
Building the Core Architecture of a NASA

Multiagent System Product Line⋆

Joaquin Peña1, Michael G. Hinchey2, Antonio Ruiz-Cortés1, and
Pablo Trinidad1

1 University of Seville, Spain
{joaquinp, aruiz}@us.es, trinidad@lsi.us.es

2 NASA Goddard Space Flight Center, USA
Michael.G.Hinchey@nasa.gov

Abstract. The field of Software Product Lines (SPL) emphasizes build-
ing a family of software products from which concrete products can be
derived rapidly. This helps to reduce time-to-market, costs, etc., and can
result in improved software quality and safety. Current Agent-Oriented
Software Engineering (AOSE) methodologies are concerned with devel-
oping a single Multiagent System. The main contribution of this paper is
a proposal to developing the core architecture of a Multiagent Systems
Product Line (MAS-PL), exemplifying our approach with reference to a
concept NASA mission based on multiagent technology.

1 Introduction

Many organizations, and software companies in particular, develop a range of
products over periods of time that exhibit many of the same properties and
features. The multiagent systems community exhibits similar trends. However,
the community has not as yet developed the infrastructure to develop a core
multiagent system (hereafter, MAS) from which concrete (substantially similar)
products can be derived.

The software product line paradigm (hereafter, SPL) augurs the potential of
developing a set of core assets for a family of products from which customized
products can be rapidly generated, reducing time-to-market, costs, etc. [3], while
simultaneously improving quality, by making greater effort in design, implemen-
tation and test more financially viable, as this effort can be amortized over
several products. The feasibility of building MASs product lines is presented
in [16], but no specific methodology is proposed. In this paper, we propose an
approach for performing the first stages in the lifecycle of building a multiagent
system product line (MAS-PL).

⋆ The work reported in this article was supported by the Spanish Ministry of Science
and Technology under grants TIC2003-02737-C02-01 and TIN2006-00472 and by
the NASA Software Engineering Laboratory, NASA Goddard Space Flight Center,
Greenbelt, MD, USA.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51388217?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

For enabling a product line, one of the important activities to be performed
is to identify a core architecture for the family of software products. Unfortu-
nately, there is no AOSE methodology that demonstrates how to do this for
MAS-PLs. Our approach is based on the Methodology for analysing Complex
Multiagent Systems (MaCMAS) [18], an AOSE methodology focused on dealing
with complexity, which uses UML as a modeling language and builds on our
current research and development experience in the field of SPLs.

Roughly, our approach consists of using goal-oriented requirement docu-
ments, role models, and traceability diagrams in order to build a first model of
the system, and later use information on variability and commonalities through-
out the products to propose a transformation of the former models that represent
the core architecture of the family.

The main contributions of this paper are: (i) we introduce feature models
in the agent field in order to document variabilities and commonalities across
products; (ii) we provide an automatic algorithm and a prototype for performing
commonality analysis (that is to say, to automatically analyze the probability
that a feature appears in a product); (iii) we propose an operation to compose the
models corresponding to a feature that allows us to build the core architecture
which includes those features whose probability of appearing is above a given
threshold.

2 Motivating MAS-PL with a NASA case study

There has been significant NASA research on the subject of agent technology,
with a view to greater exploitation of such technologies in future missions.

The ANTS (Autonomous Nano Technology Swarm) concept mission,1 for ex-
ample, will be based on a grouping of agents that work jointly and autonomously
to achieve mission goals, analogous to a swarm in nature.

Lander Amorphous Rover Antenna (LARA) is a sub-mission, envisaged for
the 2015-2020 timeframe, that will use a highly reconfigurable-in-form rover
artifact. Tens of these rovers, behaving as a swarm, will be used to explore the
Lunar and Martian surfaces. Each of these “vehicles” or rovers will have the
ability to change its form from a snake-like form, to a cylinder, or to an antenna,
which will provide them with a wide range of functional possibilities. They are
envisaged as possible building materials for future human lunar bases.

Prospecting Asteroid Mission (PAM) is a concept sub-mission based on the
ANTS concepts that will be dedicated to exploring the asteroid belt. A thousand
pico-spacecraft (less than 1kg each) may be launched from a point in space
forming sub-swarms, and deployed to study asteroids of interest in the asteroid
belt. Saturn Autonomous Ring Array (SARA) is also a concept sub-mission
similar to PAM but whose goal is analysis of the Rings of Saturn.

Although based on mainly the same concepts, these sub-missions differ. For
example, in PAM, spacecraft should be able to protect themselves from solar

1 http://ants.gsfc.nasa.gov/

storms, while in SARA this is not of concern, but as a higher gravitational force
exists, the spacecraft should be capable of avoiding gravitational “pull” and
collisions with particles of the rings, as well as with other spacecraft. Another
example is the mechanism used for motion in these missions. Some of them
require ground-based motion, i.e. LARA, while other missions involve flying
spacecraft employing gas propulsion and solar sails for power.

Thus, ANTS represents a number of sub-missions, each with common fea-
tures, but with a wide range of applicability, and hence several products.

Being able to build a MAS-PL for these sets of sub-missions, with a set of
reusable assets at all the levels (software artifacts, software processes, engineering
knowledge, best practices, etc.), can drastically reduce temporal and monetary
costs in the development of such missions.

In [16], a number of challenges are presented in the context of MAS-PL. In
this paper we cover some of these challenges, which has motivated this research
to address the following issues:

SPL for distributed systems. Distributed systems have not been a hot topic
in the SPL field. We will explore a case study based on the ANTS concept
mission presented above, which is a highly complex distributed system. Thus,
this represents a first step towards addressing this challenge.

AOSE deficiencies. AOSE does not cover many of the activities of SPL. These
are mainly concentrated on commonality analysis, and its implications for
the entire SPL approach. This motivates us to cover this issue, validating
our approach with the case study presented.

3 Background information

As a result of combining two different fields, we have to contextualize our work
in both research areas. In this section, we provide an overview of SPL and AOSE
illustrating the points of synergy between them.

3.1 Software Product Lines

The field of software product lines covers the entire software lifecycle needed
to develop a family of products where the derivation of concrete products is
achieved systematically or even automatically when possible.

Its software process is usually divided into two main stages: Domain Engi-

neering and Application Engineering. The former is responsible for providing
the reusable core assets that are exploited during application engineering when
assembling or customizing individual applications [19]. Although there are other
activities, such as product management, in this section we do not try to be
exhaustive, but only discuss those activities directly related to this paper and
relevant to our approach. Thus, following the nomenclature used in [19], the
activities, usually performed iteratively and in parallel, of domain engineering
that correlate with our approach are:

The Domain Requirements Engineering activity describes the requirements
of the complete family of products, highlighting both the common and variable
features across the family. In this activity, commonality analysis is of great im-
portance for aiding in determining which are the common features and which
of them are present only in some products. The models used in this activity for
specifying features show when a feature is optional, mandatory or alternative
in the family. One of the most accepted models here is feature models [4]. A
feature is a characteristic of the system that is observable by the end user [7].
Features represent a concept quite similar to system goals (used in AOSE) and
the models used to represent them present a correlation with hierarchical system
goal requirement documents [16]. Our approach is based on this correlation.

In Figure 1, we show a subset of the feature model from our case study.
As shown, in this kind of model the features for all products are shown along
with information on whether they are mandatory, optional, or alternative. For
example, the feature flight and orbit is mandatory, while the feature walk is
optional. In addition, the features snake, amoeba, etc. must be present only if
their parent is present, and, as they are related by an or-relation, when a product
possesses the feature walk it must also possess at least one of the former features.

The Domain Design activity produces architecture-independent models that
define the features of the family and the domain of application. Many approaches
have been discussed in the literature to perform this modeling. Some of these
approaches use role models to represent the interfaces and interactions needed
to cover certain functionality independently (a feature or a set of features). The
most representative are [6,21], but similar approaches have appeared in the OO
field, for example [5,20]. We build on this correlation using agent-based role
models at the acquaintance organization to represent features independently.

Then, in the Domain Realization activity, a detailed architecture of the family
is produced adding mechanisms such as components that can be customized,
or frameworks for these components, in order to enable the rapid derivation of
products. In SPL, there exist some approaches where collaboration-based models
(role models) are composed to produce the core architecture, e.g. [6,21]. In these
approaches, component-based models are used where each component is assigned
a set of interfaces and a set of connectors to specify interactions among them.
Again, this is similar approach to the approach of some AOSE methodologies in
building the architecture, called the structural organization, e.g. [22].

3.2 Overview of MaCMAS/UML

The organizational metaphor has been proven to be one of the most appropriate
tools for engineering a MAS, and has been successfully applied, e.g., [10,12,22].
It shows that a MAS organization can be observed from two viewpoints [22]:

Acquaintance point of view: shows the organization as the set of interac-
tion relationships between the roles played by agents.

Structural point of view: shows agents as artifacts that belong to sub-orga-
nizations, groups, teams. In this view agents are also structured into hierar-
chical structures showing the social structure of the system.

Mandatory Optional

At least one
of them

Only one
of them

If father present, the heir is:

Dependency
Flight and

Orbit

...

Move

Snake Amoeba Rolling

Walk

Gas
prop.

Use Sail
to Orbit

and flight

Fig. 1. Sub-set of the feature model of our case study

Both views are intimately related, but they show the organization from rad-
ically different viewpoints. Since any structural organization must include inter-
actions between agents in order to function, it is safe to say that the acquain-
tance organization is always contained in the structural organization. Therefore,
a natural map is formed between the acquaintance organization and the corre-
sponding structural organization. This is the process of assigning roles to agents
[22]. Then, we can conclude that any acquaintance organization can be modeled
orthogonally to its structural organization [8].

MaCMAS is the AOSE methodology that we use for our approach and is
based on previously developed concepts [18]2. It is specially tailored to model
complex acquaintance organizations [17].

We have adopted this approach because it presents several common features
with SPL approaches, that eases the integration of both fields. Going into details,
the main reasons are: First, after applying it we obtain a hierarchical diagram,
the traceability diagram, that is quite close to a feature model. Second, it matches
well with product lines, since it also produces a set of role models that represent
the materialization of each system goal at the analysis level. Third, it provides
UML-based models which are the de-facto standard in modeling, and which
will decrease the learning-curve for engineers. Fourth, it provides techniques
for composing acquaintance models, which is needed for building the structural
organization of the system, allowing us to group together those features that
are common to all of the products in the product line and thus, build the core
architecture.

For the purposes of this paper we only need to know a few features of MaC-
MAS, mainly the models it uses. Although a process for building these models
is also needed, we do not address this in this paper, and refer the interested
reader to the literature on this methodology. From the models it provides, we
are interested in the following:

2 See http://james.eii.us.es/MaCMAS/ for details and case studies of this methodol-
ogy

A) Plan Model

B) Role Model

Measure
risk of solar

storms
Protecting

[SelProtecSC.stormIntensity
> RiskForSystemsFactor]

SailAsShield

[SelProtecSC.stormIntensity
> RiskForSystemsFactor]

offSubSys
MeasureStorms

Space

<<Environment>>
Space

stormVector: Vector3
stormIntensity:Real

SelfProtecSC

StormVector: Vector3
stormIntensity : Real
asteroidRelativePos: Pos
stormType: StormTypes

normalizeSTVect(Vector3):Vector3

Role Goal: Self-protection
mRI Measure Storms Goal:
Protect from solar storm
mRI offSubSys Goal: Protect
from solar storm
mRI SailAsShieldGoal: Protect
from solar storm

SelfProtecSC

SelfProtecSC

SelfProtecSC

Guard:
SelProtecSC.stormIntensit
y > RiskForSystemsFactor

offSubSys
Goal: Power off subsystems
Pattern: self-procedure

In: Out:
 SelfProtecSC.stormIntensity

SailAsShield
Goal: Use sail as shield
Pattern: self-procedure

In: Out:
SelfProtecSC.stormVector

 SelfProtecSC.stormIntensity

MeasureStorms
Goal: Measure Storm Risk
Pattern: Sense Environment

In:
Space.stormVector

 Space.stormIntensity

Out:
 SelfProtecSC.stormIntensity

SelfProtecSC.stormVector

Guard:
SelProtecSC.stormIntensit
y > RiskForSystemsFactor

Fig. 2. “Self-protection from solar storms” autonomic property model

a) Static Acquaintance Organization View: This shows the static interac-
tion relationships between roles in the system and the knowledge processed
by them. In this category, we can find models for representing the ontology
managed by agents, models for representing their dependencies, and role
models. For the purposes of this paper we only need to detail role models:
Role Models: show an acquaintance sub-organization as a set of roles col-

laborating by means of several multi-Role Interactions (mRI) [14]. mRIs
are used to abstract the acquaintance relationships amongst roles in the
system. As mRIs allow abstract representation of interactions, we can
use these models at whatever level of abstraction we desire.
In Figure 2.B), we show the role model corresponding to an autonomic
feature of our case study that models how to materialize protection from
a solar storm at the domain design level. Roles are represented as UML-
interface-like shapes, and mRIs are shown as UML-collaboration-like
shapes. Both notations are extended with some information required for
modeling agents, such as goals, or collaboration patterns. One example

of role a is SelfProtectSC ; it shows its goals, the knowledge that should
be managed to fulfill these goals, and the services it provides to be able
to achieve its goals. One example of an mRI is Measure Storms: it is
linked to its participant roles, and it shows the goal it fulfills, the pat-
tern of collaboration between its participating roles, and the knowledge
it both needs and produces in order to fulfill the goal.

b) Behavior of Acquaintance Organization View: The behavioral aspect
of an organization shows the sequencing of mRIs in a particular role model.
It is represented by two equivalent models:

Plan of a role: separately represents the plan of each role in a role model
showing how the mRIs of the role sequence. It is represented using UML
2.0 ProtocolStateMachines [11]. It is used to focus on a certain role, while
ignoring others.

Plan of a role model: represents the order of mRIs in a role model with
a centralized description. It is represented using UML 2.0 StateMachines
[11]. It is used to facilitate the understanding of the whole behavior of a
sub-organization.
In Figure 2.A), we show the plan of the role model. As can be seen,
each transition in the state machine represents an mRI execution. In this
model, we can show that we have to execute the mRI measure storms un-
til the risk of solar storms is higher than a constant, shown with a guard.
Thus, when the guard holds, we have to execute the mRI sailAsShield.

c) Traceability view: This model shows how models in different abstraction
layers relate. It shows how mRIs are abstracted, composed or decomposed
by means of classification, aggregation, generalization or redefinition. Notice
that we usually show only the relations between interactions because they
are the focus of modeling, but all the elements that compose an mRI can also
be related. Finally, since an mRI presents a direct correlation with system
goals, traceability models clearly show how a certain requirement system
goal is refined and materialized. Notice that we do not show this model
since, adding commonalities and variabilities, it is equivalent to the feature
model that we show later.

4 Overview of our approach for building the core

architecture

From all the activities that have to be performed for setting up a product line,
we show here a subset concerning the development of the core architecture from
the modeling point of view. Thus, we do not cover activities such as product
management since it falls out of the scope of this paper.

In Figure 3, we show the Software Process Engineering Metamodel (SPEM)
definition of the software process of our approach. The first stage to be performed
consist of developing a set of models in different layers of abstraction where we
obtain a MaCMAS traceability model and a set of role models showing how
each goal is materialized. This is achieved by applying the MaCMAS software

� � � � �� � � � � 	 �
� � � � �� � � � �� � � � � 	 �
� � � � � � � � � 	 � �� � � � � � � � � 	 � �� � � � � � 	 � � � � � � � � � �� � � � �� 	 � � � � � � � � � �� � � � �
� � � � � 	 �
 � � � � �� � � � � 	 �
 � � � � �

� � � � � 	 � � � � �
� � � � � � � � �� � � �� � � 	 � 	 � � �
� � 	 � 	 � � � � � � � � 	 �� � 	 � 	 � � � � � � � � 	 �

� � � � � � � � � �� � � � � �� 	 � � � � � � � � � �� � � � � � � � � �� � � � � �� 	 � � � � � � � � � � � � � � � �� � � � � � � � � � � �
 � � � � � �� � � � � � � � � � � �
� � � � � �� � � � � � �
� � � � � � � �
� � � �
 � � � 	 �! � � � � 	 �
� � � �
 � � � 	 �! � � � � 	 �

Fig. 3. Overview of our approach

process. The second activity shown is responsible for adding commonalities and
variabilities to the traceability model. Later, we perform a commonality analysis
to find out which features, called core features, are more used across products.
Finally, we compose the role models corresponding to these features to obtain
the core architecture. The following sections describe these activities.

5 Building the acquaintance organization and the feature

model

After applying MaCMAS, as we were building a MAS that covers the func-
tionality of all products in the family, we obtain a model of the acquaintance
organization of the system: role models, plan models and a traceability model.
Once we have built the acquaintance organization, we have to modify the trace-
ability diagram to add information on variability and commonalities, as shown
in Figure 5, to obtain a feature model of the family. We do not detail this process
since it relies on taking each node of the traceability diagram and determining if
it is mandatory, optional, alternative, or-exclusive, or if it depends on other(s),
as shown in the figure.

MaCMAS guides this entire process using hierarchical goal-oriented require-
ment documents from which all of the models are produced. Thus, there is a
direct traceability between system goals and role models. This traceability is
feasible since when a system goal is complex enough to require more than one
agent in order to be fulfilled, a group of agents are required to work together.
Hence, a role model shows a set of agents, represented by the role they play,
that join to achieve a certain system goal (whether by contention or coopera-
tion). MaCMAS uses mRIs to represent all of the joint processes that are required
and are carried out amongst roles in order to fulfill the system goal of the role

Space

<<Environment>>
Solar Disc

stormVector: Vector3
stormIntensity:Real

SelfProtecSS

StormVector: Vector3
stormIntensity : Real
asteroidRelativePos: Pos
stormType: StormTypes

Role Goal: Self-protection
mRI Meassure Storms Goal:
Protect from solar storm
mRI offSubSys Goal: Protect
from solar storm
mRI SailAsShieldGoal: Protect
from solar storm

SelfProtecSS

SelfProtecSS

SelfProtecSS

Guard:
SelProtecSC.stormIntensit
y > RiskForSystemsFactor

offSubSys
Goal: Power off subsystems
Pattern: self-procedure

In: Out:
 SelfProtecSS.stormIntensity

SailAsShield
Goal: Use sail as shield
Pattern: self-procedure

In: Out:
SelfProtecSS.stormVector

 SelfProtecSS.stormIntensity

MeassureStorms
Goal: Meassure Storm Risk
Pattern: Sense Environment

In:
Space.stormVector

 Space.stormIntensity

Out:
 SelfProtecSS.stormIntensity

SelfProtecSS.stormVector

Guard:
SelProtecSC.stormIntensit
y > RiskForSystemsFactor

Avoid
Crashing

Avoid run a
out of
power

Protect
from solar

storms

Self-
Protection

Measure
solar storms

Switch off
sub-sytems

Use sail as
a shield

Avoid
crashing

Avoid
Out power

Prot.
Solar St

SelfSelf--ProtectionProtection
RoleRole

<<<<environmetenvironmet>>>>
SpaceSpace

A
bs

tr
ac

tio
n

L
ay

er
3

A
bs

tr
ac

tio
n

L
ay

er
4

Fig. 4. Role model/features relationship

model. These also pursue system sub-goals as shown in Figure 4, where we can
see the correlation between these elements and the feature model obtained from
the traceability diagram. Note that the role model of this figure can be also seen
in Figure 2.

6 Commonality analysis

To build the core architecture of the system we must include those features
that appear in all the products and those whose probability of appearing in a
product is high. In [1,2] the authors define the commonality of a feature as the
percentage of products defined within a feature model that contains the feature.
A calculation method for this and many other operations related to feature
models analysis is proposed using Constraint Satisfaction Problems (CSP). The
definition of commonality is the following:

Definition 1 (Commonality). Let M be a feature model and F the feature

within M whose commonality we want to calculate. Let P be the set of products

defined by M and PF the subset of products P containing F . commonality(F)
is defined as follows:

commonality(M,F) =
|PF | · 100

|P |

Explore
Universe

Explore and
Discover

Set Objetive
and Approach

Orbit
Search new

objective
Inform

objective
Evaluate
Interest

Avoid
Crashing

Avoid run a
out of
power

Protect
from solar

storms

Measure
image

Send Data
Earth

Self-
Protection

A
b

st
ra

ct
io

n
L

ay
er

 1
A

b
st

ra
ct

io
n

La
ye

r
2

A
b

st
ra

ct
io

n
L

ay
er

 4
A

b
st

ra
ct

io
n

La
ye

r
3

...

...

...

...

...
...

Move

Walk

Measure

Measure
X-ray

Mandatory Optional

At least one
of them

Only one
of them

If father present, the heir is:

Dependency

Learn

Amoeba Rolling
Measure

solar storms
Switch off

sub-sytems
Use sail as

a shield
Gas
prop.

Use Sail
to Orbit

and Flight
Snake

Digital
Camera

Optical
Camera

Fig. 5. Features model of our case study

Considering the previous definition, for any full-mandatory feature (this
means a feature that appears in all the products in the family) PF = P , its
commonality will be 100%. For any other non-full-mandatory feature, PF ⊂ P

and therefore its commonality will be less than 100%.
Calculating the commonality of every feature, we can easily determine which

are the full-mandatory features and consequently the role models that must
be used to build the core architecture. For those features whose commonality
is less that 100%, we have to consider which of them will be part of the core
and which will not. We propose to use a threshold, that must be calculated
empirically for each domain, to make this decision. Consequently those features
whose commonality is above the threshold will be also used to build the core
architecture.

In addition, tools that help engineers with automated analysis of features
models are of high value [1]. We have extended the prototype3 presented in [1]
to automatically calculate the commonality of all the features of our case study.
The results obtained with the prototype are shown in Figure 6. As shown in this
figure, these features are ordered by their commonality. The figure also show the
threshold that we have selected, set up at the 60%, for considering a feature to
be core or not.

We use the following fictitious scenario to document our example: We have
realized that the commonality for the features self-protection from a solar storm

and orbiting is 100%. Thus we have to add them to the core architecture, since
they appear in all the possible products.

As these features are related, since if a spacecraft is orbiting and measuring
and it determines that there exists a risk of a solar storm, the spacecraft must
first escape the orbit and later power down subsystems or use its sail as a shield

3 This prototype along with this and other case studies is available at http://www.tdg-
seville.info/topics/spl

0%

20%

40%

60%

80%

100%

120%

A
V

O
ID

-C
R

A
S

H
IN

G

E
X

P
LO

R
E

-A
N

D
-D

IS
C

O
V

E
R

E
X

P
LO

R
E

-U
N

IV
E

R
S

E

M
O

V
E

S
E

A
R

C
H

-N
E

W
-O

B
JE

C
T

IV
E

S
E

N
D

-D
A

T
A

-E
A

R
T

H

S
E

LF
-P

R
O

T
E

C
T

IO
N

S
E

T
-O

B
JE

C
T

IV
E

-A
N

D
-A

P
P

R
O

A
C

H

M
E

A
S

U
R

E

A
V

O
ID

-O
U

T
-P

O
W

E
R

P
R

O
T

E
C

T
-F

R
O

M
-S

O
LA

R
-S

T
O

R
M

S

M
E

A
S

U
R

E
-S

O
LA

R
-S

T
O

R
M

S

S
W

IT
C

H
-O

F
F

-S
U

B
S

Y
S

T
E

M
S

U
S

E
-S

H
A

IL
-A

S
-A

-S
H

IE
LD

O
R

B
IT

 A
N

D
 F

LI
G

H
T

W
A

LK
M

E
A

S
U

R
E

-I
M

A
G

E

G
A

S
-P

R
O

P
A

G
A

T
IO

N

U
S

E
-S

A
IL

-O
R

B
IT

-F
LI

G
H

T
M

E
A

S
U

R
E

-X
R

A
Y

M
E

A
S

U
R

E
-T

E
M

P
E

R
A

T
U

R
E

E
V

A
LU

A
T

E
-I

N
T

E
R

E
S

T
IN

F
O

R
M

-O
B

JE
C

T
IV

E

A
M

O
E

B
A

R
O

LL
IN

G
S

N
A

K
E

S
E

LF
-H

E
A

LI
N

G

LE
A

R
N

O
P

T
IC

A
L-

C
A

M
E

R
A

D
IG

IT
A

L-
C

A
M

E
R

A

C
O

M
M

O
N

A
LI

T
Y

Threshold = 60%

Fig. 6. Commonalities of the features in our example

to avoid crashing, we are forced to compose them to model their dependencies
and provide agents with all the roles needed to safely protect from solar storms
in any situation. Notice that we have limited our example to two role models to
simplify the example, but in the real world we must also take into account the
rest of the related features.

Once we have determined the set of features, and thus, the set of role models
to be taken into account for the core architecture, we must compose them as
described in the following section.

7 Composition of the core features

We have to take into account that when composing several role models, we can
find: emergent roles and mRIs, artifacts that appear in the composition yet they
do not belong to any of the initial role models; composed roles, the roles in the
resultant models that represent several initial roles as a single element; and,
unchanged roles and mRIs, those that are left unchanged and imported directly
from the initial role models.

Once those role models to be used for the core architecture have been de-
termined, we must complete the core architecture by composing role models.
Importing an mRI or a role requires only adding it to the composite role model.
The following shows how to compose roles and plans.

A) Plan Model

Orbiting After Measure

[Dist(relativePos,Astero-
idRelativePos)<dist]

Measure

[Orbiter.MeasureFi-
nished(astModel)]

EscapeOrbit

[not (Orbiter.AmIInsideOrbit(Orbi-
ter.relativePos,Orbiter.orbitM)]

AdjustOrbit

ReportOrbit

Report
Measures

[Orbiter.MeasureFi-
nished(astModel)]

EscapeOrbit

B) Role Model

Asteroid

Orbiter

1..n

<<Environment>>
Asteroid

relativePos: Pos
pData:Data

Measure
Goal: Measure Asteroid
Pattern: Environmental Int.

In:
 Orbiter.aste-
 roidRelativePos

Out:
 pMeassu-
 rer.astModel

1..n

OrbitModeller

astData:AteroidData
orbitM: OrbitModel

CalculateOrbit(AsteroidData)::
OrbitModel

Role Goal: Calculate orbits
mRI Goals: send orbit models

Report Orbit
Goal: Report Orbit

Pattern: Collaboration
In:
 OrbitMo-

deller.orbitM

Out:
Orbiter.orbitM

Postcondition:
Orbiter.astModel <> empty

Instantiation Rule:
(Orbiter.allInstances -> forAll (c |
SWARM.pMeasureMeasurers.includes(c
))

Guard:
Dist(relativePos,
AsteroidRela-
tivePos)<dist

 Measurer

Orbiter

Orbiter

orbitM: OrbitModel
relativePos: Pos
asteroidRelativePos: Pos
astData: AstData
astModel: AstModel

AdjustOrbit(relativePos,orbitM)
PProcessData(m:Measure)::Model
PMeasureX(input)::pMeasure
AmIInsideOrbit(Pos,OrbitModel)::Bool
MeasureFinished(AstModel)::Bool

Role Goal: Maintain Orbit and
Measure
mRI Measure Goal: GetModel
mRI Orbits Goal: Get the Orbit Model

Receiver

listOfModels:Model
listOfSenders:Sender

Role Goal: Know Model
mRI Goals: get Model

Orbiter

Report Measures

Goal: Distribute results

Pattern: Collaboration
In:
 Orbiter.astModel

Out:
Receiver.astModel

Receiver

1..n

1..n

AdjustOrbit

Goal: Distribute results

Pattern: self-procedure
In:
 Orbiter.orbitM

Out:
Receiver.astModel

Orbiter

EscapeOrbit

Goal: Escape an Orbit

Pattern: self-procedure
In:
 Orbiter.orbitM

Out:

Orbiter

Postcondition:
not (Orbiter.AmIInsideOrbit(Orbi-
ter.relativePos,Orbiter.orbitM)

guard: not
(Orbiter.AmIIn-
sideOrbit(Orbi-
ter.relativePos,
Orbiter.orbitM)

guard:
Orbiter.MeasureFi-
nished(astModel)

1..n

1..n

Fig. 7. “Orbiting and measuring an asteroid” autonomous property

7.1 Composing roles

When several roles are merged in a composite role model, their elements must
be also merged as follows:

Goal of the role: The new goal of the role abstracts all the goals of the role
to be composed. This information can be found in requirements hierarchical goal
diagrams or we can add it as the and (conjunction) of the goals to be composed.
In addition, the role goal for each mRI can be obtained from the goal of the
initial roles for that mRI.

Cardinality of the role: It is the same as in the initial role for the corre-
sponding mRI.

Space

<<Environment>>
Space

stormVector: Vector3
stormIntensity:Real

SelfProtecSC

SelfProtecSC

SelfProtecSC
Guard:
SelProtecS
C.stormInte
n-sity >
Risk-
ForSystems-
Factor

offSubSys
Goal: Power off subsystems
Pattern: self-procedure

In: Out:
 SelfProtecSC.stormIntensity

SailAsShield
Goal: Use sail as shield
Pattern: self-procedure

In: Out:
SelfProtecSC.stormVector

 SelfProtecSC.stormIntensity

MeasureStorms
Goal: Measure Storm Risk
Pattern: Sense Environment

In:
Space.stormVector

 Space.stormIntensity

Out:
SelfProtecSC.stormIntensity
SelfProtecSC.stormVector

Guard:
SelProtecSC.stormIntensity
> RiskForSystemsFactor

Asteroid

Orbiter

1..n

<<Environment>>
Asteroid

relativePos: Pos
pData:Data

Measure
Goal: Measure Asteroid
Pattern: Environmental Int.

In:
 Orbiter.aste-
 roidRelativePos

Out:
 pMeassu-
 rer.astModel

1..n

OrbitModeller

astData:AteroidData
orbitM: OrbitModel

CalculateOrbit(AsteroidDa-
ta)::OrbitModel

Role Goal: Calculate orbits
mRI Goals: send orbit
models

Report Orbit
Goal: Report Orbit

Pattern: Collaboration
In:
 OrbitMo-

deller.orbitM

Out:
Orbiter.orbitM

Postcondition :
Orbiter.astModel <> empty

Instantiation Rule :
(Orbiter.allInstances -> forAll (c |
SWARM.pMeasureMeasurers .includes(c))

Guard:
Dist(relativePos,Astero
idRelativePos)<dist

 Measurer

Orbiter

SelfProtectingOrbiter

orbitM: OrbitModel
relativePos: Pos
asteroidRelativePos: Pos
astData: AstData
astModel: AstModel

StormVector: Vector3
stormIntensity : Real
stormType: StormTypes

AdjustOrbit(relativePos,orbitM)
PProcessData(m:Measure)::Model
PMeasureX(input)::pMeasure
AmIInsideOrbit(Pos,OrbitModel)::B
ool
MeasureFinished(AstModel)::Bool

Role Goal: Maintain Orbit and
Measure and self protection
mRI Measure Goal: GetModel
mRI Orbits Goal: Get the Orbit
Model

mRI Measure Storms Goal:
Protect from solar storm
mRI offSubSys Goal: Protect from
solar storm
mRI SailAsShieldGoal: Protect
from solar storm

Receiver

listOfModels:Model
listOfSenders:Sender

Role Goal: Know Model
mRI Goals: get Model

Orbiter Report Measures

Goal: Distribute results

Pattern: Collaboration
In:
 Orbiter.astModel

Out:
Receiver.astModel

Receiver

1..n

AdjustOrbit

Goal: Distribute results

Pattern: self-procedure
In:
 Orbiter.orbitM

Out:
Receiver.astModel

Orbiter

EscapeOrbit

Goal: Escape an Orbit

Pattern: self-procedure
In:
 Orbiter.orbitM

Out:

Orbiter

Postcondition:
not (Orbiter.AmIInsideOrbit(Orbi-
ter.relativePos,Orbiter.orbitM)

guard:
not
(Orbiter.AmIIn-
sideOrbit(Orbi-
ter.relativePos,
Orbiter.orbitM)

guard:
Orbiter.MeasureFi-
nished(astModel) or
(SelProtecSC.stormIntensit
y > RiskForSystemsFactor)

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

Fig. 8. Composed role model

Initiator(s) role(s): If mRI composition is not performed, as in our case
study, this feature does not change.

Interface of a role: All elements in the interfaces of roles to be merged must
be added to the composite interface. Note that there may be common services
and knowledge in these interfaces. When this happens, they must be included
only once in the composite interface, or renamed, depending on the composition
of their ontologies.

Guard of a role/mRI: The new guards are the and (conjunction) of the
corresponding guards in initial role models if roles composed participate in the
same mRI. Otherwise, guards remain unchanged.

In our case study, we have to compose the role models corresponding to
the features self-protection from a solar storm and orbiting. The model for the

Analyzing
risk of solar

storms
Protecting

 SailAsShield

[SelProtecSC.stormIntensity
> RiskForSystemsFactor]

offSubSys
MeasureStorms

Orbiting
After

Measure

[Dist(relativePos,Astero-
idRelativePos)<dist]

Measure

[Orbiter.MeasureFi-
nished(astModel)]

EscapeOrbit

[not (Orbiter.AmIInsideOrbit(Orbi-
ter.relativePos,Orbiter.orbitM)]

AdjustOrbit

ReportOrbit

Report
Measures

[Orbiter.MeasureFi-
nished(astModel)]

EscapeOrbit

Analyzing
risk of solar

storms

[SelProtecSC.stormIntensity
> RiskForSystemsFactor]

EscapeOrbit

Fig. 9. Composed plan model

former feature was shown in Figure 2, and the role model of the later is shown
in Figure 7.

After applying the approach described above, the composed role model ob-
tained is shown in Figure 8. As we can see, the roles Orbiter and SelfProtectSC

have been composed into a single role called SelfProtectingOrbiter. These roles
has been composed because the agent that plays one of the roles also has to play
the other as they are dependent (mRIs escape orbit, power off sub-systems, and
use sail as a shield have to be sequenced in a certain way).

Since the rest of the roles are orthogonal, that is to say they do not interact
with each other, they have been left unchanged and all mRIs have been also
added without changes.

7.2 Composing plans

The composition of plans consists of setting the order of execution of mRIs in
the composite model, using the role model plan or role plans. We provide several
algorithms to assist in this task: extraction of a role plan from the role model
plan and vice versa, and aggregation of several role plans; see [13] for further
details of these algorithms.

Thanks to these algorithms, we can keep both plan views consistent auto-
matically. Depending on the number of roles that have to be merged we can base
the composition of the plan of the composite role model on the plan of roles or
on the plan of the role model. Several types of plan composition can be used for
role plans and for role model plans:

Sequential: The plan is executed atomically in sequence with others. The
final state of each state machine is superimposed with the initial state of the

state machine that represents the plan that must be executed, except the initial
plan that maintains the initial state unchanged and the final plan that maintains
the final state unchanged.

Parallel: The plan of each model is executed in parallel. It can be docu-
mented by using concurrent orthogonal regions of state machines (cf. [11]).

Interleaving: To interleave several plans, we must build a new state ma-
chine where all mRIs in all plans are taken into account. Notice that we must
usually preserve the order of execution of each plan to be composed. We can
use algorithms to check behavior inheritance to ensure that this constraint is
preserved, since to ensure this property the composed plan must inherit from all
the initial plans [9].

The composition of role model plans has to be performed following one of the
plan composition techniques described previously. Later, we are interested in the
plan of one of the composed roles, as it is needed to assign the new plan to the
composed roles; we can extract it using the algorithms mentioned previously.

We can also perform a composition of role plans following one of the tech-
niques to compose plans described previously. Later, if we are interested in the
plan of the composite role model, for example for testing, we can obtain it using
the algorithms mentioned previously.

Regarding our example, as the self-protection must be taken into account
during the whole process of orbiting and measuring, and not in a concrete state,
we must perform a parallel composition of their plans, with a minor interleaving
of the mRI escape orbit in the self protection plan, as is shown in Figure 9.

8 Conclusions

The field of software product lines offers many advantages to organizations pro-
ducing a range of similar software systems. Reported benefits of the approach
include reduced time-to-market, reduced costs, and reduced complexity. Simul-
taneously, the ability to spread development costs over a range of products has
enabled adopters to invest more significantly in software quality.

Multiagent systems have a wide field of applicability, across a whole plethora
of domains. However, many key features, including communication, planning,
replication, security mechanisms, to name but a few, are likely to be very similar
across all MAS, particularly in a given domain.

Key to the development of MAS-PLs is the identification of the core MAS
from which a family of concrete products may be derived. We have described
an initial approach to building this part of the infrastructure needed to enable
a product line approach in MAS.

The approach matches well with existing AOSE methodologies and promises
to open a field of research and development that may make MAS and MAS-based
systems more practical in an industrial context.

We are continuing to investigate the use of such an approach in current and
future NASA missions. For example, we have applied MAS-PL to manage evo-
lutionary systems that benefits from the results of this paper [15]. Initial results

are promising and over time we envisage significant benefits from employing a
product line approach to such missions.

References

1. D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated reasoning on feature
models. LNCS, Advanced Information Systems Engineering: 17th International
Conference, CAiSE 2005, 3520:491–503, 2005.

2. D. Benavides, A. Ruiz-Cortés, P. Trinidad, and S. Segura. A survey on the auto-
mated analyses of feature models. XV Jornadas de Ingenieŕıa del Software y Bases
de Datos,JISBD 2006, 2006.

3. P. Clements and L. Northrop. Software Product Lines: Practices and Patterns.
SEI Series in Software Engineering. Addison–Wesley, Aug. 2001.

4. K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools, and
Applications. Addison–Wesley, 2000.

5. D. D’Souza and A. Wills. Objects, Components, and Frameworks with UML: The
Catalysis Approach. Addison–Wesley, Reading, Mass., 1999.

6. A. Jansen, R. Smedinga, J. Gurp, and J. Bosch. First class feature abstractions
for product derivation. IEE Proceedings - Software, 151(4):187–198, 2004.

7. K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-oriented domain
analysis (foda) feasibility study. Technical Report CMU/SEI-90-TR-021, Software
Engineering Institute, Carnegie-Mellon University, November 1990.

8. E. A. Kendall. Role modeling for agent system analysis, design, and implementa-
tion. IEEE Concurrency, 8(2):34–41, Apr./June 2000.

9. B. Liskov and J. M. Wing. Specifications and their use in defining subtypes.
In Proceedings of the eighth annual conference on Object-oriented programming
systems, languages, and applications, pages 16–28. ACM Press, 1993.

10. J. Odell, H. Parunak, and M. Fleischer. The role of roles in designing effective agent
organisations. In A. Garcia and C. L. F. Z. A. O. J. Castro, editors, Software
Engineering for Large-Scale Multi-Agent Systems, number 2603 in LNCS, pages
27–28, Berlin, 2003. Springer–Verlag.

11. O. M. G. (OMG). Unified modeling language: Superstructure. version 2.0. Final
adopted specification ptc/03–08–02, OMG, August 2003. www.omg.org.

12. H. V. D. Parunak and J. Odell. Representing social structures in UML. In J. P.
Müller, E. Andre, S. Sen, and C. Frasson, editors, Proceedings of the Fifth Inter-
national Conference on Autonomous Agents, pages 100–101, Montreal, Canada,
2001. ACM Press.

13. J. Peña, R. Corchuelo, and J. L. Arjona. Towards Interaction Protocol Operations
for Large Multi-agent Systems. In Proceedings of FAABS’02, volume 2699 of LNAI,
pages 79–91, MD, USA, 2002. Springer–Verlag.

14. J. Peña, R. Corchuelo, and J. L. Arjona. A top down approach for mas protocol
descriptions. In ACM Symposium on Applied Computing SAC’03, pages 45–49,
Melbourne, Florida, USA, 2003. ACM Press.

15. J. Peña, M. G. Hinchey, M. Resinas, R. Sterritt, and J. L. Rash. Managing the
evolution of an enterprise architecture using a mas-product-line approach. In 5th
International Workshop on System/Software Architectures (IWSSA’06), page to
be published, Nevada, USA, 2006. CSREA Press.

16. J. Peña, M. G. Hinchey, and A. Rúız-Cortes. Multiagent system product lines:
Challenges and benefits. Communications of the ACM, December 2006.

17. J. Peña, R. Levy, and R. Corchuelo. Towards clarifying the importance of interac-
tions in agent-oriented software engineering. International Iberoamerican Journal
of AI, 9(25):19–28, 2005.

18. J. Pena. On Improving The Modelling Of Complex Acquaintance Organisations Of
Agents. A Method Fragment For The Analysis Phase. PhD thesis, University of
Seville, 2005.

19. K. Pohl, G. Böckle, and F. van der Linden. Software Product Line Engineering :
Foundations, Principles and Techniques. Springer, September 2005.

20. T. Reenskaug. Working with Objects: The OOram Software Engineering Method.
Manning Publications, 1996.

21. Y. Smaragdakis and D. Batory. Mixin layers: an object–oriented implementation
technique for refinements and collaboration-based designs. ACM Trans. Softw.
Eng. Methodol., 11(2):215–255, 2002.

22. F. Zambonelli, N. Jennings, and M. Wooldridge. Developing multiagent systems:
the GAIA methodology. ACM Transactions on Software Engineering and Method-
ology, 12(3), September 2003.

