall filter is implemented as a query
that searches for services whose featured terms refer to
every concept referred in the user request. Thus, for each
term and its corresponding concepts, Qall query contains
a triple pattern that matches service definition triples that
contains those concepts, depending on the structure of
the underlying SWS ontology. On the other hand, Qsome

query is generated similarly, but each triple pattern match-
ing a user request referred concept is grouped with the rest
as alternative patterns, i.e. using the UNION keyword, be-
cause Qsome searches for services whose terms refer to at
least one concept referred by the user request. The fol-
lowing section presents an application of both queries to
OWL-S.

4. Application to Existing SWS frameworks

Our proposed preprocessing stage can be easily adapted
to any SWS framework, such as WSMO, OWL-S,
SAWSDL or WSMO-Lite, so that it can be virtually in-
cluded within any discovery process. Application to these
frameworks can be performed by identifying correspon-
dences between elements from the filter definition dis-
cussed in Section 3.1 and the facilities that each frame-
work provides to describe user requests, service terms and
their referred concepts. Therefore, the SPARQL imple-
mentation of both filters contains triple patterns, using
the target SWS framework ontology, that refer to services
(S), requests (U), terms and domain concepts (CSi

and
CU). In the following, we present a concrete OWL-S im-
plementation of filters, but another early implementation
to WSMO services can be found in [10], further proving
our proposal applicability.

6



Listing 2: Qall SPARQL query applied to OWL-S.

1 SELECT DISTINCT ?service

2 WHERE {
3 ?service a service :Service ;
4 service :presents ?profile .

5 # ? profile has at least two inputs and an output...

6 ?profile profile :hasInput ?inputTerm1.

7 ?profile profile :hasInput ?inputTerm2.
8 ?profile profile :hasOutput ?outputTerm1.

9 # ...and referred input concepts are City ...

10 {? inputTerm1 process :parameterType portal:City}
11 # ... Country...

12 {? inputTerm2 process :parameterType portal:Country }
13 # ...and the output concept is Hotel

14 {? outputTerm1 process :parameterType travel:Hotel}
15 }

4.1. An OWL-S Implementation

In order to implement an application of our proposed fil-
tering stage that relies on OWL-S descriptions, they have
to be published in a triple store and queries have to be
defined in terms of OWL-S constructs. Basically, both ser-
vice descriptions (S) and user requests (U) are modeled as
Service Profiles. A service profile may contain several
terms that further define features of an OWL-S service
functionality, such as Inputs, Outputs, Preconditions,
and Results. Already presented Listing 1 shows an OWL-
S service profile RDF description that is used as an exam-
ple user request in the following.

That service profile example has been taken from the
OWLS-TC test collection used to evaluate our proposal
in Section 5. In this collection, service descriptions
merely contain information about inputs and outputs,
and their parameter types, but no preconditions and re-
sults. Although both inputs and outputs can be related
to the corresponding service profile by using the abstract
hasParameterOWL-S property, in OWLS-TC profiles are
explicitly related to inputs and outputs with hasInput and
hasOutput properties. In consequence, our filters are re-
fined to take into account the stated difference between
inputs and outputs terms in OWL-S descriptions, so that
they can obtain more accurate results.

Listings 2 and 3 presents our proposed Qall and Qsome

filter queries, respectively5. The identified correspon-
dences between the elements of our abstract filtering pro-
posal and OWL-S constructs are introduced for both
SPARQL queries, as described in Section 3.2, so that they
can be directly used to filter an OWL-S repository. In this
example, both queries have been generated from the sam-
ple user request U defined in Section 3.1, whose referred
concepts to be matched against service descriptions are
CU = {portal:City, portal:Country, travel:Hotel}.
Note that the presented OWL-S application refines the

filters proposed in Section 3, taking into account that each

5Prefixes are omitted for the sake of clarity, but they correspond
to those shown in Listing 1, in addition to service that refers to
http://www.daml.org/services/owl-s/1.1/Service.owl

type of term in U should be matched with the correspond-
ing terms from service descriptions Si. In consequence, CU
and CSi

sets of concepts are split in two subsets each, de-
pending on the type of term (input or output), and com-
pared with the corresponding one to obtain both filters
results.

Listing 3: Qsome SPARQL query applied to OWL-S.

1 SELECT DISTINCT ?service
2 WHERE {

3 ?service a service :Service ;
4 service :presents ?profile .
5 # match all inputs and outputs of the profile...

6 ?profile profile :hasInput ?inputTerms.
7 ?profile profile :hasOutput ?outputTerms.

8 # ...that refer to some concepts of user request

9 {?inputTerms process :parameterType portal:City}

10 UNION
11 {?inputTerms process :parameterType portal:Country }
12 UNION

13 {?outputTerms process :parameterType travel:Hotel}
14 }

In principle, if RDF(S) entailment regime were applied
to the RDF dataset of the service repository, making the
inferred knowledge explicit, Qsome could have been writ-
ten using a more concise and general approach that does
not need to process the user request instance in order to
explicitly reflect its referred concepts. Thus, lines 9 to
13 in Listing 3 could be substituted by the following ex-
cerpt, with : reqProfile being the concrete ServiceProfile
instance that is used to look for requested services. How-
ever, if we have to account for inference as considered in
Section 4.3 because a basic entailment is the only available
in our querying system, then Qsome as defined in Listing
3 is more convenient.

?inputTerms process :parameterType ?inputConcepts.
?outputTerms process :parameterType ?outputConcepts.

:reqProfile rdf:type service :Service .
:reqProfile profile :hasInput ?reqInputTerms.

:reqProfile profile :hasOutput ?reqOutputTerms.
?reqInputTerms process :parameterType ?inputConcepts.
?reqOutputTerms process :parameterType ?outputConcepts.

4.2. Automatic Generation of Filter Queries

Right before the filtering is executed, corresponding
SPARQL queries have to be generated using OWL-S user
requests. Consequently, generation algorithms need to be
applied to the OWL-S ontology, as discussed in Section
3.2. Essentially, the user request U (defined as a service
profile as in Listing 1) has to be analyzed to obtain the
concepts that are referred by each description term (CU ).
The automatic generation of queries can also differentiate
terms in order to get better results with basic entailment
regimes.
For the evaluation discussed in Section 5, our filter-

ing queries generated from OWLS-TC user requests only
take inputs and outputs into account, though service pro-
files may contain more information terms that could be
also analyzed to obtain more referred concepts from the
corresponding domain ontology [10]. Therefore, for each
OWLS-TC user request, its service profile is traversed

7



identifying each input and output, and adding a triple pat-
tern to the corresponding query to match services with the
same referred parameter types.

4.3. Dealing with SPARQL Entailment

If the RDF dataset does not contain subclassing knowl-
edge as explicit triples, there are two different approaches
to deal with the SPARQL basic entailment regime issues
as described in Section 2.1. On the one hand, the implicit
knowledge concerning subclasses can be retrieved using a
DL reasoner [35, 36], so that corresponding RDF triples
can be added to the RDF dataset, providing RDFS en-
tailment. As this inferencing process is time-consuming,
it may be executed periodically on the whole repository
to properly update the dataset, in order to minimize its
impact on query execution. However, this approach does
not account for the fact that, at the moment a query is
executed, the RDF dataset may not contain all the corre-
sponding inferred triples.
On the other hand, queries can be rewritten, explicitly

including subclasses of the concepts referenced in user re-
quests. Thus, a DL reasoner is executed when generating
SPARQL queries for both Qall and Qsome filters to ob-
tain the related subclasses for each concept referred in the
user request. As a consequence, service descriptions whose
referred concepts are subclasses of user request concepts
can also be returned by our filtering stage, improving the
accuracy of the results.
For instance, the chosen reasoner (Pellet [36] in our ex-

periments) may infer that LuxuryHotel instances are also
Hotel instances, because there is a subclass relationship
between these classes. Then both of them can be consid-
ered as valid alternatives for a referred concept in a service
description, if the user is looking for a service that features
a Hotel concept as its input. Thus, an additional pattern
alternative where ?inputTerms refers to a LuxuryHotel

concept have to be included in line 13 of Listing 3. Sim-
ilarly, Qall queries can also be modified to take concept
subclasses into account. In this case, line 14 of Listing
2 have to be modified to the same patterns used in the
Qsome case for Hotel concept, i.e.:

{? outputTerms process :parameterType travel:Hotel}

UNION
{? outputTerms process :parameterType travel:LuxuryHotel}

5. Analysis and Evaluation

Our proposed filters have to be thoroughly analyzed,
using experimental results, in order to corroborate their
soundness and expected benefits. Each filter has been
tested in different situations, measuring several indicators
to determine the actual improvements of our proposed pre-
processing stage. In this section we describe the performed
experimental evaluation, along with an interpretation and
discussion of the results for that experimental study, which
validates our proposal.

5.1. Experimental Scenario

In order to experimentally test the suitability and per-
formance of our proposal, a proper test collection has to
be used. There are some publicly available collections
to evaluate service discovery algorithms for OWL-S and
SAWSDL services. Particularly, we evaluate our proposal
with respect to the OWL-S Services Retrieval Test Collec-
tion (OWLS-TC v36). This collection contains 1007 OWL-
S service descriptions from different domains, in addition
to 29 user requests (referred as queries) and their corre-
sponding sets of relevant services, so that, for each OWL-S
query, the performance and effectiveness of matchmakers
can be evaluated by checking whether returned services
are relevant to the corresponding query or not.
In our experimental prototype, SPARQL query execu-

tion was implemented in Java using the Jena Semantic
Web Framework. Therefore, our implementation reads
OWL-S service descriptions from OWLS-TC, which are
parsed and processed by Jena, enabling the execution of
SPARQL queries over them. Then, the results from the
query execution are used to filter the list of services that
take part in the subsequent discovery process, improving
its performance.
Nevertheless, our proposal cannot be evaluated on its

own, because it does not perform service discovery, but
includes a preprocessing stage to filter repositories before
service matchmaking. Thus, in order to evaluate the actual
impact of proposed filters using OWLS-TC, they have to
be tested on top of an OWL-S service matchmaker, so that
the differences between using filters or directly performing
the discovery process can be analyzed.
The actual evaluation of our prefiltering proposal has

been done using the Semantic Web Service Matchmaker
Evaluation Environment (SME2 v2.17). SME2 is an open
source tool that can be used to test and compare several
SWS matchmakers using the same test collection (OWLS-
TC v3 in our case) as the input for each matchmaker.
The variables measured by SME2 that we use to compare
matchmakers are the following:

• Precision. The proportion of returned services that
are actually relevant for the corresponding query. The
more precision a query execution presents, the more
accurate the answer is.

• Recall. The proportion of the relevance set that is
returned by a query. The more recall a query answer
has, the more relevant services are returned by the
corresponding query.

• Fallout. The proportion of non-relevant services re-
trieved by a query. In other words, it measures the
amount of false positives returned by the correspond-
ing query with respect to the complete answer set.

6http://projects.semwebcentral.org/projects/owls-tc/
7http://projects.semwebcentral.org/projects/sme2/

8

http://projects.semwebcentral.org/projects/owls-tc/
http://projects.semwebcentral.org/projects/sme2/


Table 1: Average query response times and precision.

Matchmaker Filter Avg query response time Avg query precision

OWLS-M0 Qall 1283 (±57) ms 31.62 (±6.20) %
Qsome 6333 (±3023) ms 68.13 (±7.49) %
None 57332 (±1592) ms 49.55 (±6.70) %

OWLS-MX3 (M3) Qall 1321 (±61) ms 31.45 (±6.15) %
Qsome 5500 (±2810) ms 72.02 (±6.28) %
None 58456 (±214) ms 82.96 (±4.50) %

• Query response time. For each query, it measures
the time a concrete matchmaker spends on evaluating
that query and returning the corresponding results,
without the initialization time needed for registering
service descriptions.

• Memory usage. Measured samples of the amount
of memory a matchmaker uses during its whole exe-
cution time.

Precision, recall and fallout are standard, well-known
measures for evaluating information retrieval techniques
[37]. Particularly, SME2 computes precision and fallout
using a macro-averaged approach that sums up the results
from all query executions. Thus, for each query, SME2

measures precision and fallout at equidistant standard re-
call values, and then it obtains the mean value for these
measures at each recall level. Nevertheless, SME2 also
computes the well-known average precision measure for
each single query, enabling performance evaluation regard-
less of the number of services returned by the matchmaker.
Section 5.2 discusses the mean average precision, along
with the others measures.
Our prototype implements the IMatchmakerPlugin in-

terface so that it can be plugged into SME2. However,
it has to be associated with another matchmaker that is
called using the same interface to actually perform SWS
discovery after prefiltering the input. For evaluation pur-
poses we have chosen some variants of OWLS-MX, which
is a hybrid SWS matchmaker that combines both logic-
based approaches and information retrieval techniques for
a high performance discovery [7]. Each chosen variant is
firstly executed as is, and then with Qall and Qsome fil-
ters on top of it. Thus, the different combinations of a
OWLS-MX variant and (possibly) a corresponding filter
are compared against each other in order to evaluate the
performance of our proposal in different situations.
For the sake of brevity, in the following we only com-

pare the performance results of two different OWLS-MX
variants, namely OWLS-M0 and OWLS-MX3 (M3), be-
cause the other variants present similar results to the lat-
ter. OWLS-M0 is a simple, logic-based matchmaker that
only uses reasoning techniques, while OWLS-MX3 (M3)
adds text similarity matchings to avoid false positives and
improve the precision of the results. Evaluation results of
the rest of the variants are available upon request to the

authors.

5.2. Analyzing Tests Results

Firstly, we analyze the performance improvement ob-
tained by using our proposed filters before service discov-
ery. Table 1 presents a summary of the evaluation per-
formed where both OWLS-M0 and OWLS-MX3 (M3) vari-
ants are compared in terms of their average execution time
and mean average precision for all OWL-S queries of the
test collection, along with confidence intervals calculated
using a confidence level of 95%. Most query response times
are highly improved when using any of the filters, though
Qsome filter impact is lower because it returns more re-
sults as shown in Figure 3. Noteworthy, actual filtering
time does not affect the overall OWL-S query response
time, because our proposed SPARQL queries can be ex-
ecuted in polynomial time by SPARQL implementations
[9].
Experimental results show that, on average, response

time of OWLS-M0 is 44.7 times faster if applying Qall

filter, and about 9 times faster if Qsome filter is the applied
one. OWLS-MX3 (M3) performance is similarly improved
(44.3 times faster with Qall and 10.6 times faster with
Qsome). Even though the confidence interval in Qsome

cases is large, in the worst case scenario, the execution is at
least 6.1 times faster when using OWLS-M0 matchmaker,
and 7 times faster for OWLS-MX3 (M3).
Despite its high time performance, Qall filtering shows

worse performance in terms of average precision than the
rest of the evaluated alternatives, providing an average
value of about 31%. In turn, Qsome shows a better aver-
age precision on all the evaluation tests than Qall. Thus,
for logic-based OWLS-M0 variant, Qsome filtering presents
an improvement of about 19% on precision with respect
to the execution of OWLS-M0 with no preprocessing. For
OWLS-MX3 hybrid variant, average precision only drops
by 11%, though response time is considerably faster. Note
that average precision measures have a strong dependency
on the concrete query and services registered in the repos-
itory.
Response time improvements are correlated to the de-

gree of filtering each filter is able to provide. Figure 3
presents a logarithmically-scaled box plot that analyses
the proportion of services returned for the 29 queries from
OWLS-TC with respect to the initial repository of 1007

9



Figure 3: Returned results with respect to the original
repository size.

services. In general, Qall filter returns a very low num-
ber of services (most queries returning between 0.4 and
1.29% of the original repository), greatly improving query
response time as discussed before. On the other hand,
Qsome filter results vary between a bigger range, with a
median value of 7.05 % of the original repository, so the
corresponding query response time for each matchmaker
is slightly slower when using Qsome filter than when us-
ing Qall. In particular, some OWLS-TC queries present a
lower filtering degree when using Qsome, causing a notice-
able variation on the response time that explains the larger
Qsome confidence interval shown in Table 1. Additionally,
the discovery process presents less initialization time be-
cause the number of services to be loaded by matchmakers
is significantly low, especially when Qall filter is applied.

Furthermore, Figure 4 presents the performance gain in
terms of memory consumption, only showcasing samples
from the execution of OWLS-MX3 (M3) variant for the
sake of clarity. Results show that filtering the repository
leads to a lower memory usage, because the matchmaker
needs to access less resources. On average, OWLS-MX3
(M3) needs 1.5 times less memory if Qsome filter is ap-
plied, and 2.8 times less if filtering with Qall. In conclu-
sion, the use of our proposed filters substantially improves
the overall performance of OWLS-MX matchmaker hybrid
variants, both in terms of response time and memory con-
sumption, though the impact on precision, recall and fall-
out has to be evaluated.

In order to analyze the penalty on precision and recall,
Figure 5 compares the macro-averaged precision of the two
discussed OWLS-MX variants when different filters are ap-
plied (i.e. using Qall, Qsome, or no filter, respectively).
It shows that when prefiltering the repository using Qall,
both OWLS-MX variants behave similarly. Precision in
this case drops at a high pace as the recall level increases,
performing much worse than the rest of the combinations,
though at the highest recall levels Qall filtering slightly
improves precision over OWLS-M0 (Figure 5a) without
filtering. The low number of results obtained when filter-
ing repositories using Qall query is the cause for this low

0

50

100

150

200

250

300

05 15 25 35 45 55 65 75 85 95

M
B
y
te
s

Total execution time (%)

None - OWLS-MX3 (M3) Qsome - OWLS-MX3 (M3) Qall - OWLS-MX3 (M3)

Figure 4: Memory consumption statistics when filtering
OWLS-MX3 (M3).

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

P
r
e
c
is
io
n

Recall

(a) OWLS-M0.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

P
r
e
c
is
io
n

Recall

(b) OWLS-MX3 (M3).

Q��� Q�	
� None

Figure 5: Recall-Precision effect when filtering OWLS-MX
variants.

precision.

However, Qsome filtering performs reasonably well, with
a loss in precision of at most 29% with respect to the preci-
sion obtained with OWLS-MX3 (M3) variant at high recall
levels, as shown in Figure 5b. Interestingly, the evaluation
shows that applying Qsome filtering to OWLS-M0 variant
improves the precision of the answered set (up to 38% of
difference), especially with recall levels over 50%. Thus,
the more accurate results obtained by Qsome filtering help
purely logic-based formalisms to find more relevant ser-
vices, while avoiding more false positives.

In turn, Figure 6 represents false positives returned by
each compared variant as their fallout. Qsome filtering ap-
plied to OWLS-M0 again improves the results when com-
pared to the results of OWLS-M0 without applying any
filter, as shown in Figure 6a. In the case of OWLS-MX3
(M3) (Figure 6b) fallout difference when applying Qsome

filtering turns higher as recall level increases, especially
from 70% on. As with precision, prefiltering repositories
using Qall query leads to much higher fallout levels, no
matter the OWLS-MX variant used.

Obtained fallout performance results are a consequence
of the prototype implementation used to evaluate our pro-

10



0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

F
a
ll
o
u
t

Recall

(a) OWLS-M0.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

F
a
ll
o
u
t

Recall

(b) OWLS-MX3 (M3).

Q� Q���� None

Figure 6: Recall-Fallout effect when filtering OWLS-MX
variants.

posal performance using SME2, that requires each query
result to be a ranked list of all the services that were reg-
istered in the system. Thus, our prototype also includes
those services that do not pass the corresponding filter
at the end of the ranked list. Analyzing filtering results
of both queries, if only filtered services are taken into ac-
count when evaluating the fallout for each case, fallout will
drop to less than 7% for Qsome, and 0.02% for Qall filter.
Thus, the amount of false positives in a generic discovery
scenario is reduced by using our prefiltering proposal, in
general.

5.3. Discussion

As a general conclusion from the performed evaluation,
though the more restrictiveQall filter may be better suited
to filter because it reduces the size of the service repository
to a greater extent, Qsome filter turns to be more suitable
in general because the precision penalty is negligible while
execution time is fairly improved, outperforming service
matchmaking without applying any filter. In turn, Qall

filter scales well in every situation, though the greater loss
of precision have to be considered, so it may only be ap-
plied in scenarios with really large repositories.
Both filters clearly improve the subsequent discovery

stage by reducing the search space for matchmaking al-
gorithms. However, there is a trade-off between precision,
recall, and execution time that should be evaluated, de-
pending on the concrete scenario, in order to choose the
filter to use. Actually, the current trend in the litera-
ture and real-world applications is to achieve better per-
formance and usability, by sacrificing precision, recall, or
both [4], so our proposal provides a feasible and efficient
solution in this direction.
The main feature of using our proposed filters is that

not only total execution time is very low, but actual fil-
tering is efficiently executed, providing a high scalability.
Furthermore, our solution also reduces the time needed for
registering services for the matchmaking process, because
the filter execution minimizes the number of candidate ser-
vices. Consequently, a hybrid architecture can be applied,

where Qall filter is executed in the first place. If after
performing service matchmaking, the obtained results did
not present sufficient quality, Qsome filter could be used
in place, executing again the matchmaking process. Note
that even in the worst case, i.e. applying both filters and
the corresponding matchmaking for each filtered reposi-
tory, the total query execution time is 7.5 times faster
than the OWLS-M0 matchmaking process for the whole
service repository, and 8.6 times faster than OWLS-MX3
(M3). This approach is similar to the Best-Matches-Only
solution proposed in [38], where if the most accurate re-
sults are found (i.e.Qall returns good enough results), they
are used, but in other case fairly appropriate results (i.e.
results from Qsome) may also be useful.
Additionally, another mixed approach may be taken,

where both filters are jointly used before discovery and
ranking processes take part. Thus, Qall may be used to
filter services that refers to concepts from the hard re-
quirements of the user request, i.e. terms that have to be
fulfilled in order to consider the corresponding service as
a candidate. Then, Qsome filter can be applied to obtain
services that refers to some of the concepts used in prefer-
ences, i.e. terms that state how candidate services should
be ranked after discovery. Consequently, both filters can
be integrated into one that take into consideration the dif-
ferences between requirements and preferences [23].
Concerning the user requests applied in our evaluation,

OWLS-TC v3 only provides information about inputs and
outputs. However, an OWL-S user request may also con-
tain preconditions, results, functional classification, and
non-functional properties, in general. Our proposal can be
seamlessly applied to these different terms of an OWL-S
profile description, or in general to any SWS user request,
because they also refer to concepts from domain ontolo-
gies. For instance, conditional expressions can be simply
analyzed in order to obtain which concepts appear inside
them. An early prototype on filtering WSMO services de-
scribed in [10] is able to obtain those referred concepts
from conditions and rules described within a WSMO ca-
pability. The evaluation of that approach presents similar
results as the ones presented in this article, with respect
to precision and improved performance of discovery when
applying our proposed filters.
Finally, although the evaluation of our proposal has been

carried out using OWLS-MX variants as the underlying
service matchmaker, the prototype implementation can be
easily adapted to any matchmaker that implements SME2

interfaces. In the 4th International Semantic Service Se-
lection (S3) Contest in 2010 we presented an evolution
of the prototype implementation that allows to change
the underlying service matchmaker8. EMMA – an En-
hanced MatchMaking Add-on – was implemented as a
configurable OWL-S matchmaking plugin compatible with
SME2 2.1.1. Although EMMA offers a similar precision as

8http://www-ags.dfki.uni-sb.de/~klusch/s3/

s3c-2010-summary-report-v2.pdf

11

http://www-ags.dfki.uni-sb.de/~klusch/s3/s3c-2010-summary-report-v2.pdf
http://www-ags.dfki.uni-sb.de/~klusch/s3/s3c-2010-summary-report-v2.pdf


Table 2: Related work analysis.

Proposal AUT APP INT

Lamparter et al. [39] ∼ X ×
Iqbal et al. [40] ∼ X ×
Sbodio et al. [41] ∼ X ×
Siberski et al. [42] × X ×

Pedrinaci et al. [32] × X X

Chabeb et al. [33] × X X

Norton et al. [34] × X X

Agarwal et al. [6] ∼ × ×
Stollberg et al. [5] X × X

Klusch et al. [7] X ∼ ×
Kiefer et al. [43] X X ×
Carenini et al. [44] ∼ × X

Our proposal X X X

the prototype evaluated in this article, average query re-
sponse time is worse than the prototype, because of the
way SME2 plugins register the available services. This is-
sue is identified in the S3 Contest 2010 report, so next ver-
sion of SME2 application will allow the use of pre-filtering
techniques, such as our proposed solution.

6. Related Work

In the following, we discuss proposals related with
our work, analyzing their relationship with our solution.
Firstly, we describe approaches that use Semantic Web
query languages to perform discovery and ranking. Then,
we discuss some SWS ontology integration proposals that
our proposal can be applied to, providing a higher interop-
erability. Finally, we analyze proposals that offer solutions
to improve discovery processes.

We have focused our analysis on three key aspects to
compare related work with our proposed filtering solution,
namely: (1) if discovery can be automatically optimized
by using the analyzed approach (AUTomation), (2) if it
can be applied to any SWS framework (APPlicability),
and (3) to what extent each proposal can be integrated
with other discovery approaches in order to further opti-
mize their performance (INTegrability). Table 2 sums up
our comparison results, showing wether the discussed pro-
posals provide full (X), partial (∼), or no (×) support to
the analyzed aspects.

There exist several proposals that use a Semantic Web
query language to perform discovery and ranking of ser-
vices [45], though they do not use queries explicitly to
filter repositories. They choose SPARQL as their base lan-
guage, enabling their applicability to any SWS framework,
though they add some extensions in order to fully support
these tasks. The analyzed proposals provide some opti-
mizations to their algorithms, though they are not fully

automatized. Additionally, their optimized discovery ap-
proaches cannot be integrated with other solutions. Thus,
Lamparter et al. [39] provide an ontology to represent ser-
vice offers and requests that conforms the foundations for
a discovery and selection process, which is performed using
rules in SWRL[46] and SPARQL queries. These queries in-
cludes predicates that have to be evaluated at run-time, so
they include an extension to SPARQL that is implemented
using different proposed algorithms. Thus, a query for a
user request is provided, though this query depends on
rules that change the matchmaking policy, allowing some
ad hoc optimizations.
Another discovery approach that uses SPARQL to ac-

tually perform semantic service discovery is proposed by
Iqbal et al. in [40]. In this case, authors embed seman-
tic information about services using SAWSDL. Thus, they
define pre and post-conditions of services using SPARQL
CONSTRUCT queries so that depending on each service func-
tionality, they add corresponding RDF tuples representing
that functionality to the knowledge base. Then, their dis-
covery algorithm use an ASK query to check whether a ser-
vice fulfills a user request or not, returning the results. In
this case, authors use standard-only SPARQL queries to
perform discovery, and their service discovery algorithm
can progressively relax the conditions from the user re-
quest in case no results are returned in the first place, as
in our hybrid approach discussed in Section 5.3.
Sbodio et al. also introduce SPARQL queries to describe

OWL-S service pre and post-conditions, and user requests,
providing a matchmaker implementation based on agents
called SPARQLent [41]. They discuss a complete discovery
solution that uses SPARQL queries to modify and ask the
agent’s knowledge base, evaluating their proposal against
OWLS-MX using SME2, as in our work. Although they
provide some optimizations to their discovery algorithm,
our proposal could be also applied to further improve their
agent performance, by preventing it to load the complete
set of available services on the repository.
Finally, there is another approach, more related to rank-

ing, presented in [42], where Siberski et al. propose an ex-
tension to SPARQL so that preferences are described di-
rectly using the query language, without basing on existing
preferences and non-functional properties ontologies, as in
other semantic ranking approaches [23, 25, 31]. They pro-
vide a PREFERRING clause that states preferences among
values of variables, similar to FILTER expressions. How-
ever, this approach does not have the flexibility and rea-
soning facilities that provides a solution based on an exter-
nal ontology, and it uses non-standard SPARQL extensions
without providing an implementation.
Concerning the integration of SWS frameworks, there

are a number of proposals in the literature that address
this issue to tackle applicability and integrability of dif-
ferent discovery solutions. However, they do not provide
facilities to automatically optimize discovery mechanisms.
Pedrinaci et al. present a service repository called iServe
that exposes service descriptions as linked data in terms of

12



a Minimal Service Model (MSM) [32]. This model serves
the purpose of an ontology of integration that simplifies
SWS frameworks, integrating not only OWL-S, WSMO,
SAWSDL and WSMO-Lite services, but also MicroWSMO
[47] or SA-REST [48] descriptions of Web APIs. Our pro-
posal can be also applied to MSM so that our filters can
be applied to services registered in iServe, that provides
a SPARQL endpoint that can be used to retrieve descrip-
tions for a subsequent discovery.
Chabeb et al. describe another ontology of integration

in [33]. They discuss a systematic approach to generate
mappings between OWL-S, WSMO and plain WSDL ser-
vices, matching concepts from the different SWS ontologies
using similarity techniques that validate the inferred cor-
respondences. Their resulting ontology merges concepts
from different SWS frameworks, as opposite to the MSM,
that only capture part of those SWS ontologies, offering
a more concise approach. Our proposed filters can also
be applied to this merged ontology, providing a global-
as-view approach to query OWL-S, WSMO and WSDL
services [49].
Norton et al. present a similar proposal in [34], where the

authors also take a ’union’ approach to integrate OWL-S,
WSMO, and WSMO-Lite descriptions. They present sev-
eral SPARQL CONSTRUCT queries that transform SWS
descriptions to and from the Semantic SOA Reference On-
tology, a standard proposed by OASIS. Applicability of our
proposal can be also achieved by implementing our filters
using this reference ontology, and then using Norton et al.

approach to project SWS descriptions into the model, al-
lowing our proposed queries to be applied to them.
Concerning the need for an improved discovery process

which tackles scalability issues, Agarwal et al. discuss a
hybrid approach that use different discovery mechanisms
together, in order to improve discovery performance [6].
They also propose a simple filtering stage based on an
efficient classification-based discovery. However, this filter
rely on a less expressive user request. Our proposal may
be also applied to the authors hybrid approach in order
to further improve discovery but using a more expressive
model to describe user requests [23].
In order to improve discovery engines, Stollberg et al.

provides a caching mechanism that reduces the search
space and minimizes matchmaking operations [5]. The
proposed cache uses a graph that stores relationships be-
tween user requests described as WSMO goal templates,
and their related services. Thus, goal instances are com-
pared with cached templates in terms of semantic similar-
ity, and if there is a match, only the related services stored
in the graph are used for the subsequent discovery. This
proposal can be complemented by using our filters when
creating the cache graph.
Klusch et al. take a different approach in OWLS-MX [7],

where they present a hybrid matchmaker that combines
information retrieval techniques, such as syntactic simi-
larity, with classical DL-based discovery, in order to im-
prove OWL-S service matchmaking. Their comprehensive

evaluation proves that hybrid approaches present a better
performance than classical ones. Our proposal has been
applied to their proposed OWLS-MX variants, further im-
proving performance results, especially on logic-based ones
as discussed in Section 5. Moreover, similar solutions have
been also proposed by the authors for WSMO [50] and
SAWSDL [51] service matchmaking.
Kiefer et al. present in [43] another hybrid matchmaker

called iMatcher, which uses information retrieval tech-
niques to improve the discovery process. In this proposal,
authors use a SPARQL extension (iSPARQL [17]) that
enables the introduction of similarity operators into query
elements. Thus, different similarity strategies are com-
bined with logic-based discovery in order to improve pre-
cision and recall of the matchmaking process. Addition-
ally, machine-learning can also be applied to automatically
choose the most appropriate strategy to be included in the
hybrid matchmaking, for each case.
Finally, Carenini et al. propose a customizable hy-

brid architecture for SWS discovery and ranking named
GLUE2 [44]. GLUE2 offers a set of specialized discovery
components, such as functional discovery, dynamic discov-
ery, non-functional discovery, and ranking, among other
additional components [52]. Based on WSMO, GLUE2
enables the configuration of the discovery workflow on a
case by case basis. Thus, as with other hybrid approaches
such as [30], our proposed filtering stage can be integrated
with GLUE2 as an additional component so that it can be
included in any hybrid discovery workflow.
Note that most proposed discovery optimization pro-

posals are coupled with a concrete SWS framework and
a corresponding discovery mechanism, as shown in Table
2. However, we designed our filtering proposal to allow its
application to any SWS definition framework and avail-
able discovery mechanisms, so it can even be applied on
top of any of the discussed proposals that already improve
service discovery process, as our experimental evaluation
shows in Section 5.

7. Conclusions

Although Semantic Web query languages are not widely
used for SWS discovery and ranking, they can certainly
play a role in these scenarios. As discussed in this pa-
per, some authors extend SPARQL query language to di-
rectly support these stages, but our proposal sticks to the
recommendation at the time of writing (1.0), providing
two different filter queries that may be used before actual
discovery process in order to reduce the set of available
services from the initial repository. Consequently, the re-
duced search space further improves scalability and per-
formance in discovery and ranking stages, decreasing the
total execution time and memory consumption of these
processes, with a contained penalty on precision, recall
and fallout.
In this work, we have run comprehensive evaluation

tests, analyzing the actual improvement. The conclusions

13



obtained are mainly that our proposal effectively reduces
the search space, while it conforms a generic solution,
adaptable to any SWS framework that a potential user
may want to use. Particularly, we discuss an application
to OWL-S-based services in order to test the implemented
prototype using the OWLS-TC test collection, though we
also introduce additional applications to other frameworks.
Our proposal of including a (possibly multiple) filter-

ing stage before the discovery and ranking processes has
several additional benefits, summarized in the following:

• Proposed filters are generic, so they can be used no
matter what kind of user request and service descrip-
tions are defined for each concrete scenario. Corre-
sponding SPARQL queries can be generated automat-
ically from a given user request.

• Our proposal does not distinguish between types of
concepts, i.e. both functional and non-functional con-
cepts can be used to filter the repository. In conse-
quence, concepts being used for both discovery and
ranking stages can be considered.

• Filters can be applied to any SWS framework because
they are based only on domain concepts referred by
service descriptions and user requests.

• Our filtering stage can be applied to improve any cur-
rently available matchmaking implementation. The
actual improvement on the overall discovery perfor-
mance depends on the nature of the matchmaker, pro-
viding a high impact on performance with DL-based
matchmakers, and a relative impact on hybrid ap-
proaches.

• Our solution is based on the current standard query
language for the Semantic Web, i.e. SPARQL 1.0.
Nevertheless, our proposed queries do not use any ex-
tension to the standard, so they are compatible with
most SPARQL implementations.

In conclusion, our proposal follows the current research
trend on developing lightweight, scalable applications and
extensions that effectively enable the adoption of Semantic
Web technologies, by improving current discovery mecha-
nisms in terms of scalability and performance, while of-
fering a contained penalty on precision with respect to
classical, heavyweight approaches to SWS matchmaking.

Acknowledgments

This work has been partially supported by the Euro-
pean Commission (FEDER) and Spanish Government un-
der CICYT project SETI (TIN2009-07366), by the An-
dalusian Government under projects ISABEL (TIC-2533)
and THEOS (TIC-5906), by the EU FP7 IST project
27867 SOA4All, and by the EC FP7 Network of Excel-
lence 215483 S-CUBE.

Authors would like to thank the reviewers for their in-
valuable opinion and recommendations that improved this
work substantially; Carlos Pedrinaci and Marco Luca Sbo-
dio for their insightful comments and suggestions on early
versions; the S3 Contest organization for their evaluation
tools and support; and Adela del-Rı́o-Ortega and Carlos
Rivero for their useful technical support and reviews.

References

[1] V. Haarslev, R. Möller, On the Scalability of Description Logic
Instance Retrieval, Journal of Automated Reasoning 41 (2)
(2008) 99–142.

[2] J. Davies, J. Domingue, C. Pedrinaci, D. Fensel, R. González-
Cabero, M. Potter, M. Richardson, Towars the open service
web, BT Technology Journal 26 (2).

[3] J. Domingue, D. Fensel, R. González-Cabero, SOA4All, En-
abling the SOA Revolution on a World Wide Scale, in: ICSC,
IEEE Computer Society, 2008, pp. 530–537.

[4] D. Fensel, The Potential and Limitations of Semantics Applied
to the Future Internet, in: J. Filipe, J. Cordeiro (Eds.), WE-
BIST, INSTICC Press, 2009, pp. 15–15.

[5] M. Stollberg, M. Hepp, J. Hoffman, A Caching Mechanism for
Semantic Web Service Discovery, in: K. Aberer, et al. (Eds.),
ISWC/ASWC, Vol. 4825 of LNCS, Springer, 2007, pp. 480–493.

[6] S. Agarwal, M. Junghans, O. Fabre, I. Toma, J. P. Lorre, D5.3.1
First Service Discovery Prototype, Tech. rep., SOA4All (2009).

[7] M. Klusch, B. Fries, K. Sycara, OWLS-MX: A hybrid Semantic
Web service matchmaker for OWL-S services, Web Semantics:
Science, Services and Agents on the World Wide Web 7 (2)
(2009) 121–133.

[8] E. Prud’hommeaux, A. Seaborne, SPARQL Query Language
for RDF, Recommendation, W3C (2008).

[9] J. Pérez, M. Arenas, C. Gutierrez, Semantics and complexity
of SPARQL, ACM Transactions on Database Systems 34 (3)
(2009) 1–45.

[10] J. M. Garćıa, D. Ruiz, A. Ruiz-Cortés, A lightweight prototype
implementation of SPARQL filters for WSMO-based discovery,
Tech. Rep. ISA-11-TR-01, Applied Software Engineering Re-
search Group - University of Seville (2011).

[11] J. Bailey, F. Bry, T. Furche, S. Schaffert, Web and Semantic
Web Query Languages: A Survey, in: N. Eisinger, J. Maluszyn-
ski (Eds.), Reasoning Web, Vol. 3564 of LNCS, Springer, 2005,
pp. 35–133.

[12] M. Sintek, S. Decker, Triple - a query, inference, and transforma-
tion language for the semantic web, in: I. Horrocks, J. Hendler
(Eds.), The Semantic Web - ISWC 2002, Vol. 2342 of LNCS,
Springer, 2002, pp. 364–378.

[13] E. Sirin, B. Parsia, SPARQL-DL: SPARQL Query for OWL-DL,
in: C. Golbreich, A. Kalyanpur, B. Parsia (Eds.), OWLED, Vol.
258 of CEUR Workshop Proceedings, 2007.

[14] F. Manola, E. Miller, RDF Primer, Recommendation, W3C
(2004).

[15] D. L. McGuinness, F. van Harmelen, OWL Web Ontology Lan-
guage Overview, Recommendation, W3C (Feb. 2004).

[16] D. Beckett, T. Berners-Lee, Turtle - terse rdf triple language,
Team submission, W3C (2011).

[17] C. Kiefer, A. Bernstein, M. Stocker, The Fundamentals of iS-
PARQL: A Virtual Triple Approach for Similarity-Based Se-
mantic Web Tasks, in: K. Aberer, et al. (Eds.), ISWC/ASWC,
Vol. 4825 of LNCS, Springer, 2007, pp. 295–309.

[18] F. Alkhateeb, J. F. Baget, J. Euzenat, Constrained Regular
Expressions in SPARQL, in: SWWS, CSREA Press, 2008, pp.
91–99.

[19] J. Farrell, H. Lausen, Semantic Annotations for WSDL and
XML Schema, Recommendation, W3C (Aug. 2007).

[20] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott,
Others, OWL-S: Semantic Markup for Web Services, Tech. Rep.
1.2, DAML (2006).

14



[21] D. Fensel, H. Lausen, A. Polleres, J. de Bruijn, M. Stollberg,
D. Roman, J. Domingue, Enabling Semantic Web Services: The
Web Service Modeling Ontology, Springer, 2007.

[22] T. Vitvar, J. Kopecky, J. Viskova, D. Fensel, WSMO-Lite An-
notations for Web Services, in: S. Bechhofer, M. Hauswirth,
J. Hoffmann, M. Koubarakis (Eds.), ESWC, Vol. 5021 of LNCS,
Springer, 2008, pp. 674–689.

[23] J. M. Garćıa, D. Ruiz, A. Ruiz-Cortés, A Model of User
Preferences for Semantic Services Discovery and Ranking, in:
L. Aroyo, G. Antoniou, E. Hyvönen, A. ten Teije, H. Stucken-
schmidt, L. Cabral, T. Tudorache (Eds.), ESWC (2), Vol. 6089
of LNCS, Springer, 2010, pp. 1–14.

[24] E. Maximilien, M. Singh, A framework and ontology for dy-
namic Web services selection, IEEE Internet Computing 8 (5)
(2004) 84–93.

[25] X. Wang, T. Vitvar, M. Kerrigan, I. Toma, A QoS-Aware Selec-
tion Model for Semantic Web Services, in: A. Dan, W. Lamers-
dorf (Eds.), ICSOC, Vol. 4294 of LNCS, Springer, 2006, pp.
390–401.

[26] L. Li, I. Horrocks, A software framework for matchmaking based
on semantic web technology, in: WWW, ACM Press, 2003, pp.
331–339.

[27] C. Lutz, U. Sattler, A Proposal for Describing Services with
DLs, in: Int. Workshop on Description Logics, 2002.

[28] K. Sycara, M. Paolucci, A. Ankolekar, N. Srinivasan, Auto-
mated discovery, interaction and composition of Semantic Web
services, Web Semantics: Science, Services and Agents on the
World Wide Web 1 (1) (2003) 27–46.

[29] I. Toma, D. Roman, D. Fensel, B. Sapkota, J. Gomez, A multi-
criteria service ranking approach based on non-functional prop-
erties rules evaluation, in: ICSOC, Vol. 4749 of LNCS, Springer,
2007, pp. 435–441.

[30] J. M. Garćıa, D. Ruiz, A. Ruiz-Cortés, O. Mart́ın-Dı́az,
M. Resinas, An hybrid, QoS-aware discovery of semantic web
services using constraint programming, in: B. Krämer, K.-
J. Lin, P. Narasimhan (Eds.), ICSOC, Vol. 4749 of LNCS,
Springer, 2007, pp. 69–80.

[31] J. M. Garćıa, I. Toma, D. Ruiz, A. Ruiz-cortés, A service ranker
based on logic rules evaluation and constraint programming,
in: 2nd ECOWS Non-Functional Properties and Service Level
Agreements in Service Oriented Computing Workshop, Vol. 411
of CEUR Workshop Proceedings, 2008.

[32] C. Pedrinaci, D. Liu, M. Maleshkova, D. Lambert, J. Kopecky,
J. Domingue, iServe: a Linked Services Publishing Platform, in:
Ontology Repositories and Editors for the Semantic Web Work-
shop at ESWC 2010, Vol. 596 of CEUR Workshop Proceedings,
2010.

[33] Y. Chabeb, S. Tata, D. Beläıd, Toward an Integrated Ontology
for Web Services, in: M. Perry, H. Sasaki, M. Ehmann, G. Ortiz
Bellot, O. Dini (Eds.), ICIW, IEEE Computer Society, 2009, pp.
462–467.

[34] B. Norton, M. Kerrigan, A. Marte, On the Use of Transforma-
tion and Linked Data Principles in a Generic Repository for
Semantic Web Services, in: Ontology Repositories and Editors
for the Semantic Web Workshop at ESWC 2010, Vol. 596 of
CEUR Workshop Proceedings, 2010.

[35] V. Haarslev, R. Möller, RACER System Description., in: IJ-
CAR, 2001, pp. 701–706.

[36] E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, Y. Katz, Pellet: A
practical OWL-DL reasoner, Web Semantics: Science, Services
and Agents on the World Wide Web 5 (2) (2007) 51–53.

[37] R. Baeza-Yates, B. Ribeiro-Neto, Modern information retrieval,
Addison-Wesley, 1999.

[38] W. Kießling, Foundations of preferences in database systems,
in: VLDB, Morgan Kaufmann, 2002, pp. 311–322.

[39] S. Lamparter, A. Ankolekar, R. Studer, S. Grimm, Preference-
based selection of highly configurable web services, in: WWW,
ACM Press, 2007, pp. 1013–1022.

[40] K. Iqbal, M. L. Sbodio, V. Peristeras, G. Giuliani, Semantic
Service Discovery using SAWSDL and SPARQL, in: SKG, IEEE
Computer Society, 2008, pp. 205–212.

[41] M. L. Sbodio, D. Martin, C. Moulin, Discovering Semantic Web
Services using SPARQL and Intelligent Agents, Web Semantics:
Science, Services and Agents on the World Wide Web (2010) –.

[42] W. Siberski, J. Z. Pan, U. Thaden, Querying the Semantic Web
with Preferences, in: ISWC, Vol. 4273 of LNCS, Springer, 2006,
pp. 612–624.

[43] C. Kiefer, A. Bernstein, The Creation and Evaluation of
iSPARQL Strategies for Matchmaking, in: S. Bechhofer,
M. Hauswirth, J. Hoffmann, M. Koubarakis (Eds.), ESWC, Vol.
5021 of LNCS, Springer, 2008, pp. 463–477.

[44] A. Carenini, D. Cerizza, M. Comerio, E. D. Valle, F. de Paoli,
A. Maurino, M. Palmonari, A. Turati, GLUE2: A Web Service
Discovery Engine with Non-Functional Properties, in: ECOWS,
IEEE Computer Society, 2008, pp. 21–30.

[45] J. M. Garćıa, C. Rivero, D. Ruiz, A. Ruiz-Cortés, On Using Se-
mantic Web Query Languages for Semantic Web Services Pro-
visioning, in: SWWS, CSREA Press, 2009, pp. 67–71.

[46] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof,
M. Dean, SWRL: A Semantic Web Rule Language Combining
OWL and RuleML, Technical report, W3C Member Submission
(2004).

[47] M. Maleshkova, J. Kopecky, C. Pedrinaci, Adapting SAWSDL
for Semantic Annotations of RESTful Services, in: R. Meers-
man, P. Herrero, T. S. Dillon (Eds.), OTM Workshops, Vol.
5872 of LNCS, Springer, 2009, pp. 917–926.

[48] A. P. Sheth, K. Gomadam, J. Lathem, SA-REST: Semantically
Interoperable and Easier-to-Use Services and Mashups, IEEE
Internet Computing 11 (6) (2007) 91–94.

[49] D. Calvanese, G. de Giacomo, M. Lenzerini, A Framework for
Ontology Integration, in: I. F. Cruz, S. Decker, J. Euzenat,
D. L. McGuinness (Eds.), The Emerging Semantic Web, Fron-
tiers in Artificial Intelligence and Applications, IOS press, 2001.

[50] M. Klusch, F. Kaufer, WSMO-MX: A hybrid Semantic Web
service matchmaker, Web Intelligence and Agent Systems 7 (1)
(2009) 23–42.

[51] M. Klusch, P. Kapahnke, I. Zinnikus, SAWSDL-MX2: A
Machine-Learning Approach for Integrating Semantic Web Ser-
vice Matchmaking Variants, in: ICWS, IEEE Computer Soci-
ety, 2009, pp. 335–342.

[52] M. Palmonari, M. Comerio, F. de Paoli, Effective and Flexi-
ble NFP-Based Ranking of Web Services, in: L. Baresi, C.-H.
Chi, J. Suzuki (Eds.), ICSOC-ServiceWave, Vol. 5900 of LNCS,
Springer, 2009, pp. 546–560.

15


	Introduction
	Background
	Querying the Semantic Web
	Semantic Web Services
	Discovering and Ranking

	Preprocessing Service Repositories using SPARQL
	Filtering a Service Repository
	A SPARQL Implementation for Filters

	Application to Existing SWS frameworks
	An OWL-S Implementation
	Automatic Generation of Filter Queries
	Dealing with SPARQL Entailment

	Analysis and Evaluation
	Experimental Scenario
	Analyzing Tests Results
	Discussion

	Related Work
	Conclusions

