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Abstract

Whereas there exists a mathematical proof for one–site breathers stability, and an
unpublished one for two–sites breathers, the methods for determining the stability
properties of multibreathers rely in numerical computation of the Floquet mul-
tipliers or in the weak nonlinearity approximation leading to discrete non–linear
Schrödinger equations. Here we present a set of multibreather stability theorems
(MST) that provides with a simple method to determine multibreathers stability
in Klein–Gordon systems. These theorems are based in the application of degen-
erate perturbation theory to Aubry’s band theory. We illustrate them with several
examples.
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1 Introduction

Discrete breathers are time–periodic, localized oscillations in discrete systems
due to a combination of nonlinearity and discreteness. They have become a
well understood phenomenon since the publication of the proof of existence in
Ref. [1]. This proof is the origin of exact and powerful numerical methods to
calculate them and to determine their stability [2]. A deeper insight has been
achieved since the introduction of Aubry’s band theory [3]. The last reference,
together with Ref. [4] can be considered as reviews, although a new one is
badly needed after the huge development of the subject in the last years.
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The stability of one–site breathers is proofed in Refs. [2,3] under rather general
conditions, the stability of the possible two–sites breathers in analyzed in an
unpublished theorem in Ref. [5], page 69. Other methods use the hypothesis of
small amplitude oscillations or the rotating wave approximation [6,7] leading
to the Nonlinear Schrödinger equation (DNLS), which is the actual equation
analyzed, and, there are, of course, the efficient but slow numerical methods
mentioned above.

Here we propose a method based in the properties of the bands in Aubry’s
bands theory and perturbation theory, to obtain the stability properties of
any multibreather at low coupling. In many cases it involves only some modi-
fication of the coupling matrix and the knowledge of the hardness/softness of
the on–site potential. We will briefly summarize the band theory in the next
section, while we introduce the notation and some basic concepts, on which
our theory is based. However, we refer to Ref. [3,1,5] for detailed explanations,
as it will be long and repetitive to expose it in detail.

In section 3 we develop the method for symmetric on–site potentials or in–
phase multibreathers, which is synthesized in a theorem, commented in sec-
tion 4. Its scope is enlarged to non–symmetric potentials in section 3, and
to generalized Klein–Gordon systems in section 6. The method is applied to
several interesting examples in sections 7 and 8. In Appendix A we calculate
the value of a magnitude γ used in our theory, and in Appendix B we relate
the curvature of the bands with the characteristics of the on site potential.

2 Band theory and notation

2.1 The Newton operator

We consider Klein–Gordon systems with linear coupling described by dynam-
ical equations of the form:

ün + V ′(un) + ε
N∑

m=1

Cnmun = 0 n = 1, . . . , N (1)

where the variables un are functions of time t, V (un) is an homogeneous on–
site potential, V ′ its derivative, u̇n denotes derivation with respect to time,
N is the number of oscillators, C is a coupling constant matrix, which can
describe nearest neighbor or long–range interaction, and includes the boundary
conditions, and ε is the coupling parameter. We use a notation similar to
quantum mechanics, i.e., |u⟩ ≡ [u1(t), . . . , uN(t)]

† († meaning the transpose
matrix). Defining V (u) = [V (u1), . . . , V (uN)]

† and analogously its derivatives,
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equation (1) can be written as:

|ü⟩ + |V ′(u)⟩ + εC |u⟩ = 0 . (2)

We suppose that the functions un(t) are time–periodic (with period T and
frequency ωb), time–reversible solutions and, therefore, they can be written as
cosine Fourier series with real coefficients (some of these assumptions will be
relaxed later). The (linear) stability properties of a given solution |u⟩ depend
on the properties of the characteristic equation for the Newton operator Nε

given by
Nε(u) |ξ⟩ ≡ |ξ̈⟩ + V ′′(u) · |ξ⟩ + εC |ξ⟩ = E |ξ⟩ , (3)

where · product is the list product, i.e., f(u) · |ξ⟩ is the column matrix with
elements f(un(t)) ξn(t). If E = 0, this equation describes the evolution of small
perturbations |ξ⟩ of |u⟩.

2.2 The Floquet matrix

Any solutions of Eq. (3) can be determined by the column matrix of the initial
conditions for positions and momenta Ω(0) = [ξ1(0), . . . ξN(0), π1(0), . . . πN(0)]

†,
with πn(t) = ξ̇n(t), and Ω(t) describes its evolution in the space of coordinates
and momenta. A base of solutions is given by the 2N functions with initial
conditions Ων(0), ν = 1, . . . , 2N , with Ων

l (0) = δν l. We will identify often a
given solution ξ(t) of the Newton equation with the corresponding matrix of
initial conditions Ω(0). As the Newton operator depends on the T–periodic so-
lution u(t), it is also periodic, and the evolution of the solutions of Eq. (3) can
be studied by means of the Floquet operator, which maps ξ(t) into ξ(t + T ).
In a finite system this is equivalent to the Floquet matrix FE being given by: {ξn(T )}

{πn(T )}

 = FE

 {ξn(0)}
{πn(0)}

 (4)

These matrices can be easily constructed numerically, by integrating Eq. (3)
2N times from t = 0 to t = T , with initial conditions Ων(0). Then, the ν
column of FE is given by Ων(T ).

2.3 Stability and bifurcations

The eigenvalues {λl}2Nl=1 of F0, called the Floquet multipliers, determine the
linear stability of the solution u(t). If there is any eigenvalue with |λl| > 1,
the corresponding eigenfunction ξl(t) grows with time and u(t) is unstable; if
λl = 1, ξl(t) is T -periodic; if λl = −1, ξl(t) is 2T–periodic. However, F0 (and
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any FE) is a symplectic matrix, as it is derived from the symplectic system
Eq. (3), which implies that if λl is a non–zero eigenvalue, so it is 1/λ. FE is also
real, which in turn implies that λ∗

l and 1/λ∗ are also multipliers. Therefore,
the eigenvalues of FE come in groups of four, if they are not real, or in pairs, if
they are real or if |λl| = 1. We can write the Floquet multipliers as {exp(iθl)},
with θl, in general, complex numbers. The complex number iθl are called the
Floquet exponents, and θl the Floquet arguments.

The only possibility for the stability of u(t) is that all the eigenvalues of F0

have moduli 1, i.e., they are at the unit circle. Therefore, the condition for
linear stability of u(t) can be described as all the Floquet arguments for F0

being real. Moreover, if u(t) is stable and, then, every |λl| = 1, the Floquet
multipliers come in complex conjugate pairs with arguments (±θl) or as double
1 or −1 (θ = 0 or θ = ±π). If a parameter like the coupling ε is changed the
multipliers of F0 change continuously. Therefore, a bifurcation to an unstable
solution can only take place in three different forms: a) Harmonic instability:
two complex eigenvalues moving along the unit circle collide at λ = 1 (θ = 0);
b) Subharmonic instability: two complex eigenvalues moving along the unit
circle collide at λ = −1 (θ = ±π); c) Oscillatory or Hopf instability: two pairs
of complex eigenvalues moving along the unit circle collide at ±θ ̸= 0 and
abandon the unit circle as a quadruplet (λ, 1/λ, λ∗, 1/λ∗).

A Floquet multiplier of F0 is always known. Calculating the derivative of
Eq. (2) with respect to time we obtain that N u̇ = 0. u̇ is also T–periodic,
therefore, it is an eigenfunction of F0 with multiplier 1, and as they come in
pairs, there is always a double 1 multiplier. u̇ is called the phase mode because
its meaning is that if u̇(t) is a solution of Eq. (2), u̇(t+ dt) is also a solution.
While the solution u(t) exists, this double eigenvalue is always there. Due to
the possible forms of the bifurcations, if all the multipliers are isolated except
the double 1, the system is structurally stable, i.e., there is a neighborhood in
the space of the parameters where u(t) is stable.

2.4 Aubry’s band theory

However, it turns out that much information can be obtained by studying also
the Floquet arguments for E ̸= 0, with is known as Aubry’s band theory [3].
The set of points (θ, E), with θ a real Floquet argument of FE have a band
structure. The fact that the Floquet multipliers come in pairs of complex
conjugate pairs brings about that if (θ, E) belongs to a band, (−θ, E) does it
too, i.e., the bands are symmetric with respect to θ and dE/ dθ(0) = 0. As u̇
has eigenvalue 1 (θ = 0), there is always a band tangent to the axis E = 0 at
θ = 0. There are at most 2N points for a given value of E and, therefore, there
are at most 2N bands crossing any horizontal axes in the space of coordinates
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(θ, E). The condition for linear stability of u(t) is equivalent to the existence
of 2N bands crossing the axis E = 0 (including tangent points with their
multiplicity). If a parameter like the coupling ε changes, the bands evolve
continuously, and they can loss crossing points with E = 0, bringing about
the instability.

We know more about the eigenfunctions of the Newton operator. The fact
that it is periodic, or, in other words, that it commutes with the operator P of
translation in time a period, Pf(t) = f(t+T ), implies that its eigenfunctions
can be chosen simultaneously as eigenfunctions of P , which by Bloch theo-
rem, are given by ξ(θ, t) = χ(θ, t) exp(i θ t/T ), χ(θ, t) being a column matrix
of T–periodic functions. It is straightforward to check that exp(iθ) is the cor-
responding Floquet multiplier, and θ its Floquet argument (FE is simply the
representation of P in the base Ωl).

2.5 Bands at the anticontinuous limit

The key concept on the demonstration of breather existence [1], single breather
stability [3] and the present paper is the anticontinuous limit, i.e., the system
with all the oscillators uncoupled, ε = 0, in Eq. (1–2). At the anticontinuous
limit, Eq. (1) reduces to N identical equations:

ün + V ′(un) = 0 . (5)

Supposing that we consider time–reversible solutions around a single minimum
of V , there are only three different solutions: a) oscillators at rest un = 0;
b) excited oscillators with identical un(t), hereafter denoted u0(t); c) excited
oscillators with a phase difference of π with the previous ones, given by un(t) =
u0(t + T/2). Each site index is given a code σn, which takes elements in
{0, 1,−1}, where σn = 0 represents an oscillator at rest, un = 0; σn = 1,
an oscillator with solution u0(t); and σn = −1, the solution u0(t+ T/2). The
matrix of codes σ = [σ1, . . . , σN ]

† represents the state of the system at the
anticontinuous limit.

We suppose that there are p oscillators at rest and N − p excited oscillators.
Equation (3) at ε = 0 becomes

N0(u) |ξ⟩ ≡ |ξ̈⟩ + V ′′(u) · |ξ⟩ = E |ξ⟩ , (6)

or, equivalently, N − p identical equations:

ξ̈n + V ′′(un) ξn = E ξn , (7)

with only a periodic eigenfunction for E = 0, the phase mode u̇n(t) for the iso-
lated, excited oscillators. The other one is the growth mode, (see Appendix B)
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which is not bounded and will not be used in this work. They give rise to N−p
bands tangent to the axis E = 0, shown in Fig. 1. They have positive cur-
vature at (θ, E) = (0, 0) if the on–site potential is soft ( dH/ dωb < 0) and
negative if it is hard ( dH/ dωb > 0), as it is demonstrated in Appendix B.
The possibility of dH/ dωb = 0 is excluded by the conditions of the breather
existence theorem [1], which means that the on-site potential is truly nonlin-
ear for the isolated oscillators with the breather frequency ωb. If, as we are
supposing here, the on–site potentials V (un) are identical, the solutions un(t)
are also identical except for a change of phase and the bands are superposed,
if not, we might have different bands but with the same general shape.

The remaining p equations corresponding to the oscillators at rest are of the
form:

ξ̈n + (ω0)
2ξn = E ξn , (8)

with ω0 =
√
V ′′(0). They have only a T -periodic solution for E = 0 , the null

solution, due to the non–resonance condition for breather existence nωb ̸= ω0

(p ∈ N) [1], i.e., none of the harmonics of the breather resonates with the oscil-
lators at rest. They provide p identical bands which are easily calculated solv-

ing the equation above. Its solutions are ξ = exp(±i
√
ω2
0 − E t), with Floquet

multipliers exp(±i
√
ω2
0 − E T ) and Floquet arguments θ = ±

√
ω2
0 − E T .

That is, the bands are given by E = ω2
0 − ω2

b(θ/T )
2, where θ can be re-

duced to the first Brillouin zone [−π, π] by the addition of 2πp, p ∈ Z. If the
oscillators have different rest frequencies, the rest bands are not superposed
but they have the same characteristics.

The rest bands are also shown in Fig. 1. Note that this figure is only a sketch,
for clarity, as very often some excited oscillators bands are very flat and dif-
ficult to appreciate at the same scale. This sketch reproduces, however, the
basics facts of the band structure.

When the coupling is switched on, the degeneracy of the bands is generically
raised. All the tangent bands at (θ, E) = (0, 0) except one, than continues
there, move upwards or downwards. If the on–site potential is soft, Fig. 1
(left), and a band moves upwards, a double tangent point with the axis E = 0
is lost, or, in other terms, a pair of Floquet arguments of F0 becomes complex
and the solution u(t) is unstable. If the on site potential is hard, Fig. 1 (right),
the same occurs when a band moves downwards.

3 Multibreathers stability

In this work use degenerate perturbation theory [8] to demonstrate the stabil-
ity or instability of the breathers of any code. Degenerate perturbation theory
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establishes that if N0 is a linear operator with a degenerate eigenvalue E0,
with eigenvectors {|vn⟩}, which are ortonormal with respect to a scalar prod-
uct, i.e., ⟨vn|vm⟩ = δnm, and if ε Ñ is a perturbation of N0, with ε small; then,
to first order in ε, the eigenvalues of N0 + ε Ñ are E0 +ε λi, with λi being the
eigenvalues of the perturbation matrix Q with elements Qnm = ⟨vn|Ñ |vm⟩.
Note that perturbation theory as described in the reference cited, is time inde-
pendent perturbation theory, but our time variable t is their spatial coordinate
x.

Let us consider again Eq. (3) with zero coupling, ε = 0. As explained in the
previous section, if there are N − p excited oscillators, there N − p zero eigen-
values corresponding to the T–periodic eigenfunction u̇n (the phase modes of
the isolated oscillators), or in other words, a N−p times degenerate eigenvalue
E0 = 0 if we restrict the domain of N to periodic functions. What we need to
know is the sign of this degenerate eigenvalues when the coupling is switched
on.

To apply degenerate theory to multibreather stability we need to identify the
perturbation operator, a suitable scalar product and a ortonormal basis of the
eigenspace with eigenvalue E0 = 0. The scalar product is defined as:

⟨ξ1|ξ2⟩ =
N∑

n=1

∫ T/2

−T/2
ξ∗1(t)ξ2(t) . dt . (9)

Let us suppose initially that all the excited oscillator are identical and vibrate
in phase. We will denote by u0(t) these identical solutions. In this case, all the
phase modes are also identical and will be denoted as u̇0. The N − p elements
of the basis are

|n⟩ =
1

µ
[0, . . . , 0, u̇0, 0, . . . , 0]†, (10)

with the non-zero element at the position n, n being the index of the excited

oscillators, and µ =

√∫ T/2
−T/2(u̇

0)2 dt. It is straightforward to check that they

are ortonormal.

It is enough to know the eigenvalues corresponding to periodic and real so-
lutions, i.e., with Floquet argument θ = 0, as the intersections of the bands
with the axis θ = 0 correspond to periodic solutions of (3). Therefore the
N − p |n⟩’s form the basis of the degenerate eigenvalue E0 = 0 needed to
apply perturbation theory.

To obtain the perturbation operator, we expand in Taylor series Eq. (3) at
ε = 0 and obtain to first order in ε :

Nε(u) |ξ⟩ = |ξ̈⟩ + V ′′(u) · |ξ⟩ + ε
(
V ′′′(u) · uε · |ξ⟩ + C |ξ⟩

)
=

= (E0 + ε λi)|ξ⟩ , (11)
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Fig. 1. Sketch of the band structure for a soft on–site potential (left) and a hard
on–site potential (right). The continuous lines correspond to excited oscillators and
the dashed ones to oscillators at rest.

with uε =
(
∂u
∂ε

)
ε=0

and u is also the ε = 0 solution.

Therefore the perturbation operator of N0 is

Ñ |ξ⟩ = V ′′′(u)) · uε · |ξ⟩ + C |ξ⟩ , (12)

where u and uε are calculated at ε = 0. We do not know uε, but deriving with
respect to ε, at ε = 0, the dynamical equations (2) we obtain:

|üε⟩ + V ′′(u) · |uε⟩ + C |u⟩ = 0 or N0|uε⟩ = −C |u⟩ . (13)

The perturbed eigenvalues Ei are ε λi , λi being the eigenvalues of the pertur-
bation matrix Q, with elements ⟨n|Ñ |m⟩. The matrix C̃ of elements ⟨n|C|m⟩
is simply the matrix C without the columns and rows corresponding to the
oscillators at rest. The other terms are:

⟨n|V ′′′(u) · uε|m⟩ =

1

µ2

∫ T/2

−T/2
[. . . , 0, u̇0

n, 0, . . . ] [. . . , 0, V ′′′(u0)um,ε u̇
0
m, 0, . . . ]

† dt =

δnm

µ2

∫ T/2

−T/2
u̇0 V ′′′(u0)un,ε u̇

0 dt , (14)

with un,ε =
(
∂un
∂ε

)
ε=0

. Thus, only the diagonal elements ⟨n|V ′′′(u) · uε · |n⟩
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are non–zero. To calculate the last integral in (14) we will integrate by parts
and use that the integral in a period of the derivative of a periodic function is
zero. Besides, the functions un,ε are periodic as the coefficients of their Fourier
series are given by the derivatives with respect to ε of the Fourier coefficients
of un. In the deduction below, all the integral limits are −T/2 and T/2, and
the terms between brackets from integration by parts will be zero. The last
integral in Eq. (14) becomes:

[
u̇0 un,ε V

′′(u0)
]T/2
−T/2

−
∫

V ′′(u0)u̇0 u̇n,ε dt −
∫

V ′′(u0) ü0 un,ε dt =

−
[
V ′(u0) u̇n,ε,

]T/2
−T/2

+
∫

V ′(u0) üε,n, dt −
∫

V ′′(u0) ü0 un,ε dt =

−
∫

ü0 (ün,ε + V ′′(u0)un,ε) dt (15)

The term between parentheses, is the n component of the lhs of Eq. (13),
i.e., it becomes −∑mCnm u0

m, where u0
m = u0, if the oscillator m is excited,

and zero otherwise, i.e., it is −∑m C̃nm u0 = −(
∑

m C̃nm)u
0. Equation (15)

becomes:

(
∑
m

C̃nm)
∫

ü0 u0 dt =

(
∑
m

C̃nm)
([

u̇0 u0
]T/2
−T/2

−
∫
(u̇0)2 dt

)
= −(

∑
m

C̃nm)µ
2 . (16)

That is, equation (14), leads to:

⟨n|V ′′′(u) · uε · |n⟩ = −
∑
m

C̃nm at ε = 0 . (17)

Therefore the diagonal elements of the perturbation matrix Q are

Qnn = −
∑
m

C̃nm + C̃nn = −
∑

∀ m̸=n

C̃nm =
∑

∀ m̸=n

Qnm . (18)

To summarize, the perturbation matrix Q is given by:

Qnm = C̃nm, n ̸= m , Qnn = −
∑

∀ m̸=n

Qnm , (19)

C̃ being the coupling matrix without the p rows and columns corresponding
to oscillators at rest.

This result can be very easily extended, to the case when there are oscillators
out of phase, at least for an even potential V (u). In this case u0(t + T/2) =
−u0(t) and u̇0(t+ T/2) = −u̇0(t). Let us define a new code σ̃, which is equal
to σ, but with +1 instead of zeros, and perform the ansatz un = σ̃n ũn. By
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substitution in the dynamical equations (1), and taking into account that
V ′(un) = V ′(σ̃n ũn) = σ̃n V

′(ũn), because V ′(u) is odd, we obtain:

σ̃n
¨̃un + σ̃n V

′(ũn) +
∑
m

Cnm σ̃m ũm = 0 . (20)

Multiplying by σ̃n, and using that its square is +1 we get:

¨̃un + V ′(ũn) +
∑
m

σ̃nCnm σ̃m ũm = 0 . (21)

As the elements of C with an index corresponding to an oscillator at rest will
not appear in the calculations, we can define a new coupling matrix, with
elements σnCnm σm, i.e., Diag(σ)C Diag(σ). The eigenvalues Ei will have the
right sign, but the eigenfunctions ξ̃ of the Newton operator corresponding to
(21) have to be transformed to recover the original ones by |ξ⟩ = Diag(σ) |ξ̃⟩

The result can be summarized in the following way:

Theorem 1 (Symmetric MST) Consider a Klein–Gordon system, with ho-
mogeneous on–site potential V , linear coupling matrix C and coupling param-
eter ε, and a multibreather given by a vector code σ at zero coupling, with p
zero elements, and N − p non–zero elements. The potential V must be even
if there is any −1 in σ. We define the following matrices: S = Diag(σ); C̃
the N − p, squared matrix equal to S C S but without the rows and columns
corresponding to the zero codes in σ; Q, the perturbation matrix, with non–
diagonal elements Qnm = C̃nm, and diagonal elements Qnn = −∑∀ m̸=n C̃nm.

Let {λi}N−p
i=1 be the eigenvalues of Q and suppose that there is only one zero

among them. Then:
a) if V (un) is hard and there is any negative value in {ε λi} the multibreather
at low coupling will be unstable, and stable otherwise.
b) if V (un) is soft and there is any positive value in {ε λi} the multibreather
at low coupling will be unstable, and stable otherwise.

There is always a zero eigenvalue is explained below. If there are more than
one the stability is undefined within first order perturbation theory.

4 Comments

4.1 Global phase mode

The perturbation matrix Q has always a zero eigenvalue corresponding to
the global phase mode. It can be useful to make it apparent as it reduces the
order of the secular equation by an unity. Considering the matrix Z = Q−λ I,
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det(Z) = 0 is the secular equation. Its roots are the same if we change Z to
Z ′ obtained by summing to the first column the rest of them, i.e., Z ′

n 1 =
−∑∀ m̸=n C̃n,m −λ +

∑
∀ m̸=n C̃n,m = −λ. Now, subtracting the first row from

the rest of them, the first column has only a non zero element, which is equal
to λ. Therefore, λ = 0 is an eigenvalue of Q and the secular equation is reduced
by an unity.

The corresponding eigenvector x̃ satisfies Q x̃ = 0, i.e., − (
∑

∀ m̸=n C̃nm ) x̃n +∑
∀ m̸=n C̃nm x̃m = 0, ∀n, with solution x̃n = 1, ∀n. Therefore, x = S x̃ = σ,

which corresponds to the global phase mode.

4.2 Extended and reduced forms

Note that the code σ is the matrix of components of the multibreather at zero
coupling in a N–dimensional basis, { |n⟩}, with the only non zero element u0

at the position n, including the indexes of all the oscillators. For numerical
calculation and interpretation of the eigenvalues and eigenvectors of Q it can
be more convenient to define C̃ = S C S, i.e, conserving the rows and columns
corresponding to the rest oscillators but all their elements set to zero. It will
be denoted the extended form while the previous one is the reduced form. The
price for using the extended form is to obtain p extra zero eigenvalues, which
causes no harm, except if there are more than p + 1, as it can make more
difficult the interpretation of the eigenvectors.

4.3 Diagonal elements

The diagonal elements of C play no role, because they do not appear in the
coupling matrix. Therefore a coupling of the spring–type as ε ( 2un − un−1 −
un+1) gives identical results as the dipole-type −ε (un−1 + un+1).

4.4 2D and 3D lattices

Note that the theorem applies equally to 2D and 3D lattices, provided that
we can number the sites with an index n, or consider n as a multi–index, and
construct the coupling matrix C.
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5 Non–symmetric potentials

The extension to non–symmetric potentials V (un) is straightforward, but it
involves some numerical or analytical calculation. That is the reason for not
including it in theorem 1, and we present it here as another theorem instead.
If the potential is non–symmetric, there are two time–symmetric, T -periodic
solutions to the equations for the isolated oscillators at zero coupling, Eq. (5):
u0(t), with code +1, and u0(t+T/2), which is no longer −u0(t), with code −1.
The N−p elements of the basis, |n⟩ will be as in Eq. (10) but with u̇0(t+T/2)
instead of u̇0(t) if σn = −1. Let us define the symmetry coefficient, γ, in the
following way:

γ = −
∫ T/2
−T/2 u̇

0(t) u̇0(t+ T/2) dt∫ T/2
−T/2 u̇

0(t) u̇0(t) dt
(22)

If {zk}kmk=0 are the Fourier coefficients of a km–truncated Fourier series of u0(t),
i.e., u0(t) = z0 +

∑km
k=1 2 zk cos( k ωb t), then:

γ = −
∑km

k=1(−1)k k2 z2k∑km
k=1 k2 z2k

. (23)

Note that γ depends on the breather frequency through the {zk}, and it is
positive and smaller than 1, being its value γ = 1 for the symmetric potential
case. Following the deduction of theorem 1 it is straightforward to obtain:

Theorem 2 (Non–symmetric MST) The generalization of theorem 1 for
non–symmetric potentials consists of constructing the perturbation matrix Q
in the following way:
a) If n or m are indexes corresponding to oscillators at rest Qnm = 0.
b) If n and m, n ̸= m, are indexes corresponding to excited oscillators in
phase, i.e., σn σm = 1, Qnm = Cnm.
c) If n and m, n ̸= m, are indexes corresponding to excited oscillators out of
phase , i.e., σn σm = − 1, Qnm = −γ Cnm.
d) The diagonal elements are Qnn = −∑∀ m̸=nQnm

e) The rest of the procedure is exactly the same as described in theorem 1,
getting rid of the rest columns and rows (reduced form) or not (extended form),
calculating the eigenvalues {λi}N−p

1 of Q and obtaining the stability properties
of the multibreather from the signs of the {ελi} and the hardness/softness of
the on–site potential.

The coefficient γ depends on the on–site potential and the frequency ωb. We
demonstrate in the Appendix A that γ = ωb for the Morse potential. Figure 2
shows some numerically calculated values for different potentials. They tend
to +1 when ωb → ω0 = 1 because at this limit u̇0(t) = A sin(ωb t) and
u̇0(t + T/2) = −u̇0(t) as in the symmetric on–site potential case. Generally
speaking, if the frequencies are not very far away from the linear frequency
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ω0, γ is usually close enough to the unity and the sign of the eigenvalues do
not change with respect to the symmetric on–site potential case γ = 1.

6 Generalization

Theorems 1 and 2 are equally applicable if the system has inhomogeneities at
the coupling matrix but not if they are at the on–site potential. Here we intro-
duce the generalization to a broad class of Klein–Gordon systems, including
different masses or inertia momenta, inhomogeneous on-site potentials with
several minima, nonlinear coupling, solutions with different phases (i.e, not
restricted to time–reversible solutions). Let us consider a Klein–Gordon sys-
tem with Hamiltonian

H =
∑
n

(
1

2
mn u̇

2
n + Vn(un)

)
+ εW (u) , (24)

and dynamical equations

mn ün + V ′
n(un) + ε

∂W (u)

∂un

= 0 , (25)
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which at zero coupling become:

mn ün + V ′
n(un) = 0 ∀n . (26)

Suppose we can label the solutions of these equations, with given frequency ωb

and period T , with a code composed of an index for the site n, another index
for the different minima and solutions (biperiodic, etc, different potential wells)
σn, which can be different for each site. If we considering a periodic solution for
the n–th equation , it can be written as a 2π periodic function gnωb σn(ωb t+α).
Let us suppose that gnωb σn is chosen such that α = 0 corresponds to the time
symmetric solution with ġnωb σn(0) = 0 and gnωb σn(0) > gnωb σn(π). Therefore,
the solutions of equations (26) are determined by the code {n, σn, αn}. If we
consider a given solution at the anticontinuous limit we can simply write it
as u = [u0

1, . . . , u
0
N ]

†, but now, the u0
n are, in general, different, because of the

particular multibreather solution u, whose stability we are interested in.

The characteristic equations for the Newton operator Nε are given by:

(Nε ξ)n ≡ mn ξ̈n + V ′′
n (un) ξn + ε

∑
m

∂2W (u)

∂un ∂um

ξm = E ξn (27)

which to first order in ε calculated at ε = 0 lead to

(N0 ξ)n + ε (Ñ ξ)n = (E0 + ε λ) ξn , (28)

where:

(N0 ξ)n ≡ mn ξ̈n + V ′′
n (u

0
n) ξn = E0 ξn , (29)

(Ñ ξ)n ≡V ′′′(u0
n)un,ε ξn +

∑
m

∂2W (u0)

∂un ∂um

ξm = λ ξn . (30)

with un,ε =
(
∂un
∂ε

)
ε=0

. The first set of equations is the characteristic equa-

tion for the Newton operator at zero coupling, and the second one for the
perturbation operator Ñ . The only periodic solution of each equation (29)
with E0 = 0 for a given solution u0 of (26) , is u̇0

n. Thus, we can construct a
ortonormal basis of ker(N0), restricted to periodic solutions (and, therefore,
that can be chosen real) of given period T , as |n⟩ = 1

µn
[0, . . . , 0, u̇0

n, 0, . . . , 0]
†,

with the only nonzero element at the n position, and µn =

√∫ T/2
−T/2(u̇

0
n)

2 dt.

Deriving Eq. (25) with respect to ε at ε = 0 we get:

(
N0

∂u

∂ε

)
n
≡ mn ün,ε + V ′′

n (u
0
n)un,ε = −

∑
m

∂2W (u0)

∂un ∂um

(31)
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Following exactly the same procedure as in section 3 we get the perturbation
matrix Q, in extended form, with non diagonal elements for indexes corre-
sponding to excited oscillators:

Qnm = ⟨n|∂2
uuW (u0)|m⟩ =

1

µn µm

∫ T/2

−T/2
u̇n

∂2W (u0)

∂un ∂um

u̇m d t , n ̸= m (32)

and diagonal elements

Qnn = −
∑

∀ m̸=n

µm

µn

Qnm . (33)

If there are p oscillators at rest and N − p excited oscillators, the extended
matrix Q has p zero columns and rows corresponding to the indexes of the
oscillators at rest. The reduced form of Q is the N − p squared matrix, equal
to Q but stripped of those zero rows and columns. As a result we can establish
the theorem:

Theorem 3 (Generalized MST) Given a generalized Klein–Gordon sys-
tem (24), a specific multibreather solution at zero coupling {u0

n}, determined
by a suitable set of codes, u the corresponding solution at low coupling, {λ}N−p

i=1

the eigenvalues of the reduced matrix Q, with only one zero, and being the wells
corresponding to the N − p specific u0

n, of the same type, hard or soft, then:
The solution u is stable if:
a) The on–site potentials are soft and there is not any positive value in {ε λi}N−p

i=1 .
b)The on–site potentials are hard and there is not any negative value in {ε λi}N−p

i=1

This theorem includes both theorems 1 and 2. Certainly, it is of not so straight-
forward applicability, although for certain cases there are only a few matrix
elements Qnm to calculate. As an example, if there are just two types of sites,
the on–site potentials are symmetric, the coupling is linear and we consider
only time–reversible multibreathers, there are only two different matrix ele-
ments to calculate.

7 Applications

7.1 Two–site breathers

A trivial example is the theorem about the stability of the two–site breather
found in Ref. [5] page 69. Here we generalize it to non–symmetric on–site
potentials. The coupling matrix corresponding to periodic boundary condi-
tions and of the standard (spring–type) attractive form, has elements Cnm =
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2 δnm − δ|n−m|,1 and CN 1 = C1N = −1, that is:

C =



2 −1 0 . . . 0 −1

−1 2 −1 0 . . . 0

. . . . . . . . . . . . . . . . . .

−1 0 . . . 0 −1 2


. (34)

If the two oscillator are in phase, the perturbation matrix is

Q =

 1 −1

−1 1

 ,

with eigenvalues (λ1, λ2) = (0, 2), the first one corresponds to the phase mode,
the second to the antisymmetric eigenmode. Thus, one of the two bands tan-
gent to the axis E = 0 at zero coupling will remain there, and the other will
move upwards. If the on–site potential is soft, i.e., with positive curvature, a
intersection/tangent point will be lost, and the two site breather is unstable.
For the hard on–site potential, the curvature of the bands is negative, and
when the band moved upwards, the intersection points will be kept, and the
system is be stable. If ε < 0 the signs of the eigenvalues εEi are reversed and
so are the conclusions.

For the out–of–phase, two-site breather, with code σ = [1,−1], the perturba-
tion matrix is:

Q =

 −γ γ

γ −γ

 ,

with eigenvalues (λ1, λ2) = (0,−2γ). The conclusions above are reversed, being
the instability mode, when appropriate, the symmetric one. Note that the
boundary conditions in C have no effect.

Theorem 4 (Two–site breathers) Consider time–reversible, two–site breathers
in an homogeneous Klein-Gordon system with attractive linear coupling, then:
a) The two-site breathers with codes ± [1, 1] and soft on–site potential are un-
stable and with ± [−1, 1] are stable.
b) The two-site breathers with code ± [1, 1] and hard on–site potential are sta-
ble and with ± [−1, 1] are unstable.
c) If the coupling is repulsive, the conclusions are reversed.
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7.2 Three–site breathers

Let us renumber the sites 1, 2, 3 and suppose that the code of the site in the
middle is σ2,= +1 as a reference, i.e., σ = [σ1, 1, σ3]. We define αi = 1 if
σi = 1 and αi = −γ if σi = −1, for i = 1, 2. Using C from Eq. (34) the
perturbation matrix is:

Q =


α1 −α1 0

−α1 α1 + α3 −α3

0 −α3 α3

 . (35)

Its nonzero eigenvalues are λ± = α1 + α3 ±
√
(α1 + α3)2 − 3α1 α3. In order

to have both eigenvalues with the same sign, we need that α1 α3 > 0, i.e., either
α3 = α1 = 1, or α3 = α1 = −γ. That is, if σ1 = σ3 = 1, λ± = 1, 3 > 0, if
σ1 = s3 = −γ, λ± = −γ,−3γ < 0, and if σ1 σ2 = −1, then λ± have different
signs. Therefore:

Theorem 5 (Three–site breathers) Consider time–reversible, three–site breathers
in an homogeneous K-G system with nearest–neighbor, linear coupling, attrac-
tive for ε > 0. Then:
a) The three–site breathers with codes σ = ±[−1, 1,−1] are stable if ε > 0
(ε < 0)and the on–site potential is soft (hard).
b) The three–site breathers with code σ = ±[1, 1, 1] are stable if ε > 0 (ε < 0)
and the on–site potential is hard (soft).
c) All other three-site breathers are unstable for any sign of ε and type of
on–site potential.

We can compare the predictions of the values given by the theory with the
numerically calculated values of the intersection points of the bands with the
axis θ = 0. As an example, the numerically calculated eigenvalues and the
predictions given by theorems 1 and 2 for the three–site breather with code
[−1, 1,−1] are plotted in Figure 3. The very good accuracy is evident.

7.3 A model with long–range interaction

An example of system with long range interaction is the twist model used in
Ref. [9]. The dynamical equations are:

ün + V ′(un) + ε
n+N/2∑

m=n−N/2

cos[θtw(n−m)]

|n−m|3
um = 0 (36)
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Fig. 3. Comparison between the eigenvalues E of the Newton operator obtained
numerically (points), predicted by the symmetric MST, theorem 1, (dashed lines)
and by the non–symmetric MST, theorem 2, (continuous line), which is the right
one to be used. Morse potential, code [−1, 1,−1], frequency ωb = γ = 0.8.

V being the Morse potential, and θtw the angle between two dipole moments
corresponding to neighboring base pairs in a simplified model of DNA. The
coupling matrix elements are:

Cnm =
cos[θtw(n−m)]

|n−m|3
, (37)

Some of the results, also checked numerically and with good accuracy with
respect to the eigenvalues E, given by theorem 1, in spite of V being non–
symmetric are:

Code θtw = 0 θtw = π

11 Stable Unstable

1 -1 Unstable Stable

101 Stable Stable

111 Stable Unstable

1-1 1 Unstable Stable

11-1 Unstable Stable

As an example of the effect of the symmetry coefficient γ in theorem 2, we can
consider the code [1,−1, 1] and plot the Newton eigenvalues E as a function
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Fig. 4. Eigenvalues λ of the perturbation matrix Q for a three-site breather with
code [−1, 1,−1] on the twist model. Continuous line: γ = ωb = 1; dashed line:
γ = ωb = 0.8; and dotted line: γ = ωb = 0.1. Only values of γ very far from 1 lead
to a different stability prediction.

of θtw. The perturbation matrix is:

Q =


γa− b −γa b

−γa 2γa −γa

b −γa γa− b

 , (38)

with a = cos(θtw) and b = cos(2θtw)/8. Figure 4 shows the dependence of the
eigenvalues λ on the twist angle θtw for three values of the symmetry coefficient
γ. It can be seen that only values of γ very far from 1 lead to a change on the
stability prediction.

8 Multibreathers, phonobreathers and dark breathers. Parity in-
stabilities.

For larger, time–reversible multibreathers in homogeneous Klein–Gordon sys-
tems with nearest–neighbor, linear coupling, it is trivial to obtain the stability
properties of the two different solutions with wave number q = 0, all the os-
cillators in phase, or q = π, neighboring oscillators out of phase. Consider
any number N ′ of contiguous oscillators in phase in a system coupled by the
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matrix C in Eq. (34). The N ′ × N ′ perturbation matrix is given by:

Q =



1 −1 0 . . . 0 0

−1 2 −1 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 0 . . . −1 2 −1

0 0 . . . 0 −1 1


. (39)

The characteristic equation for Qx = λx corresponds to the following equa-
tions:

x1 − x2 = λx1 ,

2xn − xn+1 − xn−1 = λxn, ∀n ̸= 1, 2 ,

xN ′ − xN ′−1 = λxN ′ . (40)

Substitution of the trial solution xn = cos(q n − ϕq), leads to ϕq = q/2, q =
mπ/N ′, with m = 0, . . . , N ′ − 1, and λm = 4 sin2(mπ/(2N ′)), i.e., positive
eigenvalues without a degenerate zero. In case all the oscillators of the group
are out of phase, Q → −γQ and λm → −γλm. Therefore:

Theorem 6 If ε > 0, the time–reversible, in-phase, multibreathers are un-
stable (stable) with soft (hard) on–site potential. For any out–of–phase multi-
breathers, and ε < 0 the conclusions are reversed.

Although, we have no mathematical proof, according to numerical calculations
of the eigenvalues of the perturbation matrices corresponding to groups with
different codes, the numbers of negative and positive eigenvalues are equal to
the numbers of −1 and +1 in {σn σn+1}N

′−1
n=1 . Therefore being unstable for any

on–site potential.

Note that if there are several non–contiguous multibreathers, the perturbation
matrix if composed of independent blocks of perturbation submatrices of the
same type, each one with a zero eigenvalue by construction as seen in subsec-
tion 4.1. The stability of such a system cannot be determined by the MST.
The only possible conclusion is that if there are eigenvalues of different sign
this system would be unstable.

Phonobreathers are multibreathers without oscillators at rest. For time–reversible
phonobreathers in a system either with free–ends, or fixed-ends boundary
conditions, the perturbation matrix Q is the same as in Eq. (39). If the
boundary conditions are periodic, the only change is that Q1 1 = QN,N = 2,
QN 1 = Q1,N = −1, and the eigenvalues are the same. That is, the mode q = 0
with attractive coupling and hard potential is stable. Changing the hardness,
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the type of coupling, or the mode, changes each time the stability. In this
way, we reproduce the results in Refs. [7,6] as a consequence of modulational
instability and using the DNLS approximation, respectively, and in theorem 9
in Ref. [3], based in the properties of the action.

Parity instabilities are a interesting effect for phonobreathers with periodic
boundary conditions. It is a consequence of the parity of the total number of
sites N . If, for example, V is soft, the coupling is attractive, and N is even,
all the eigenvalues of the perturbation matrix are negative, i.e., the system
is stable. But if N is odd, there is an isolated positive eigenvalue, bringing
about the instability. There is a clear physical origin of this phenomenon, as
the boundaries are equivalent to an inhomogeneity. According to our theory
it is also obvious: we have, in fact two oscillators at the ends coupled and in
phase, which gives rise to a positive eigenvalue.

Dark breathers are multibreathers with only one or a few oscillators at rest.
Their stability depends on the characteristics of the contiguous groups of ex-
cited oscillators, as a consequence of theorem 6. We have to be careful about
the number of particles, for example the π mode with code around the dark
site [. . . , 1,−1, 0, 1,−1, . . . ], needs an odd number of sites to avoid having
two in–phase oscillators at the ends, and a parity instability. The one with
[. . . ,−1, 1, 0, 1,−1, . . . ] needs an even number of sites. If the system has free
of fixed periodic conditions, the perturbation matrix is decoupled in two and
the stability is undefined as commented above.

We have compared the predictions of the instabilities and the values of the
intersection points of the bands with the axis θ = 0, in many cases, as for
example in Ref. [10], with very good results. The question of up to which
values of the coupling parameter ε the theory is valid, is however unsolved.
Generically speaking values up to ε = 0.1 (compared to the rest frequency
ω0 = 1), are safe, but there are some exceptions. In the same reference, for
the dark breather hard on–site potential and attractive coupling, a mode not
predicted by the MST gives rise to an instability as soon as ε = 0.022.

As the width of the phonon band can be calculated, and the width of the
background is given by the eigenvalues of the perturbation matrices, it is also
possible to predict the values of the ε, for which oscillatory and subharmonic
instabilities occur, but we do not extend further here.

9 Summary and conclusions

We have developed using degenerate perturbation theory a method for ob-
taining the stability properties of multibreathers of any code at low coupling.
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The method is synthesized in three different versions of a theorem, referred to
as the multibreather stability theorem or MST for short. The two simplest ver-
sions correspond to time–reversible multibreathers, with linear coupling and
homogeneous on–site potentials. If the on–site potential is symmetric or we
consider only in–phase multibreathers, it involves only some simple modifica-
tions of the coupling matrix. If none of those conditions are fulfilled then it
involves the analytical or numerical calculations of a magnitude γ, called the
symmetry coefficient, as its value is 1 for symmetric on–site potentials. For
soft potentials and values of the frequency until about one half of the rest
frequency, a good approximation is the multibreather frequency, result which
we demonstrate is exact for the Morse potential. For hard potentials its value
its close to unity. The generalized version of the MST is of not so straightfor-
ward applicability, although its complexity depends on the characteristics of
the system and multibreather considered.

We give some examples of application of the method and compare it with nu-
merical results. The systems considered are two and three–site breathers, with
nearest neighbor or long–range interactions, multibreathers, phonobreathers
and dark breathers. A parity instability can appear in finite systems depending
on the parity of the number of oscillators. All these examples are interesting in
themselves, but also illustrate the use of the MST, and show that it provides
a powerful method of easy applicability to determine multibreathers stability.

Some other applications under study are multibreathers in 2D and 3D systems,
prediction of the oscillatory and subharmonic instabilities and the peculiarities
of some disordered systems
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A Calculation of the symmetry parameter γ for a Morse potential

In this appendix, we calculate the value of the symmetry parameter γ in
theorem 2 for the particular case of a Morse potential. The choice of this kind
of potential relies in the fact that the expressions of the orbits are easy to
manage. We will proof that, for this potential, γ = ωb.

Let us suppose an isolated oscillator submitted to a Morse potential. The
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energy of the system is:

E =
1

2
ẋ2 +

1

2
(exp(−x)− 1)2 . (A.1)

We look for solutions with period T = 2π/ωb that are time–reversible, i.e, with
ẋ(0) = 0, or, in other words, at t = 0 the system is at a turning point. There
are two of them, obtained from the equation above: x1 = − log(1+

√
2 E) < 0

and x2 = − log(1−
√
2 E) > 0. If we consider the solution with x(0) = x1, t(x)

is given by:

t(x) =
∫ x

x1

dx√
2(E − (exp(−x)− 1)2/2)

, (A.2)

which leads to:

t(x) =
1√

1− 2 E

(
π

2
− arcsin

[ 1√
2 E

(
1 +

2 E − 1

exp(−x)

)])
. (A.3)

By substitution of t = T/2 = π/ωb and x = x2 we obtain ωb =
√
1− 2 E .

The inversion of Eq. (A.2) leads to:

x(t) = log
1−

√
1− ω2

b cosωb t

ω2
b

. (A.4)

To calculate γ, we need the Fourier coefficients of x(t). If the solution x(t) is
expressed as:

x(t) = z0 + 2
∞∑
k=1

zk cos(k ωb t) , (A.5)

the coefficients {zk}∞k=0 are given by:

zk =
1

T

∫ T/2

−T/2
x(t) cos(k ωb t) dt . (A.6)

The calculation of these integrals is straightforward and leads to:

z0 = log
1 + ωb

2ω2
b

; zk = − 1

n

(
1− ωb√
1− ω2

b

)k

. (A.7)

The parameter γ is given by:

γ = −
∑

k≥1(−1)kk2z2k∑
k≥1 k2z2k

. (A.8)

By substitution of the Fourier coefficients in Eq. (A.7), we obtain

γ = −
∑

k≥1(−r)k∑
k≥1 rk

with r =
1− ωb

1 + ωb

. (A.9)
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As |r| < 1, γ can be easily calculated using the expressions for the sum of an
infinite geometric progression:∑

k≥1

rk =
r

1− r
,

∑
k≥1

(−r)k = − r

1 + r
(A.10)

leading to γ = ωb, as we wanted to proof.

B Curvature of the bands

In this section we demonstrate a key point used in our theory: the fact that the
band corresponding to an isolated excited oscillators has negative curvature
if the on site potential is hard and positive if it is soft. Unfortunately, the
demonstration is quite long if we want it to be self–consistent. A similar one
can be found in Ref. [11] and different ones in Ref. [5,12].

Let us consider the dynamical equation of an isolated oscillator with Hamil-
tonian H = 1/2 p2 + V (u), with u a single–value, real function of time and
p = u̇:

ü+ V ′(u) = 0 (B.1)

The characteristic equation for the Newton operator N corresponding to a
given periodic solution of Eq. (B.1)is

N ξ ≡ ξ̈ + V ′′(u)ξ = Eξ , (B.2)

where ξ is a C2 function of t. For each eigenvalue E there are only 2 independent
solutions, determined, for example, by the values of ξ(0) and ξ̇(0). We can
obtain them for E = 0, by deriving Eq. (B.1) with respect to t and with
respect to ωb:

...
u + V ′′(u)u̇ = 0 ⇔ N u̇ = 0 ; üw + V ′′(u)uw = 0 ⇔ Nuw = 0 . (B.3)

As we have a single oscillator we can suppose that u(t) is time symmetric with
a suitable origin of time, i.e., u̇ is a time-antisymmetric function of t with the
same period T = 2π/ωb as u(t): u̇(t + T ) = u̇(t), u̇(0) = u̇(T ) = 0. The
properties of uw = du/dωb, can be also obtained. We can write u as a cosine
Fourier series u(t) =

∑∞
k=0 ck cos(ωb t), with the coefficients ck depending on

ωb. Therefore, du/dωb =
∑∞

k=0(dck/dωb) cos(ωb t) +
∑∞

k=0 −k t sin(ωb t), or:

uw ≡ du

dωb

= γ(t) +
t

ωb

u̇(t) (B.4)

γ(t) being a time symmetric, periodic function of time with the same period
T as u. This functions constitute a base of the eigenspace corresponding to
E = 0.
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On the other hand, N (B.2) is a periodic operator because it depends on a
periodic function u. Its eigenfunctions are given by the Bloch theorem:

ξ(θ, t) = χ(iθ, t) exp(θt/T ), (B.5)

with χ a T–periodic function of time and θ = θ(E). If we consider only values
of E for which θ is real, the set of points (θ, E(θ) constitutes a band. If ξ is
a solution of N ξ = Eξ, the fact that N is a real operator implies that ξ∗ is
another solution, i.e., (−θ, E) also belongs to the band and this is symmetric
with respect to θ and, therefore, dE/ dθ(0) = 0. As N is time–symmetric
ξ(θ,−t) is another, and has to be proportional to ξ∗ as there can be only two
independent solutions.

The Floquet matrix FE is defined as:

 ξ(T )
ξ̇(T )

 = FE

 ξ(0)
ξ̇(0)

 . (B.6)

The eigenvalues {λl} of FE are the Floquet multipliers, if we write them as
λl = exp iθl, with θ real or complex, iθl are the Floquet exponents, and θl, the
Floquet arguments. An eigenfunction with θl real is bounded, if θl = 1 the
eigenfunction has period T . The condition for linear stability of the solution
u is that all the Floquet arguments of F0 are real.

It is easy to check some properties. The Bloch functions Eq. (B.5) are eigen-
functions of FE with Floquet exponent θ, therefore FE is diagonalizable (over
C) with Floquet multipliers exp(±iθ) and Floquet arguments ±θ. However,
at E = 0, there is only one eigenfunction of F0, u̇, the other independent
function of the subspace N ξ = 0, uw, it is not an F0–eigenfunction. That is
F0 has a degenerate Floquet multiplier 1, or Floquet argument 0 and can be
transformed into a Jordan block. Another consequence of the latter is that
(θ, E) = (0, 0) belongs to the band. We need to calculate the curvature of the
band at this point.

Let us come back to the Bloch functions ξ(θ, t) in Eq. (B.5) and ξ∗(θ, t)
corresponding to a pair of symmetric points (±θ, E) of the band, and sup-
pose that θ → 0 (and then E → 0). At θ = 0 the two functions collide in
ξ(0, t) = χ(0, t) = χ∗(0, t), therefore ξ(0, t) is a real, T–periodic function. But
we already now that at E = 0, there is a T–periodic function solution of
N ξ = 0, u̇. Therefore, ξ(0, t) = u̇ (N is lineal, so we can adjust the norm of
ξ in order that the latter equation is fulfilled).

We can reobtain the missing function that spans ker(N ). If we derive Eq. (B.2)
with respect to θ, we obtain N ξθ = Eθξ + Eξθ and at E = 0 (Eθ(0) = 0) we
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obtain: N ξθ(0, t) = 0. Deriving ξ(θ, t) in Eq. (B.5) we get:

ξθ = χθ(θ, t) exp(iθ/T ) + i
t

T
χ(θ, t) exp(iθ/T ) = χθ exp(iθ/T ) + i

t

T
ξ . (B.7)

At θ = 0, ξ = u̇ and ξθ has to be proportional at uw, which we know is the
other independent function. Therefore

ξθ(0, t) = χθ + i
t

T
u̇ = i

ωb

T

(
T

iωb

χθ +
t

ωb

u̇
)
= i

ω2
b

2π

(
−2π

ω2
b

χθ +
t

ωb

u̇

)
.

Comparing with Eq. (B.4) we obtain

ξθ(0, t) = i
ω2
b

2π
uw. (B.8)

The following step is to express the curvature Eθθ of the band E(θ) at (θ, E) =
(0, 0) in terms of u and its derivatives. Let us derive Eq. (B.2) twice with
respect to θ, we obtain:

N ξθθ = Eθθ ξ + 2Eθ ξθ + E ξθθ ⇒ N ξθθ = Eθθ u̇ at θ = 0 . (B.9)

Multiplying to the right by u̇ and integrating a period we get

Eθθ

∫ T

t=0
u̇2 dt =

∫ T

t=0
u̇N ξθθ dt . (B.10)

For any pair of functions f(t) and g(t)

∫ T

t=0
fN g=

∫ T

t=0
(f g̈ + f V ′′ g) dt = [f ġ]Tt=0 − [ḟ g]Tt=0 +

∫ T

t=0
(gf̈ + g V ′′ g) dt

= [f ġ]Tt=0 − [ḟ g]Tt=0 +
∫ T

t=0
gN f dt .

Applying the latter equation:

∫ T

t=0
u̇N ξθθ dt = [u̇ ξ̇θθ]

T
t=0 − [ü ξθθ]

T
t=0 +

∫ T

t=0
(ξθθ N u̇) dt . (B.11)

Using that N u̇ = 0, u̇(0) = u̇(T ) = 0 and ü(0) = ü(T ) the previous equation
leads to ∫ T

t=0
u̇N ξθθ dt = −ü(T ) (ξθθ(0, T )− ξθθ(0, 0)) . (B.12)

To calculate the last difference, let us derive Eq. (B.7) with respect to θ. We
obtain
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ξθθ = χθθ exp(iθt/T ) + i
t

T
χθ exp(iθt/T ) + i

t

T
ξθ

= χθθ exp(iθt/T ) + i
t

T
(ξθ − i

t

T
ξ) + i

t

T
ξθ

= χθθ exp(iθt/T ) + 2i
t

T
ξθ +

t2

T 2
ξ

⇒ ξθθ = χθθ + 2i
t

T
ξθ +

t2

T 2
u̇ at θ = 0 .

χ and therefore χθθ are T–periodic functions, therefore ξθθ(0, 0) = χθθ(0, 0) =
χθθ(0, T ) and ξθθ(0, T )− ξθθ(0, 0) = 2i ξθ(0, T ) . Then

∫ T

t=0
u̇N ξθθ dt = −ü (2iξθ(0, T )) =

∂H

∂u(T )
2i (i

ω2
b

2π
uw(T )) = −ω2

b

π

dH

dωb

.

Substituting in Eq. (B.10), and naming the action I =
∫ T
t=0 u̇

2 dt we finally
obtain at θ = 0:

Eθθ(0) = −ω2
b

πI

dH

dωb

. (B.13)

I is always positive, therefore, if the potential is hard ( dH/ dωb > 0), the
curvature Eθθ is negative and the band is tangent to the axis E = 0 from
below, if it is soft ( dH/ dωb < 0) the curvature is positive and the band is
tangent form above, as we wanted to demonstrate.

Note that this demonstration is also valid for the whole coupled system with
the obvious changes: u → [u1, . . . , uN ]

†; V (u) → V (u) + εW (u), W (u) being
the coupling potential; V ′(u) → [∂V/∂u1, . . . , ∂V/∂uN ]

†; V ′′(u) the matrix
with elements ∂2V/∂un∂um and analogously. We also need the additional con-
straint that the solution u(t) is chosen time–symmetric and that the pair
of eigenvalues with θ = 0 is isolated. This means that the band tangent at
(θ, E) = (0, 0) continues having the same curvature properties depending on
the hardness/softness of the potential
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