
Geometric Optimization for

Classification Problems

Pablo Pérez Lantero

2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51387982?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Universidad de Sevilla
Escuela Técnica Superior de Ingenieros

Dpto. Matemática Aplicada II

Geometric Optimization for

Classification Problems

Memoria de tesis doctoral presentada por

Pablo Pérez Lantero para optar al grado de

Doctor en Matemáticas por la Universidad de Sevilla

Director: José Miguel D́ıaz-Báñez

Sevilla, Abril de 2010

Universidad de Sevilla

Memoria de tesis doctoral para optar al grado de

Doctor en Matemáticas

Autor: Pablo Pérez Lantero

T́ıtulo: Geometric Optimization for Classification Problems

Departamento: Matemática Aplicada II

V◦ B◦ Director:
José Miguel D́ıaz-Báñez

El autor:
Pablo Pérez Lantero

A mis padres,
a Diana.

Acknowledgements /

Agradecimientos

First of all, I would like to thank José Miguel Dı́az-Báñez for being my
advisor. Throughout these years, he has provided me with guidance in
research, valuable knowledge, and financial support. I am indebted to him.

I give thanks to Inma Ventura for being an excellent partner. We spent a
lot of time discussing problems, writing results, and reviewing papers.

I am grateful to have collaborated with Jorge Urrutia, Sergey Bereg, and
Sergio Cabello. They let me share part of their wisdom and experience in
Computational Geometry and Algorithms. I also give thanks to everyone
else whom I have worked with in open problem workshops.

I would like to show my gratitude with the invitations of: Jorge Urrutia to
the UNAM, Sergio Cabello to the University of Ljubljana, Clemens Hue-
mer to the Universitat Politècnica de Catalunya, and Leslie Bajuelos to the
University of Aveiro.

I acknowledge the projects MEC MTM2006-03909 and MEC MTM2009-
08652 for offering me the problems of this thesis, and, of course, the collab-
oration project MAEC-AECID of Spain for giving me the scholarship.

Gracias a los miembros del Departamento Matemática Aplicada II de la
Universidad de Sevilla por todo su apoyo, especialmente a Santigo, Soledad,
Mari Carmen, Juan Antonio, Julio, Emilio, y por supuesto, Miguel. Gracias
a la Universidad de La Habana por mi formación.

Gracias a toda mi familia y a todos mis amigos por el apoyo brindado. Estaré
eternamente agradecido de mis padres por ser lo que son, excelentes padres,
y sobre todo, por soportar la distancia y alentarme desde lejos. Agradezco a
mi esposa, con todo el orgullo de poder hacerlo, por toda su entrega, amor,
compañ́ıa, y el sustento que me ha dado durante mis estudios.

Contents

Abstract, Resumen 5

1 Introduction 9

1.1 Computational Geometry . 9

1.2 Geometric Optimization . 10

1.3 Data Mining and Classification 10

1.4 Overview, related work and motivation 11

1.4.1 Notation . 17

1.5 Contribution of this Thesis 18

1.5.1 Chapter 2: Bichromatic Separability with two Boxes . 19

1.5.2 Chapter 3: The Maximum Box Problem for Moving
Points on the Plane 20

1.5.3 Chapter 4: The Class Cover Problem with Boxes . . . 20

1.5.4 Chapter 5: Bichromatic Discrepancy via Convex Par-
titions . 21

1.5.5 Publications . 22

2 Bichromatic Separability with two Boxes 25

2.1 The dynamic MCS-problem 27

2.1.1 The MCS-tree . 27

2.1.2 Conclusions . 32

2.2 Notation and preliminary results 32

2.3 Exact and efficient solution 35

1

2 CONTENTS

2.4 Approximated solution . 40

2.5 The three chromatic case with three disjoint boxes 43

2.6 Generalization and Applications 45

2.6.1 Generalization . 46

2.6.2 Applications . 46

2.7 The problem in three dimensions 51

2.8 Conclusions and open problems 56

3 The Maximum Box Problem for Moving Points on the Plane 59

3.1 The KDS framework . 60

3.2 The static version of the Maximum Box Problem 62

3.2.1 The Smallest-Area Maximum Box Problem 65

3.3 The Maximum Box Problem for moving points 65

3.3.1 A particular case . 74

3.4 The Arbitrarily Oriented Maximum Box Problem 75

3.5 An approximation approach 78

3.5.1 Dynamic operations 79

3.5.2 The approximated KDS 81

3.6 Conclusions and open problems 84

4 The Class Cover Problem with Boxes 87

4.1 Hardness . 88

4.2 A simple approach . 90

4.3 Related results . 92

4.4 Solving particular cases . 94

4.4.1 Covering with horizontal and vertical strips 94

4.4.2 Covering with half-strips in one direction 96

4.4.3 Covering with half-strips 99

4.4.4 Covering with vertical half-strips 103

4.5 Covering with squares . 104

CONTENTS 3

4.6 The disjoint version . 106

4.7 Conclusions and further research 108

5 Bichromatic Discrepancy via Convex Partitions 111

5.1 Basic properties . 113

5.2 Point sets in convex position 115

5.2.1 Two maximum weight problems on circular sequences 117

5.2.2 Computing the discrepancy of point sets in convex
position . 119

5.3 Point sets in general position 120

5.4 Partitions with a line . 123

5.4.1 Hardness . 127

5.4.2 The Weak Separator problem 129

5.5 Conclusions and further research 129

5.6 Appendix . 131

Bibliography 133

Abstract

Data Mining is a relevant discipline in Computer Science which its main
goal is to explore data and extract information that is potentially useful
and previously unknown. By using mathematical tools, such as Operation
Research, Statistics, Artificial Intelligence and more recently Computational
Geometry, Data Mining solves problems in many areas where there are big
databases. Within Computational Geometry, the techniques of Geometric
Optimization can be applied to solve many problems in this field. Typically,
problems in Data Mining concern data belonging to two classes, say red and
blue, and mainly appear in important subareas such as the classification of
new data and the recognition of patterns.

This thesis focuses on the study of optimization problems with application
in data classification and pattern recognition. In all of them, we are given
a two-class data set represented as red and blue points in the plane, and
the goal is to find simple geometrical shapes meeting some requirements for
classification. The problems are approached from the Computational Geom-
etry point of view, and efficient algorithms that use the inherent geometry
of the problems are proposed.

A crucial problem in Data Mining is the so-called Maximum Box Problem,
where the geometrical shape to be found is a maximum box, that is, an
axis-aligned rectangle containing the maximum number of elements of only
one class in the given data set. This thesis solves some natural variants of
this basic problem: by considering two boxes (one per class), the minimum
number of boxes to cover a class, or the maximum box problem for kinetic
scenarios. Commonly, classification methods suppose a good data distribu-
tion, so a clustering procedure can be applied. However, if the classes are
well mixed, a clustering for selecting prototypes that represent a class is not
possible. In that sense, this thesis studies a new parameter to measure, a
priori, if a given two-class data set is suitable or not for classification.

5

Resumen

La Mineŕıa de Datos es una importante disciplina dentro de la Ciencia de
la Computación cuyo objetivo es la exploración de datos para extraer in-
formación potencialmente útil y previamente desconocida. Usando técnicas
matemáticas como la Investigación Operativa, la Inteligencia Artificial, y
más recientemente la Geometŕıa Computacional, la Mineŕıa de Datos está
resolviendo problemas en muchas áreas donde hay grandes bases de datos.
En el marco de la Geometŕıa Computacional, las técnicas de Optimización
Geométrica pueden ser aplicadas en la resolución de muchos problemas en
este campo. Comúnmente, los problemas en Mineŕıa de Datos están vincula-
dos a datos de dos clases, rojos y azules, y aparecen en importantes subáreas
como la clasificación de nuevos datos y el reconocimiento de patrones.

En esta tesis se estudian problemas de optimización con aplicaciones en clasi-
ficación de datos y reconocimiento de ratrones. En ellos tenemos datos de
dos clases representados por puntos rojos y azules en el plano, y consisten en
buscar objetos geométicos simples cumpliendo propiedades de optimización.
Los problemas son enfocados desde la óptica de la Geometŕıa Computa-
cional, y se presentan algoritmos que usan su inherente geometŕıa.

Un problema importante en la Mineŕıa de Datos es el de la Caja Máxima,
donde el objeto a buscar es un rectángulo con lados paralelos a los ejes coor-
denados que contiene el máximo número de puntos de una sola clase. En esta
tesis se resuelven algunas variantes de este problema considerando: dos cajas
(una para cada clase), el mı́nimo número de cajas para cubrir una clase, o el
mantenimiento de la máxima caja para puntos en movimiento. Comúnmente
los metódos de clasificación suponen una buena distribución de los datos,
de tal suerte que puede ser aplicado un procedimiento de agrupación. Sin
embargo, si las clases están bien mezcladas, no es posible entonces obtener
una agrupación para seleccionar luego prototipos que representen una clase.
En este sentido, esta tesis estudia un nuevo parámetro para medir a priori
si datos de dos clases son buenos o no para hacer clasificación.

7

Chapter 1

Introduction

The framework of this thesis is the application of the techniques from Com-
putational Geometry, specifically from Geometric Optimization, in order to
efficiently solve, from the mathematical and algorithmic point of view, prob-
lems that arise in application areas such as Data Mining and Classification.
Most of these problems have a geometric modeling which will be used in the
design of the algorithms.

This chapter presents a brief introduction and motivation for the optimiza-
tion problems in Classification, followed by a short description of the main
contributions developed in this thesis and an overview of the organization
into chapters. It serves as an extended abstract for the following chapters.

1.1 Computational Geometry

Computational Geometry focuses on the design and analysis of efficient al-
gorithms for problems whose mathematical representation is purely geomet-
rical. Computing geometric properties of a set of geometric objects is a
classic problem in Computational Geometry. For example, given a set of
points in the plane compute their convex hull or the nearest pair of points,
given a polygon to obtain one of its triangulations, etc. A deeper goal of
Computational Geometry is the study of the computational complexity that
is inherent to some geometric problems under different models of computa-
tion. For instance, to know if for a specific problem there exists an efficient
computational solution. It is well known, for example, that given a set of
points in the plane, there is no efficient algorithm capable of finding a tour
that visits all points and minimizes the total traveled distance. The hand-
book of Preparata and Shamos [91] is considered as an introductory book

9

10 1. Introduction

to Computational Geometry. A more recent handbook is the one by M. de
Berg et al. [40]. We also cite the handbooks of Goodman and O’Rourke [58]
and Sack and Urrutia [92], which are very useful to know what has been
studied about any topic. Nowadays, Computational Geometry has a wide
area of research with many specialized journals and important worldwide
congress.

1.2 Geometric Optimization

Geometric optimization deals with problems of computing geometric objects
which are optimal subject to certain criteria and geometric constraints. Typ-
ical examples include facility location, low-dimensional clustering, network
design, optimal path planning, shape matching, proximity, and statistical
measure problems. In such cases one expects that faster and simpler algo-
rithms can be developed by exploiting the geometric nature of the problem.
Much work has been done on geometric optimization problems during the
last twenty-five years. Many elegant and sophisticated techniques have been
proposed and successfully applied to a wide range of geometric optimiza-
tion problems. See the paper of Agarwal and Sharir [3] for a comprehensive
survey of these techniques.

1.3 Data Mining and Classification

Data Mining is a relevant discipline in Computer Science whose main goal is
to explore data and extract information that is potentially useful and previ-
ously unknown. By using mathematical tools, such as Operation Research,
Statistics, Artificial Intelligence, and more recently the Computational Ge-
ometry, Data Mining solves problems in many areas where there are big
databases, which occasionally have erroneous data or do not contain a well
defined structure due to out-of-range data. Data Mining has many applica-
tions, for example: in marketing for the segmentation of clients, in banks to
evaluate the risk on credits given to clients and to detect credit cards fraud,
in internet for the mining of web pages and to filter unwanted emails, and
further examples.

One of the basic objectives in Data Mining is the classification of new cases,
that is, to identify members between two different classes of data. For
example, for the diagnosis of cancer, one should be able to discriminate
if new laboratory results of a patient correspond to a benign tumor or to
a malign tumor. Within the classification methods used in Data Mining,

1.4. Overview, related work and motivation 11

two types are distinguished, the unsupervised and the supervised [28, 66].
In the unsupervised classification, the problem consists in partitioning the
data into groups or clusters which are called “classes”. In this way, a new
data is classified according to the nearest cluster by considering a function
of similitude. In the supervised classification, one is given the big database
in which the class or type of each element is previously known. The aim is
to create a method or rule that permits, given a new data, to decide which
class it belongs to. The diagnosis of cancer is an example of supervised
classification. We are given a big historical database of cases, each classified
in benign or malign, and the classification rule says the type of a new tumor.

1.4 Overview, related work and motivation

In this section we give a brief review of the related literature and provide
motivation for each of the problems studied in this thesis.

Suppose we have a database of analysis of a specific type of tumor, to be more
precise, of a particular human body cells. Each data is a numerical vector
of the same dimension, whose components represent the analysis results,
for instance, the uniformity of cells shape, the variability of their size, etc.
In turn, each vector belongs to one class of two possible: benign or malign.
Now, the problem is to build a supervised classification rule, that is, to study
the database and obtain a method which, when the results of a new analysis
are given and represented in the corresponding numerical vector, determine
with high precision in which class the new analysis is. A natural method to
perform this classification is the selection of prototypes that represent data
of different classes. The classification approach for a new data is to find the
most adjusted prototype to it by using a certain function of distance.

A standard classification technique is the analysis of clusters in the training
data [46], which are the database under study. Then, the prototypes are
defined from the clusters. The database, since it consists of numerical vectors
of a fixed dimension d, can be seen from the geometrical point of view as
a set of points in the Rd space. That is why some kind of clusters can
be obtained by using simple geometric objects such as lines, disks, balls,
boxes, strips, etc. For example, Aronov and Har-Peled [10] and Eckstein
et al. [48] considered disks and axis-aligned boxes, respectively. Henceforth,
the training data will be referred to as points. The points of one class will
be colored red and the points of the other class will be colored blue.

A condition on the distribution of the point set that is often handled with

12 1. Introduction

care is its separability. The separation of the points is a natural way to
obtain clusters. The simplest concept of separability is the linear separability
that takes place by using a “line”, that is, if there exists a hyperplane that
leaves the red points to one of its sides and the blue points to the other one.
Assuming that the set of points is linearly separable, a technique frequently
applied is the Support Vector Machine (SVM) [66], that is a robust and
tested methodology for problems of inference and prototype searching. SVM
resides in finding a hyperplane that separates the red points from the blue
points, and maximizes the minimum distance of the points to it (Figure 1.1).
In this sense, the set of red points will form a cluster as will the set of blue
points. Then, the classification method is very simple: if the new data is in
the half-plane (half-space) where the red points are, then it is classified red,
otherwise it is classified blue.

blue points

`

p

q

red points

Figure 1.1: The line ` is the SVM. The minimum distance from the points to ` is
maximized. So the nearest red point p to ` and the nearest blue point q to ` are
equidistant from `.

Another technique that can be applied to linearly separable point sets is the
Perceptron [16]. The appearance of this model was motivated by biological
concepts and is defined as follows: Let x ∈ Rd be the point that is to be
classified. A perceptron, with weights w ∈ Rd and margin γ ∈ R, is the
following classification rule: xw − γ > 0 ⇒ x is red, and xw − γ < 0 ⇒ x

is blue; where xw is the scalar product between x and w. Geometrically
speaking, the perceptron with weights w and margin γ is the hyperplane
xw − γ = 0 that separates the red points from the blue points. Notice that
the SVM is a particular case of a perceptron.

When the points are not separable by a straight line, other concepts of
separation can be considered. For example, in [94] the authors studied the
separation in two dimensions by the use of: a wedge, a strip, a set of wedges,
a set of strips, a set of lines, etc. (Figure 1.2). Moreover, separation with
planes and extensions of their methods in two dimensions are studied in
three dimensions. Another study of separation in R3 can be found in [1],

1.4. Overview, related work and motivation 13

and separation by using a circle in [20, 78]. Additionally, results concerning
separation with convex polygons and simple polygons in the plane can be
found in [14, 49, 53, 88].

a) b) c)

Figure 1.2: Separation with: a) a wedge, b) a strip, y c) two lines.

In some cases, as in medical data analysis [63], classification methods can
produce biased classifications due to defective data or data with values out
of reasonable ranges. In the terminology of Data Mining, those erroneous
data are called outliers. In other cases, we may obtain data hard to classify
because of strong similarities between subsets of different classes. Culling the
minimum number of such points (outlier data) could be a suitable criterion
in order to lose the smallest amount of information possible and the for
classification method to be effective. For example, when the points are not
linearly separable and we insist on using a line (hyperplane) as the pattern
of classification, we could remove the minimum number of points so that
the resulting point set is separable by a line. In this direction, we arrive
at the so-called Weak Separation Problem (Figure 1.3 a)). See [29, 50] for
results in two dimensions. Another useful criterion is to minimize a measure
of the classification errors. Related results can be found in [90], in which the
authors consider four measures of separation with hyperplanes and spheres
in Rd, and give exact and approximated algorithms. The measures used
are: the combinatorial measure (i.e. the number of misclassified points),
the L∞ measure (i.e. the maximum distance of the misclassified points to
the separator object), the L1 measure (i.e. the sum of the distances of the
misclassified points to the separator object), and the L2 measure (i.e. the
sum of the squares of the distances of the misclassified points to the separator
object). Furthermore, modifications to the definition of the Perceptron are
studied in [16] and can be applied in case the linear separability is not
possible. Another example in this scenario is to find two half-planes, one
for each class, which their intersection is a strip of minimum width [80]
(Figure 1.3 b)).

14 1. Introduction

B

R

a) b) c)

`q1 q2

p1

R

B

Figure 1.3: a) The weak separation problem. If the red point p1, and the blue
points q1 and q2 are removed, then the linear separability is achieved by the line `.
b) The half-planes R and B contain the red points and the blue points, respectively,
and the strip R∩B has minimum width. c) The rectangle R (resp. B) contains all
the red (resp. blue) points and best fits their convex hull.

Classification relies on axis-aligned hyper-rectangles (boxes or rectangles
for short) as a main pattern to search clusters and hence prototypes. For
numerical data, rectangles generalize multidimensional points and are a good
approximation to a description of a subset of them [4, 79]. For instance,
in [48, 83] the problem of finding a box containing the maximum number
of blue points without containing a red point is studied; and in [44], the
one of computing a box of maximum bichromatic discrepancy, that is, the
box in which the absolute difference between red and blue points inside it
is maximized. The concept of pattern is used in Logical Analysis of Data
(LAD) [22], and it is generalized by the concept of box [37, 48]. In LAD,
it is claimed that very good patterns for classification of data are maximal
boxes [64]. This approach is strengthened in [48, 83] with boxes containing
the maximum number of data of only one class. Another example is the
use of rectangles not necessarily axis-aligned, named Method of the Hiper-
parallelepiped [80]. The idea of this method is to build a rectangle per class
containing all its points and fitting their convex hull in the best possible way
(Figure 1.3 c)). Most of the optimization problems considered in this thesis
use rectangles as classification patterns.

On the other hand, this thesis deals with the concept of symmetry in the way
red and blue points are treated. We can say that most of the classification
techniques are asymmetric, that is, the goal is to classify one class of points
while the other is discriminated. The aforementioned papers, in which boxes
are used, are examples of asymmetric classification. The work of Aronov and
Har-Peled [10] asks for a d-dimensional sphere that contains the maximum
number of blue points and no red point. This concept can be generalized

1.4. Overview, related work and motivation 15

to the concept of symmetric classification for which a witness set for both
classes is found at the same time. This concept has been applied recently
by Cabello et al. [26]. They studied how to place two unit disks (or squares)
of disjoint interiors, one red and the other blue, so that the number of red
points covered by the red disk, plus the number of blue points covered by
the blue one, is maximized. Chapter 2 of this thesis deals with a problem
of symmetric classification with two boxes.

Another example of asymmetric classification is the covering of one class
by using the minimum number of shapes of a given type, but avoiding the
elements of the other class (Figure 1.4). In this way, only one class is clas-
sified, say the blue class represented by the point set B, and discriminating
the other, the red class R. This problem is known in literature as the Class
Cover Problem. For example, in [27, 41, 84], the problem of obtaining a
smallest set of disks centered at blue points, such that their union covers all
the blue points and avoids the red ones, is studied. In [84], the authors pro-
pose a simple classifier. Once two sets of disks DB and DR with the above
properties are given, the classifier does the following: Given a new data z, if
z is covered by a disk in DB and by no disk in DR, then z is classified blue.
Otherwise, if there is a disk in DR that covers z and no disk in DB that
covers z, then z is classified red. Moreover, if z is covered by both a disk in
DB and a disk in DR, then z is pre-classified “ambiguous”, otherwise z is
not covered by any disk and is pre-classified “outlier”. Following this, if z is
“ambiguous” or “outlier”, then it is finally classified red or blue according
to the closest disk to z (by using a scaled distance function) in DR or in
DB. Theoretical results related to the class cover problem can be found
in [9, 24, 87]. Chapter 4 deals with a non-constrained Class Cover Problem
with boxes.

a) b)

Figure 1.4: Covering the blue class: a) with boxes, b) with disks.

In many applications, data are given in a dynamic scenario. For instance, in

16 1. Introduction

fixed wireless telephony access and driving assistance, detection and recog-
nition of patterns for moving objects are key functions [21]. In fact, with
the continued proliferation of wireless communication and advances in po-
sitioning technologies, algorithms to efficiently solve optimization problems
about large populations of moving data are gaining interest. New devices
offer companies an opportunity of providing a diverse range of e-services,
many of which will exploit knowledge of the user’s changing location. This
results in new challenges to database and classification technology in order
to model, index, and query moving objects [23, 33, 96, 97]. For more in-
formation about real applications of databases with moving objects see [5]
and the references therein. In fact, Computational Geometry’s techniques
can be applied in classification problems under dynamic scenarios. Dynamic
Computational Geometry studies the combinatorial changes in a geometric
structure when its defining objects move according to prescribed motions.
For example, given points on the plane moving by straight lines and with
known constant velocities, compute the instant of time in which the dis-
tance of the two furthest points is minimum. Those kind of problems were
introduced in [11], and other problems that arise from collision detection or
minimum separation can be found in [62, 93].

One area of research within the Computational Geometry is the design of
efficient data structures that maintain certain attributes of a set of contin-
uously moving objects. These structures are known as Kinetic Data Struc-
tures and they were introduced by Basch et al. [13]. Definitions and results
can be found in [5, 13, 60, 61]. Essentially, a kinetic data structure (KDS)
for a geometric attribute, is a collection of simple geometric relations that
certifies the combinatorial structure of the attribute, as well as a set of
rules to repair the attribute and its certifying relations once one relation
fails because of the motion [5, 60]. The KDS framework can be applied in
many problems concerning extent, proximity, collision detection, connectiv-
ity, clustering, etc. of moving objects [60]. In some problems, it is possible
that in certain periods of time the attribute of interest might be not needed.
For example, given a set of moving points on the plane, find which points
are inside a fixed rectangle during only a given period of time. In those
cases, a mixture of kinetic and static techniques can be applied [60].

Motivated by recent advances in mobile computing and telecommunications,
we are interested in the application of the KDS framework to cluster in
classification problems over moving data. Chapter 3 is dedicated to solving
a geometric optimization problem in this context.

1.4. Overview, related work and motivation 17

Finally, we show the motivation for the problem studied in Chapter 5. In
database management systems, clustering is often an initial stage for data
classification [65]. Suppose we have a set of points, each point classified
red or blue, and we want to know if it is possible to divide the set into big
monochromatic groups. In this case, we could run a clustering procedure to,
for example, use the clusters as a training set in data classification. However,
it is not possible if the colored points are blended or uniformly distributed,
and then we could say that the given data set is not suitable to be a training
set. Moreover, we have seen that the classification methods depend on the
distribution of points, which determines the effectiveness of the classification
pattern used. For example, a configuration of points that is good (if fact,
the best) for classification is when the point set admits linear separability.
On the other corner, the worst case might be when the red and blue points
are “well mixed or blended”. Intuitively speaking and in order to exemplify,
a bicolored set of points in the plane is “suitable” for classification if, at
a glance, one can detect clusters formed by many red points and a few
blue points, and vice versa (Figure 1.5 a)). On the contrary, we say that
a set of points is “unsuitable” for classification when the mixture of red
and blue points is high and those clusters are not observed (Figure 1.5 b)).
Currently, it is unknown in literature a criterion that allows us to classify a
set of points in “suitable” or “unsuitable” for classification, depending of a
parameter that measures how much blended the points are. A proposal to
meet this concept is presented in Chapter 5.

a) b)

Figure 1.5: a) A “suitable” set for classification, b) a “unsuitable” set for classifi-
cation.

1.4.1 Notation

Unless otherwise specified, the following terminology is used in this thesis.

Given two sets X and Y , we will denote by X \ Y the set that is obtained

18 1. Introduction

by removing from X the set X ∩Y . If X is finite, we will denote by |X| the
cardinality of X. We also say that X and Y are disjoint if they do not have
elements in common, that is, if X ∩ Y is the empty set.

In this thesis, S = R∪B will always denote a set of n points on the plane in
general position whose elements are colored either red (the elements of R),
or blue (the elements of B). We will assume that R and B are non-empty
and have r and b elements respectively. In the figures, red points are always
represented by solid dots, and blue points by circles.

Given X, Y ⊂ R2, Red(X) (resp. Blue(X)) denotes the subset of red (resp.
blue) points of S that belong to X. We say that X is Y -empty if X does
not contain any element of R. We denote as x(p) (resp. y(p)) the abscissa
(resp. ordinate) of the point p.

We use the common notation O(f(n)) and Ω(f(n)) (and also o(f(n))) to
denote the worst case asymptotic upper and lower bounds, respectively.
Standard definitions can be found in [35].

1.5 Contribution of this Thesis

In this thesis we study some optimization problems concerning data mining
and pattern recognition. By using a geometric modeling, we explore the
implicit geometry to efficiently solve the problems from an algorithmic point
of view. In some cases, we establish and prove combinatorial and hardness
results.

We focus on two-dimensional problems of interest in the classification area.
It is worth noticing that, although typically data mining operates with
database of points in a multidimensional space, the most famous procedure
in classification, the SVM approach, appeared from the geometric inter-
pretation of the classification problem in two dimensions. From the SVM
approach, the Computational Geometry techniques began to be applied in
Classification, Computer Learning, and Data Mining [16]. In this way, in-
tuitive geometric interpretations of the problems, even in two dimensions,
generate interesting methods to be generalized to high dimensions. More-
over, although the running time of the efficient geometric solutions grows
exponentially with the dimension, it is possible to obtain efficient algorithms
in high dimensions, if we are satisfied with approximated answers. See for
example [72], where the authors give efficient approximation algorithms for
geometric problems in high dimensions whose running times have polynomial
dependence on the dimension and sublinear or subquadratic dependence on

1.5. Contribution of this Thesis 19

the number of input points.

This section highlights the major contributions of my thesis research. It also
provides a summary of the organization of material into chapters.

1.5.1 Chapter 2: Bichromatic Separability with two Boxes

Inspired by the concepts of symmetric classification and erroneous data, we
study the problem of, given a bicolored set of n points on the plane, finding
two axis-aligned boxes (a red box and a blue box) such that the number of
red points that are in the red box and not in the blue box, plus the number
of blue points in the blue box that are not in the red, is maximized. This
problem is called the 2-EB-problem (2-Enclosing Boxes problem). We solve
this problem in O(n2 log n) time, for which the key idea is to dynamically
solve instances of the one-dimensional Bentley’s problem. The problem of
Bentley, the maximum subsequence problem, is well known in Computer
Science, and is the problem of finding the interval of maximum weight in a
given sequence of weighted elements [17]. To our knowledge, the dynamic
version of this problem has not been considered before. The dynamic version
solved in this thesis is the computation of the solution once the weight of one
element is modified, and we prove that it can be done in O(log n) time. In
order to achieve this, we provide the first known data structure, the MCS-
tree, to solve this problem. The MCS-tree is a powerful and simple data
structure that uses linear memory. It can be generalized and used to give
efficient solutions to a collection of problems in classification. Moreover,
we hope this tool can be useful to efficiently solve many other problems
in Computer Science. A basic problem we solve by using MCS-tree is the
following: Given a set of weighted points on the plane, find an axis-parallel
box such that the sum of the weights of the points contained in the box is
maximized. This problem, named The Maximum Weighted Box problem,
can be solved in O(n2 log n) time and O(n) space. Two related problems
concerning bicolored point sets are particular cases. The first one is to find a
box containing the maximum number of blue points and no red point, which
is solved in O(n2 log n) time and O(n) space, matching the result of [83].
The second problem is to find a box of maximum bichromatic discrepancy,
that is, the box such that the absolute difference between red an blue points
inside it is maximum. We give an O(n2 log n)-time and O(n)-space solution,
that matches the result given in [44]. Another problem solved concerns
points colored red, blue, or green. The problem consists in finding three
axis-parallel disjoint boxes such that the number of red points inside the

20 1. Introduction

first box, plus the number of blue points inside the second one, and plus
the number of green points inside the third one, is maximized. An efficient
O(n log n)-time solution is given due to the use of the MCS-tree. This tool
is also used to solve our main problem in three dimensions. By reducing the
three-dimensional problem to instances in the plane, we provide an algorithm
that runs in O(n4 log n) time and uses O(n) space. Other applications of
the MCS-tree are given in this chapter.

1.5.2 Chapter 3: The Maximum Box Problem for Moving

Points on the Plane

Finding a pattern that contains a maximum number of data of one class but
avoiding the other is a key operation in data mining and pattern recogni-
tion. One example is the aforementioned Maximum Box problem, that is
to compute an axis-aligned box (the maximum box) with above condition.
This problem has been studied in the cited literature [48, 83] in the static
version, that is, data has no movement. As we have mentioned in the above
Section, in some real applications data are given in a dynamic scenario. Due
to this, we state the problem of maintaining the maximum box over a bi-
colored point set such that its elements move according known continuous
trajectories. The solution proposed in this chapter is a compact and local
Kinetic Data Structure (KDS) [5, 13, 60, 61] that allows us to update the
maximum box in O(r log r + r log b + b) time once two points change the
x- or the y-order, where r and b are the number of red and blue points,
respectively. The KDS has space complexity O(r2 + rb) and can be built
in O(r2 log r + r2 log b + rb log b) time. The static version of the problem,
in which the box is not necessarily axis-parallel, is an open problem in [10],
and by using our KDS, we present the first nontrivial solution that runs
in O((r + b)2(r log r + r log b + b)) time. In order to reduce the quadratic
space of our KDS, we propose an extension that permits the maintenance
of an approximated maximum box that contains at least half of the points
contained by the optimal one. This new KDS uses O((r+b) log r) space and
can be built in O(r log2 r + (r + b) log r log b)) time. Each time two points
change either their x- or y-order, the solution is updated in O(r + b) time
in the worst case.

1.5.3 Chapter 4: The Class Cover Problem with Boxes

In this chapter we study the Class Cover problem with boxes, that is, given
a set of bicolored points on the plane, find a smallest set of open axis-parallel

1.5. Contribution of this Thesis 21

rectangles (boxes) which cover all blue points but avoiding red points. We
prove the NP-hardness of this problem by a reduction from the Rectilinear
Polygon Covering problem [38, 85]. We show that an optimal solution has
at most min{r + 1, b} boxes, where r and b are the number of red and blue
points, respectively; and based on this, we present a very simple algorithm
that runs in O(min{r2r+3b, r2bb2}) time and has good performance if either r

or b is small. We review the theory of ε-nets, which has strong applications to
our problem [24, 34, 68, 101], and show that the non-constrained class cover
problem admits an O(log c)-approximation, where c is the size of an optimal
covering. In case the covering boxes are axis-aligned rectangles there exists
an O(1)-approximation. Due to the hardness of our problem, we consider
the problem for special types of boxes. Firstly, if the covering rectangles are
axis-parallel strips we prove the problem is polynomially solvable and give
an exact algorithm running in O(r log r + b log b +

√
rb) time. In the case

in which the boxes are half-strips oriented in one direction, we present an
algorithm that solves the problem in O((r+ b) log min{r, b}) time. However,
if the covering boxes are half-strips in the four possible directions, then the
problem remains NP-hard, and we prove this by a reduction from the 3-
SAT-problem [57]. By using results in [34], we show that in this case there
exists a O(1)-approximation algorithm. To this point, we are unable, in case
the rectangles are vertical half-strips, to give either a polynomial-time exact
algorithm or a hardness proof. Nevertheless, we provide a 2-approximation
approach and leave the problem to further research. We also show that the
version in which the covering boxes are axis-aligned squares is NP-hard by
a reduction from the problem of covering a binary image with the minimum
number of squares [12]. In the definition of the class cover problem we
always allow intersection of the covering boxes. It is also proven in this
thesis, by reducing from the planar 3-SAT-problem [81], that our problem
remains NP-hard even if the boxes are pairwise disjoint. In this case there
exists an O(1)-approximation algorithm due to results in [88, 89].

1.5.4 Chapter 5: Bichromatic Discrepancy via Convex Par-

titions

In database management systems, clustering is often an initial stage for
data classification [65]. Sometimes, the clustering is obtained by dividing
the points (data) into big monochromatic groups. However, it is not possible
if the colored points are blended or uniformly distributed. In this chapter
we introduce a new parameter, which is called discrepancy of a point set, to
measure how mixed (or more precisely blended) a two-class point set is. Let

22 1. Introduction

R be a set of red points and B a set of blue points on the plane. Let X ⊆ S,
and∇(X) = ||X∩R|−|X∩B||. We say that a partition Π = {S1, S2, . . . , Sk}
of S is convex if the convex hulls of its members are pairwise disjoint. The
discrepancy of a convex partition Π of S is the minimum ∇(Si) over the
elements of Π and then the discrepancy of S, d(S), is the discrepancy of
the convex partition of S with maximum discrepancy. We prove several
combinatorial properties of the discrepancy, and provide a complete charac-
terization of discrepancy if R and B are linearly separable. Concretely, we
show that: d(S) = min{r, b} if the cardinality of the majority color in S is
less than twice the minority one, and d(S) = |r − b|, otherwise. If the ele-
ments of S are in convex position, we obtain that d(S) = maxk=1,2,3 dk(S),
where dk(S) is the discrepancy of S if we restrict to convex partitions of S

with exactly k elements. This result implies that the discrepancy of points
in convex position can be computed in polynomial time. In fact, we give
an efficient O(n log n)-time algorithm. The key idea to efficiently solve the
problem is a reduction to instances of problems concerning circular sequences
of weighted elements, which are of interest by themselves.

The problem of determining the discrepancy of point sets in general position
seems to be non-trivial. Nowadays, we are unable to even characterize point
sets with discrepancy one. It is worth noticing that if d(S) is large with
respect to the cardinality of S, then there exists an optimal convex partition
of S with few elements. However, for point sets with small discrepancy, the
minimum cardinality of an optimal convex partition can be small or large.

We also study the particular case in which the discrepancy of S is induced
by partitions of S with a straight line (i.e. the linear discrepancy), and
we provide exact combinatorial lower and upper bounds of the value of
discrepancy. Furthermore, we show that computing the linear discrepancy
is 3SUM-hard [55] and give an O(n2)-time algorithm. Additionally and as
a consequence, we prove that the well-known Weak Separator problem [29,
50, 70] belongs to the 3SUM-hard class as well.

1.5.5 Publications

Most of the results of this thesis can be found in the following papers:

• C. Cortés, J. M. Dı́az-Báñez, P. Pérez-Lantero, C. Seara, J. Urrutia,
and I. Ventura. Bichromatic separability with two boxes: a general
approach. Journal of Algorithms. Cognition, Informatics and Logic.
Vol. 64, No. 2–3, pp. 79–88, 2009.

1.5. Contribution of this Thesis 23

• S. Bereg, J. M. Dı́az-Báñez, P. Pérez-Lantero, and I. Ventura. The
Maximum Box Problem for moving points in the plane. Journal of
Combinatorial Optimization. Published online, 2010.

• S. Bereg, S. Cabello, J. M. Dı́az-Báñez, P. Pérez-Lantero, C. Seara,
and I. Ventura. The Class Cover Problem with Boxes. In Proc. 26th
European Workshop on Computational Geometry. Dortmund, 2010.

• S. Bereg, J. M. Dı́az-Báñez, D. Lara, P. Pérez-Lantero, C. Seara,
and J. Urrutia. Bichromatic Discrepancy Via Convex Partitions. In
Proc. XIII Encuentros de Geometŕıa Computacional. pp. 259–265,
Zaragoza, Spain, 2009.

Chapter 2

Bichromatic Separability

with two Boxes

Motivated by the concepts of red-blue separation and outlier data, shown
in the introductory chapter, we state the following problem of symmetric
classification by using two boxes, one to “cover” red points and the other to
“cover” blue points. It is as follows:

The Two Enclosing Boxes problem (2-EB-problem): Let S be a set
of n points on the plane in general position such that the points are colored
red or blue. Compute two open axis-aligned rectangles R and B in such a
way the number of red points in R\B plus the number of blue points in B\R
is maximized.

We notice here that in the definition of our problem we require R and B
to be open. This will facilitate our presentation, but in practice we may
proceed in a similar way if our boxes are closed. Observe that R and B may
intersect and that any point in R∩ B is not counted. The 2-EB-problem is
equivalent to removing from S the minimum number of points (i.e. points
considered outliers) so that the intersection between the minimum enclosing
box of the red points, and the minimum enclosing box of the blue ones, is
S-empty. For example, the solution to the 2-EB-problem for the point set S

illustrated in Figure 2.1 a) is n− 2, where n is the cardinality of the input
set. By removing p and q from S, we can obtain two rectangles R and B,
each of them containing only red and blue points, respectively, and with no
point in their intersection.

Notice that an asymmetric separation approach as the one used by Aronov
and Har-Peled [10] does not give a solution to our problem (Figure 2.1 b)),

25

26 2. Bichromatic Separability with two Boxes

so we must design a procedure which consider R and B simultaneously. Be-
spamyatnikh and Segal [19] studied a two-box covering problem but using a
different min-max criterion. They find two axis-parallel boxes that together
cover a given set of points in such a way the measure of the largest box is
minimized, where the measure is a monotone function of the box.

R

B

p
q

a)

R′

B′

b)

S S

Figure 2.1: a) A solution to the 2-EB-problem for the point set S is given by the
boxes R and B, and is equal to n− 2, where n is the cardinality of S. The points p

and q do not count in the solution. b) For the same set of points S, a B-empty box
R′ containing the maximum number of red points, and an R-empty box B′ that
contains the maximum number of blue points, do not form a solution.

The 2-EB-problem was first introduced by Cortés et al. [36], solving the
problem with an O(n3)-time and space algorithm. In this chapter we show
that the 2-EB-problem can be solved in O(n2 log n) time and O(n) space.
We also introduce a new data structure that allows us to dynamically solve
Bentley’s [17] well-known Maximum-Sum Consecutive Subsequence problem
(MCS-problem for short) together with some other variants of this problem
that have applications, for instance, in sequence analysis in Bioinformat-
ics [6, 32, 51, 71, 82]. We also show a generalization of our approach that
can be used to solve a general type of problem which is of interest in areas
such as computer graphics or machine learning [42, 43, 44, 45].

The outline of this chapter is as follows: In Section 2.1 we introduce a data
structure, the MCS-tree, to dynamically maintain an optimal solution of the
MCS-problem. In Section 2.2 we introduce some notation and present the
first results on the 2-EB-problem. In Section 2.3 we show our main result, an
O(n2 log n)-time and linear-space algorithm that solves the 2-EB-problem.
In Section 2.5 we show how to solve the following related problem: Let S

be a set of points on the plane in general position such that each element
of S is colored red, blue, or green. Find three pairwise-disjoint axis-aligned
rectangles R, B, and G such that the total number of red, blue, and green
points contained in R, B, and G respectively is maximized. In Section 2.6

2.1. The dynamic MCS-problem 27

we present a generalization of our technique and show how to apply it to
several variants of the original problem. In Section 2.7 we show how to solve
the 2-EB-problem in three dimensions in O(n4 log n) time and O(n) space.
Finally, in Section 2.8, we present the conclusions and state future work.

2.1 The dynamic MCS-problem

In this section we describe the main tool that will allow us to solve the 2-
EB-problem in O(n2 log n) time and O(n) space. Later we show how this
technique can be applied to other variants of the same problem. The key
idea to solve the 2-EB-problem is a reduction to the computation of some
dynamic instances of the following one-dimensional Bentley’s problem [17]:

The Maximum-Sum Consecutive Subsequence problem (MCS-
problem): Given a sequence X = (x1, x2, . . . , xn) and a real weight func-
tion w over its elements where for each i, w(xi) is not necessarily positive,
find the consecutive subsequence (xi, xi+1, . . . , xj) of X such that w(xi) +
w(xi+1) + · · ·+ w(xj) is maximum.

Next we show how to construct a binary tree, the MCS-tree, that allows us to
solve the MCS-problem in a dynamic way. The MCS-tree is the first known
data structure in literature that dynamically solves the MCS-problem.

2.1.1 The MCS-tree

The MCS-tree is a balanced binary tree with n leaves representing the se-
quence X = (x1, x2, . . . , xn). Assume that n is a power of two, other-
wise add a few elements with negative weights at the end of the sequence
X = (x1, . . . , xn) until we get a sequence of 2k elements, n < 2k < 2n.

The k-th leaf (from left to right) represents xk. Each internal node u rep-
resents the consecutive subsequence formed by the descendants (leaves) of
u. At each node u of the MCS-tree, we store some values, one of which will
be the weight of the maximum weight consecutive subsequence contained in
the subsequence of X defined by the descendants of u. The root vertex will
have the solution of the MCS-problem.

Because we focus on the indexes of the first and the last elements of a
subsequence, we use the term interval [xi, xj] to denote the consecutive
subsequence (xi, xi+1, . . . , xj), 1 ≤ i ≤ j ≤ n (Figure 2.2).

We build the MCS-tree as follows: Each node u stores the following intervals,
as well as their weights, that is, the sum of the weights of their elements:

28 2. Bichromatic Separability with two Boxes

x1 x2 x3 x4 x5 x6 x7 x8

u
v

root

Figure 2.2: The MCS-tree for a sequence of 8 elements. The nodes u, v, and root

represent the intervals [x1, x2], [x5, x8], and [x1, x8], respectively.

1. I(u): The interval formed by the descendants of u. If u is a leaf
representing xi, I(u) = [xi].

2. L(u): The interval of maximum weight sum contained in I(u) that
contains the leftmost element of I(u). If all the intervals in I(u) con-
taining the leftmost element of I(u) have negative weight, set L(u) = ∅
and its weight to 0.

3. R(u): The interval of maximum weight sum contained in I(u) that
contains the rightmost element of I(u). If all the intervals in I(u)
containing the rightmost element of I(u) have negative weight, set
R(u) = ∅ and its weight to 0.

4. M(u): The interval of maximum weight sum that is a subinterval of
I(u). If all the intervals in I(u) have negative weight, set M(u) = ∅
and its weight to 0.

Observe that, if u is the root of the MCS-tree, then I(u) is [x1, xn]. L(u),
R(u), and M(u) are respectively the intervals of the form [x1, xi], [xj , xn],
and [xi, xj] with maximum weight sum.

Note that in each node we only store the indexes of the first and last elements
of each of the above intervals as well the weight sum of its elements, and
the implicit references to the two children of the node and to the parent. It
means that the total used memory for each node is constant. Hence, since
there are 2n − 1 nodes in total (i.e. n leaves plus n − 1 interior nodes) the
total memory used by the MCS-tree is O(n).

Let u be an internal node of the MCS-tree, and let v1 and v2 be its left and
right children, respectively. It is clear that if we have the values for I(v1),
I(v2), L(v1), L(v2), R(v1), R(v2), M(v1), and M(v2), then we can calculate
in constant time each of the values of I(u), L(u), R(u), and M(u). Notice
that for M(u) there are three possible cases:

2.1. The dynamic MCS-problem 29

(i) M(u) is contained in I(v1).

(ii) M(u) is contained in I(v2).

(iii) M(u) overlaps both of I(v1) and I(v2).

Thus, M(u) = M(v1), M(u) = M(v2), or M(u) = R(v1)∪L(v2) respectively
(Figure 2.3). We choose M(u) to be the interval of maximum weight among
M(v1), M(v2), and R(v1)∪L(v2). Similarly L(u) is the interval of maximum
weight among L(v1) and I(v1)∪L(v2), and R(u) is the interval of maximum
weight among R(v1) ∪ I(v2) and R(v2).

(i)

(ii)

(iii)

v1 v2

M(v1)

M(v2)

R(v1) L(v2)

u

Figure 2.3: The three possible cases for M(u). The nodes v1 and v2 are the left
child and right child of u respectively. The node v1 represents the first half of the
subsequence represented by u, and v2 represents the second half.

If a leaf xi of the MCS-tree has negative weight w(xi), then L(xi) = ∅,
R(xi) = ∅ and M(xi) = ∅. Otherwise L(xi) = [xi], R(xi) = [xi] and
M(xi) = [xi]. By using these values for the leaves of the MCS-tree and
a standard bottom-up traversal [35, 76], we can calculate L(u), R(u), and
M(u) for all the nodes u of the tree in linear time.

For more details we can see Algorithm 1 that builds a node of the MCS-tree.
Denote by MaxW{I1, I2, . . . , Ik} the interval of maximum weight among
the intervals I1, I2, . . . , Ik. By left(u), right(u) and parent(u) we denote
respectively the left child, right child and parent of the node u.

Note that all the nodes in the MCS-tree whose represented subsequence
contains a given leaf xi are those in the path from xi to the root. Therefore,
if the weight w(xi) of a leaf xi changes, the MCS-tree can be updated in a
bottom-up traversal from xi to the root, and thus the weight of the maximum
weight consecutive subsequence, as well its weight value, are recalculated in
O(log n) time. The complexity follows because the height of the MCS-tree
is O(log n) since it is a complete balanced tree with n leaves [76].

Moreover, for a given xi ∈ X, by traversing from xi to the root, the MCS-
tree structure allows us to obtain in O(log n) time: (i) the optimal interval

30 2. Bichromatic Separability with two Boxes

Algorithm 1 Construction of the node u of the MCS-tree
if u is a leaf then

I(u)← [u]
if w(u) < 0 then

L(u)← R(u)←M(u)← ∅
else

L(u)← R(u)←M(u)← [u]
end if

else
I(u)← I(left(u)) ∪ I(right(u))
L(u)← MaxW{L(left(u)), I(left(u)) ∪ L(right(u))}
R(u)← MaxW{R(left(u)) ∪ I(right(u)), R(right(u))}
M(u)← MaxW{M(left(u)), R(left(u)) ∪ L(right(u)),M(right(u))}

end if

Algorithm 2 Maximum weight sum interval containing xk, where xk is a
leaf of the MCS-tree
- IL (resp. IR) is the interval of maximum weight ending (resp. beginning)
at xk

- SL (resp. SR) is the interval beginning (resp. ending) at the element of
the leftmost (resp. rightmost) leaf of the subtree rooted at x and ending
(resp. beginning) at xk

IL ← IR ← SL ← SR ← [xk]
u← xk

repeat
v ← parent(u)
if u = left(v) then

IR ← MaxW{IR, SR ∪ L(right(v))}
SR ← SR ∪ I(right(v))

else
IL ← MaxW{IL, SL ∪R(left(v))}
SL ← SL ∪ I(left(v))

end if
u← v

until u = the root of the MCS-tree
return IL ∪ IR

2.1. The dynamic MCS-problem 31

for the MCS-problem which contains xi, and (ii) the maximum weight of
the interval of X starting or ending at xi. The operation (i) is stated in
Algorithm 2, and the operation (ii) is a special case of the operation (i).

These properties of the MCS-tree structure will be used to solve the 2-EB-
problem. From the discussion above we get the following result.

Theorem 2.1 Given the sequence X = (x1, . . . , xn) with a real weight func-
tion w over its elements, the MCS-tree can be built in O(n) time. Moreover,
if any w(xi) is modified, the MCS-tree can be updated in O(log n) time. The
MCS-tree allows computation, in O(log n) time, of the interval of maximum
weight sum of consecutive elements that includes, starts or ends at a specific
element xk ∈ X.

Other operations that can be performed with the MCS-tree, by reasoning
similarly as above, are the following:

1. Given two indexes i and j (1 ≤ i ≤ j ≤ n) of the sequence X =
(x1, . . . , xn), find in O(log n) time the interval of maximum weight
contained in the interval [xi, xj].

2. Given four indexes i, j, k and l (1 ≤ i ≤ j ≤ n and 1 ≤ k ≤ ` ≤ n)
of the sequence X = (x1, . . . , xn), find in O(log n) time the interval of
maximum weight such that its first and last elements are inside the
intervals [xi, xj] and [xk, x`], respectively.

The two above operations were studied in [32]. The first one as The Range
Maximum-Sum Segment Query Problem and the second one as The Range
Maximum-Sum Segment Query Problem with Two Query Intervals. They
were solved with the following method: Make a linear preprocessing to the
sequence X in such a way that subsequent queries, for the given indexes,
are answered each in constant time. The approach in [32] does not consider
changes in the elements of the sequence as is done in the MCS-tree but with
logarithmic-time queries.

On the other hand, if we consider that the sequence X = (x1, x2, . . . , xn)
is circular (i.e. if 1 ≤ j < i ≤ n the interval [xi, xj] is the union of the
intervals [xi, xn] and [x1, xj]), then we can augment the MCS-tree in order
to dynamically compute the (circular) interval of maximum weight when
an element of X changes. In fact, store in each node u of the MCS-tree
the interval E(u) and its weight, where E(u) is the interval of minimum

32 2. Bichromatic Separability with two Boxes

weight contained in I(u). If all the intervals in I(u) have positive weight,
set E(u) = ∅ and its weight to 0. Notice that the interval of maximum weight
in I(u) is among M(u) and the interval obtained by removing E(u) from
I(u). If a leaf xi of the MCS-tree has negative weight, then E(xi) = [xi],
otherwise E(xi) = ∅. If u is an internal node, with left and right children and
v1 and v2 respectively, then E(u) is among E(v1), E(v2), and the interval
obtained by removing both L(v1) and R(v2) from I(u).

The idea in the design of the MCS-tree considers that the sequence is static
in the sense that it admits neither insertions nor deletions of elements, that
is, from the beginning the MCS-tree contains the same elements that change
their weights. Both operations can be included if we apply the techniques
of augmenting trees in [35]. In fact, we can use a variant of either a Red-
Black-tree [35] or a AVL-tree [76] (in which the elements of the sequence are
stored at the leaves and each internal node contains the number of leaves
descendants of it) as supporting tree for the MCS-tree, and so include the
insertion and deletion of elements in the represented sequence. We do not
give details in order to maintain the course of this work.

2.1.2 Conclusions

The idea of this section, for the purpose of dynamically solving the Bent-
ley’s problem, is based on simple observations. Its result, the MCS-tree, is
a simple and powerful data structure. The O(n)-time static solution to the
Bentley’s problem was proposed by Jay Kadane [17]. The same time com-
plexity can be obtained if we apply the Divide and Conquer Approach [35]
and make a recursive algorithm. This idea has lead us to a generalization
approach that is stated in Section 2.6.

2.2 Notation and preliminary results

An optimal solution to the 2-EB-problem for S consists of two axis-aligned
rectangles R and B and the subset of S containing the red points of S in
R \ B together with the blue points of S in B \ R. For technical reasons,
which become necessary in Proposition 2.3, we assume that R and B are
open, i.e., they do not include their boundaries, thus we do not count points
on the boundaries of R and B.

Up to symmetry, there are three possible relative positions of R and B. A
pair (R,B) is called: a corner-type if R overlaps exactly one corner of B
(Figure 2.4 a)), a sandwich-type if R intersects only two parallel sides of

2.2. Notation and preliminary results 33

B (Figure 2.4 b)), and a disjoint-type if R and B are disjoint (Figure 2.4
c)). A fourth type could exist, however it can be reduced to a disjoint-type
(Figure 2.4 d)). Likewise, we say that a solution is corner-type, sandwich-
type or disjoint-type if the pair of rectangles defining it are corner-type,
sandwich-type or disjoint-type, respectively.

a) b) c)

R

B B

R

R

B
d)

B

R′

B

R

Figure 2.4: a) Corner-type, b) sandwich-type, c) disjoint-type, and d) getting a
disjoint-type.

We show now how to obtain optimal solutions of the corner-type case. In
Section 2.3 we describe the efficient algorithm not only for this case but also
for the other cases. Therefore, from now on (R,B) denotes a corner-type
pair of rectangles. We assume without loss of generality (w.l.o.g) that R
always contains the top-right corner of B, as in Figure 2.5 a)).

For a given u ∈ R2, we respectively denote by SW(u), SE(u), NW(u)
and NE(u), the South-West, South-East, North-West and North-East open
quadrants with respect to u, e.g., if u = (a, b), then NE(u) = {(x, y) | a <

x, b < y}. The point u is the apex of SW(u), SE(u), NW(u), and NE(u).

Let (QR,QB) be a North-East and South-West pair of quadrants. We say
that (QR,QB) is a corner-type pair of quadrants if the apex of QR belongs
to QB (Figure 2.5 b)).

The following proposition establishes the relation between the optimal so-
lutions formed by a corner-type pair of rectangles, and optimal solutions
formed by a corner-type pair of quadrants.

Proposition 2.2 If the 2-EB-problem for S has an optimal solution formed
by a corner-type pair of rectangles, then it has an optimal solution formed by
a corner-type pair of quadrants, or it has an optimal disjoint-type solution.

Proof. Let (R,B) be an optimal corner-type pair of rectangles for S. Let
QR be the North-East quadrant whose apex is the bottom-left corner of

34 2. Bichromatic Separability with two Boxes

QR

QB

R \ B

R ∩ BB \ R
R

B

a) b)

Figure 2.5: a) A corner-type pair of rectangles, b) a corner-type pair of quadrants.

R and let QB be the South-West quadrant whose apex is the top-right
corner of B (Figure 2.5). Notice that |Red(QR \ R)| = |Blue(QB \ B)| = 0,
otherwise (R,B) would not form an optimal corner-type solution for S.
Hence |Red(QR \ QB)|+ |Blue(QB \ QR)| = |Red(R \ B)|+ |Blue(B \ R)|
and thus, the corner-type pair of quadrants (QR,QB) is an optimal solution
for S.

Now, the idea is to find optimal solutions formed by a corner-type pair of
quadrants. The following proposition gives us a discretization of the search
space of solutions of this type.

Proposition 2.3 There is an optimal corner-type pair of quadrants (QR,QB)
of the 2-EB-problem for S such that the horizontal ray bounding QB contains
a red point and the horizontal ray bounding QR contains a blue point.

Proof. Let (QR,QB) be an optimal corner-type pair of quadrants of the 2-
EB-problem for S. Let S′ ⊆ S be the set of points of S inQR\QB. Translate
QB vertically in the upward direction until its boundary hits a point p ∈ S′.
If p is a blue point, ignore it (as it will not change the solution given by
QB and QR). Thus, we can translate QB upwards until its horizontal ray
hits a red point in S′. If no such red point exists, then QB can become a
half-plane, say HPB. As no element of S′ can be in HPB ∩ QR, we can
then move QR to the right until it no longer intersects HPB. Then QR
can become a half-plane HPR which is disjoint with HPB. Thus, we obtain
an optimal solution to the 2-EB-problem for S which is not a corner-type
quadrant. Analogously, we can prove that the horizontal ray bounding QB
contains a blue point (Figure 2.5 b)).

For the sake of clarity, here we include a first approximation to our tech-
niques by using a simple method to compute a corner-type solution in

2.3. Exact and efficient solution 35

O(n4) time and O(n2) space. First, observe that the size of the subset
of S, say S′, we are seeking will be equal to |S′| = |Red(QR \ QB)| +
|Blue(QB \ QR)|. Consider the orthogonal grid G formed by horizontal
and vertical lines passing through the points of S. Using range search
techniques as in [18] we can perform a quadratic time preprocessing on
the nodes of G such that for each node u ∈ G we calculate and store
the values: |Red(SW(u))|, |Blue(SW(u))|, |Red(SE(u))|, |Blue(SE(u))|,
|Red(NW(u))|, |Blue(NW(u))|, |Red(NE(u))|, and |Blue(NE(u))|.

u1 u2

u4 u3

QR

QB

Figure 2.6: Looking for a corner-type solution.

Let (QR,QB) be a corner-type pair of quadrants on G. Denote by u1, u2,
u3, and u4 the four vertices of the rectangle QR∩QB as in Figure 2.6. From
the following formulas:

|Red(QR \ QB)| = |Red(NE(u1))|+ |Red(NE(u3))| − |Red(NE(u2))|,

|Blue(QB \ QR)| = |Blue(SW(u1))|+ |Blue(SW(u3))| − |Blue(SW(u4))|,

it follows that |S′| can be computed in constant time. This gives us an
O(n4)-time and O(n2)-space algorithm to solve the 2-EB-problem.

2.3 Exact and efficient solution

In this section we describe an efficient algorithm which solves the 2-EB-
problem for S in O(n2 log n) time and O(n) space.

The corner-type solution

We start with the more complex and general case. We show how to find a
corner-type pair of quadrants (QR,QB) that yields an optimal solution to
the 2-EB-problem for S.

36 2. Bichromatic Separability with two Boxes

Let hp denote the horizontal line passing through a point p ∈ S. We color
hp as follows: if p is red (resp. blue), then color hp blue (resp. red). By
observing Proposition 2.3 we can assume that the horizontal ray that bounds
QB has a red point on it, and that the horizontal ray bounding QR has a
blue point. Thus, for each pair (p, q) of red and blue points of S, w.l.o.g.
supposing that the y-coordinate of p is larger than the y-coordinate of q, we
solve the following problem.

Let H be the horizontal strip bounded by the lines hp and hq. Let vp be
the vertical line passing through p (Figure 2.7 a)). For each red point p′ on
the right of vp and below hp, let QB(p′) be the South-West blue quadrant
defined by hp and the vertical line passing through p′. Similarly, for each
blue point q′ on the left of vp and above hq, let QR(q′) be the North-East red
quadrant bounded by hq and the vertical line passing through q′ (Figure 2.7
b)).

hp
p

QR

QB

S1

S2

S3 S4

S5

S6

hq

a)

hp
p

QR(q′)

QB(p
′)

S1

S2

S3 S4

S5

S6

hq

b)

u u

vp vp

p′

q′

q q

Figure 2.7: a) Starting position, b) optimal position.

We consider the following problem for a given input H.

The Horizontal Strip problem (HS-problem): Find (QR(q′),QB(p′))
such that: (i) the horizontal ray of QB(p′) is contained in hp, (ii) the horizon-
tal ray of QR(q′) is contained in hq and passes through p, (iii) p belongs to the
interior of QR(q′), and (iv) |Red(QR(q′)\QB(p′))|+|Blue(QB(p′)\QR(q′))|
is maximized.

By Propositions 2.2 and 2.3, it is possible to find an optimal corner-type
pair of quadrants for the 2-EB-problem for S by solving the HS-problem for
O(n2) instances, where each instance corresponds to a pair (p, q) of points of
S defining a horizontal strip H. Next we show how to solve the HS-problem
for the O(n2) instances in a dynamic way by solving O(n2) instances of the
MCS-problem.

2.3. Exact and efficient solution 37

Let u be the intersection point of vp and hq, and consider the quadrants
NE(u) and SW(p). To solve the HS-problem for H, we slide NE(u) to the
left and SW(p) to the right, until we reach an optimal solution. In order to
do this task, we assign weights to the points of S as follows: The lines vp,
hp and hq divide the plane into six regions S1, . . . , S6 as in Figure 2.7.

• All the red points in S1 and all the blue points in S2 receive weight 1.

• All the blue points in S3 and all the red points in S4 receive weight
−1.

• All the remaining points receive weight 0.

Store in p the number of blue points in SW(p) and in u the number of red
points in NE(u). Project vertically all the red and blue points on hq. The
following result is obtained:

Lemma 2.4 To obtain an optimal (QR(q′),QB(p′)) to the HS-problem for
H is equivalent to finding the maximum weight interval I on hq such that I

contains p. Moreover, |Red(QR(q′) \ QB(p′))|+ |Blue(QB(p′) \ QR(q′))| =
|Red(NE(u))|+ |Blue(SW(p))|+ w(I), where w(I) is the weight of I.

Proof. Let (QR(q′),QB(p′)) be a solution to the HS-problem for a given H.
QR(q′) is obtained by sliding leftwards QR = NE(u). During the sliding red
points in S1 enter inside QR, and blue points in S3 enter inside QR ∩ QB.
That is to say, red points in S1 will be counted into the solution and blue
points of S3 will not. Therefore, q′ is the position where the number of red
points of S1 that have been included inside the solution minus the number
of blue points of S3 that have been discarded is maximum. In other words,
since the weights of all the red points to the left of p in hq value 0, except the
weights of all red points in S1 that value 1 and the weights of all blue points
in S3 that value −1, we obtain that q′ is such that the interval of maximum
weight I1, that is on hq and ends at p, starts at the element consecutive to q′

in hq. Analogously, p′ is such that the interval of maximum weight I2, that
is on hq and starts at p, ends at the element preceding p′ in hq. Evidently,
I = I1 ∪ I2 is the interval of maximum weight in hq that contains p, and
that |Red(QR(q′) \ QB(p′))| + |Blue(QB(p′) \ QR(q′))| = |Red(NE(u))| +
w(I1) + |Blue(SW(p))|+ w(I2) = |Red(NE(u))|+ |Blue(SW(p))|+ w(I).

The general idea of the algorithm is the following: We make a top-bottom
sweep of all the points of S with the blue horizontal line hp, that is, at the

38 2. Bichromatic Separability with two Boxes

beginning of the sweep, hp is above all the points of S, and at the end it
will be below them. The line hp stops at each red point p. For each stop
of hp, we make another top-bottom sweep of the points of S that are below
hp with a red horizontal line hq. The line hq stops at blue points, thus for
each position of hp and hq we have an instance of the HS-problem which is
dynamically solved by doing the above assignment of weights, by building a
MCS-tree, and by the application of Theorem 2.1 and Lemma 2.4.

Suppose that hp is fixed. We slide hq down, stopping each time hq meets
a point q of S, and following the rules: (i) if q is a red point in S2, q will
enter into S4 and its weight will change to −1; (ii) if q is a red point in S5,
q will enter into S3 and its weight will remain 0; (iii) if q is a blue point and
it enters into S4, its weight changes to 0; and (iv) if q is blue point and it
enters into S3, its weight changes to −1. Each time hq crosses a red point
to the right of vp we update in constant time the number of red points in
NE(u) by incrementing it by one, and each time hq hits a blue point, we
recalculate the optimal solution of the HS-problem for the new H (bounded
above by hp and below by the new position of hq).

This immediately suggests using the dynamic version of the computation of
the interval of maximum weight sum on hq. By using the MCS-tree and
Theorem 2.1, the interval of maximum weight sum containing the current p

can be computed in O(log n) time per stop-point of the slide line hq. Thus,
the time cost for the fixed red point p is O(n) + O(n log n) = O(n log n).

Now, for each one of the O(n) red points p in S, we set the horizontal line
hp, calculate in linear time the number of blue points in SW(p) and the
number of red points in NE(u) (which is initially equal to |Red(NE(p))|),
and start again the process by rebuilding the MCS-tree in linear time, and
then dynamically solving the MCS-problem. Therefore, the overall time
complexity of the algorithm is O(n)(O(n) + O(n log n)) = O(n2 log n). The
following result is then obtained.

Theorem 2.5 An optimal corner-type solution for the 2-EB-problem for S

can be found in O(n2 log n) time and O(n) space.

The sandwich-type solution

We now show how to find a sandwich-type solution. The method is similar
to the corner-type solution, and it is based on the following propositions
whose proofs are similar to the proofs of Proposition 2.2 and Proposition 2.3,
respectively.

2.3. Exact and efficient solution 39

Proposition 2.6 There exists a sandwich-type solution (R,B) to the 2-EB-
problem if and only if there exists a pair of strips (SR,SB), one vertical and
the other horizontal, that maximize the sum |Red(SR\SB)|+|Blue(SB\SR)|.

Proposition 2.7 There exists a pair of strips (SR,SB), SR vertical and SB
horizontal, that maximize the sum |Red(SR \ SB)| + |Blue(SB \ SR)| such
that there is a red element of S on the top side of the rectangle determined
by their intersection.

Therefore, we can proceed in a similar way to the corner-type solution. For
each pair of blue lines hp and hq (Figure 2.8 a)), we consider the blue strip
SB bounded by them, plus a starting red strip SR consisting of the vertical
red line vp passing through a red point p in hp (Figure 2.8 a)). They form
an initial candidate sandwich-type solution with value |Blue(SB)|. As we
widen SR by translating two vertical lines v1 and v2 to the left and right of p,
respectively, the value of the solution will change according to the following
weight rules applied to the points of S, where the regions S1, S2, and S3 are
as in Figure 2.8 b):

• Blue points in S1, S2, and S3 receive weight 0, −1, and 0, respectively.

• Red points in S1, S2, and S3 receive weight 1, 0, and 1, respectively.

hp

p

q

SB

S1

S2

S3

hq

a) b)

SR
v1 v2

hp

p

q

SB

S1

S2

S3

hq

vp

Figure 2.8: a) Starting position, b) finding an optimal position.

If we store in p the number of blue points in SB and project the points of S

on hq, we can state the following lemma whose proof is very similar to the
proof of Lemma 2.4.

Lemma 2.8 Given the horizontal lines hp and hq bounding the strip SB,
to obtain the positions of v1 and v2 that optimally define SR, is equivalent

40 2. Bichromatic Separability with two Boxes

to finding the maximum weight interval I on hq that contains p. Moreover,
|Blue(SB \ SR)| + |Red(SR \ SB)| = |Blue(SB)| + w(I) where w(I) is the
weight of I.

For each position of hp we assign weight 0 to all the blue points of S and
weight 1 to all the red ones. Initially, We locate the line hq in the same
position of hp and build in linear time a MCS-tree T for the projected
sequence of points. With hq we make a sweep of the points below hp. Each
time hq crosses a point q we do the following: If q is blue we change its
weight to −1 and update the number of blue points in SB. If q is red its
weight is changed to 0 and then we dynamically calculate in O(log n) time
by using T , because of Theorem 2.1, the maximum weight sum interval in
hq that contains the current point p. Therefore, we obtain a candidate to
the sandwich-type solution if we apply Lemma 2.8. As a consequence, we
obtain the following result.

Theorem 2.9 An optimal sandwich-type solution for the 2-EB-problem for
S can be found in O(n2 log n) time and O(n) space.

The disjoint-type solution

Finding a disjoint-type solution is straightforward. It can be done in time
O(n log n) by making two plane sweeps, the first one with a horizontal line
and the next one with a vertical line. In the two sweeps we keep the position
of the sweeping line that maximizes the number of red points to one of its
sides plus the number of blue points to the another one. This is due to the
observation that there is always a vertical or horizontal line that separates
the boxes of a disjoint-solution.

Therefore, putting together the results above, we get to the following theo-
rem as the main result of this chapter

Theorem 2.10 The 2-EB-problem for S can be solved in O(n2 log n) time
and O(n) space.

2.4 Approximated solution

As we have seen, the 2-EB-problem has an O(n2 log n)-time solution. For
big values of n the time complexity would be very high. A way to reduce it
is by using an approximated algorithm, that is, an algorithm that reports

2.4. Approximated solution 41

a solution that is an approximation to the optimal one. We state as future
work the analysis of the computational complexity of the 2-EB-problem to
see if there is a better time complexity algorithm for it. We conjecture that
an o(n2)-time complexity is impossible to achieve. In order to improve the
time complexity, we propose in this section an approximated solution that
consists of finding only disjoint-type solutions.

Before we show the main result of this section, we state the following defi-
nition from [35, 100]:

Definition 2.11 Let A be an algorithm that computes a feasible solution for
every instance I of a given problem P . Let A(I) and Opt(I) be respectively
the value of the solution reported by A and the value of the optimal solution
for I. If P is a maximization problem (resp. minimization problem) then
A is an k-approximation to P if for every instance I of P we have that
k ·Opt(I) ≤ A(I) ≤ Opt(I) (resp. Opt(I) ≤ A(I) ≤ k ·Opt(I)). In this case
k is the factor of approximation of A.

Notice in the above definition that the closer to one k is the better the
approximation algorithm. The following result states the factor of approx-
imation obtained when we compute only disjoint-type solutions for the 2-
EB-problem.

Theorem 2.12 The algorithm to find a disjoint-type solution is a 3/4-
approximation to the 2-EB-problem.

Proof. Let Sapx and Sopt be respectively the value of the disjoint-type
solution and the value of the general optimal solution. Suppose that the
general optimal solution, (QR,QB), is a corner-type. Consider the lines h1,
h2, v1 and v2 dividing QR and QB into the six regions S1, S2, S3, S4, S5

and S6, as in Figure 2.9 a).

For h1, since Sapx is the value of the disjoint-type solution, it results that
Sapx is greater than or equal to the number of red points above h1 plus the
number of blue points below h1, and in turn, this quantity is greater than
or equal to |Blue(QB \ QR)|+ |Red(S5)|+ |Red(S6)|. Thus we obtain:

Sapx ≥ |Blue(QB \ QR)|+ |Red(S5)|+ |Red(S6)|

Analogously, for the lines h2, v1 and v2, the following three inequalities are
obtained:

42 2. Bichromatic Separability with two Boxes

QR

QB

a) b)

S3

S6 S5

S4

S2

S1

h1

h2

v1 v2

S1 S2

S3

S4

v1 v2

h2

h1

SR

SB

Figure 2.9: a) Corner type-solution, b) sandwich-type solution.

Sapx ≥ |Blue(S2)|+ |Blue(S3)|+ |Red(QR \ QB)|

Sapx ≥ |Blue(S1)|+ |Blue(S2)|+ |Red(QR \ QB)|

Sapx ≥ |Blue(QB \ QR)|+ |Red(S4)|+ |Red(S5)|

Since Sopt = |Blue(QB \QR)|+ |Red(QR \QB)| = |Blue(S1)|+ |Blue(S2)|+
|Blue(S3)|+ |Red(S4)|+ |Red(S5)|+ |Red(S6)|, we obtain the following by
adding the four inequalities:

4Sapx ≥ 3Sopt + |Blue(S2)|+ |Red(S5)| ≥ 3Sopt

Suppose now that the optimal solution to the 2-EB-problem, (SR,SB), is a
sandwich-type. Consider the lines h1, h2, v1, and v2 dividing SR and SB
into the regions S1, S2, S3 and S4, as in Figure 2.9 b). This gives us the
following:

Sapx ≥ |Red(S4)|+ |Blue(SB \ SR)|

Sapx ≥ |Red(S3)|+ |Blue(SB \ SR)|

Sapx ≥ |Blue(S1)|+ |Red(SR \ SB)|

Sapx ≥ |Blue(S2)|+ |Red(SR \ SB)|

Since Sopt = |Blue(SB \ SR)|+ |Red(SR \ SB)| = |Blue(S1)|+ |Blue(S2)|+
|Red(S3)|+ |Red(S4)| we obtain:

4Sapx ≥ 3Sopt

2.5. The three chromatic case with three disjoint boxes 43

In both cases 3
4Sopt ≤ Sapx ≤ Sopt, resulting that the optimal disjoint-type

solution is a 3/4-approximation to the 2-EB-problem.

2.5 The three chromatic case with three disjoint boxes

In this section we study the following problem as an extension of the 2-EB-
problem in which the points are colored red, blue or green. To this end,
we define Green(Y), as was done for Red(Y) and Blue(Y), as the subset of
green points of S that are in Y .

The Disjoint Three-Chromatic Enclosing Boxes problem (DTEB-
problem): Let S be a set of n points on the plane in general position such
that the points are colored red, blue, and green. The DTEB-problem for S

consist of finding three pairwise-disjoint isothetic rectangles R, B, and G
such that |Red(R)|+ |Blue(B)|+ |Green(G)| is maximum.

Theorem 2.13 The DTEB-problem for S can be solved in O(n log n) time
and O(n) space.

Proof. First, we observe that given any three pairwise-disjoint isothetic
rectangles R, B, and G we can always find two isothetic lines (or a line and
a half-line) `1 and `2 such that for any pair of elements of {R,B,G} either
`1 or `2 separates them (Figure 2.10). The two cases are solved separately.

`1

GB
R G

B

R

a) b)

`2
`1

`2

Figure 2.10: Separation by two isothetic lines: a) parallel lines, b) perpendicular
lines.

Parallel case: First, we show how to solve the parallel case by reducing
it to the Longest Increasing Subsequence problem [76]: Given a sequence
(x1, . . . , xn) of numbers, find a largest subset of indexes α1 < · · · < αk such
that xα1 ≤ · · · ≤ xαk

. It is well known that this problem can be solved in
O(n log n) time [54]. In fact, the instance we have to solve here can be solved

44 2. Bichromatic Separability with two Boxes

in linear time, as it involves a sequence whose elements have values 1, 2, or
3. First, suppose that `1 and `2 are vertical and that R, B, and G form an
optimal solution. We have to consider six cases for the relative positions of
R, B, and G with respect to `1 and `2. Suppose that B is to the left of `1,
that R lies between `1 and `2, and that G is to the right of `2 (Figure 2.10
a)). The remaining five cases are solved in a similar way.

Assign weight 1 to the points colored blue, weight 2 to those colored red,
and weight 3 to the green points. Project all the points in S on the x-axis
obtaining a sequence Σ of 1’s, 2’s, and 3’s. Observe that all the blue, red,
and green points contained in B, R, and G, respectively, as projected on the
x-axis induce an increasing subsequence of Σ. The result follows.

Perpendicular case: Suppose, w.l.o.g., that the relative positions of `1,
`2, R, B, and G are as in Figure 2.10 b)). We show how to solve this case
using dynamic binary trees.

First, suppose that the elements of S are labeled p1, . . . , pn such that the
y-coordinate of pi is smaller than the y-coordinate of pj , i < j. Suppose
that we are given the line `1 and introduce an auxiliary color, the black,
for recoloring all the green points and also all the red and blue points to
the left of `1. Given an index i, 1 ≤ i ≤ n, let R(i) (resp. B(i)) be the
number of red elements pj with j ≤ i (resp. blue pj ’s with j ≥ i). Then,
the best position of `2, given the position of `1, is determined by the index
i (1 ≤ i ≤ n) that maximizes R(i) + B(i).

By using the above idea, we construct a balanced binary tree T such that its
set of leaves S = {p1, . . . , pn} are colored red, blue, and black. Our objective
is to store information on the vertices of T such that the following problem,
which we call the Maximum Sum problem, or the MS-problem for short, can
be solved dynamically in O(log n) time:

The Maximum Sum problem (MS-problem): Find an index i that
maximizes R(i) + B(i). At each point in time, a red or blue point can
change color to black.

As in Section 2.1.1, for every internal node u of T let I(u) = [plu , pru] be
the interval of S formed by the descendants of u in T . If u = pj for some
j, I(u) = [pj]. For an index i, lu ≤ i ≤ ru, let Ru(i) (resp. Bu(i)) be the
number of red pj ’s such that lu ≤ j ≤ i (resp. the number of blue pk’s with
i ≤ k ≤ ru). We define IR(u) (resp. IB(u)) as the number of red (resp.
blue) points in I(u).

At every node u of T we will store the following information: an index iu,

2.6. Generalization and Applications 45

lu ≤ iu ≤ ru, such that Ru(iu) + Bu(iu) is maximized. If u is a leaf pj of T ,
then iu = j.

If u is an internal node of T whose left and right children are v1 and v2,
respectively, it is easy to see that iu is either iv1 or iv2 , according to the
following criterion: If R(iv1) + B(iv1) + IB(v2) ≥ IR(v1) + R(iv2) + B(iv2)
then iu = iv1 , otherwise iu = iv2 .

Following this, we can immediately see that by using a bottom-up traversal
of T , we can calculate the values IR(u), IB(u), iu, R(iu), and B(iu) for all
nodes u of T in linear time by Theorem 2.1. Moreover, by Theorem 2.1, it is
straightforward to see that if a red or blue point pi of T is re-colored black,
then we can update T in O(log n) time by traversing the path from pi to
the root of T , and that if root is the root vertex of T , R(iroot) + B(iroot) is
the solution to the MS-problem.

We are now ready to solve the perpendicular case. Take a copy S′ of S and
re-color black to all the green elements of S′. Construct a binary tree T as
described above such that the elements of S′ are the leaves of T . In this way,
R(iroot) + B(iroot) is the optimal solution for which the green box contains
no points.

We now perform a line sweep using a vertical line `1 from left to right.
Initially all the elements of S are to the right of `1, at the end all the
elements of S are to the left of `1. Each time `1 meets a point in S we
change the color of its corresponding copy in S′ to black. In O(log n) time,
we update T , and recalculate the boxes R and B that maximize the number
of blue points plus the number of red points contained in them. Each time
`1 meets a green point, the number of elements in G increases by one. By
keeping the maximum number of red points plus blue points plus green
points contained in R, B, and G, respectively, we obtain an optimal solution
to our problem and the algorithm requires O(n log n) of time and O(n) of
space.

2.6 Generalization and Applications

We have shown how to solve the 2-EB-problem and the DTEB-problem by
using dynamic trees over a sequence of elements for which some attribute is
dynamically maintained. Notice that in the case of the 2-EB-problem (resp.
the DTEB-problem) the interval of maximum weight (resp. the position in
which the number of red elements to its left plus the number of blue points
to its right is maximum) is maintained in O(log n) time. The approach can

46 2. Bichromatic Separability with two Boxes

easily be generalized as follows.

2.6.1 Generalization

It is easy to see that for computing in a given sequence, both the interval of
maximum weight and the position in which the number of red elements to
its left plus the number of blue points to its right is maximum, we can apply
the Divide and Conquer Approach [35] and obtain a recursive linear-time al-
gorithm. This is due to the fact that if we have computed the corresponding
attribute for the two halves of the sequence, then we can compute the same
attribute for the entire sequence in constant time. Under this observation
the generalization idea follows.

Generalization: Let X = (x1, x2, . . . , xn) be a sequence of n elements and
let A(X) be a set of attributes of X that depends on its elements. Suppose
that A(X) can be obtained by applying a recursive O(n)-time algorithm as
follows: if the length of X is at most one compute A(X) in constant time,
otherwise A(X) is computed in constant time from A(X1) and A(X2), where
X1 and X2 are the two halves of X. Then, the recursive tree having the
elements of X as its leaves is a balanced binary tree and by representing it
we can, whenever some xi changes, recompute A(X) in O(log n) time by
traversing the path from xi to the root.

Note that although the goal may be to maintain only one attribute, we
maintain a set of them because in many applications the calculation of an
attribute of the sequence depends on others. For the sake of clarity see the
MCS-tree (Section 2.1.1), where the property of the sequence is the weight
of its elements and other three attributes are considered in order to maintain
the interval of maximum weight.

By applying this generalization we are now ready to present efficient algo-
rithms for a collection of problems.

2.6.2 Applications

The Maximum Weighted Box problem (MWB-problem): Given a
set S of n points on the plane and a weight function w : S → R, compute
the axis-aligned box H such that

∑
x∈H∩S w(x) is maximized.

Note that there exists a box H that gives an optimal solution such that H

contains on its boundary only elements of S with positive weight. A solution
can be calculated as follows:

2.6. Generalization and Applications 47

Make a top-bottom sweep of the elements of S with a horizontal line `1 and
whenever it stops at a positive element of S, make a sweep of the elements
of S that lie below `1 with another horizontal line `2 that starts at `1 and
stops only on positive-weight points. Let X be the points of S ordered by
abscissa and let w′ be a weight function for each x ∈ S defined as follows:

w′(x) =

{
w(x) if x lies between `1 and `2;

0 if x lies either above `1 or below `2.

For a given position of `1 and `2, the optimal box, whose top and bottom
sides lie on `1 and `2, respectively, is determined by the interval of maximum
weight sum on X. This interval is dynamically computed in O(log n) time,
by using a MCS-tree, when the weight w′ of an element of S changes while
the line `2 moves. Like this, we obtain a simple O(n2 log n)-time algorithm
since there are O(n2) possible positions of `1 and `2.

If we restrict H to be a quadrant, say the North-East quadrant, the solution
is even easier. We use only a horizontal sweeping line `1 and define the
weight function w′ as follows: w′(x) = w(x) if x is above or in `1, and
w′(x) = 0 otherwise. The problem is reduced to the dynamic computation
of the interval of maximum weight in X that is a prefix of X. The time and
space complexities are O(n log n) and O(n), respectively.

The solutions to the following two problems are found by solving one or two
instances of the MWB-problem. Thus, they also have solutions when we
restrict the corresponding box to a quadrant.

The Maximum Box problem (MB-problem): Given a set of blue points
B and a set of red points R on the plane, where |R∪B| = n, find an R-empty
axis-aligned box H such that |H ∩B| is maximized.

See Figure 2.11 a) for an example. The MB-problem can be solved in
O(n2 log n) time by using O(n) space since it is an instance of the MWB-
problem by considering S = R ∪B and the weight function:

w(x) =

{
1 si x ∈ B;

−∞ si x ∈ R.

The MB-problem was solved in [83] with O(b2 log b+br+r log r) time, where
r = |R| and b = |B|. However our approach is a simpler method with the
same complexity in the worst case.

48 2. Bichromatic Separability with two Boxes

H H

a) b)

Figure 2.11: a) Solution H to the MB-problem, b) solution H to the MBDB-
problem.

The Maximum Bichromatic Discrepancy Box problem (MBDB-
problem): Given a set of blue points B and a set of red points R on the
plane, where |R ∪ B| = n, find an axis-aligned box H such that ||H ∩ B| −
|H ∩R|| is maximized.

In Figure 2.11 b) we depict an instance of the MBDB-problem and its solu-
tion.

A solution to the MBDB-problem can be obtained by solving the following
two instances of the MWB-problem, in both consider that S = R ∪B:

1) w(x) =

{
1 si x ∈ R,
−1 si x ∈ B;

2) w(x) =

{
−1 si x ∈ R,

1 si x ∈ B.

In this way, the MBDB-problem can be solved in O(n2 log n) time by using
O(n) space. This complexity matches the result given in [44].

The Weak Strip Separation problem (WSS-problem): Let S be a set
of n points on the plane in general position such that its elements are colored
red or blue. Find a corridor C bounded by two parallel lines in any direction
such that the number of blue points inside C plus the number of red points
outside C is maximized.

An instance of the WSS-problem and its corresponding solution are shown
in Figure 2.12.

Suppose that we have a direction given by a line ` and we want to compute
the best corridor C` that is orthogonal to `. It can be done as follows: Project
the points of S on `, obtaining the sequence of elements X = (x1, . . . , xn)
ordered from left to right. Given an index i, 1 ≤ i ≤ n, let R−(i) (resp.

2.6. Generalization and Applications 49

R+(i)) be the number of red elements xk with k ≤ i (resp. k ≥ i) and
given two indexes i and j, 1 ≤ i ≤ j ≤ n, let B(i, j) be the number of
blue elements xk with i ≤ k ≤ j. It is easy to see that C` is determined by
the indexes i and j, 1 ≤ i ≤ j ≤ n, such that R−(i) + B(i, j) + R+(j) is
maximum. Define V (i, j) = R−(i) + B(i, j) + R+(j).

C

Figure 2.12: Solution to the WSS-problem.

Now we explain the generalization idea. For the sequence X let ix y jx,
ix < jx, be the indexes of X that maximizes V (ix, jx). For a given index i, let
B−(i) (resp. B+(i)) be the number of blue elements xk with k ≤ i (resp. k ≥
i). Let px and qx be the indexes of X that maximize R−(px) + B+(px) and
B−(qx)+R+(qx) respectively. Abusing of the notation, let R(X) and B(X)
be respectively the number of red and blue elements in X. The attribute of
interest is the pair of indexes ix and jx, but for their dynamic computation
we consider the set of attributes A(X) = {ix, jx, V (ix, jx), px, qx, R−(px) +
B+(px), B−(qx)+R+(qx), R(X), B(X)}. Calculate A(X) is trivial when the
length of X is one. For computing A(X) from A(X1) and A(X2), where X1

and X2 are the two halves of X, there are three cases:

(i) ix = ix1 , jx = jx1 and V (ix, jx) = V (ix1 , jx1) + R(X2).

(ii) ix = px1 , jx = qx2 and V (ix, jx) = R−(px1) + B+(px1) + B−(qx2) +
R+(qx2).

(iii) ix = ix2 , jx = jx2 and V (ix, jx) = R(X1) + V (ix2 , jx2).

In all of them, R(X) = R(X1) + R(X2) and B(X) = B(X1) + B(X2).
Moreover, the attributes px, qx, R−(px) + B+(px) and B−(qx) + R+(qx) are
calculated as was done for the DTEB-problem in Section 2.5.

If we rotate the line ` about the origin, the order of the projected points
on ` changes a quadratic number of times. Thus, we make a rotational
sweep passing from the current critical direction to the next one by swap-
ping two consecutive elements of X. When the swap occurs, the solution is

50 2. Bichromatic Separability with two Boxes

dynamically computed by using a tree constructed by following the above
arguments. The swap involves two changes of color in two consecutive ele-
ments and hence, two updates on the tree. This method has O(n2 log n)-time
and O(n2)-space complexities.

The Weak Cross Separation problem (WCS-problem): Let S be a
point set on the plane in general position such that its elements are col-
ored red or blue. Find a point u on the plane such that |Blue(NE(u))| +
|Red(NW(u))|+ |Blue(SW(u))|+ |Red(SE(u))| is maximized.

The point u can be seen as the intersection point between a horizontal
line `h and a vertical line `v defining a cross (Figure 2.13). Suppose we
are given `h and we want to compute the best location of `v. It can be
done as follows: Project the points of S on `h, obtaining the sequence of
elements X = (x1, . . . , xn) ordered from left to right. Given an index i,
1 ≤ i ≤ n, let Ra(i) (resp. Rb(i)) be the number of red elements xk with
k ≤ i (resp. k ≥ i) such that its corresponding point in S is above (resp.
below) `h, and let Ba(i) (resp. Bb(i)) be the number of blue elements xk

with k ≥ i (resp. k ≤ i) such that its corresponding point in S is above
(resp. below) `h. Note that the best position of `v is determined by the
index i such that Ra(i) + Ba(i) + Bb(i) + Rb(i) is maximum. Define V (i) =
Ra(i) + Ba(i) + Bb(i) + Rb(i).

u

NW(u)

SW(u)

NE(u)

SE(u)

`v

`h

Figure 2.13: A solution to the WCS-problem is defined by the point u that is seen
as the intersection point between `v and `h.

In order to apply the generalization idea, we associate to each element xk ∈
X, among its color, a binary property pos(xk) that is equal to one if and only
if the point of S that corresponds to xk is above `h. Denote as ix the index
of X that maximizes V (ix), and let Ra(X) and Ba(X) (resp. Rb(X) and
Bb(X)) be respectively the number of red and blue elements in X that are

2.7. The problem in three dimensions 51

above (resp. below) `h. A(X) is {ix, V (ix), Ra(X), Ba(X), Rb(X), Bb(X)},
and it is easy to compute from the color and the property pos(·) of its
elements. Calculate A(X) is trivial when the length of X is one, otherwise
there are two cases for computing it from A(X1) and A(X2), where X1 and
X2 are the two halves of X:

(i) ix = ix1 and V (ix) = V (ix1) + Ba(X2) + Rb(X2).

(ii) ix = ix2 and V (ix) = Ra(X1) + Bb(X1) + V (ix2).

In both cases Ra(X) = Ra(X1) + Ra(X2), Ba(X) = Ba(X1) + Ba(X2),
Rb(X) = Rb(X1) + Rb(X2) y Bb(X) = Bb(X1) + Bb(X2).

Initially, the line `h is above all the points of S, that is, pos(xk) = 0 for all
elements xk in X. We represent X in a tree T as the generalization idea
establishes, and make a top-bottom sweep of S with `h changing in each
step, from zero to one, the property pos(·) of an element of X. It permits
us, by using T , to compute dynamically the best position of `v on each step
of `h. Thus, an O(n log n)-time and O(n)-space algorithm is obtained.

2.7 The problem in three dimensions

In this section we show that the 2-EB-problem in three dimensions can be
solved in O(n4 log n) time and O(n) space. There are five solution cases,
in some of them we make reductions to instances in two dimensions and in
others we apply the generalization approach of Section 2.6.

An optimal solution to the 2-EB-problem in three dimensions consists of
two isothetic three-dimensional boxes R and B. Up to symmetry, there are
five possible relative positions of R and B. Their names were taken from [7]
where the problem is to find two boxes in three dimensions that enclose a
given set of points and minimize some measure such as total volume, total
surface area, etc.

According to [7], a pair of boxes (R,B) is called: a vertex-in-type if exactly
one vertex of each box lies inside the other box (Figure 2.14 a)); a edge-
in-type if exactly one edge of one box is fully contained within the other
box (Figure 2.14 b)); a piercing-type if one box completely pierces the other
one, so that no box contains any vertex of the other box (Figure 2.14 c));
a crossing-type if R and B have an “edge interaction” in which two edges
of one box pass through the other, and viceversa (Figure 2.14 d)); and a
disjoint-type if R and B are disjoint (Figure 2.14 e)).

52 2. Bichromatic Separability with two Boxes

R

B

a)

R

B

b)

R

B

c)

R

B

d)

R

B

e)

Figure 2.14: The five cases of solution in R3. a) Vertex-in-type, b) edge-in-type,
c) piercing-type, d) crossing-type, e) disjoint-type.

Now we describe how to solve each of the five cases of solution.

The vertex-in-type solution

Let PR and PB be two half-planes that are parallel to the xy-plane, and
such that PB is above PR in the direction given by the z-axis. Suppose we
want to find the vertex-in-type solution (R,B) such that the bottom facet
of R and the top facet of B are contained in PR and PB respectively. We
say that a red point p above PR is of type-1 if it is above PB, and of type-2
otherwise. Analogously, we say that a blue point q below PB is of type-1 if
it is below PR, and of type-2 otherwise. Project the red points above PR
and the blue points below PB on the xy-plane (Figure 2.15 a)).

Then, (R,B) is determined by the corner-type pair of quadrants (QR,QB)
in the xy-plane such that: the number of red points of type-1 in QR, plus
the number of blue points of type-1 in QB, plus the number of red points of
type-2 in QR \QB, and plus the number of blue points of type-2 in QB \QR
is maximized (Figure 2.15 b)). Computing (QR,QB) is slightly different to
solving the corner-type case in two dimensions (Section 2.3). Since there
are O(n2) different positions for PR and PB, this type of solution can be

2.7. The problem in three dimensions 53

PB

PR

QB
QR

a) b)

xy-plane

xy-plane

B

R

Figure 2.15: How to compute a vertex-in-type solution.

obtained in O(n4 log n) time and O(n) space.

The edge-in-type solution

Let PB1 and PB2 be two half-planes that are parallel to the xy-plane, and
such that PB1 is above PB2 in the direction given by the z-axis. Suppose we
want to find the edge-in-type solution (R,B) such that the top and bottom
facets of B are contained in PB1 and PB2 respectively, and that an edge of
B is inside R. We say that a red point p is of type-1 if it is either above
PB1 or below PB2 , and of type-2 otherwise. Project on the xy-plane all the
red points and also the blue points that are both below PB1 and above PB2

(Figure 2.16 a)).

PB1

PB2

QB
QR

a) b)

xy-plane

xy-plane

B

R

Figure 2.16: How to compute an edge-in-type solution.

Then (R,B) is determined by the corner-type pair of quadrants (QR,QB)

54 2. Bichromatic Separability with two Boxes

in the xy-plane such that: the number of red points of type-1 in QR, plus
the number of red points of type-2 in QR \QB, and plus the number of blue
points in QB \ QR is maximized (Figure 2.16 b)). Computing (QR,QB) is
quite similar to solving the corner-type case in two dimensions (Section 2.3).
This type of solution can be obtained in O(n4 log n) time and O(n) space
since there are O(n2) different positions for PB1 and PB2 .

The piercing-type solution

The solution here is very similar to the solution of the sandwich-type case
in two dimensions (Section 2.3). Let PB1 and PB2 be two half-planes that
are parallel to the xy-plane, in such a way PB1 is above PB2 in the direction
given by the z-axis. Suppose we want to find the piercing-type solution
(R,B) such that the top and bottom facets of B are contained in PB1 and
PB2 respectively, and that R pierces B. We fix B to be the space in between
PB1 and PB2 . Now, we assign weight +1 to the red points that are either
above PB1 or below PB2 , weight −1 to the blue points in B, and weight
0 to the other points. Project on the xy-plane all the weighted points, as
depicted in Figure 2.17 a).

PB1

PB2

QR

a) b)

xy-plane

xy-plane

B

R

−1

−1

−1

−1 −1

−1

+1

+1

+1

+1
+1

Figure 2.17: How to compute an piercing-type solution.

Then the best R for the fixed B is determined by the box QR in the xy-
plane that has maximum weight (Figure 2.17 b)). This problem in the plane
is The Maximum Weighted Box problem that was solved in Section 2.6 in
O(n2 log n) time and O(n) space. Since there are O(n2) different positions
for PB1 and PB2 , a piercing-type solution can be found in O(n4 log n) time
and O(n) space.

2.7. The problem in three dimensions 55

The crossing-type solution

Let PB1 and PB2 be two half-planes that are parallel to the xy-plane, and
such that PB1 is above PB2 in the direction given by the z-axis. Suppose we
want to find the crossing-type solution (R,B) such that the top and bottom
facets of B are contained in PB1 and PB2 respectively. We say that a red
point p is of type-1 if it is either above PB1 or below PB2 , and of type-
2 otherwise. Project on the xy-plane all the red points and also the blue
points that are both below PB1 and above PB2 (Figure 2.18 a)).

PB1

PB2

QB

QR

a) b)

xy-plane

xy-plane

B

R

`2

`1

Figure 2.18: How to compute an crossing-type solution.

Then, the problem is reduced to finding in the xy-plane an isothetic half-
plane QB and an isothetic half-strip QR such that: the two parallel sides
of QR intersect the boundary of QB; the two vertices of QR belong to the
interior of QB; and the number of blue points in QB \ QR, plus the number
of red points of type-1 in QR, and plus the number of red points of type-2
in QR \QB is maximized. This problem in two dimensions can be solved as
follows.

Let `1 and `2 be two isothetic parallel lines and consider w.l.o.g. that they
are horizontal and that `1 is below `2. Suppose now that QB is the lower
half-plane defined by `2 and that the finite side of QR lies on `1 (Figure 2.18
b)). Take a copy S′ of S and re-color black all its elements except the
blue points in between `1 and `2, the red points of type-1 above `1 and
the red points of type-2 above `2. Now project the elements of S′ on `1

obtaining a sequence X of red, blue and black elements. Then, given the
current location of QB, the best QR is determined by the two indexes i and

56 2. Bichromatic Separability with two Boxes

j (i < j) of X such that: the number of blue elements before index i, plus
the number of red elements from index i to index j, and plus the number
of blue elements after index j is maximized. By using the generalization
approach of Section 2.6, this problem in one dimension can be dynamically
solved in O(log n) time when the color of some element changes. Note that
the same problem was solved in the solution of the Weak Strip Separation
problem presented in Section 2.6. Fixing `1, the above one-dimensional
subproblem is dynamically solved when we sweep with `2 the points of S

above `1. This is done in O(n log n) time and O(n) space in total. Since
there are O(n) different positions for `1 the total complexity of the two-
dimensional subproblem is O(n2 log n) time and O(n) space. This implies a
total O(n4 log n) time and O(n) space for the problem in three dimensions
because there are O(n2) different positions for PB1 and PB2 .

The disjoint-type solution

Solving this case is as straightforward as solving the disjoint-type case in
two dimensions because there is always an isothetic plane that separates the
boxes. It can be done by sweeping S with a plane in each direction given
by the coordinate axes. The complexity is O(n log n) time and O(1) space.

Summarizing the complexity of the five above cases, the following result is
obtained:

Theorem 2.14 The 2-EB-problem in three dimensions can be solved in
O(n4 log n) time and O(n) space.

2.8 Conclusions and open problems

In this chapter we have shown the connection between maximum boxes
problems and Bentley’s maximum consecutive sum problem. We have de-
veloped a dynamic data structure that allows us to maintain the solution
of the Bentley’s maximum consecutive sum problem in O(log n) time when
an element of the sequence changes its value. This data structure can be
computed in linear time. The key idea used to dynamically solve Bentley’s
maximum consecutive sum problem was extended as a general technique
useful for solving other data analysis problems.

A natural problem, that requires further research, is the design of more
efficient algorithms to the three-dimensional case. As we have seen, by
using projections of the bicolored point set on the plane, the solutions to

2.8. Conclusions and open problems 57

the vertex-in-type and edge-in-type cases can be reduced to solve O(n2)
instances of the corner-type-case of the 2-EB-problem in R2. Those projec-
tions are determined by parallel planes and we can sweep the elements of S

with those planes and pass from an instance I in R2 to another I ′ in such a
way I and I ′ differ by only one point (i.e. a point is added, removed or its
color is changed). Then, in order to reduce the time complexity, it would be
interesting to design a dynamic data structure that permits us to dynami-
cally compute corner-type solutions in R2 when we add or remove a point,
and also when we change the color of a point. A good time complexity for
this dynamic operations would be o(n log n).

The solution to the piercing-type case of the 2-EB-problem in R3 is obtained
by solving O(n2) instances of the Maximum Weighted Box problem. In order
to reduce the time complexity, we leave to further research the problem of
dynamically computing in o(n log n) time the maximum weighted box when
the weight of a point changes. The Maximum Weighted Box problem can
be seen as a two-dimensional version of the Bentley’s maximum consecutive
sum problem, but by considering a set of weighted points instead of a two-
dimensional array [98, 99].

Finally, in order to study the complexity of the 2-EB-problem, it is worthy
to know if the 2-EB-problem in R2 is 3SUM-hard [55].

Chapter 3

The Maximum Box Problem

for Moving Points on the

Plane

In Pattern Recognition and Classification, a natural method for selecting
prototypes that represent a class is to perform cluster analysis on the training
data [46]. Typically, two sets of points are given, and one would like to find
patterns which intersect exactly one of these sets. The clustering can be
obtained by using simple geometric shapes such as disks or boxes. A basic
problem is the so-called Maximum Box Problem, where the clustering is
done by considering maximum boxes, that is, boxes containing the maximum
number of points in the given data set (Figure 3.1). See [83, 95] for example.
This problem was introduced in Subsection 2.6.2 as the MB-problem.

H

Figure 3.1: The box H is the maximum box. It contains the maximum number of
blue points and does not contain any red point.

In many applications, data are given in a dynamic scenario [21, 33], that is,
they change over time. Motivated by this concept, in this chapter we in-

59

60 3. The Maximum Box Problem for Moving Points on the Plane

troduce and investigate the dynamic version of the MB-problem, where the
dataset is modeled by points moving along bounded degree algebraic trajec-
tories. We present a Kinetic Data Structure (KDS) to efficiently maintain
the maximum box for a set of bicolored moving points. A KDS is used to
keep track of the attributes of interest in a system of moving objects [61].
The main idea in the kinetic framework is that even though the objects move
continuously, the relevant combinatorial structure changes only at certain
predictable discrete events. Therefore, one does not have to update the data
structure continuously.

The chapter is organized as follows. In Section 3.1 we present the KDS
framework. In Section 3.2 we give an algorithm for the static version of
the MB-problem that will be useful for the dynamic version. A new data
structure for maintaining the maximum box in a kinetic setting is proposed
in Section 3.3. In Section 3.4, an algorithm for the MB-problem in a static
setting, in which the box can be arbitrarily oriented, is presented. In Sec-
tion 3.5 we present an efficient data structure to maintain an approximated
solution of the MB-problem when the points move. The number of blue
points contained in our approximated solution is at least half of the number
of blue points contained in an exact solution. Finally, in Section 3.6, the
conclusions and further research are presented.

3.1 The KDS framework

In this section the KDS framework is presented. The Kinetic Data Struc-
tures (KDS) were introduced by Basch et al. [13]. In the following, we cite
definitions, information, and examples, taken from [5, 13, 60, 61].

A KDS is a data structure that maintains a certain attribute of a set of
continuously moving objects [61]. It consists of two parts: a combinatorial
description of the attribute and a set of certificates. The certificates are
elementary tests on the input objects with the property which, as long as
their outcomes do not change, the attribute does not change either. The
main idea in the kinetic framework is that even though the objects move
continuously, the relevant combinatorial structure changes only at certain
predictable discrete events. Therefore, one does not have to update the data
structure continuously. These events have a natural interpretation in terms
of the underlying structure, for example, when the x- or y- projections of
two points coincide. All the events are managed in an event queue, and they
are pairs 〈c, t〉, where c is the certificate and t is the failure time of c. Events
in which the attribute changes are called external events, other events are

3.1. The KDS framework 61

called internal events. Any moving object is allowed to change its motion,
and when this happens, all certificates involving the object must re-evaluate
their failure times and the event queue is updated.

A good, very simple example, is a KDS that maintains the rightmost point
(the point with maximum x-coordinate) in a set S of n continuously moving
points on the plane. The simplest approach is to sort S by x-coordinate and
store it in a list P , thus the rightmost point is given by the last element of
P . There is a certificate (the x-order condition) for every two consecutive
elements in P , and we have a certificate failure every time two consecutive
elements in P , pi and pi+1, have the same x-coordinate. Then, pi and pi+1

are swapped in P , and at most three new certificates arise involving pi−1,
pi, pi+1, and pi+2.

The performance of a KDS is measured according to four properties. A
KDS is compact if the total number of stored certificates is near-linear in
the total number of objects (say O(n1+ε), where n is the number of objects),
and local if no object participates in too many (say O(nε)) certificates, that
is, at any one time, the maximum number of events in the event queue
that depend on a single object is small. A KDS with this property can be
updated quickly when the flight plan (motion) of an object changes. A KDS
is responsive if the time needed to update it (as well the event queue), when a
certificate fails, is poly-logarithmic in the problem size, and a KDS is efficient
if the ratio of the maximum total number of internal and external events,
to the maximum total number of external events, is poly-logarithmic in the
problem size. Analyzing the efficiency of a KDS is slightly more complicated
than the other performance measures.

Revisit above example of a KDS that maintains the rightmost point. The
KDS is local since every point is involved in at most two certificates, and
hence is compact, and it is responsive since the list P is updated in constant
time and the event queue can be managed by an efficient priority queue
in the failure time [35]. Finally, see that the KDS is not efficient. For
instance, if the points move in the same line, then the total number of
external events (those that change the rightmost element) can be linear, and
the total number of internal events can be quadratic. This kinetic problem
was efficiently solved in [13] with the well-known kinetic tournament.

As we have mentioned, the KDS framework encounters applications in many
problems concerning extent, proximity, collision detection, connectivity, and
clustering, etc. of moving objects [60].

62 3. The Maximum Box Problem for Moving Points on the Plane

3.2 The static version of the Maximum Box Problem

The static version of the MB-problem in the plane has already been studied.
Liu et al. [83] give an O(b2 log b + br + r log r)-time algorithm. The same
problem was solved in Subsection 2.6.2 in O(n2 log n) time and O(n) space.
Unfortunately, the approach used in Subsection 2.6.2 could not be applied
for the dynamic environment.

In the following we put forward for consideration a simple algorithm, that
is similar to the algorithm in [83], and with a slightly different complexity,
which will be used later in Section 3.3 to design a data structure for the
kinetic version. That is why, as we will see below, in our variant we elaborate
more than in [83].

First, we observe that a maximum box for R and B can be enlarged until
each of its sides either contains a red point or reaches infinity. Thus, the
maximum box can be transformed to one of the following isothetic objects
with red points on its boundary and no red points inside: a rectangle, a
half-strip, a strip, a quadrant or a half-plane (Figure 3.2).

We show how to compute the maximum box when it is a rectangle, a half-
strip or a strip. The cases of a quadrant and a half-plane are even easier.
The case of a quadrant can be addressed by applying the techniques based
on the Dynamic Bentley’s Maximum Subsequence Sum Problem presented
in Chapter 2. Both cases can be solved in O(n log n) time (see the MWB-
problem in Subsection 2.6.2). Actually, both can be solved by using our
below approach if we allow sweeping to infinity, that is, the sweep stops
once all points in R ∪B are swept.

a) b) c)

d) e)

Figure 3.2: Configurations of the maximum box. a) A rectangle, b) a half-strip,
c) a strip, d) a quadrant, e) a half-plane.

We proceed as follows. For every red point p, we compute a rectangle H(p)
which satisfies the following:

3.2. The static version of the Maximum Box Problem 63

(i) the top side of H(p) contains p,
(ii) the interior of H(p) contains the maximum number of blue points and
no red points, and
(iii) the boundary of H(p) contains only red points.

Then, we take the best of all H(p), that is, the one that contains the max-
imum number of blue points. To do this, for each red point p, we draw a
horizontal line ` passing through p and sweep the points below ` by moving
` downwards (Figure 3.3).

Let hp be the horizontal line that passes through p. During the sweep, we
maintain two balanced binary search trees TR and TB such that TR (resp.
TB) contains all the red (resp. blue) points that lie between hp and ` sorted
by x-coordinate. In TB, for each node u, we also maintain a counter of the
number of blue points on the subtree rooted at u. When ` passes through
a point q we perform the following. Let left(q) (resp. right(q)) be the
rightmost (resp. leftmost) red point in TR located to the left (resp. right) of
the vertical line that passes through q, and let xleft (resp. xright) be its x-
coordinate. If left(q) (resp. right(q)) does not exist then xleft (resp. xright)
is −∞ (resp. +∞). We only process q if the x-coordinate of p lies in the
interval (xleft, xright). In that case, q is inserted in TR or in TB according to
its color and, if q is a red point, then we consider a candidate to H(p) the
isothetic rectangle (half-strip or strip) Hq whose sides pass through left(q),
right(q), p and q. Note that Hq is a half-strip if either left(q) or right(q) does
not exist, and that Hq is a strip if neither of them exists. The number of
blue points inside Hq (i.e. |Blue(Hq)|) is equal to the number of blue points
in TB whose x-coordinate lies in (xleft, xright). At the end of the sweep, we
consider the candidate to H(p) whose bottom side is at infinity (i.e. H(p)
is a vertical top-bottom half-strip, quadrant, or half-plane), that is, we stop
the sweeping line ` at a dummy red point q that is in the same vertical as
p and below every point in R ∪ B. It is equivalent to say that ` stops at
infinity.

In above procedure, left(q), right(q), and the number of blue points in-
side Hq, are obtained in logarithmic time each [35]. Then, for every red
point q below hr we obtain: both left(q) and right(q) in O(log r) time, and
|Blue(Hq)| in O(log b) time. Inserting each blue point below hp in TB takes
O(log b) time. Thus each top-bottom sweep from a red point p is done in
O(r log r + r log b + b log b) time.

The overall process requires, firstly, to sort S by y-coordinate in O(r log r +
b log b) time (i.e. first, sort R, after that sort B, and finally merge the sorted

64 3. The Maximum Box Problem for Moving Points on the Plane

p
hp

`
q

Hq

left(q)
right(q) TR, TB

Figure 3.3: Algorithm for the static case. The line ` sweeps all the points below hp.
The trees TR and TB maintain respectively all red and blue points lying between
hp and `. Both left(q) and right(q) are obtained from TR, and the number of blue
points in the box Hq is computed from TB . The box Hq is a half-strip if either
left(q) or right(q) does not exist, and Hq is a strip if neither of them exists.

lists of R and B) in order to do the sweeps, thus the total space complexity
is O(r + b) and the total time complexity is:

O(r log r + b log b) + r ·O(r log r + r log b + b log b)

= O(r log r + b log b) + O(r2 log r + r2 log b + rb log b)

= O(r2 log r + r2 log b + rb log b)

In order to consider in the above procedure all types of boxes as depicted in
Figure 3.2, we can repeat it in the bottom-top direction, and work symmet-
rically. It remains to show that the algorithm is correct. This can be shown
by taking an optimal axis-parallel rectangle and enlarging it (horizontally
and vertically) until it hits red points or reaches infinity. The algorithm
checks all such boxes and, therefore, is correct.

Notice we can omit the use of TR in above procedure if we apply the same
idea of the algorithm in [83]. Namely, initially set (xleft, xright) = (−∞,+∞)
and (ql, qr) = (null,null), and every time the sweeping line ` encounters a red
point q, such that x(q) is in (xleft, xright), set left(q) = ql and right(q) = qr.
After q is processed, set xleft = x(q) and ql = q if x(q) < x(p), and xright =
x(q) and qr = q otherwise. With this, the time and space complexities
reduce to O(r2 log b+ rb log b) and O(b), respectively. Nevertheless, we keep
using TR because it is useful in the kinetic version.

In many real applications data is imbalanced [56, 59, 75], that is, there are
many more instances of one class than the other. In those where the negative
data (the red points) has few elements with, respect to the positive data
(the blue points), meaning that r � b, our time complexity is essentially
O(b log b) and it is better than the complexity of [83]. The contrary happens
when the negative data are the majority.

3.3. The Maximum Box Problem for moving points 65

3.2.1 The Smallest-Area Maximum Box Problem

In this subsection we consider the problem of computing the box of smallest
area that maximizes the number of covered points from B and does not
contain any point from R. We refer to this problem as the SAMB-problem.
Segal [95] designed an algorithm for the SAMB-problem with O(n3 log4 n)
running time.

We show that our approach can be applied to solve the SAMB-problem.
Note that none of the boxes H(p) is the solution of the SAMB-problem since
every H(p) contains red points on its boundary (or the boundary extends
to infinity). We augment the tree TB as follows. For each node u in TB, we
store the smallest and the largest y-coordinates of the points in the subtree
rooted at u. Since the smallest and the largest x-coordinates of these points
can be computed by using the x-order, the smallest bounding box of the
blue points in H(p) can be computed in O(log b) time. The additional cost
is O(log b) per one sweep step, and the asymptotic overall time complexity
does not change.

Finally, the following theorem is obtained,

Theorem 3.1 The SAMB-problem can be solved in O(r2 log r + r2 log b +
rb log b) time by using O(r + b) space.

Note that our algorithm improves the running time of the previous algorithm
in [95] by a factor of O(n log3 n).

3.3 The Maximum Box Problem for moving points

In this section we introduce a new kinetic data structure (KDS), for main-
taining the maximum box. First of all, we notice that the optimal solution
is not unique, and furthermore, that when the points move, a few changes
can make the number of optimal solutions increase or decrease in an O(n)
factor. For example, suppose that r = 2k+2 and b = 2k, and distribute two
sets of bicolored points S1 and S2, with k + 1 red points and k blue points
each, as depicted in Figure 3.4 a). Then, we have an optimal solution with
the value of 2 for every two consecutive red points in S1 and two consec-
utive red points in S2, thus k2 = O(n2) in total. Now, if two consecutive
red and blue points in S1 change (Figure 3.4 b)), then there is an optimal
solution that values 3 for every two pairs of consecutive red points in S2,
and they are k = O(n) in total. Finally, if two consecutive red and blue

66 3. The Maximum Box Problem for Moving Points on the Plane

points in S2 exchange their positions (Figure 3.4 c)), then there is only one
optimal maximum box with the value of 4. Therefore, with a few changes
in the distribution of points, the number of different solutions of the MB-
problem can decrease (or increase if we reverse the process) in at least an
O(n) factor. From this information, we also note that the maximum box for
moving points might not change continuously over time, and that designing
an efficient and responsive KDS could be hard.

a) b) c)

S1 S1 S1

S2 S2 S2

Figure 3.4: Each of the sets S1 and S2 consists of k + 1 red points and k blue
points. The number of different maximum boxes is: a) k2 = O(n2), b) k = O(n),
c) one. Note that configuration b) is obtained from a) with a few changes (and
viceversa), as well c) is obtained from b).

Let X (resp. Y) be the elements of R∪B sorted by abscissa (resp. ordinate),
that is, X and Y are the x-order and the y-order of R ∪ B. To make the
presentation of the next results clear, we assume that no two points in R∪B

have the same x- or y-coordinate. This condition can be avoided by using
standard techniques. Our KDS design is based on the following lemma.

Lemma 3.2 The maximum box for R and B is univocally determined by X

and Y , and it does not change combinatorially over time as long as X and
Y do not.

Proof. Suppose we do not know the exact x- and y-coordinates of the points
in R and B, but do know X and Y . Next, we can compute a maximum
box for R and B by considering that i is the x-coordinate of Xi and the
y-coordinate of Yi, where Xi and Yi denote the i-th element of X and Y ,
respectively.

We design a KDS called Maximum Box Kinetic Data Structure (MBKDS).
In our problem, the set of moving objects is R∪B and the attribute is one of
the maximum boxes. According to Lemma 3.2, we consider as a certificate
the condition that two consecutive points in X (resp. Y) satisfy the x-order

3.3. The Maximum Box Problem for moving points 67

(resp. y-order). An event is the failure of a certificate at some instant of
time t, and each event implies an update of the MBKDS. We call an event
a flip.

We obtain the following result.

Lemma 3.3 The MBKDS is compact and local.

Proof. The total number of certificates is 2n − 2 = O(n) since there is a
certificate for each two consecutive elements in X and Y . Thus, the MBKDS
is compact. The MBKDS is local since any point p in R ∪ B is involved in
at most four certificates, that is, at most two in the x-order and at most two
in the y-order.

The MBKDS essentially consists of the event queue E and the structure
D = {D(p) | p ∈ R}, where D(p) is a data structure associated with the red
point p. When an event, corresponding to the certificate of two consecutive
elements of X, say [Xi, Xi+1], occurs, it is removed from E . Then, we re-
move from E the events corresponding to [Xi−1, Xi] and [Xi+1, Xi+2]. After
that, we swap Xi and Xi+1, and insert in E new events (at most three) for
[Xi−1, Xi], [Xi, Xi+1], and [Xi+1, Xi+2]. The event time is computed based
on our knowledge of the motions of Xi−1, Xi, Xi+1 and Xi+2. The event
queue E is designed as a priority queue in the failure time with its basic
operations in logarithmic time [35]. The certificates [Yi, Yi+1] are treated
similarly.

The data structure D focuses on finding the maximum box whose four sides
pass through red points, although boxes of other types are considered as
a by-product of its own design. Following the ideas of D, simpler data
structures for half-strips, strips, quadrants, or half-planes can be designed,
in such a way their space and event time processing complexities are smaller
than the corresponding complexities of D.

The definition and details of D(p) are as follows. First, consider the hori-
zontal line hp passing through the red point p, and let Sp be the subset of
points of S lying below hp (Figure 3.5). For each q in Red(Sp) we define:

• V(q) as the vertical half-line for which q is its top-most point.

• I(q) as the maximum-length horizontal segment that contains q and
does not intersect any other V(q′) for q′ in Red(Sp) \ {q}.

• H(q) as the rectangle whose bottom side is I(q) and its top side is
contained in hp.

68 3. The Maximum Box Problem for Moving Points on the Plane

• left(q) (resp. right(q)) as the rightmost (resp. leftmost) red point
in Sp located to the left (resp. right) of the vertical line that passes
through q and so that y(left(q)) (resp. y(right(q))) is greater than y(p)
(Figure 3.5). Notice that the left and the right points of I(q) lie on
V(left(q)) and V(right(q)), respectively.

• the set Candidates(p) of the points q in Red(Sp), such that I(q) inter-
sects the vertical line that passes through p. Observe that, according
to the previous section, H(p) is the box whose top side lies on hp

and its bottom side is the interval I(q) in which q is in Candidates(p)
and |Blue(H(q))| is maximized. We say that a point q in Red(Sp) is
candidate if and only if q is in Candidates(p).

p

q

right(q)
left(q)

hp

I(q)

V(q)

Figure 3.5: D(p). Candidate points are the points q such that I(q) is drawn with
a continuous line.

The key idea for D(p) is to dynamically compute H(p) when a flip, which
involves two points below hp, occurs.

The sequence (q1, q2, . . . , qm) of the elements of Candidates(p) in decreasing
order of y-coordinate are from left to right the leaves of a dynamic balanced
binary search tree Q. Every node u of Q is labeled with α such that for
all qi in Candidates(p), |Blue(H(qi))| is equal to the sum of the α labels of
the nodes in the path from qi to the root. In addition, every internal node
u is labeled with β whose value is the candidate q′ in the subtree rooted
at u that maximizes |Blue(H(q′))|. In this way, the label β of the root is
the candidate red point that determines H(p). The idea in the design of
Q is to maintain a priority queue over (q1, q2, . . . , qm) (where the priority
of every qi is |Blue(H(qi))|) with the following operations: (i) compute in
constant time the element with maximum priority, (ii) given qi compute its
priority in O(log m) time, and (iii) given indexes i and j (i ≤ j) increase or
decrease, in the same amount, the priorities of qi . . . , qj in O(log m) time.

3.3. The Maximum Box Problem for moving points 69

The operation (i) is done by returning the β label of the root of Q. To carry
on the operation (ii) we traverse the path from qi to the root of Q and return
the sum of the α labels. The operation (iii) can be done as follows. Take
two pointers l1 and l2 pointing respectively to the corresponding nodes of qi

and qj . Modify in ∆α the α labels of l1 and l2 and repeat, while parent(l1)
is not equal to parent(l2), the following: if l1 is a left child then modify in
∆α the α label of the right child of parent(l1), make l1 point to parent(l1),
and update the β label of l1 (do symmetrically with l2). After the loop has
ended, make a traversal from parent(l1) to the root updating the β labels.

The elements of Red(Sp) sorted in increasing order of x-coordinate are from
left to right the leaf nodes of a balanced binary search tree TR. Every node
u in TR is labeled with ymax, that is, the element that has the maximum
ordinate on the subtree rooted at u. It enables us to obtain in logarithmic
time left(q) and right(q) for all q in Red(Sp) as follows. In order to obtain
right(q), we first locate the leaf l containing q by applying a binary search,
and find the deepest ancestor u of l such that: l is located on the left subtree
of u, and the ymax label of u is greater than y(q). Let lu be a pointer to
u. After that, set lu equal to its right child and perform, while lu is not a
leaf, the following: if y(q) is less than the ymax label of the left child of lu,
then set lu equal to its left child, otherwise make lu equal to its right child.
When the loop ends, return the point stored at the leaf pointed by lu. We
proceed symmetrically to obtain left(q).

For each q in Red(Sp), we divide I(q) at q, obtaining the horizontal segments
Ileft(q) and Iright(q) (Figure 3.6). Define Hleft(q) (resp. Hright(q)) as the box
whose bottom side is Ileft(q) (resp. Iright(q)) and its top side is contained
in hp. Let Tleft(q) = {Iright(q′) | q′ ∈ Red(Sp) \ {q} ∧ right(q′) = q} and
Tright(q) = {Ileft(q′) | q′ ∈ Red(Sp) \ {q} ∧ left(q′) = q}. The set Tleft(q) is
represented in a dynamic balanced binary search tree where the leaves from
left to right are its elements Iright(q′) in decreasing order of y(q′). Every
node u is labeled with α as was done for Q. In this case, |Blue(Hright(q′))|
is the sum of the α labels of the nodes in the path from Iright(q) to the
root. Modifying in ∆α the value |Blue(.)| of the elements in an interval of
consecutive leaves in Tright(q) for a given q in Red(Sp) is done similarly as
in Q. Also, every node u is labeled with the boolean c indicating if all the
elements Iright(q′) in the subtree rooted at u are such that q′ is a candidate.
The c labels allow, given a value of ordinate y0, to find the interval of
consecutive leaves Ileft(q′) such that y(q′) < y0 and q′ is candidate. This
operation can be done in logarithmic time as follows. Apply a binary search
to find the leaf l that contains the element Ileft(q0) such that y(q0) < y0

70 3. The Maximum Box Problem for Moving Points on the Plane

and y(q0) is maximized. If l is labeled with c = 0, then there is no interval.
Otherwise, find the deepest ancestor u of l such that l is located on the left
subtree of u, and the c label of the right child of u is equal to 0. Let lu be
a pointer to u. Set lu equal to its right child and do, while lu is not a leaf,
the following: if the c label of the left child of lu is equal to 0, then make
lu point to its left child, and if not, make lu point to its right child. When
the loop ends, the interval is determined by l and the predecessor leaf of
lu. Furthermore, Tleft(q) is designed to support the operators JOIN1 and
SPLIT2, both in logarithmic time [35]. The set Tright(q) is represented in
the same manner.

q

right(q)

left(q)

Ileft(q) Iright(p)

TB(q)

TBright
(q)

q′

p
hp

Figure 3.6: Details of D(p).

The set {I(q) | q ∈ Red(Sp)} ∪ {V(q) | q ∈ Red(Sp)} determines a partition
P of the lower half-plane defined by hp. For each cell C of P, we store in a
balanced binary search tree TB(C) (supporting operators JOIN and SPLIT)
the elements of B ∩ C in decreasing order of y-coordinate. Each node u is
labeled with the number of blue points on the subtree rooted at u in such
a way the label of the root is |B ∩ C |. Each blue point q below hp has a
reference TC(q) to the tree TB(C) where C is the cell that contains q. Also,
we associate with each q in Red(hp) the tree TB(q), which is the tree of blue
points that corresponds to the cell of P that is bounded below by I(q), and

1Given two balanced binary search trees T1 and T2, in which every value in T1 is less

than any value in T2, JOIN operator constructs a balanced binary search tree by merging

the nodes of T1 and T2.
2Operator SPLIT is like the inverse of JOIN. Given a balanced binary search tree T

and a value x, splits the nodes of T in such a way that those nodes whose value are less

than (resp. greater than) x become the nodes of a balanced binary search tree T1 (resp.

T2).

3.3. The Maximum Box Problem for moving points 71

the tree TBright
(q) that corresponds to the cell of P bounded by V(q) and

V(q′), and has no bottom boundary, where q′ is the element that follows q

in TR (Figure 3.6).

Each of the trees that are used in D(p) can be implemented by using Red-
Black-trees, where all the elements are stored in the leaves [35]. Because
of the similarity between the structure of D(p) and the operations of the
algorithm of Section 3.2, a similar algorithm to build D(p) can be designed.
The following result is established:

Theorem 3.4 Given R, B and p, such that |R| = r, |B| = b, and p ∈ R,
the data structure D(p) requires O(r+b) space and can be built in O(r log r+
r log b + b log b) time.

Proof. BothQ and TR have O(r) space complexity. The total complexity of
Ileft(q) and Iright(q) for all q in Red(Sp) is O(2|Red(Sp)|) = O(r). The total
space required by TB(C) for all cells C of P is O(

∑
C∈P |B ∩ C|) = O(|B ∩

(
⋃
C∈P C)|) = O(b). Then the space complexity follows. The construction

of D(p) can be done by making the following changes in the procedure
presented in Section 3.2 for the static case. Process all points q below
hp from top to bottom by inserting q in TR or TB according to its color,
and, if q is a red point, do the following. Obtain left(q) and right(q) in
O(log r) time, compute |Blue(H(q))|, |Blue(Hleft(q))| and |Blue(Hright(q))|
by querying TB in O(log b) time, and insert Ileft(q) and Iright(q) in the
trees Tright(left(q)) and Tleft(right(q)), respectively, in O(log r) time. This
part of the construction has time complexity O(r log r + r log b + b log b).
Finally, construct TB(q) and TBright

(q) for all the red points q in Red(Sp)
as follows. First, preprocess B in O(b log b) time to use O(b log b) space in
order to answer orthogonal range search queries in O(log b+k) time, where k

is the number of reported points [31, 40]. To construct TB(q) for a given red
point q in Sp, search left(q) and right(q) in O(log r) time, and then, answer
an orthogonal range search query with the box H ′

q whose bottom side is I(q)
and one of its top vertices is the point with minimum y-coordinate among
left(q) and right(q). The range query reports in O(log b + kq) time the kq

blue points in H ′
q, and constructing TB(q) can be done in O(kq log kq) time.

Similarly, construct TBright
(q). The overall time complexity is:∑

q∈Red(Sp)

O(log r + log b) +
∑

q∈Red(Sp)

O(kq log kq) +
∑

q∈Blue(Sp)

O(log b)

= O(r log r + r log b + b log b)

72 3. The Maximum Box Problem for Moving Points on the Plane

Hence, the following theorem is obtained,

Theorem 3.5 Given R and B, such that |R| = r and |B| = b, the data
structure D has space complexity O(r2 + rb) and can be built in O(r2 log r +
r2 log b + rb log b) time.

The following will show all the possible types of flips that can occur when
the elements of R ∪ B move. We say that a flip is an x-flip (resp. a y-flip)
if the involved points change their x-order (resp. y-order). Furthermore,
according to the colors of the flipping points, we classify every flip in blue-
blue, red-blue, or red-red. The details to process any of them depend on its
type. In some flips we apply insertions and/or deletions of points in D(·).
As we shall see in Subsection 3.5.1, inserting or removing a blue point in a
given D(p) can be done in O(r+log b) time, and inserting or removing a red
point in O(r + b) time. Furthermore, in some cases we use the operations
GetPriorities and RebuildCandidates, described also in Subsection 3.5.1,
that both run in O(r) time.

The blue-blue x-flip

In this flip we do nothing because it does not affect the maximum box,
neither the structure of D.

The blue-blue y-flip

Two blue points p1 and p2 make a y-flip. Exchange p1 and p2 in every tree
of blue points TB(.) or TBright

(.) that contains both.

The red-blue y-flip

A red point q1 and a blue point q2 make a y-flip. Consider five cases as
depicted in Figure 3.7. Procedure red-blue-y-flip-1 (Algorithm 3) solves
case 1). Note that case 5) only occurs in one structure D(·), and it can be
processed by inserting/removing q2 in D(q1). Procedures for the other cases
are similar.

3.3. The Maximum Box Problem for moving points 73

q1

q2 q3

q1 q2

q3

q1

b2
q3

q1q2

q3

3)

4)

1) 2)

q1

q2

5)

D(q1)

Figure 3.7: y-flip cases between a red point q1 and a blue point q2.

Algorithm 3 red-blue-y-flip-1(q1, q2)
Remove q2 from D(q1) (see Subsection 3.5.1)
for all red points p such that q1 and q2 are in D(p) do

Add +1 to the α label of the leaf Iright(q1) in Tleft(right(q1)).
if q1 is a candidate point then

Add +1 to the α label of the leaf q1 in Q and update the β labels
from q1 to the root. H(p) is now determined by the β label of the
root.

end if
Let T = TB(q3) if q3 exists, otherwise T = TBright

(q1)
Pass q2 from T to TB(q1)

end for

The red-blue x-flip

A red point q1 and a blue point q2 make an x-flip. Consider the two cases
as depicted in Figure 3.8, and their symmetric cases. Procedure red-blue-x-
flip-1 (Algorithm 4) solves case 1).

The red-red flips

Two red points q1 and q2 make a flip. We consider two cases as depicted
in Figure 3.9, and their symmetric cases. We use the operators join and
split [35] for x-flips. Procedures red-red-y-flip-1 (Algorithm 5) and red-red-
x-flip-2 (Algorithm 6) solve cases 1) and 2), respectively.

74 3. The Maximum Box Problem for Moving Points on the Plane

q1

q2

1) 2)

q1

q2

q3
q4

Figure 3.8: Two cases of x-flip between a red point q1 and a blue point q2.

q1

1) 2)

q1

q2
q2

qx

qzqy

T1

T2

Ty1

Ty2

Figure 3.9: A flip of two red points q1 and q2. 1) y-flip, 2) x-flip.

In the processing of the flips we first make (if any) some update operations
in at most two structures D(·), and each update costs O(r + b) time in
the worst case. After that, we update each D(·) that contains the flipping
points. Each of these updates runs in O(log r + log b) time. Thus we have
an O(r log r + r log b + b)-time update for D when two points make a flip.
Finally, the following result is obtained:

Theorem 3.6 Given a set R of r moving red points and a set B of b moving
blue points, whenever two points in R ∪ B make a flip, the data structure
MBKDS can be updated in O(r log r + r log b + b) time.

3.3.1 A particular case

Suppose that |R| = 1, |B| = n and let p be the only one red point. We take
p as a fixed point by considering the relative motions of the points in B with
respect to p. Under this circumstances, the maximum box corresponds to an
isothetic half-plane that contains p on its boundary. In this case, maintaining
the maximum box over time is easier. The only thing we have to do is to
maintain, between the four possible isothetic half-planes containing p in the
boundary, the one that contains the maximum number of blue points inside.
We only process the flips between any point of B and p, making an O(1)-

3.4. The Arbitrarily Oriented Maximum Box Problem 75

Algorithm 4 red-blue-x-flip-1(q1, q2)
for all red points p such that q1 and q2 are in D(p) do

Find in Tleft(q1) (resp. Tright(q1)) the elements lying below q2 and by
using the α labels modify their |Blue(.)| value in −1 (resp. +1).
if q1 is a candidate point then

if x(p) < x(q1) then
Find in Tleft(q1), by using c labels, the elements Iright(q) lying
below q2 where q is a candidate red point, and, by using α labels,
modify in −1 their |Blue(H(q))| values in Q.

else
Find in Tright(q1), by using c labels, the elements Ileft(q) lying
below q2 where q is a candidate red point, and, by using α labels,
modify in +1 their |Blue(H(q))| values in Q.

end if
Let T2 = TB(q3) if q3 exists, otherwise T2 = TBright

(left(q1))
Let T3 = TB(q4) if q4 exists, otherwise T3 = TBright

(q1)
Pass q2 from T2 to T3.

end if
end for

time update of the solution per each. Then, we can design a responsive,
compact and local KDS [61].

3.4 The Arbitrarily Oriented Maximum Box Problem

In this section we consider, as an application of our method for the dynamic
case, the problem of finding the maximum box for a static set R∪B on the
plane, when the box can be oriented according to any angle (direction) in
[0, π] (Figure 3.10). This is an open problem [10] and here we give the first
non trivial solution.

An orientation of the maximum box can be determined by a rotation of the
coordinate axes, and two orientations are equal if and only if their x- and
y-orders are respectively equal. Thus, there are O((r + b)2) critical direc-
tions. The method of Section 3.2 can be applied for each critical direction
obtaining a simple O((r + b)2(r2 log r + r2 log b + rb log b))-time algorithm.
However, we can do it better by iterating all the critical directions and com-
puting dynamically the Maximum Box per each. We start with the direction
given by the angle θ = 0. Compute the isothetic Maximum Box and the data
structure D. Then make a rotational sweep of the coordinate axis maintain-

76 3. The Maximum Box Problem for Moving Points on the Plane

Algorithm 5 red-red-y-flip-1(q1, q2)
Remove q2 from D(q1)
Remove q1 from D(q2) (see Subsection 3.5.1)
for all red points p such that q1 and q2 are in D(p) do

if q1 is candidate and it is not after the flip then
Remove q1 from Q

end if
Find c1 = |Blue(Hleft(q1))| in Tright(left(q1)).
Do the same for c2 = |Blue(Hright(q1))| and c3 = |Blue(Hleft(q2))|.
Remove Ileft(q2) from Tright(q1) and insert it in Tright(left(q1))
ensuring that |Blue(Hleft(q2))| = c1 + c3.
Remove Iright(q1) from Tleft(right(q1)) and insert it in Tleft(q2)
ensuring that |Blue(Hright(q1))| = c3.
if q1 is candidate after the flip then

Change |Blue(H(q1))| in Q to c1 + c3.
end if
if q1 was candidate before the flip and not after then

Update c labels in Tleft(right(q1)) and in Tright(left(q1)).
end if
if q2 appears as candidate after the flip then

Insert q2 in Q such that |Blue(H(q2))| = c1 + c2.
Update c labels in Tleft(right(q2)) and in Tright(left(q2)).

end if
Swap TB(q1) and TB(q2)
Swap q1 and q2 in TR

end for

3.4. The Arbitrarily Oriented Maximum Box Problem 77

Algorithm 6 red-red-x-flip-2(q1, q2)
Apply GetPriorities and RebuildCandidates in D(q1) (see Subsec-
tion 3.5.1)
for all red points p such that q1 and q2 are in D(p) do

Define qx, qy and qz as depicted in Figure 3.9 b). Note that left(qy) = qx,
right(qx) = right(qy) = q1 and left(qz) = q2.

Let Tz = TB(qz) if qz exists, otherwise Tz = TBright
(q2)

Set Tz = JOIN(Tz,TB(q2))

If qx exists let v1 = |Blue(Hright(qx))|, otherwise let v1 =
|Blue(Hleft(q1))| and qx = left(q1)
Let Ty = TB(qy) if qy exists, otherwise Ty = TBright

(qx)
Apply SPLIT on Ty by using y(q2) to obtain the trees Ty1 and Ty2 as
shown in Figure 3.9 b), and set Ty = Ty2 and TB(q2) = Ty1 .

Apply SPLIT on Tleft(q1) by using y(q2) to obtain the trees T1 and T2

as shown in Figure 3.9 b).
Set Tleft(q1) = T1. Remove Iright(q2) from Tleft(right(q2)) and insert
it in Tleft(q1) such that |Blue(Hright(q2))| = 0.
Set Tright(q1) = JOIN(Tright(q1),Tright(q2)), Tleft(q2) = T2 and
Tright(q2) = null.
Remove Ileft(q2) from Tright(q1) and insert it in Tright(qx) ensuring that
|Blue(Hleft(q2))| is equal v1 plus the number of elements in Ty1

if q2 is candidate and it is not after the flip then
Remove q2 from Q
Update c labels in Tleft(right(q2)) and in Tright(left(q2)).

else if q2 appears as candidate after the flip then
Insert q2 in Q such that |Blue(H(q2))| = |Blue(Hleft(q2))|
Update c labels in Tleft(right(q2)) and in Tright(left(q2)).

end if
Swap q1 and q2 in TR

end for

78 3. The Maximum Box Problem for Moving Points on the Plane

y

x

Figure 3.10: The arbitrarily oriented Maximum Box.

ing the x-order and the y-order of the elements of R∪B. The x-order (resp.
y-order) changes whenever two points are at the same distance to the y-axis
(resp. x-axis), implying the swap (flip) of two consecutive elements and the
appearance of a new critical direction θ. Thus, the maximum box that is
oriented according to θ is computed by making the O(r log r + r log b + b)-
time update in D. The overall rotation angle is at most π radians and the
following result is established.

Theorem 3.7 Given a set of red points R and a set of blue points B on the
plane, such that |R| = r and |B| = b, the Arbitrarily Oriented Maximum Box
Problem can be solved in O((r+b)2(r log r+r log b+b)) time and O(r2 +rb)
space.

3.5 An approximation approach

In this section we study how to maintain an approximation of the maximum
box (i.e. the number of blue points is approximated) by using sub-quadratic
space. For a constant c ∈ (0, 1), a c-approximation of the Maximum Box is
a box containing no red points and at least cb∗ blue points, where b∗ is the
number of blue points in the maximum box. An O(n log2 n)-time algorithm
to compute a 1/2-approximation of the maximum box in the static setting
is presented in [83]. The key idea the following: take the median point p of
the x-order and compute the exact maximum box Hp that has p on either its
left side or its right side. Then, return the best box among Hp and the boxes
that are returned by the recursive calls to the sets {q ∈ R∪B | x(q) < x(p)}
and {q ∈ R ∪B | x(q) > x(p)}.

We use a similar procedure to extend MBKDS to a new KDS named as Apx-
MBKDS. First of all, we study in Subsection 3.5.1 the dynamic operations
on D(p), that is, how to efficiently perform insertions and deletions of red

3.5. An approximation approach 79

an blue points on it. Next, we consider a new data structure D∗(p) as an
extension of D(p), and it is used with a binary tree that has the points of R

sorted by y-coordinate.

3.5.1 Dynamic operations

In this subsection we show that inserting or removing a blue point in D(p)
can be done in O(r +log b) time, and that inserting or removing a red point
in O(r + b) time. These dynamic operations are based on the following
primitives.

GetPriorities: Given a D(p), computes in O(r) time |Blue(H(q))| for all the
red points q in D(p). As will stated next. For each red point q in D(p),
apply a top-bottom traversal in Tleft(q) and in Tright(q) such that for each
node u we take its α label uα and increase the α labels of its children (if any)
in uα, and after that, reset uα to zero. When the traversals finish, we have
computed |Blue(Hleft(q))| and |Blue(Hright(q))| for all q in D(p). Note that
|Blue(H(q))| = |Blue(Hleft(q))|+ |Blue(Hright(q))|. The overall complexity
of the traversals is O(r) time.

IntersectLists(u): Given any D(p) and a point u, returns two lists Lleft and
Lrigth such that: (i) Lleft (resp. Lrigth) contains the red points q of D(p)
such that I(q) intersects V(u) and x(q) < x(u) (resp. x(q) > x(u)) (ii) the
elements in Lleft and Lrigth are sorted in decreasing order of y-coordinate.
This can be done in O(r) time as follows: Set Lleft and Lrigth to two empty
lists. Iterate the red points q of D(p) by traversing the leaves of TR from
left to right. If I(q) intersects V(u) then insert q at the end of Lleft if
x(q) < x(u), otherwise insert it at the beginning of Lrigth.

RebuildCandidates: This is the operation that given D(p) rebuilds in O(r)
time the set Q associated to D(p). First, we apply GetPriorities and obtain
the candidates points by merging on a list L the two lists returned by the
invocation of IntersectLists(p). After that, apply a bottom-top building of
Q from L.

Inserting a blue point u in D(p) can be done as follows: We find the cell
C of the partition P determined by D(p) that contains u, and insert u in
TB(C). Since we do not store explicitly the cells of P, we have to identify
C. Note that either (i) C has a red point on its bottom boundary, or (ii) C
has no bottom boundary and is bounded by V(q) and V(q′), where q and q′

are consecutive red points in the x-order. In the case (i) we first find left(q)
and right(q) for all red points q in D(p) in overall O(r) time, and after

80 3. The Maximum Box Problem for Moving Points on the Plane

that, consider, for each red point q in D(p), the cell Cq whose bottom side
is I(q) and one vertex is the point of minimum y-coordinate among left(q)
and right(q). If u is contained in Cq then insert u in TB(q). In the case (ii)
traverse the leaves of TR from left to right and, if the two consecutive red
points q and q′ are such that u is contained in the cell of P having no bottom
boundary and bounded by V(q) and V(q′), then insert u in TBright

(q). After
the above operations, we apply GetPriorities and, for all red points q in D(p),
increment |Blue(Hleft(q))| (resp. |Blue(Hright(q))|) in one if u is above
Ileft(q) (resp. Iright(q)). Finally, we invoke RebuildCandidates. The total
time complexity is O(r + log b).

For further information, we show now how to compute left(q) and right(q)
for all red point q in D(p) in overall O(r) time. Initialize an empty stack ŝ

and denote as qs the current top element of ŝ. For each red point q in the
x-order (i.e. the leaves of TR from left to right) do the following. While
y(qs) < y(q) set right(qs) = q and remove qs from ŝ. When the loop ends
set left(q) = qs and push q in ŝ. Since every red point is pushed once in ŝ,
and removed at most once from ŝ, the overall time complexity is O(r).

Inserting a red point u requires a different approach, that is described in the
following seven steps.

(1) Apply GetPriorities to obtain |Blue(Hleft(q))| and |Blue(Hright(q))|
for all q in Red(Sp), and IntersectLists(u) to get the two lists of red
points Lleft = {p1, p2, . . . , pk1} and Lright = {q1, q2, . . . , qk2} where the
pi’s (1 ≤ i ≤ k1) and the qj ’s (1 ≤ j ≤ k2) are the left and the right
red points, respectively, as depicted in Figure 3.11.

(2) Insert u in TR. After that, compute left(u) and right(u) in O(log r)
time, and compute |Blue(Hleft(u))| and |Blue(Hright(u))| in O(b) time.
Finally, insert Ileft(u) and Iright(u) in Tright(left(u)) and in Tleft(right(u))
in O(log r), respectively.

(3) Suppose now w.l.o.g. that y(p1) > y(q1). Determine for all red points
p′ in Lleft or Lrigth (p′ 6= p1) the lists of blue points L1(p′) and L2(p′)
whose members are sorted in decreasing order of y-coordinate, and
L1(p′) (resp. L2(p′)) contains the blue points q′ in TB(p) such that
x(q′) < x(u) (resp. x(q′) > x(u)). For a given p′, L1(p′) and L2(p′)
can be obtained in O(|TB(p′)|) time by making an in-order traversal
of TB(p′), where |TB(p′)| denotes the number of blue points stored in
TB(p′). Thus the overall time complexity is O(r + b).

3.5. An approximation approach 81

(4) For the new cells Cu, Cp1 and Cq1 , whose bottom sides are respectively
I(u), I(p1) and I(q1), compute in O(b) time the corresponding trees
TB(u) = TB(Cu), TB(p1) = TB(Cp1) and TB(q1) = TB(Cq1). Namely,
let L1 be the list of elements of TB(p1) that are above u, L2 be the
list of elements of TB(p1) that are below u and to the left of u, L3

be the list of elements of TB(p1) that are below u and to the right of
u, and L4 be the list of elements of TB(q1) that are to the right of u.
Note that L1, L2, L3, and L4 can be obtained in O(b) time and sorted
in decreasing order of y-coordinate by making in-order traversals in
TB(p1) and TB(q1). After that, we build TB(u) from L1, and rebuild
TB(p1) from L2, and TB(q1) from the concatenation of L3 and L4.

(5) The elements of Lleft are the left neighbors of V(u) and to build
Tleft(u) we have to compute |Blue(Hright(pi))| for all pi in Lleft. This
can be done as follows: First, compute |Blue(Hright(p1))|, and after
that, for i = 2 . . . k1, build TB(pi) in O(|TB(pi)|) time from the con-
catenation of the lists L1(qj), where y(pi−1) < y(qj) < y(pi), then
|Blue(Hright(pi))| is computed by using the following equation:

|Blue(Hright(pi))| = |Blue(Hright(pi−1))|−|Blue(Hleft(pi))|+|TB(pi)|

Now proceed similarly to build Tright(u) from Lright. The building of
Tleft(u) and Tright(u) is done in O(r) time.

(6) Compute TBright
(pk1) and TBright

(u) in O(b) time, similar as we did in
Step (4).

(7) Finally, apply RebuildCandidates.

Removing a blue point (resp. a red point) can be done similarly by inserting
a blue point (resp. a red point). Note that they are opposite operations.
We obtain the following result:

Theorem 3.8 Inserting or removing a blue point in a given D(p) can be
done in O(r + log b) time, and inserting or removing a red point in O(r + b)
time.

3.5.2 The approximated KDS

In this section we extend our MBKDS to support the maintenance of a
1/2-approximation of the maximum box. In order to do this, consider the
extended version D∗(p) of D(p) that takes care of the points that are not only

82 3. The Maximum Box Problem for Moving Points on the Plane

.

u
p1

p2

p3

pk1

q1

q2

q3

. . .

qk2

.

u
p1

p2

p3

pk1

q1

q2

q3

. . .

qk2

.. .
.

.
.

.. .

.
.
.

.
.

.
.
.

a)

b)

Figure 3.11: Inserting a red point u in D(p). a) Before insertion, b) after insertion.

below the line hp but also above it. Those points above hp are structured
symmetrically to the points that lie below (Figure 3.12 a)). Now, suppose
the use in the 1/2-approximation of the maximum box algorithm, presented
in [83], the median point of the y-order instead of the x-order one’s. Our
Apx-MBKDS is a two-level data structure that is composed in the first level
by a balanced binary search tree T1/2 having the elements of R sorted by
y-coordinate and in the second level by instances of D∗(.) (Figure 3.12 b)).
The recursive definition of Apx-MBKDS is as follows:

The root u of T1/2 is built from R∪B, that is, u stores the median point in
the y-order of the red points, and D∗(u) is built from R∪B. The left and the
right children of u are constructed from the sets {q ∈ R ∪B | y(q) < y(p)}
and {q ∈ R ∪B | y(q) > y(p)}, respectively.

Additionally, we associate to every node u of T1/2 the best maximum box
H(u) of the elements of the subtree rooted at u, that is, the box containing
the maximum number of blue points among the box provided by D∗(u),
H(lcu), and H(rcu), where lcu and (rcu) denote the left and the right chil-

3.5. An approximation approach 83

u

u

D∗(u)

p

b)a)

T1/2

Figure 3.12: a) D∗(p), b) the two-level data structure Apx-MBKDS for maintain-
ing a 1/2-approximation of the maximum box.

dren of u, respectively. The box H(root) of the root node root is a 1/2-
approximation of the maximum box.

Let u1, u2, . . . , uk be the nodes of a level ` of T1/2, and denote as ri and bi

(1 ≤ i ≤ k) the number of red and blue points in D∗(ui), respectively. The
total memory used in ` is:

k∑
i=1

O(ri + bi) = O

(
k∑

i=1

(ri + bi)

)
= O(r + b)

and the overall time to build D∗(u1),D∗(u2), . . . ,D∗(uk) is:

k∑
i=1

O(ri log ri + ri log bi + bi log bi)

=
k∑

i=1

O(ri log r + ri log b + bi log b)

= O

((
k∑

i=1

ri

)
log r +

(
k∑

i=1

ri

)
log b +

(
k∑

i=1

bi

)
log b

)
= O(r log r + (r + b) log b)

T1/2 has O(log r) levels because it is a balanced tree. Thus the Apx-MBKDS
uses O((r + b) log r) space and can be built in O(r log2 r + (r + b) log r log b)
time.

Now let us show how to process the flips. Firstly, we depict a common
operation that we do at the beginning of the processing of each type of flip
(except in the blue-blue x-flip in which we do nothing). Given two flipping

84 3. The Maximum Box Problem for Moving Points on the Plane

points p1 and p2, let u be the node in T1/2 where the search paths of p1 and
p2 split. Then apply the O(log r + log b)-time update in D∗(u′) for every
node u′ in the path from the parent of u to the root.

In the blue-blue y-flip, and in the red-blue x-flip, we apply only the above
operation.

In the red-blue y-flip, between a red point p1 and a blue point p2, we also
do the following: Let u be the node in T1/2 corresponding to p1, first update
D∗(u) by applying the insertion/deletion method of a blue point described
in Subsection 3.5.1, and after that, update D∗(u′) in every node u′ in the
path from u to the in-order predecessor (resp. successor) of u in the subtree
rooted at u. This procedure spends O(r + b) time.

In the red-red x-flip, between two red points p1 and p2, we add the following:
Let u1 and u2 be the nodes in T1/2 that correspond to p1 and p2 respectively.
If no node among u1 and u2 is an ancestor of the other in T1/2, then do
nothing, otherwise suppose w.l.o.g. that u1 is an ancestor u2 and apply the
O(r + b)-time update in D∗(u1).

In the red-red y-flip, between two red points p1 and p2, we also do the
following: Let u1 and u2 be the nodes in T1/2 that correspond to p1 and p2

respectively, and suppose w.l.o.g. that u2 belongs to the subtree rooted at
u1, then update D∗(u1) by applying the insertion/deletion method of a red
point in D(.) as described in Subsection 3.5.1.

Finally, we note that the complexity of the processing of flips in the worst
case is O(r + b) time, and thus we obtain the main result of this section.

Theorem 3.9 Given a set R of r moving red points and a set B of b moving
blue points on the plane, the Apx-MBKDS is a compact and local kinetic
data structure that maintains a 1/2-approximation of the maximum box over
R ∪ B. It uses O((r + b) log r) space and can be built in O(r log2 r + (r +
b) log r log b)) time. Each event can be processed in O(r + b) time in the
worst case.

3.6 Conclusions and open problems

In this chapter we have studied the Maximum Box Problem for moving
points on the plane. We have presented a compact and local KDS for
maintaining an optimal solution over time. The KDS, named MBKDS, has
O(r2 +rb) space and can be built in O(r2 log r+r2 log b+rb log b) time. The
changes in the x-order and in y-order of the moving points, that can produce

3.6. Conclusions and open problems 85

a change of the maximum box, were named flips, and with the MBKDS the
flips can be processed in O(r log r + r log b + b) time.

We used the MBKDS to give the first non trivial solution to the problem of
finding the maximum box for a static set of bicolored points on the plane,
when the box can be oriented according to any direction. This problem was
proposed in [10] as an open problem, and we gave here an O((r+b)2(r log r+
r log b + b))-time and O(r2 + rb)-space algorithm.

Finally, we showed how to extend the MBKDS in order to maintain a 1/2-
approximation of the maximum box.

We leave as an open problem the design of a different and more efficient KDS
for the maximum box problem for moving points on the plane, as well as an
improved algorithm for the arbitrarily oriented maximum box problem.

Chapter 4

The Class Cover Problem

with Boxes

In previous chapters we dealt, in static and kinetic scenarios, with the basic
problem of finding a box covering the maximum number of blue points and
avoiding red points (the MB-problem). Such box does not always cover
a reasonable amount of points with respect to the cardinality of the blue
class. Consequently, here we consider a related problem which is to find a
minimum set of boxes covering all blue points and no red point.

A classical problem in Data Mining and classification problems is the Class
Cover problem [27, 41, 84]. It consists in, given a bichromatic set of points
S = R∪B, finding a minimum-cardinality set of R-empty balls which covers
the blue class (i.e. every point in B is contained in at least one of the balls)
and with the constraint that balls are centered at blue points. In [27], the
authors showed that this problem is NP-hard in general. They also presented
an O(log n + 1)-approximation algorithm, and, in the case the points lie in
a d-dimensional space with Euclidean norm, for some fixed constant d, they
gave a polynomial-time approximation scheme. In this chapter we study a
non-constrained version in the plane, named the Boxes Class Cover problem,
in which axis-aligned rectangles (i.e. boxes) are considered as the covering
objects. Our problem can be formulated as follows:

The Boxes Class Cover problem (BCC-problem): Given S = R∪B,
find a minimum-cardinality set H of R-empty axis-aligned open rectangles
such that every point in B is contained in at least one rectangle of H.

A solution to an instance of the BCC-problem is shown in Figure 4.1 a). A
similar problem is the one of covering with disks, not necessarily centered

87

88 4. The Class Cover Problem with Boxes

at blue points, instead of boxes (Figure 4.1 b)). This version of the class
cover problem is NP-hard [15], and as we will see in Section 4.3, it admits a
constant-factor approximation algorithm [24, 87] and is APX-hard [67].

a) b)

Figure 4.1: Covering the blue class: a) with boxes, b) with disks.

This chapter is outlined in the following way. In Section 4.1 we prove that
the BCC-problem is NP-hard. In Section 4.2 we state a first approach to our
problem. In Section 4.3 we review related results concerning range spaces
and epsilon-nets, which give approximation algorithms to our problem. In
Section 4.4 we study the BCC-problem when we restrict the boxes to strips
or half-strips. In Section 4.5 we consider the version of the BCC-problem in
which the boxes are axis-aligned squares, and we prove its NP-hardness. In
Section 4.6 we show that the BCC-problem remains NP-hard if the covering
boxes are pairwise disjoint, and show an O(1)-approximation algorithm.
Finally, in Section 4.7, we state the conclusions and further research.

4.1 Hardness

In this section we prove that the BCC-problem is NP-hard. Our proof is
based on a reduction from the Rectilinear Polygon Covering problem (RPC-
problem), which is defined as follows: Given a rectilinear polygon P , find
a minimum cardinality set of axis-aligned rectangles whose union is exactly
P . See Figure 4.2 for clarity.

For a general class of rectilinear polygons with holes, Masek [85] proved that
the RPC-problem is NP-hard. Culberson and Reckhow [38] used a clever
reduction from the 3-SAT-problem [57] to show that this problem is also
NP-hard for polygons without holes.

Theorem 4.1 The BCC-problem is NP-hard.

4.1. Hardness 89

H1

H2

H3

H4

a) b)

P P

Figure 4.2: a) A rectilinear polygon P . b) An optimal covering of P with four
rectangles: H1, H2, H3, and H4.

Proof. Let the rectilinear polygon P be an instance of the RPC-problem.
Let A1 be the set of all distinct axis-parallel lines that pass through an edge
of P . For every two consecutive vertical (resp. horizontal) lines in A1, draw
a vertical (resp. horizontal) line in-between. Denote as A2 these additional
lines. Let G be the grid defined by A1∪A2. We put a red (resp. blue) point
in every vertex of G \ P (resp. G ∩ P) (see Figure 4.3).

Figure 4.3: The reduction from an instance of the RPC-problem to an instance of
the BCC-problem.

Let S be the above set of red and blue points. Clearly, any covering set
of P corresponds with a solution to the BCC-problem on S with the same
cardinality. Conversely, any solution H for the BCC-problem on S can be
adjusted to be a covering set of P . Namely, let H = {H1,H2, . . . ,Hk} be

90 4. The Class Cover Problem with Boxes

a solution to the BCC-problem on S. We can consider that each box in H
is maximal, that is, it can not be enlarged in order to contain more blue
points. Let H ′

i (1 ≤ i ≤ k) be the bounding box of Hi ∩ B. We have that
every H ′

i (1 ≤ i ≤ k) is fully contained in P . In fact, if some H ′
i is not

fully inside P , then H ′
i must contain at least one cell of G \ P which has

at least one red vertex u, and thus Hi covers u which is a contradiction.
Furthermore,

⋃k
i=1 H ′

i covers P . This can be checked as follows. Let c be a
cell of G∩P . Notice that: (i) c has exactly two adjacent sides in lines of A1

and two adjacent sides in lines of A2, and (ii) any maximal box Hv of H,
covering the blue vertex v of c whose two edges are in lines of A1, covers c.
Hence, H′ = {H ′

1,H
′
2, . . . ,H

′
k} is a solution to the RPC-problem on P .

4.2 A simple approach

Any solution H to the BCC-problem is a covering of B, and we observe that
we can extend each box H ∈ H until each side of H passes through a red
point or reaches infinity. From this observation we will only consider the set
H∗ of all the R-empty open boxes whose sides pass through red points or are
at infinity. Up to symmetry, such types of boxes are depicted in Figure 4.4.

a) b) c)

d) e)

Figure 4.4: Types of boxes in H∗. a) A rectangle, b) a half-strip, c) a strip, d) a
quadrant, e) a half-plane.

We notice that the cardinality of H∗ is O(r2). Namely, let p be a red point
and let hp be the horizontal line through p. For every red point q below
hp, if the box Hpq, with opposite vertices p and q, is R-empty, then it can
be extended horizontally until its left and right sides touch red points or
reach infinity, and then Hpq become a member of H∗ (Figure 4.5 a)). We
also consider that q is at infinity in which case Hpq is a vertical half-line
with top-most point p. Then, there are at most O(r) boxes in H∗ whose
top side contains p, and thus at most O(r2) boxes whose top side passes

4.2. A simple approach 91

through a red point. Similarly, there are O(r2) boxes in H∗ whose left side
(resp. right side, bottom side) contains a red point. Since every box in
H∗ has a red point on its boundary we conclude that |H∗| is O(r2). There
are configurations in which |H∗| is Ω(r2). For example, suppose that r is
even and distribute two sets of red points S1 and S2 with r/2 points each
(Figure 4.5 b)) and put the b blue points anywhere. Then, we have a box
in H∗ for every two consecutive red points in S1 and two consecutive red
points in S2, thus r2/4 = Ω(r2) in total. We also notice that any solution
H to our problem is such that |H| ≤ min{r + 1, b} because either the r + 1
R-empty vertical strips or b small enough boxes cover B (Figure 4.5 c) and
d)).

a) b)

S1

S2

p

q

hp

Hpq

c) d)

Figure 4.5: a) Finding boxes in H∗ whose top sides contain the red point p. b)
An example in which there are Ω(r2) boxes in H∗. c) The r + 1 R-empty vertical
strips are enough to cover B. d) A small box for each blue point is a covering of B.

We have seen that the BCC-problem is NP-hard, and to give an exact so-
lution we can apply an exhaustive algorithm. First, compute in O(r2) time
the set H∗, and after that, test for k = 1 . . .min{r + 1, b} if there is a
subset of cardinality k in H∗ that covers B. The first covering found is a
solution to our problem. Since in the worst case there are (O(r2))min{r+1,b}

subsets of H∗ to be tested, and every test can be done in O(min{r + 1, b} ·
b) = O(min{rb, b2}) time, the overall time complexity is O(r2min{r+1,b} ·
min{rb, b2}) = O(min{r2r+3b, r2bb2}). The time complexity of this simple
algorithm is exponential in r and polynomial in b, and notice that if either
r or b is small, e.g. O(1), then it is polynomial.

92 4. The Class Cover Problem with Boxes

4.3 Related results

In this section we relate our problem with ε-nets. A finite1 range space
(X,R) is a pair consisting of an underlying finite set X of objects and a
finite collection R of subsets of X called ranges. Given a range space (X,R),
the SET COVER problem [57] asks for the minimum-cardinality subset of R
that covers X. Then, the BCC-problem is an instance of the SET COVER
problem in the range space (B,H∗). The dual of the SET COVER problem
is the HITTING SET problem [57], that is, to find a minimum subset P ⊆ X

such that P intersects with each range in R. Both problems are NP-hard
and the best known factor of approximation of a polynomial-time algorithm
is O(1 + log |X|) [52, 57]. For the SET COVER problem, the algorithm
follows the greedy approach [35], that is, while there are elements in X not
covered, add to the solution the set of R covering the maximum number of
non-covered elements in X. This approach gives the same logarithmic factor
of approximation for the BCC-problem, even if we modify its definition by
restricting the covering boxes to axis-aligned squares (Figure 4.6).

H ′

H ′′

H1 H2 H3 Hk−1 Hk

· · ·

· · ·

· · ·

2k−2

2k−2 2k−1

2k−1

a)

. . .

H ′

H ′′

H1 H2 Hk

b)

Figure 4.6: The greedy method gives a logarithmic factor of approximation for
both boxes and squares. In a) (resp. b)), each of the intersections of the boxes
(resp. squares) H ′ and H ′′ with the box (resp. square) Hi (1 ≤ i ≤ k) contains
2i−1 blue points. The greedy method reports {H1,H2, . . . ,Hk} instead of {H ′,H ′′}.

Given the (primal) range space (X,R), its dual range space is (R, X∗) where
X∗ = {Rx | x ∈ X} and Rx is the set of all ranges in R that contains
x [24]. A set cover in the primal range space is a hitting set in its dual,
and vice versa. In [24], Brönnimann and Goodrich give a general approach
in order to find an approximated hitting set for range spaces, in such a
way that when it is solved in the dual range space, it gives a set cover in
the primal one. Their method is based on finding small-size subsets called

1A range space can be infinite, but for the purpose of our problem we only define it as

finite.

4.3. Related results 93

ε-nets, as candidate hitting sets, and it works for range spaces with finite VC-
dimension [24, 68, 101]. ε-nets were introduced by Haussler and Welzl [68]
and became a main concept in computational and combinatorial geometry.
Given 0 < ε < 1, a subset N ⊆ X is an ε-net for X and R if any range
H ∈ R with |H ∩ X| ≥ ε|X| contains an element of N . In terms of our
problem, an ε-net is a subset B′ ⊂ B such that any box in H∗ that contains
ε|B| points covers an element of B′. In the dual range space, an ε-net is a
subset H ⊂ H∗ that covers all points p of B such that p is covered by at least
ε|H∗| boxes of H∗. The VC-dimension of (X,R) is stated as the maximum
cardinality of a subset Y ⊆ X such that any subset of Y is the intersection
of Y with some range in R, and the VC-dimension of the dual range space
is less than 2d+1, where d is the VC-dimension of the primal space [24, 101].
Note that the VC-dimension of our range space (B,H∗) is at most four (i.e.
in any subset P ⊆ B with at least five points, there is subset P ′ ⊂ P that
can not be separated with a box in H∗ from P \ P ′).

For range spaces with constant VC-dimension, the method of Brönnimann
and Goodrich [24] reports a hitting set of size at most a factor of O(log c)
from the optimal size c. This result is based on the fact that, for every range
space with finite VC-dimension d, there exists an ε-net of size O(d

ε log d
ε) [68].

In fact, a random sample of X of this size is an ε-net with high probabil-
ity [68]. In general, if the range space has constant VC-dimension, and
there exists an ε-net of size O(1

εϕ(1
ε)), their method finds a hitting set of

size O(ϕ(c)c), where c is the size of an optimal set. Therefore, since our
range space (B,H∗) has constant VC-dimension (also the dual), their tech-
nique can be applied to obtain in the dual range space a hitting set of size
at most a factor of O(log c) from the optimal size c, which induces a solution
H (a set cover) for the BCC-problem with the same size. Thus we have an
O(log c)-approximation algorithm for the BCC-problem. Recently, Aronov
et al. [9] proved the existence of ε-nets of size O(1

ε log log 1
ε) for range spaces

of points and box ranges. They stated as further research to find, for the
dual range space, ε-nets of size less than O(1

ε log 1
ε). They also mentioned

that in [25] authors claim, without proof, their existence. It would give an
O(log log c)-approximation algorithm to the BCC-problem.

Matoušek et al. proved in [87] that ε-nets of size O(1
ε) exist for range spaces

of points and disk ranges, and also for half-spaces in three dimensions. Due
to this, techniques in [24] provide an O(1)-approximation for the class cover
problem with disks. Very recently, Har-Peled [67] proved that the general
problem of covering a set of points with the minimum number of disks from
a given family of disks is APX-hard [57]. In [34], Clarkson and Varadarajan

94 4. The Class Cover Problem with Boxes

showed that if the geometric range space2 (X,R) has the property that,
given a random subset R′ ⊂ R and a nondecreasing function f(·), there is
a decomposition of the complement of the union of the elements of R′ into
an expected at most f(|R′|) regions (each region of a particular form), then
a cover of size O(f(|C|)) can be found in polynomial time, where C is the
optimal covering set. This result is based on the fact that, with the above
conditions, there are ε-nets of size O(f(1

ε)) for the dual range space [34,
Theorem 2.2]. If R is a family of pseudo-disks3, then the trapezoidization of
the complement of any subset R′ ⊂ R has complexity O(|R′|) and thus the
dual range space has ε-nets of size O(1

ε) [34]. Note that a set of axis-aligned
squares is a family of pseudo-disks, thus we can give an O(1)-approximation
algorithm for the BCC-problem (by using the techniques in [24, 34]) if we
restrict the covering boxes to axis-aligned squares.

4.4 Solving particular cases

In this section we study the BCC-problem for some special cases. Namely,
we consider only certain boxes of H∗ having at most three points on their
boundary. In Subsection 4.4.1 we give an O(r log r + b log b +

√
rb)-time

exact algorithm when we use both horizontal and vertical strips as covering
objects. In Subsection 4.4.2 we only consider one type of half-strip, say
top-bottom half-strips, and give an O((r + b) log min{r, b})-time algorithm.
In Subsection 4.4.3 we prove that the BCC-problem remains NP-hard if we
cover with half-strips in the four possible directions, and that there exists a
constant factor approximation algorithm based on results in [34]. Finally, in
Subsection 4.4.4, we study the case of covering with opposite half-strips, say
top-bottom and bottom-top half-strips. In this case we are unable to give
either a polynomial-time exact algorithm or a hardness proof, and propose
a 2-approximation algorithm.

4.4.1 Covering with horizontal and vertical strips

In this subsection we solve the BCC-problem by using only horizontal and
vertical strips. A box in H∗ is a strip if it does not contain red points in two
consecutive sides (Figure 4.4 c) and e)). Thus we consider as the covering
objects vertical or horizontal strips, and also axis-aligned half-planes.

2A range space (X,R) is geometric if X is a set of geometric objects, generally points,

and R is a set of geometric ranges such as half-spaces, boxes, convex polygons, balls, etc.
3A family of Jordan regions (i.e. regions bounded by closed Jordan curves) is a family

of pseudo-disks if the boundaries of any pair of regions intersect at most twice.

4.4. Solving particular cases 95

Notice that a covering set exists if and only if every blue point can be covered
by an axis-parallel line avoiding red points. Also, if a blue point and a red
point lie on the same vertical (resp. horizontal) line then the blue point can
only be covered by a horizontal (resp. vertical) strip.

Firstly, we sort S by x-coordinate and by y-coordinate (two orders) in
O(r log r + b log b) time. Preprocess in linear time the x-order to assign
for each blue point p the references r−x (p) and r+

x (p) to its previous and next
red points, respectively. We do the same with the y-order to assign r−y (p)
and r+

y (p). A solution does not exist if and only if there is a blue point
p such that x(p) = x(r−x (p)) or x(p) = x(r+

x (p)), and y(p) = y(r−y (p)) or
y(p) = y(r+

y (p)). It can be checked in O(r + b) time. Thus suppose now
that a solution exists.

We can assume that there are no red and blue points on the same hori-
zontal or vertical line. Otherwise we can apply the following linear-time
preprocessing and after that, solve the same problem for the blue points not
yet covered. Given a blue point p, let Hv(p) be the vertical strip bounded
by r−x (p) and r+

x (p), and Hh(p) be the horizontal strip bounded by r−y (p)
and r+

y (p). From each non-covered blue point p, if x(p) = x(r−x (p)) or
x(p) = x(r+

x (p)), then include in the solution the strip Hh(p). Otherwise, if
y(p) = y(r−y (p)) or y(p) = y(r+

y (p)), then include Hv(p).

Consider a graph G whose set of vertices V is the set of strips that cover at
least one blue point (Figure 4.7), and whose set of edges E is the following:
For each blue point p put an edge between the horizontal strip Hh(p) and
the vertical strip Hv(p); different blue points may define the same edge.
The graph G is bipartite, has O(r) vertices and O(b) edges, and can be
constructed in O(r + b) time.

a) b)

Figure 4.7: a) A set of red and blue points. b) Strips covering at least one blue
point

96 4. The Class Cover Problem with Boxes

Since each blue point is covered by exactly two strips, the problem is reduced
to finding a Minimum Vertex Cover [57] in G. However, for bipartite graphs
the Vertex Cover Problem is equivalent to the Maximum Matching Problem
because of the König’s theorem, and thus it can be solved in O(

√
|V ||E|) =

O(
√

rb) time [69].

Thus, the following result is obtained:

Theorem 4.2 The BCC-problem can be solved in O(r log r + b log b +
√

rb)
time if we only use axis-aligned strips as covering objects.

4.4.2 Covering with half-strips in one direction

In this subsection we solve our main problem by considering only half-strips
oriented in a given direction, say top-bottom half-strips. A box of H∗ is a
half-strip if it contains at most three points on its boundary (Figure 4.4 b),
c), d), and e)), and is top-bottom if either contains a red point on its top
side or is a vertical strip. We give an optimal O((r + b) log min{r, b})-time
algorithm.

Consider the structure of rays that is obtained by drawing a bottom-top red
ray starting at each red point as depicted in Figure 4.8. For a given blue
point p, let sp be the maximum-length horizontal segment passing through
p whose interior does not intersect any red ray. Let pl (resp. pr) be the
red point such that the left (resp. right) endpoint of sp is located in the
ray corresponding to pl (resp. pr). We say that pl and pr are the left and
the right red neighbors of p (Figure 4.8). Every time, we select the highest
blue point p not yet covered, and include in the solution the top-bottom
half-strip Hp whose top side is sp translated upwards until it touches a red
point or reaches the infinite. In other words, Hp is the top-bottom half-strip
in H∗ covering p and the maximum number of other blue points. We finish
when all blue points are covered.

The correctness of the algorithm follows from the fact that, if p is a blue
point not yet covered with maximum ordinate, then Hp is so that, for any
other non-covered blue point p′ which is not in Hp, p and p′ can not be
covered with the same top-bottom half-strip. This is because every top-
bottom half-strip which covers both p and p′, contains at least one of the
two red neighbors of p.

In the algorithm, we first preprocess S to obtain the decreasing y-order of
the elements of B, and build two balanced binary search trees TB and TR

4.4. Solving particular cases 97

sp

pl

pr

p

Hp

Figure 4.8: The ray structure. The algorithm selects every time the highest blue
point p not yet covered and include in the solution the top-bottom half-strip Hp ∈
H∗ which covers p and the maximum number of other blue points.

containing, respectively, the blue and the red points sorted lexicographically,
that is, first by abscissa and after that by ordinate. The first one allows the
deletion of elements. In the second one, each node v is labeled with the
element of minimum ordinate in the subtree rooted at v. This labeling
permits us to obtain the red neighbors for a given blue point p and to
determine the top side of Hp, both in O(log r) time. See Section 3.3 for
a similar operation. The preprocessing time is O(r log r + b log b) in total.
If there are a blue point p and a red point q such that x(p) = x(q) and
y(p) > y(q), then there is no solution to our problem. It can be checked in
O(r + b) time by simultaneous in-order traversals on TR and TB. Now, we
do the following for each blue point p in the decreasing y-order which is not
still covered (i.e. p is in TB): find the left and the right red neighbors pl and
pr of p, determine Hp and include it in the solution, find in O(log b+kp) time
the kp blue points in TB covered by Hp (i.e. those points p′ in TB such that
x(pl) < x(p′) < x(pr)) and remove them from TB in O(kp log b) time. The
total time complexity is O(r log r+b log b)+

∑
p∈B O(log b+log r+kp log b) =

O(r log r + b log b + b log r) = O(r log r + b log b).

Suppose now that r is much less than b. Then, before applying the above
algorithm, the following can be done in order to reduce the asymptotic time
complexity. For all red points p, define the sets of blue points B1(p) and
B2(p) to group the elements of B, and they are filled up as follows. Sort the
red points in lexicographic order to obtain the ordered sequence of red points
XR. Now, for each blue point q, find by the use of a binary search the two
consecutive red points in XR, p′ and p, such that p′ < q < p. If x(p′) = x(q),
then there is no solution. Otherwise, insert q in S1(p) if x(q) < x(p), or in
S2(p) if x(q) = x(p). Observe that, for a given red point p, if a top-bottom
half-strip in H∗ covers a point in B1(p) (resp. B2(p)) having maximum
ordinate, then it covers all the points of B1(p) (resp. B2(p)). Therefore, we

98 4. The Class Cover Problem with Boxes

can reduce our initial set S to a set S′ with fewer points which consists of
all the points in R and, for each p in R, of a point of maximum ordinate in
B1(p) and a point of maximum ordinate in B2(p). The set S′ is obtained in
O((r + b) log r) time. Now, we apply the above algorithm to S′, and it runs
in O(r log r) time since the number of blue points in S′ is at most 2r. The
overall time complexity is O((r + b) log r). We can proceed analogously in
the case that b is much less than r in order to reduce the time complexity
to O((r + b) log b).

In general, we can choose which variant to apply depending on the minority
color, and finally obtain an algorithm running in O(min{(r + b) log r, (r +
b) log b}) = O((r + b) log min{r, b}) time. Thus, the following result is ob-
tained:

Theorem 4.3 The BCC-problem can be solved in O((r + b) log min{r, b})
time if we only use half-strips in one direction as covering objects.

Now we show that the above algorithm is optimal in the algebraic computa-
tion tree model. Given a set X = {x1, x2, . . . , xn} of n numbers, denote as
xπ1 ≤ xπ2 ≤ · · · ≤ xπn the sequence of this number once sorted. The max-
imum gap of X [8] is defined as MAX-GAP(X) = max1≤i<n{xπi+1 − xπi}.
It was proven in [8] that, given a set X = {x1, x2, . . . , xn} of n numbers and
a positive number ε, the problem of deciding whether or not

MAX-GAP{x1, . . . , xn, 0, ε, 2ε, . . . , nε} < ε

has an Ω(n log n) lower bound in the algebraic computation tree model. By
a reduction from this new version of MAX-GAP, we show that our algorithm
is optimal.

Theorem 4.4 The version of the BCC-problem in which we only use to
cover half-strips (or strips) in one direction, has an Ω(n log n) lower bound
in the algebraic computation tree model.

Proof. Let the set X = {x1, . . . , xn} of n numbers and a positive number ε

be an instance of the above MAX-GAP problem. Assume that 0 ≤ xi ≤ nε,
for i = 1 . . . n, because in the contrary case the max gap is greater than
or equal to ε. We do the following construction: Put red points in the
coordinates (0, 0), (ε, 0), (2ε, 0), . . . , (nε, 0). Let R be the set of these n + 1
red points. Put blue points in the coordinates (x1, 1), (x2, 1), . . . , (xn, 1),
and let B be the set of these n blue points. In order to have the max gap

4.4. Solving particular cases 99

smaller than ε, each of the open intervals (0, ε), (ε, 2ε), . . . , ((n−1)ε, nε) has
to be pierced by one of the xi’s. Now, solve the BCC-problem for R and B

with half-strips in one direction, the top-bottom direction. It follows that

MAX-GAP{x1, . . . , xn, 0, ε, 2ε, . . . , nε} < ε

if and only if the minimum number of covering half-strips is exactly n (Fig-
ure 4.9). In other words, if the minimum number of covering half-strips is
less than n, then

MAX-GAP{x1, . . . , xn, 0, ε, 2ε, . . . , nε} ≥ ε

1

0
0 ε 2ε 3ε 4ε 5ε

x

y

1

0
0 ε 2ε 3ε 4ε 5ε

x

y

a) b)

Figure 4.9: The reduction from the MAX-GAP{x1, x2, x3, x4, x5, 0, ε, 2ε, 3ε, 4ε, 5ε}
to our problem. If the solution to our problem consists of five top-bottom half-
strips (i.e. strips in H∗) then the MAX-GAP is less than ε (case a)), otherwise the
MAX-GAP is exactly ε (case b))

Notice that we can solve the BCC-problem, by only using half-strips in one
direction, in O((r + b) log min{r, b}) time, so in fact, if min{r, b} = Ω(n),
then the time complexity is O(n log n). Therefore, our algorithm is optimal.

4.4.3 Covering with half-strips

In this subsection we study the BCC-problem when the covering boxes are
half-strips oriented in any of the four possible directions. First we show
that this variant is also NP-hard, and after that we give a constant-factor
approximation algorithm due to results in [24, 34]. We name this version as
The Half-Strip Class Cover problem (HSCC-problem), and use a reduction
from the 3-SAT-problem [57] to prove that it is NP-hard.

A solution to the HSCC-problem does not exist if and only if there are
two segments with red endpoints, one vertical and one horizontal, such that
their intersection is a blue point. This can be checked by using arguments

100 4. The Class Cover Problem with Boxes

similar to that given in Subsections 4.4.1 and 4.4.2. We use a reduction
from the 3-SAT-problem [57] to prove that the HSCC-problem is NP-hard.
An instance of the 3-SAT-problem is a logic formula of t boolean variables
x1, . . . , xt given by m conjunctive clauses C1, . . . , Cm, where each clause
contains exactly three literals (i.e. a variable or its negation). The 3-SAT-
problem asks for a value assignment to the variables which makes the formula
satisfiable, and its NP-hardness is well known [57].

Theorem 4.5 The HSCC-problem is NP-hard.

Proof. Given an instance F of the 3-SAT-problem with t variables x1, . . . , xt

and m clauses C1, . . . , Cm, an instance of the HSCC-problem is constructed
in the following manner. Let α be a set of t pairwise disjoint vertical strips
of equal width such that the i-th strip from left to right αi represents the
variable xi. Similarly, let β be a set of t + m pairwise disjoint horizontal
strips of equal width. The clause Cj is represented by the (t + j)-th strip
βt+j from bottom to up. Consecutive strips in α and β are well separated.
Let δi be the dividing line of αi. We say that the part of the interior of αi

that is to the right (resp. to the left) of δi is the true (resp. false) part of
αi.

For each variable xi (1 ≤ i ≤ t) we put in αi ∩ βi a set Vi of red and blue
points as follows (Figure 4.10). We add red points in the intersections of δi

and the boundary of βi; a blue point p in the center of αi ∩ βi (p is over
δi); two red points q and q′ in the interior of βi such that q is over the left
boundary of αi and y(q) > y(p), and q′ is over the right boundary of αi and
y(q′) < y(p). Moreover, we add two blue points p′ and p′′ in the interior of
αi ∩ βi such that p′ is in the false part of αi and y(p′) < y(q′), and p′′ is in
the true part of αi and y(p′′) > y(q).

βi

αi

δi

p

p′

p′′
q

q′

Figure 4.10: Reduction from the 3-SAT-problem. The set of bicolored points Vi

for the variable xi.

4.4. Solving particular cases 101

For each clause Cj (1 ≤ j ≤ m) we add a set Wj of bicolored points in
the following manner. Suppose that Cj involves the variables xi, xk, and
xl (1 ≤ i < k < l ≤ t). Let `1 and `′1 (resp. `2 and `′2) be two horizontal
lines that are close to the top (resp. bottom) boundary of βt+j such that
`1 (resp. `2) is outside βt+j and `′1 (resp. `′2) is inside (Figure 4.11). Let
`3 and `′3 be two vertical lines lying outside αk and such that `3 and `′3 are
close to the left and right boundaries of αk, respectively. Put red points
at the intersections of the lines `1 and `2 with δi, `3, δk, `′3, δl, and the
boundaries of αi, αk, and αl. Add three more red points, one over the top
boundary of βt+j , to the left of `3 and close to `3; another between `3 and
the left boundary of βk, above `′2 and close to `′2; and the last one over `′2
and between the right boundary of βk and `′3. Now we add blue points. Put
a blue point in the intersection of `′1 and `3, and another in the intersection
of `′3 and the bottom boundary of βt+j . If xi is not negated in Cj , then put
in the true part of αi (otherwise in the false part) two blue points, the first
one over `′1 and the second over the bottom boundary of βt+j . If xk is not
negated in Cj , then put one blue point in the center of the intersection of
βt+j and the true part of αk (otherwise in the false part). Finally, if xl is
not negated in Cj , then put in the true part of αl (otherwise in the false
part) two more blue points, one over the top boundary of βt+j and another
over the bottom boundary.

βt+j

αi

δi

αk

δk

αl

δl

xi xk xl

. . .

. . .

. . .

. . .

`1

`′
1

`′
2

`2

`3 `′
3

Figure 4.11: Reduction from the 3-SAT-problem. The set Wj of red and blue
points for the clause Cj = (xi ∨ xk ∨ ¬xl).

Let S =
⋃t

i=1 Vi ∪
⋃m

j=1 Wj be the instance of the HSCC-problem. We say
that two blue points in S are independent if they can not be covered with
the same half-strip. Notice that for each variable xi the blue points in Vi are
independent from the others blue points in S except with those that are in
αi, and also that at least two half-strips are needed to cover them. Moreover,
blue points in the false part of αi are independent from blue points in the
true part. Then, blue points in Vi can be optimally covered in two ways.

102 4. The Class Cover Problem with Boxes

The first one with a right-left half-strip covering the two lowest blue points
in Vi and a vertical strip covering the true part of αi (Figure 4.12 a)), and
the second one with a vertical strip covering the false part of αi and a left-
right half-strip that covers the upper two blue points of Vi (Figure 4.12 b)).
We say that the first way is a true covering of xi (i.e. xi is true), and that
the second one is a false covering of xi (i.e. xi is false).

a) b)

xi

βi

αi

δi

xi

βi

αi

δi

Figure 4.12: The two ways of optimally covering the blue points associated to a
variable xi. a) xi is equal to true, b) xi is equal to false.

For each clause Cj (1 ≤ j ≤ m) that involves the variables xi, xk, and xl

(1 ≤ i < k < l ≤ m) we observe that if at least one variable, say xi, is such
that the covering of Vi covers the blue points in Wj ∩ αi (i.e. the value of
xi makes Cj true), then at least two half-strips are needed to cover Wj \αi.
Otherwise, at least three half-strips are needed.

Due to the above observations we claim that F is satisfiable if and only if
the blue points in S can be covered with 2t + 2m half-strips. In fact, if F is
satisfiable, then for each variable xi we cover Vi with a true covering if xi is
true, and otherwise with a false covering. Each clause Cj (with variables xi,
xk, and xl) is true, then with two half-strips we can cover the blue points
in Wj not covered by the coverings of Vi, Vk, and Vl. We use 2t half-strips
for the variables and 2m for the clauses, thus 2t + 2m in total. Inversely,
we can not use less than 2t + 2m half-strips to cover blue points in S, thus
if we use exactly 2t + 2m, then we have to use two per each variable, and
two for each clause, implying that F is satisfiable if we assign the value true
to each variable xi if Vi has a true covering, and the value false otherwise.
Hence, the theorem follows.

Given the NP-hardness of the HSCC-problem, we are interested in approx-
imation algorithms. Let HS be the set of all half-strips in H∗. By using
results in [34] we prove that the dual of the range space (B,Hs) has ε-nets of
size O(1

ε), implying an O(1)-approximation algorithm to the HSCC-problem.

4.4. Solving particular cases 103

Theorem 4.6 There is a polynomial-time O(1)-approximation algorithm
for the HSCC-problem.

Proof. Let HS be the set of all half-strips in H∗, and partition HS into the
subsets HSv and HSh

of all vertical and horizontal half-strips, respectively.
Note that HSv and HSh

are families of pseudo-disks. Given ε > 0, the dual
of the range space (B,HSv) has (by using [34]) an (ε

2)-net Nv of size O(2
ε).

Analogously, the dual of the range space (B,HSh
) has an (ε

2)-net Nh of size
O(2

ε). We claim that Nv ∪Nh is an ε-net of size O(4
ε) = O(1

ε) for the dual
of (B,HS). In fact, if p is a blue point covered by ε|HS | half-strips, then at
least ε

2 |HS | of them are either vertical or horizontal. Thus p is covered by
a half-strip in Nv ∪ Nh since Nv and Nh are (ε

2)-nets. Hence, there exists,
by [24] and also by [34, Theorem 3.2], a polynomial-time O(1)-approximation
algorithm for the HSCC-problem.

4.4.4 Covering with vertical half-strips

In this subsection we study the BCC-problem when the covering boxes are
open vertical half-strips. At this moment we are unable to give either a
polynomial-time exact algorithm or a hardness proof. Nevertheless, we pro-
pose a 2-approximation algorithm. We also observe that the greedy approach
gives a logarithmic factor of approximation in the worst case (e.g. consider
the set of points in Figure 4.6 b)). There are two types of vertical half-strips,
top-bottom and bottom-top. Those that have a red point in its top side are
top-bottom, and those with a red point in its bottom side are bottom-top.
Vertical strips are simultaneously top-bottom and bottom-top half-strips.
The following lemma gives a 2-approximation to our problem.

Lemma 4.7 Let H be an optimal solution for the BCC-problem on R and
B by using vertical half-strips as covering rectangles. Then H can be decom-
posed into sets H1 and H2 of open top-bottom and bottom-top half strips,
respectively, whose elements are not necessarily in H∗, such that: (i) H1∪H2

covers B, (ii) H1 ∪H2 covers no red point, (iii) the elements in H1 and H2

have pairwise disjoint interiors, respectively, and (iv) |H1|+ |H2| < 2|H|.

Proof. Let H1,H2, . . . ,Hm be the m top-bottom half-strips plus vertical
strips in H. Let x1 < x2 < x3 < · · · < x2m be the x-coordinates of the sides
of the Hi’s, i = 1, . . . ,m, and define E = H1 ∪ H2 ∪ · · · ∪ Hm. Then, H1

can be defined as H1 = {([xj , xj+1]× (−∞,+∞)) ∩ E | 1 ≤ j < 2m}. Note
that |H1| ≤ 2m− 1. Analogously, H2 can be defined by considering the m′

104 4. The Class Cover Problem with Boxes

bottom-top half-strips in H. Then |H2| ≤ 2m′ − 1 and thus |H1| + |H2| <
2(m + m′) = 2|H|. The elements of H1 and H2 have pairwise disjoint
interiors, respectively; and H1 ∪ H2 covers all blue points and no red point
since this is done by H.

An algorithm that finds optimal sets H1 and H2 with the same conditions as
in Lemma 4.7 is a 2-approximation algorithm. By using dynamic program-
ming [35], a polynomial time algorithm can be designed. In fact, H1∪H2 has
optimal substructure because if we take a vertical line `, then ` intersects
at most two elements of H1 ∪ H2, and the half-strips of H1 ∪ H2, that are
completely to the left (resp. to the right) of `, form an optimal solution for
the blue points covered by them.

4.5 Covering with squares

In this section we study the variant of the BCC-problem in which we cover
with axis-aligned squares instead of general boxes (rectangles). We name
this version The Square Class Cover problem (QCC-problem). In [12] au-
thors studied the problem of covering a binary image with the minimum
number of squares, that is: Given an image, represented by an array of√

n×
√

n black-and-white pixels, cover the black pixels with a minimum set
of (possibly overlapping) squares. It was proved that obtaining a minimum
square covering for a polygonal binary image with holes is NP-hard. By
a reduction from it, we show that the QCC-problem is NP-hard. A small
variation in our proof shows that the the QCC-problem is also NP-hard if
the squares are centered at blue points.

Theorem 4.8 The QCC-problem is NP-hard.

Proof. Let P be a polygonal binary image with holes represented by an
array of

√
n×
√

n black-and-white pixels. We reduce P to an instance S of
the QCC-problem as follows. Let N =

√
n. We can see P as a rectilinear

polygon with lattice vertices in [0, N]×[0, N] (Figure 4.13 a)). We subdivide
the square [0, N]× [0, N] into a regular grid G of cell size 1

N , and put a blue
(resp. red) point in every vertex of G that is in the interior (resp. boundary)
of P (Figure 4.13 b)). Let S be the added set of red and blue points.

Any covering of P is a covering of S, and conversely, the squares of a
covering in S can be enlarged/shifted to be a covering of P . Namely, let
Q = {Q1, Q2, . . . , Qk} be a covering of S. We can assume that Qi (1 ≤ i ≤ k)
is closed and also maximal, that is, Qi can not be enlarged without contain-

4.5. Covering with squares 105

a) b)

0

1

2

3

1 2 3 0 1 2 3

1

2

3

Figure 4.13: The reduction from the problem of covering a binary image with the
minimum number of squares to the QCC-problem. a) A binary image represented
by an array of 3×3 black-and-white pixels that is seen as a rectilinear polygon with
lattice vertices in [0, 3] × [0, 3]. b) The set of red and blue points generated from
the image.

ing red points in its interior; thus the side length of Qi is an integer number.
Now we show that we can shift the elements of Q in order to obtain a cover-
ing of P . Let ` be a horizontal line passing through points of S, and Q` be
the set of squares of Q intersected by `. We have that Q` covers P ∩ ` but
maybe in a set I` of segments having each length at most 1

N . For a Qi in
Q`, denote as x(Qi) the abscissa of the left side of Qi. In order to cover all
P ∩ `, we shift elements of Q` as follows. For j = 0, 1, . . . , N − 1, if there is
no segment in I` so that the abscissa of its right endpoint is j then: if there
is Qi in Q` such that j − 1 < x(Qi) < j, then shift Qi to the right so that
x(Qi) is equal to j, otherwise there is a Qi in Q` with j < x(Qi) < j + 1
and we shift Qi to the left until x(Qi) is equal to j. The last condition
holds since for the current j the total shift to the left of squares is at most
j
N ≤

N−1
N < 1. By repeating the above process for every horizontal line `

passing through points of S, and analogously when ` is vertical, the final set
Q covers P .

Notice that we can prove that the QCC-problem remains NP-hard if we
restrict the squares to be centered at blue points. In fact, we can use the
above reduction and only adding blue points over every lattice vertex of the
interior of P and at the centers of the pixels of P , and red points over the
lattice points of the boundary of P . We have seen in Section 4.3 that there
exists an O(1)-aproximation algorithm for the QCC-problem since a set of
squares is a set of pseudo-disks [34].

106 4. The Class Cover Problem with Boxes

4.6 The disjoint version

Another version of the BCC-problem is when the boxes of the solution are
pairwise disjoint. This version is also NP-hard as we will prove. We will
reduce from the Planar 3-SAT-problem which is strongly NP-complete [81].
In an instance of the Planar 3-SAT-problem we are given a planar bipartite
graph such that: the vertices in one part of the bipartition are the variables,
the vertices in the another part are the clauses, and the edges connect each
clause with the three variables it contains. Moreover, the variables can be
arranged as axis-aligned rectangles on a horizontal line, and the three-legged
clauses drawn so that all edges are either above or below this line. All the
graph can be embedded on a rectangular grid of polynomial size [77] (see
Figure 4.14)

x1 x2 x3 x4 xt

Figure 4.14: Example of a planar 3-SAT instance. The variables are axis-aligned
rectangles arranged on a horizontal line, and the clauses are rounded vertices with
three orthogonal edges connecting to the variables.

Theorem 4.9 The version of the BCC-problem in which the covering boxes
are pairwise disjoint is also NP-hard.

Proof. Given an instance F of the Planar 3-SAT-problem, consisting of t

variables x1, . . . , xt and m clauses C1, . . . , Cm, we construct a bicolored set of
point as follows. We dispose the variables and the clauses as in Figure 4.14.
We replace each variable xi (1 ≤ i ≤ t) by a set Vi of 4K+2 small axis-aligned
boxes arranged in a ring-like fashion, where K is greater than the maximum
number of clauses in which a variable appears, as shown in Figure 4.15 a).
We say that an axis-aligned box is oriented horizontally if its width is greater
than its height, and oriented vertically otherwise. Note that two boxes in
Vi, the leftmost and the rightmost, are oriented vertically and the rest 4K

boxes are oriented horizontally. In each set Vi (1 ≤ i ≤ t) the boxes are
enumerated circularly from 1 to 4K + 2. Each clause Cj (1 ≤ j ≤ m), that

4.6. The disjoint version 107

involves the variables xi, xk, and xl (1 ≤ i < k < l ≤ t), is replaced by a set
Wj of nine thin boxes as depicted in Figure 4.15 b).

The first (resp. second, third) vertically-oriented box in Wj , from left to
right, intersects exactly one horizontally-oriented box H of Vi (resp. Vk, Vl)
so that: H is enumerated with an odd number if and only if xi (resp. xk,
xl) is not negated in Cj , and Vi (resp. Vk, Vl) contains the center point of
H on its interior. Moreover, every box of Vi (1 ≤ i ≤ t) intersects at most
one box of the Wj ’s (1 ≤ j ≤ m).

xi

a)

xi xk xl

b)

pj,i pj,k pj,l

Figure 4.15: Reduction from the Planar 3-SAT-problem. a) The set of boxes Vi

corresponding to the variable xi. b) The set of nine boxes Wj for the clause Cj

that involves the variables xi, xk, and xl.

Let G = {V1, V2, . . . , Vt} ∪ {W1,W2, . . . ,Wm}. We put a blue point in the
intersection of every two boxes of G ensuring that: if the two boxes are
so that one of them is oriented vertically and the other horizontally, the
blue point is put closer to either the top-left or the bottom-right corner
of the horizontally-oriented box; and if the two boxes are one of some Vi

(1 ≤ i ≤ t), and the other of some Wj (1 ≤ j ≤ m), put the blue point
pj,i in the center of the rectangle of Vi (see Figure 4.15). Let UG be the
region corresponding to the union of all the boxes of G. For each blue point
p we add four red points as follows. Let hp (resp. vp) be the maximal
length horizontal (resp. vertical) segment containing p and fully inside UG .
Put two red points, one to the left of p and other to the right, such that
they are in the same horizontal line that p, outside UG , and close enough
to the endpoints of hp (see Figure 4.15). Analogously, put two red points,
one above p and other below p, such that they are in the same vertical line
that p, outside UG , and close enough to the endpoints of vp. The red points
ensure that if two blue points can be covered by a box that does not cover
any red point, then both blue points belong to the same box in G.

108 4. The Class Cover Problem with Boxes

Let S be the above set of red and blue points. Notice that the set of blue
points Bi that are contained in the boxes of a given Vi (1 ≤ i ≤ t) can be
optimally covered by 2K+1 disjoint boxes which can be boxes of Vi with the
same parity in their enumeration number. If the boxes are enumerated with
an odd number then we have a true covering of Bi (i.e. xi is true), otherwise
we have a false covering (i.e. xi is false). For the clause Cj (1 ≤ j ≤ m),
that involves the variables xi, xk, and xl (1 ≤ i < k < l ≤ t), we have that if
at least one of the blue points pj,i, pj,k, and pj,l is covered by the coverings
of Bi, Bk, and Bl, then we need exactly five disjoint boxes to cover the rest
of the blue points contained in the boxes of Wj , otherwise we need exactly
six. The first case is equivalent to Cj is true, and the second one to Cj is
false. From this observations we conclude that F is satisfiable if and only
if the number of disjoint boxes in the solution to the BCC-problem for S is
exactly (2K + 1)t + 5m. Hence, the result follows.

In [88] the following problem is studied: Given a set of points P in the
plane and a family F of axis-parallel boxes that covers P , find a smallest
set F of pairwise disjoint axis-parallel boxes such that F covers P and every
box in F is fully contained within a box of F . This problem is NP-hard
and a polynomial-time O(1)-approximation algorithm is given in [88]. The
algorithm is based on that if we have k disjoint boxes on the plane and
construct a binary space partition, it results in O(k) disjoint new boxes
such that there exists either a horizontal or a vertical line which separates
the set of boxes into two nonempty sets [88, 89]. Due to this, the authors
apply dynamic programming. We can apply their approach to obtain a
constant-factor approximated solution to our problem. Notice that every
box in the solution is fully contained within a box in H∗. Thus we have to
solve an instance of the problem in [88] in which P is B and F is H∗.

4.7 Conclusions and further research

In this chapter we have addressed the class cover problem with boxes, which
consists in covering the blue points with a minimum-cardinality set of axis-
aligned boxes, and without covering any red point. We proved the NP-
hardness by a reduction from the Rectilinear Polygon Covering Problem [38],
and showed that there is an O(log c)-approximation algorithm due to known
results on ε-nets [24, 68, 101], where c is the size of an optimal covering.

Given the hardness of the general problem, we explored some variants by
restricting the covering boxes to have special shapes. If the covering boxes
are vertical or horizontal strips, we presented an efficient algorithm that runs

4.7. Conclusions and further research 109

in O(r log r+b log b+
√

rb) time. When the covering rectangles are half-strips
oriented in one direction, say top-bottom, an O((r + b) log min{r, b})-time
algorithm was proposed. If the boxes are half-strips oriented in the four
directions, the problem remains NP-hard. We proved the hardness by a
reduction from the 3-SAT-problem [57], and showed the existence of an
O(1)-approximation algorithm from results in [24, 34]. Another variant we
considered is when the boxes are vertical half-strips. It was impossible for
us to give either a hardness proof or an exact polynomial-time algorithm,
but we proved that there exists a 2-approximation algorithm.

The version in which we cover with squares, instead of boxes, is also NP-
hard. We proved it by using a reduction from the problem of covering an
image with a minimum number of squares [12], which is NP-hard when
the image has holes. Due to results in [24, 34], there exists a constant-
factor approximation algorithm. Another variant is when the boxes are
pairwise disjoint, and we showed its NP-hardness by using the Planar 3-
SAT-problem [57, 81]. In that case, an O(1)-approximation algorithm exists
because of results in [88, 89].

The main results of this chapter are the NP-hardness proofs and the exact
algorithms when we cover with strips and top-bottom half-strips, respec-
tively (see Subsections 4.4.1 and 4.4.2). All the approximation algorithms
for the NP-hard problems come from results on ε-nets, which were stated for
a more general problem, and the factors of approximation given are asymp-
totic. The major open problem of this chapter is to develop approximation
algorithms whose approximation factors are either better than or equal, but
not asymptotic, to the ones stated in this chapter. A minor open prob-
lem is to give a hardness proof, or an exact polynomial-time algorithm, for
the problem of covering with vertical and horizontal half-strips (see Subsec-
tion 4.4.4).

Chapter 5

Bichromatic Discrepancy via

Convex Partitions

In database management systems, clustering is often an initial stage for data
classification [65]. A typical problem in clustering analysis is that of splitting
S into disjoint sets S1, . . . , Sk such that the elements of each Si are all red or
blue, and their convex hulls are pairwise disjoint. In general we would like
each Si to have a large number of points. However, such partitions do not
necessarily exist. For example, let S contain 2n elements placed on a circle,
and alternating in color. It is easy to see that any partition S1, . . . , Sk of
S into monochromatic subsets with disjoint convex hulls contains at least
n+1 elements, n of which contain at most two elements. In this chapter we
study a parameter that measures how blended two point sets are. Intuitively
speaking, R and B are well blended if for any convex region C of the plane
the proportion of red elements of S is approximately r

b+r , e.g. if r = 2b, we
would expect C to contain twice as many red points as blue.

It is clear that we must be careful in defining well-blended point sets. For
example if R and B have n points each, we can always find n disjoint line
segments whose endpoints have different colors, and thus we could conclude
that S = R ∪ B is always well blended. In this chapter we introduce a
parameter that seems like a good candidate to measure how well blended a
bicolored point set is, we call this parameter the discrepancy of S.

If P is a point set, CH (P) will denote the convex hull of P . We say that a
point set P is in convex position if the elements of P are the vertices of a
convex polygon.

Let S = R ∪ B, and X ⊆ S. Let ∇(X) = ||X ∩ R| − |X ∩ B||. We say

111

112 5. Bichromatic Discrepancy via Convex Partitions

that a partition Π = {S1, S2, . . . , Sk} of S is a convex partition if CH (Si) ∩
CH (Sj) = ∅ for all 1 ≤ i < j ≤ k. The discrepancy of S with respect to Π is
defined as d(S, Π) = mini=1,...,k∇(Si). The discrepancy d(S) of S, is defined
as the largest d(S, Π) over all the convex partitions Π of S.

If d(S) = 1 any convex partitioning of S has at least one element Si such
that ∇(Si) is one or zero. Such is the case when S contains 2n points on
a circle such that their colors alternate. On the other hand, if S = R ∪ B

is separable, i.e. there is a line ` that leaves all the elements of R on one
of the half-planes it determines, and all the elements of B on the other, the
discrepancy of S is at least the minimum of r and b.

If we restrict ourselves to convex partitions of S with exactly k elements,
we obtain what we call the k-discrepancy of S, denoted as dk(S). When
k = 1 then the partition Π has only one element, and thus d1(S) = ∇(S) =
|r − b|. If k = 2 then we have what we call linear discrepancy, that is, the
discrepancy obtained by partitions of S induced by lines that split S into
two subsets.

Our concept of discrepancy can be applied in Data Analysis and Clustering
for bicolored point sets. We say that S = R ∪ B is not good for clustering
when its discrepancy is low. The extreme case is when d(S) = 1, in this case
we say that S is locally balanced. Some results of this chapter focus on the
hardness of deciding if a bicolored point set is locally balanced or not.

In [2, 86] a parameter known as the combinatorial discrepancy of hyper-
graphs is studied. The problem is that of assigning to each vertex of a
hipergraph weight +1 or −1 in such a way the maximum weight over all the
edges of the hypergraph is minimized, where the weight of a hyperedge is
the absolute value of the sum of the weights of its vertices. Another concept
of discrepancy is considered in [86], in which the authors study the problem
of finding the most uniform way of distributing n points in the unit square
according to some criteria. In Geometric discrepancy theory [30] they study
problems such as how to color n points on the plane in such a way that we
minimize the difference between the number of red points and blue points
within any disk. The papers [14, 42, 44] consider the problem of computing a
convex set Q such as a box, triangle, strip, convex polygon, etc. such that the
discrepancy of the subset of S contained in Q is maximized. Combinatorial
and algorithmic results concerning convex partitions with monochromatic
elements can be found in [47]. Other results about subdivisions of the plane
into convex regions, containing each specified numbers of red and blue points
and inducing a convex partition of the point set, can be seen in [73, 74].

5.1. Basic properties 113

In Section 5.1 we state and prove some properties of the discrepancy of
point sets. In Section 5.2 we study the discrepancy of point sets in convex
position, and in Section 5.3 of point sets in general position. In Section 5.4
we focus on the linear discrepancy of point sets. Finally, in Section 5.5, we
give a slightly different definition of discrepancy and state further research.

5.1 Basic properties

Let X ⊂ R ∪ B. We denote by ∇′(X) = |X ∩ R| − |X ∩ B|. Observe that
∇(X) = |∇′(X)|. We say that X is m-red (resp. m-blue) if ∇′(X) > 0
(resp. ∇′(X) < 0). Let Π = {S1, S2, . . . , Sk} be a convex partition of S. We
say that Π is optimal if d(S) = d(S, Π). Let ri = |Si ∩R| and bi = |Si ∩B|,
for i = 1 . . . k.

The following lemmas list some basic properties of the discrepancy of point
sets.

Lemma 5.1 d(S) ≥ 1. If d(S) = 1, then |r − b| ≤ 1.

Proof. Suppose that S = {p1, p2, . . . , pr+b}. Let Π = {{p1}, {p2}, . . . , {pr+b}}.
We have d(S) ≥ d(S, Π) = 1. Moreover, if d(S) = 1 then |r − b| = d1(S) ≤
d(S) = 1.

Lemma 5.2 If Π = {S1, . . . , Sk} is an optimal convex partition of S and
k ≥ 2, then there are Si and Sj such that Si is m-red and Sj is m-blue.

Proof. Suppose that Si is m-blue for every index i. Then b−r =
∑k

i=1(bi−
ri) =

∑k
i=1∇(Si) > mini=1...k∇(Si) = d(S, Π) = d(S), which contradicts

that d1(S) ≤ d(S). Therefore, it follows that Π contains m-blue and m-red
elements.

Lemma 5.3 If a convex partition Π = {S1, . . . , Sk} of S contains an m-red
and an m-blue element, then d(S, Π) ≤ min{r, b}.

Proof. Suppose w.l.o.g. that S1 is m-red and S2 is m-blue. Then

d(S, Π) ≤ ∇(S1) = r1 − b1 ≤ r1 ≤ r

d(S, Π) ≤ ∇(S2) = b2 − r2 ≤ b2 ≤ b.

Hence d(S, Π) ≤ min{r, b}.

114 5. Bichromatic Discrepancy via Convex Partitions

Lemma 5.4 If r ≥ 2b or b ≥ 2r, then d(S) = d1(S) = |r − b|.

Proof. Assume w.l.o.g. that r ≥ 2b. We have that d1(S) ≤ d(S). Suppose
now that Π is an optimal convex partition of S with cardinality bigger
than one. By Lemma 5.2, Π contains m-red and m-blue elements, thus
d(S, Π) ≤ min{r, b} by Lemma 5.3. Then d(S) = d(S, Π) ≤ min{r, b} = b ≤
r − b = d1(S). This implies that d(S) = d1(S).

Lemma 5.5 If R and B are linearly separable, and b ≤ r < 2b or r ≤ b <

2r, then d(S) = min{r, b}.

Proof. Suppose w.l.o.g. that b ≤ r < 2b and let Π be an optimal convex
partition of S. Π can not have cardinality one because d1(S) = r − b < b =
d(S, {R,B}). Therefore, by Lemma 5.2, Π has m-red and m-blue elements
implying, by Lemma 5.3, that d(S) = d(S, Π) ≤ min{r, b} = b. Since
d(S, {R,B}) = b then d(S) = b.

It follows easily from Lemmas 5.4 and 5.5 that if R and B are linearly
separable, and 2r ≤ b or 2b ≤ r, then d(S) = min{r, b}, otherwise d(S) =
|r − b|.

The following lemma establishes a relation between the cardinality of the
convex partitions and the value of discrepancy.

Lemma 5.6 Let Π = {S1, . . . , Sk} be a convex partition of S. Then we
have that d(S, Π) ≤ r+b

k .

Proof.

d(S, Π) =
k

min
i=1
∇(Si) ≤

1
k

k∑
i=1

∇(Si) =
1
k

k∑
i=1

|ri−bi| ≤
1
k

k∑
i=1

(ri +bi) =
r + b

k

It is worth noticing from Lemma 5.6 that if d(S) is large with respect to the
cardinality of S, then there exists an optimal convex partition of S with few
elements. For point sets with small discrepancy, the minimum cardinality
of an optimal convex partition can be small or large (see Figure 5.1).

The following lemma states a relation between the members of a minimum-
cardinality optimal convex partition. It shows that in an optimal convex
partition with minimum cardinality, one can not join two or more members

5.2. Point sets in convex position 115

a) b)

`

Figure 5.1: Two point sets with discrepancy 3. In a) the discrepancy is determined
by the convex partition induced by the line `. In b) the discrepancy is obtained by
using the triangles shown in dashed lines. These examples can be generalized to
point sets with n = tm points and discrepancy t.

having the same majority color (i.e. m-red or m-blue) because the con-
vex hull of the resulting member contains points of other members of the
partition.

Lemma 5.7 If Π is a minimum-size optimal convex partition and Si, Sj ∈
Π are both m-red (or m-blue), then k ≥ 3. Moreover CH (Si ∪ Sj) ∩ Sl 6= ∅
for every l 6= i, j.

Proof. Suppose that CH(Si ∪ Sj) ∩ Sl = ∅ for every l = 1 . . . k, l 6= i, j.
Then, the partition Π′ = (Π \ {Si, Sj})∪{Si ∪Sj} is a convex partition of S

so that d(S, Π) ≤ d(S, Π′) because min{∇(Si),∇(Sj)} < ∇(Si) + ∇(Sj) =
∇(Si ∪ Sj). This is a contradiction since the cardinality of Π′ is k − 1.

5.2 Point sets in convex position

Let P be a point set in convex position. A subset of P is called P -consecutive
if it is empty, or its elements are consecutive vertices of CH (P).

Lemma 5.8 If S is in convex position, then any convex partition Π =
{S1, . . . , Sk} of S with k > 1, has at least two elements Si and Sj which
are S-consecutive.

Proof. We assume that Si 6= ∅ for every i. The proof is by induction on
r + b. If r + b = 1 then it is trivial. Now suppose that r + b > 1. Let
Π = {S1, S2, . . . , Sk} be any convex partition of S, and suppose that the
elements of S1 are not S-consecutive. Then S \ S1 is composed by at least

116 5. Bichromatic Discrepancy via Convex Partitions

two maximal S-consecutive chains. Let C be one of these chains. If C is
not an element of Π then C is partitioned into at least two sets (induced by
Π) and the claim follows by induction. Otherwise, each chain in S \S1 is an
element of Π and the lemma follows.

A point set S in convex position is called an alternating convex chain if we
can label its elements p1, p2, . . . , pr+b counterclockwise along CH (S) such
that for every 1 ≤ i < r+b, pi and pi+1 no have the same color (Figure 5.2).

a) b)

Figure 5.2: Alternating convex chains. a) 5 red points and 5 blue points, b) 6 red
points and 5 blue points.

Lemma 5.9 If S is in convex position then d(S) = 1 if and only if S is an
alternating convex chain.

Proof. Suppose that d(S) = 1 and that S is not an alternating convex chain.
By Lemma 5.1, |r − b| ≤ 1. If r = b and for some i we have that pi and
pi+1 have the same color, then the partition Π = {{pi, pi+1}, S \ {pi, pi+1}}
has discrepancy two. If r = b + 1 and there is an 1 ≤ i < r + b such that pi

and pi+1 are blue points, then if S1 = {pi, pi+1}, we have that ∇(S1) = 2,
∇(S \ S1) = 3, and then d(S) ≥ d(S, Π) = 2. Thus S is an alternating
convex chain.

Suppose now that S is an alternating convex chain. By Lemma 5.8, any
convex partition Π = {S1, S2, . . . , Sk} of S has at least two S-consecutive
elements, and thus for at least one of then, say Si, ∇(Si) is 1 or 0. Then
d(S, Π) ≤ 1.

Theorem 5.10 If S is in convex position then, d(S) = maxk=1,2,3 dk(S).

Proof. Let d = d(S), and observe that 0 ≤ ∇(S) ≤ d. Assume w.l.o.g. that
0 ≤ ∇′(S) ≤ d. Let Π = {S1, S2, . . . , Sk} be an optimal convex partition of S

5.2. Point sets in convex position 117

of minimum cardinality. By definition, ∇(Si) ≥ d (1 ≤ i ≤ k). Suppose that
k > 3. By Lemma 5.8, S has at least two S-consecutive elements, say S1 and
S2. If any of S1 or S2, say S1, is such that ∇′(S1) ≤ −d then ∇′(S \ S1) =
∇′(S)−∇′(S1) ≥ 0 + d = d, and thus ∇(S \ S1) = |∇′(S \ S1)| ≥ d. This is
a contradiction since the convex partition Π′ = {S1, S \ S1} has cardinality
2 and d(S, Π′) ≥ d. Suppose then that ∇′(S1) ≥ d and ∇′(S2) ≥ d. Observe
that ∇′((S \S1)\S2) = ∇′(S)−∇′(S1)−∇′(S2) ≤ d−d−d = −d, and thus
∇((S \ S1) \ S2) = |∇′((S \ S1) \ S2)| ≥ d. This is a contradiction because
Π′′ = {S1, S2, S \ (S1 ∪ S2)} has cardinality 3 and d(S, Π′′) ≥ d.

Our objective now is to prove that the discrepancy of point sets in convex
position can be computed in O(n log n) time. We show first how to solve
two problems on circular sequences of real values.

5.2.1 Two maximum weight problems on circular sequences

Consider a set X of n points on a circle denoted clockwise as x0, . . . , xn−1.
An interval [xi, xj] of X is the subset containing the points xi, xi+1, . . . , xj

with addition taken mod n. The weight of every point xi (0 ≤ i < n) is
the real number w(xi). The weight w[xi, xj] of [xi, xj] is defined as w(xi) +
w(xi+1) + w(· · ·+ xj). In this section we solve the following problems:

The Maximum Weight Interval of a Circular Sequence problem
(MWI-problem): Find the interval of X with maximum weight.

The Max-Min Two Interval problem (MM2I-problem): Find two
disjoint intervals [xi, xj] and [xk, x`] of X such that the minimum of w[pi, pj]
and w[pk, p`] is maximized.

We give an outline of how to solve the MWI-problem, and a more detailed
solution to the MM2I-problem.

We notice first that MWI-problem is a small variation on Bentley’s well-
known maximum weight interval problem. See [17] and the MCS-problem
in Section 2.1. More specifically, let X = (x0, . . . , xn−1) be a linear sequence
of n elements and weight w(xi) for i = 0, . . . , n − 1. An interval [xi, xj] of
X contains the elements xi, xi+1, . . . , xj , i ≤ j. Bentley’s problem is that of
finding the interval of X with maximum weight. Observe that in Bentley’s
problem, i ≤ j, whereas in the MWI-problem this is not necessarily the case.
It is well known that Bentley’s problem can be solved in linear time [17].

Observe that if a solution [xi, xj] to the MWI-problem is such that 0 ≤
i ≤ j ≤ n − 1, then the solution obtained by solving Bentley’s problem

118 5. Bichromatic Discrepancy via Convex Partitions

on (x0, . . . , xn−1) is [xi, xj]. Otherwise, [xi, xj] is the union of two disjoint
intervals [x0, xi] and [xj , xn−1] maximizing w[x0, xi]+w[xj , xn−1]. This case
can be solved in linear time, see Section 2.1 for more details.

Another linear-time solution to the MWI-problem is the following. In [32],
the authors solve in O(n)-time the Bentley’s problem satisfying length con-
straints, that is, given a lower bound L, and a upper bound U , find the
maximum-weight interval with length at least L and at most U . Observe
that if we duplicate our sequence X and find the solution to the length-
constrained Bentley’s problem with L = 1 and U = n, then we will obtain
a solution to the MWI-problem on X.

We show now how to solve the MM2I-problem in O(n log n) time. In [32], the
authors solve the following problem, which they call the Range Maximum-
Sum Segment Query Problem with Two Query Intervals:

RMSQ2-problem: Given a linear sequence X = (x0, . . . , xn−1), preprocess
X in linear time so that, for any i ≤ j ≤ k ≤ `, the following query can
be answered in constant time: Find the interval [xs, xt] of maximum weight
such that i ≤ s ≤ j and k ≤ t ≤ `.

Observation 5.11 If i = j = k in the above problem, [xs, xt] will be the
interval of maximum weight contained in [xi, x`] starting at xi.

Let X ′ = (x0, . . . , xn−1, xn, . . . , x2n−1), where xn+i = xi, i = 0, . . . , n − 1.
Preprocess X ′ as in [32] to solve the RMSQ2-problem.

Let I1 = [xi, xj] and I2 = [xk, x`] form an optimal solution to the MM2I-
problem, and suppose w.l.o.g. that i ≤ j < k. We solve now the MM2I-
problem in O(log n) time for a fixed value of i, 0 ≤ i ≤ n− 1.

For simplicity assume that i = 0. Let I1 = [x0, xj] and I2 = [xk, x`] be an
optimal solution to our problem. Notice that there exists an index t such
that j ≤ t < k. Let I1(t) be an interval of maximum weight contained
in [x0, xt] that starts at x0. By Observation 5.11, I1(t) can be found in
constant time. Let I2(t) be the interval of maximum weight contained in
[xt+1, xn−1] that can be also found in constant time. Observe that, by the
way we choose I1 and I2, we can assume that I1 and I2 are I1(t) and I2(t),
respectively. Then, the MM2I-problem consists in finding a value of t so
that min{w(I1(t)), w(I2(t))} is maximum.

Suppose now that for a given t, w(I1(t)) ≤ w(I2(t)). Then we can discard
all indexes t′ < t since min{w(I1(t′)), w(I2(t′))} ≤ w(I1(t′)) ≤ w(I1(t)) =
min{w(I1(t)), w(I2(t))}. The case when w(I1(t)) > w(I2(t)) is analogous

5.2. Point sets in convex position 119

and all indexes t′ > t are discarded. It now follows that we can search
for t in a logarithmic number of steps. Since the RMSQ2-problem can be
used to obtain both I1(t) and I2(t) in constant time, t can be found in
logarithmic time. We repeat this procedure for i = 1, . . . , n− 1 by using the
preprocessing done in X ′ and choosing I1 and I2 in the interval [xi, xi+n−1]
of X ′.

Thus we have proved:

Theorem 5.12 The MM2I-problem can be solved in O(n log n) time.

5.2.2 Computing the discrepancy of point sets in convex po-

sition

Theorem 5.13 The discrepancy of a point set S in convex position can be
computed in O(n log n) time and O(n) space.

Proof. Suppose w.l.o.g. that b ≤ r. By Lemma 5.4, if r ≥ 2b, then d(S) =
d1(S) = r − b. Suppose then that this is not the case. By Theorem 5.10,
we have to compute the maximum among d1(S), d2(S), and d3(S). Assign
weights to the elements of S as follows: red points are weighted +1, and
blue points −1. We can now consider S as a weighted circular sequence.

Computing d2(S): By Lemma 5.2, any optimal convex partition contains
an m-red element and an m-blue element. Let Π = {S1, S2} be a convex
partition of S such that S1 is m-blue and S2 is m-red, see Figure 5.3 a).
We have that ∇(S2) = r2 − b2 = (r − r1) − (b − b1) = r − b + b1 − r1 =
r−b+∇(S1) ≥ ∇(S1), and thus d(S, Π) = ∇(S1). Then d(S, Π) is maximum
if and only if ∇(S1) is maximum. In this case, S1 corresponds to an interval
of S with minimum weight (i.e. S2 has maximum weight). This an instance
of the MWI-problem and can be solved in linear time.

S2

S1 S1

S3

S2

a) b)

Figure 5.3: Points in convex position. a) Computing d2(S), b) computing d3(S).

120 5. Bichromatic Discrepancy via Convex Partitions

Computing d3(S): Assume that d(S) = d3(S). Let Π = {S1, S2, S3}
be an optimal convex partition of S, see Figure 5.3 b). It is easy to see,
from Lemma 5.7, that if Si is m-blue (resp. m-red) then Si+1 is m-red
(resp. m-blue), i = 1, 2. Moreover d(S, Π) is ∇(S1) or ∇(S3), otherwise
d(S, Π) ≤ d(S, {S1 ∪ S2 ∪ S3}) = d1(S). If S1 and S3 are m-blue, then
d(S, Π) is at most d2(S). Then S1 and S3 are m-red, and thus computing
d3(S) reduces to the problem of finding in S two disjoint intervals such that
the minimum weight of both of them is maximized. By Theorem 5.12, we
can solve this problem in O(n log n) time.

5.3 Point sets in general position

The problem of determining the discrepancy of point sets in general position
seems to be non-trivial. At this point, we are unable even to characterize
point sets with discrepancy one. In this section we study some particular
families of point sets.

Proposition 5.14 For all n ≥ 4, there are bichromatic point sets of size n,
not in convex position, with discrepancy one.

Proof. Let S be a point set consisting of the vertices of a regular polygon P
with 2n vertices together with an extra point p close to the center of P. Color
the vertices of P red or blue in such a way that adjacent vertices receive
different color, and color p red (Figure 5.4 a)). Let Π = {S1, S2, . . . , Sk} be
any convex partition of S. If k = 1 then d(S, Π) = 1. Suppose that k > 1,
then there is some Si ∈ Π (1 ≤ i ≤ k) such that p 6∈ Si and Si contains a set
of consecutive vertices of P. Then, ∇(Si) ≤ 1 and therefore d(S, Π) ≤ 1.

For n = 2m+2, let S consist of the vertices of P, colored as before plus two
points p and q in the interior of P close enough to the middle of an edge e

of P, so that the line joining them is almost parallel to e (Figure 5.4 b)).
Observe that d2(S) = 1. Let Π = {S1, . . . , Sk} be any convex partition of
S. If p and q are in the same set of Π, then d(S, Π) = 1 since S \ {p, q} is an
alternating convex chain. Otherwise, k = 2 or there is an element Si ∈ Π,
not containing both p and q, so that Si is composed by consecutive vertices
of P and thus d(S, Π) ≤ ∇(Si) ≤ 1. It follows now that d(S) = 1.

Proposition 5.15 Let b ≤ r < 2b, and d an integer such that max{1, |r −
b|} < d ≤ b. Then there exists a set of S with r red points and b blue points,
not in convex position, such that d(S) = d.

5.3. Point sets in general position 121

a) b)

p p
q

Figure 5.4: In a) (resp. b)), we show a point set with discrepancy one and an odd
(resp. even) number of points.

Proof. We construct first a point set S as follows. Let c be a circle centered
at the origin O, and let α be an arc of c with length π

2 . Let m be the point
such that the midpoint of the segment joining O to m is the midpoint of α.
On a small circle centered at O place a point set X1 of r − b + d − 2 red
points uniformly spaced. In a similar way, place a point set X2 of d− 2 blue
points uniformly spaced on a small circle whose center is m. Finally, place a
set X3 of b−d+2 pairs of points pi, qi close enough to α such that each pair
contains a red and a blue point as shown in Figure 5.5, i = 1, . . . , b− d + 2.
Let S = X1 ∪X2 ∪X3.

If a convex set Q is such that S ∩Q is m-blue, then ∇(S ∩Q) ≤ d. In fact,
suppose that Q contains exactly h blue points of X3, then Q has at least
h− 2 red points of X3 and hence ∇(S ∩Q) ≤ h− (h− 2) + (d− 2) = d.

Since d1(S) = d > r − b, it follows that d(S) is not d1(S). Let Π =
{S1, . . . , Sk} a convex partition of S such that k ≥ 2. By Lemma 5.2, Π has
an m-blue element Si and then d(S, Π) ≤ ∇(Si) = ∇(S ∩ CH(Si)) ≤ d.

o m

d − 2r − b + d − 2

c α

Figure 5.5: A point set in general position with r red points and b blue points. Its
discrepancy is equal to d, where max{1, |r − b|} < d ≤ b.

122 5. Bichromatic Discrepancy via Convex Partitions

Choose now two pairs of points pi, qi and pj , qj in X3, and let ` be the
line that passes trough the midpoints of the segments determined by pi, qi

and pj , qj . Let S′ and S′′ be the subsets of S determined by `. Then
d(S, {S′, S′′}) = min{r − b + d, d} = d. Hence d(S) = d.

Let C1, . . . , Ct be a family of sets of points such that each Ci is in convex
position. We say that C1, . . . , Ct is nested if the elements of Ci+1 belong
to the interior of CH (Ci), i = 1, . . . , t − 1. The following results deal with
families of nested even alternating convex chains, that is, alternating convex
chains containing an even number of points, see Figure 5.6 a). This special
configuration allows us to give examples with any value of discrepancy and
whose points are “well blended”.

Lemma 5.16 Let C1, . . . , Ct be a nested family of point sets in convex posi-
tion, S = C1∪ · · · ∪Ct, and Π = {S1, . . . , Sk} a convex partition of S. Then
there is an element Si such that Si ∩ Cj is Cj-consecutive for j = 1, . . . , t.

Proof. The proof is by induction on t. For t = 1 the result follows from
Lemma 5.8. Suppose that t > 1 and let Π = {S1, . . . , Sk} be any convex
partition of S. If Si ⊂ C1 for some i ∈ {1, . . . , k}, then the result follows
again from Lemma 5.8. Let Π1 = {S1 \ C1, . . . , Sk \ C1}. Π1 is a convex
partition of S \ C1, and by induction there is a subset Si ∈ Π such that
Si \C1 ∈ Π1 and Cj ∩ (Si \Ct) is Cj-consecutive for j = 2, . . . , t. If Si ∩C1

is C1-consecutive our result follows. Otherwise, it is easy to see that there
is another element Sl ∈ Π such that Sl ⊂ C1. Our result follows.

Proposition 5.17 Let C1, . . . , Ct be a family of nested even alternating
convex chains, and S = C1 ∪ · · · ∪ Ct. Then d(S) ≤ t. In some cases,
d(S) = t.

Proof. Let Π = {S1, . . . , Sk} be a convex partition of S. By Lemma 5.16,
there is at least one Si ∈ Π such that Si∩Cj is Cj-consecutive for j = 1, . . . , t.
Then ∇(Si ∩ Cj) ≤ 1 for j = 1, . . . , t. But d(S, Π) ≤ ∇(Si) ≤

∑t
j=1∇(Si ∩

Cj) ≤ t and d(S) ≤ t.

Let Wm be the set of 4m2 points with integer coordinates (i, j), 1 ≤ i, j,≤
2m, and such that if i + j is even the point is colored blue, otherwise it is
colored red. We call such a point set an m-chessboard. Note that Wt is the
union of t nested even alternating convex chains, and thus d(S) ≤ t. Let `

be a line with slope π
2 that leaves 1 + · · ·+ 2t − 1 elements of Wt below it,

see Figure 5.6 b). Then the partition of Wt induced by ` has discrepancy

5.4. Partitions with a line 123

t. It is clear that Wt can be perturbed a bit so that all of its points are in
general position without changing our results.

`

a) b)

Figure 5.6: a) A configuration of 3 nested even alternating convex chains. b) a
3-chessboard and a line ` giving a partition with discrepancy 3.

The idea of the t-chessboard can be generalized as in Figure 5.7, in which
there is a line ` so that, in each of the half-planes defined by `, all the t chains
have the same majority color. It results in interesting cases depending of
the value of t. If S is formed by t even alternating convex chains with 4t

points each, then d(S) = t =
√

4t2

2 =
√

n
2 . If S is a set of n = 22m

(m ≥ 1)
points distributed in t = 2m = log2 n even alternating convex chains of
length 22m−m = n

log2 n each, then d(S) = t = log2 n.

`

Figure 5.7: A generalization of the m-chessboard.

5.4 Partitions with a line

In this section we characterize sets with linear discrepancy one and show
how to decide if the linear discrepancy of a bicolored point set is equal to a

124 5. Bichromatic Discrepancy via Convex Partitions

given d. We introduce the following notation.

Let Π`+ and Π`− be the open half-planes bounded below and above respec-
tively by a non vertical line `. Let S`+ = S ∩ Π`+ , S`− = S ∩ Π`− , and
Π` = {S`+ , S`−}. The linear discrepancy of S is d2(S) = max` d(S, Π`),
where the lines ` contain no point in S.

Proposition 5.18 Let S = R∪B such that r = b and d2(S) = 1. Then the
following properties hold:

1. The convex hull of S is an alternating chain.

2. When projected on any line, the points of S form a sequence such that
no three consecutive points have the same color.

3. For every p ∈ S on the convex hull of S, the angular ordering of the
elements of S \ {p} with respect to p is a sequence with alternating
colors.

4. For every line ` passing through two points of the same color, say red,
the number of red points in each of S`+ and S`− is exactly one less
than the number of blue points in S`+ and S`−, respectively.

Property 2 in Proposition 5.18 is not sufficient to guarantee that d(S) = 1,
e.g. see Figure 5.8 (a). If r 6= b properties 3 and 4 in the same proposition
are not necessarily true, see Fig 5.8 b) and c). We now show that if r = b,
property 4 is sufficient.

p
q

p

q

s

a) b) c)

Figure 5.8: a) There are no three consecutive points of the same color in the
projection on any line and d2(S) = 2, b) the red points q and s are consecutive in
the angular sorting of S \ {p} with respect to p and d2(S) = 1, c) the number of
red and blue points in the half-plane above the line through p and q is zero and
d2(S) = 1 because S is an alternating convex chain.

The next result, proven in [39], will be useful:

5.4. Partitions with a line 125

Theorem 5.19 Let P and Q be two disjoint convex polygons on the plane.
Then there is at least one edge e of P or Q such that the line `e containing
e separates the interior of P from the interior of Q (Figure 5.9).

P

Q

e

`e

Figure 5.9: Two convex polygons P and Q and a separating line `e containing the
edge e of Q.

Lemma 5.20 If r = b then the following two conditions are equivalent: (a)
d2(S) = 1; (b) for every line ` passing through two points of S with the same
color, ∇(S`+) = ∇(S`−) = 1.

Proof. It is easy to prove that (a) implies (b). We show here that (b) implies
(a). Suppose that d2(S) = d ≥ 2. We now show that there exists a line `

containing two points of the same color of S such that {∇(S`−),∇(S`+)} =
{d, d− 2}.

Let `0 be a line containing no elements of S such that d2(S) = d(S, Π`0) = d.
Assume w.l.o.g. that `0 is horizontal. Since r = b we have that d2(S) =
d(S, Π`0) = ∇(S`+0

) = ∇(S`−0
) = d and ∇′(S`+0

) = −∇′(S`−0
). Assume

w.l.o.g. that ∇′(S`+0
) > 0 (i.e. S`+0

is m-red and S`−0
is m-blue).

Let P and Q be the polygons induced by the convex hulls of S`+0
and S`−0

respectively. Let p be a vertex of P such that there is a line `′ passing trough
p that separates P from Q. Then p must be a red point, for otherwise by
translating `′ up by a small distance, we obtain a partitioning Π′ of S with
discrepancy d+1. Similarly any point q in Q such that there is a line trough
q that separates P from Q must be blue.

By Theorem 5.19, there is an edge e of P or Q, with vertices p and q such
that the line `e containing e separates P from Q. If e is an edge of P ,
then it can be shown by using the above observation that p and q are red.
Thus {∇(S`+e

),∇(S`−e
)} = {d, d− 2}. A symmetric argument works when e

belongs to Q.

126 5. Bichromatic Discrepancy via Convex Partitions

The next proposition gives lower and upper bounds of the linear discrepancy.
The proof is in the appendix.

Proposition 5.21 max
{

1, b |r−b|
2 c

}
≤ d2(S) ≤ max

{
b |r−b|

2 c,min {r, b}
}
.

Furthermore, both bounds are tight.

Proof. Suppose w.l.o.g. that r ≥ b. By the Ham Sandwich Cut The-
orem [58] there exists a line `, passing through at most one red point
and at most one blue point, such that |S`+ ∩ R| = |S`− ∩ R| = b r

2c and
|S`+ ∩ B| = |S`− ∩ B| = b b

2c. Four cases arise depending on the parities of
r and b.

1. If r = 2a and b = 2c then ` contains no point of S, and ∇(S`+) =
∇(S`−) = a− c = b r−b

2 c. Thus b r−b
2 c = d(S, Π`) ≤ d2(S).

2. If r = 2a+1 and b = 2c+1 then ` passes through one red p point and
one blue point q, and |∇(S`+)| = |∇(S`−)| = b−c = b r−b

2 c. By moving
slightly `, both p and q pass to be either in S`+ or in S`− thus |∇(S`+)|
and |∇(S`−)| do not change. Hence b r−b

2 c = d(S, Π`) ≤ d2(S).

3. If r = 2a + 1 and b = 2c then ` passes through only one red point p

and no blue point. |∇(S`+)| = |∇(S`−)| = a−c = r−b−1
2 = bn−m

2 c. By
moving slightly `, the point p passes to be either in S`+ or in S`− . Then
min{|∇(S`+)|, |∇(S`−)|} does not change and thus b r−b

2 c = d(S, Π`) ≤
d2(S).

4. If r = 2a and b = 2c + 1 then ` passes through only one blue point
q and no red point. |∇(S`+)| = |∇(S`−)| = a − b = r−b+1

2 . By
moving slightly `, the point q passes to be either in S`+ or in S`−

thus min{|∇(S`+)|, |∇(S`−)|} = r−b+1
2 − 1 = r−b−1

2 = b r−b
2 c. Hence

b r−b
2 c = d(S, Π`) ≤ d2(S).

If |r − b| ≥ 2 then d2(S) ≥ b |r−b|
2 c ≥ 1 thus it is missing to prove that

d2(S) ≥ 1 when |r − b| ≤ 1. Suppose w.l.o.g. that b ≤ r ≤ b + 1. If there
is a blue point p in the convex hull of S take a line ` separating p from
S \ {p} and suppose that p ∈ S`+ , then ∇(S`+) = 1, ∇(S`−) = r− b + 1 ≥ 1
and d2(S) ≥ d(S, Πl) = 1. If no such p exists, there are two consecutive
red points p and q in the convex hull of S, then take a line ` separating
p and q from S \ {p, q} and suppose that p, q ∈ S`+ , then ∇(S`+) = 2,
∇(S`−) = b − r + 2 ≥ 1 and d2(S) ≥ d(S, Πl) = 1. This proves the lower
bound.

5.4. Partitions with a line 127

We show now that this lower bound is tight. Suppose w.l.o.g. that r > b

and let X be a set composed by r red points and r blue points, and let Y

be a set of r− b red points. Put the elements of X on an alternating convex
chain and the elements of Y in the interior of the convex hull of X in such a
way there is a line `e such that d(X, Π`e) = 0 and `e splits Y into two subsets
of cardinality b |Y |2 c and d |Y |2 e respectively. Let S = X ∪ Y and observe that
d(S, Π`e) = b |Y |2 c = b r−b

2 c. For any line ` we have that d(X, Π`) ∈ {0, 1}
(by Lemma 5.9). If d(X, Π`) = 0 then d(S, Π`) = d(X ∪ Y,Π`) = d(Y, Π`) ≤
b |Y |2 c = b r−b

2 c. If d(X, Π`) = 1 then d(X∪Y, Π`) = min{x−1, (r−b)−x+1}
where x is such that l splits Y into x and (r − b) − x points, respectively.
It is easy to prove that min{x− 1, (r − b)− x + 1} ≤ b r−b

2 c. Then d2(S) =
d(S, Π`e) = b r−b

2 c.

To prove the upper bound suppose w.l.o.g. that r ≥ b (i.e. b = min{r, b}).
We have to show that d(S, Π`) > b ⇒ d(S, Π`) ≤ b r−b

2 c for every line `.
Let ` be a line such that d(S, Π`) > b. Then we have that ∇′(S`+) > 0
and ∇′(S`−) > 0. In fact, suppose that ∇′(S`+) < 0, then ∇(S`+) = |S`+ ∩
B| − |S`+ ∩ R| ≤ |S`+ ∩ B| ≤ b thus d(S, Π`) ≤ b, a contradiction. Now,
∇′(S`+) > 0 and ∇′(S`−) > 0 imply that d(S, Π`) ≤ b r−b

2 c. In fact, suppose
the contrary, ∇(S`+) ≥ b r−b

2 c+1 and ∇(S`−) = (r−b)−∇(S`+) ≥ b r−b
2 c+1,

thus r − b ≥ 2b r−b
2 c + 2, a contradiction. If b r−b

2 c ≤ b the upper bound is
tight if we take separable sets R and B. If b r−b

2 c > b we have shown above
how to build a set of points S with d2(S) = b r−b

2 c.

Corollary 5.22 Let |r − b| ≥ 2. If r ≥ 3b or b ≥ 3r then d2(S) = b |r−b|
2 c.

Proof. Suppose that r ≥ 3b, then r− b ≥ 2b⇒ r−b
2 ≥ b⇒ b r−b

2 c ≥ b. Thus
the upper and lower bounds of d2(S) in Proposition 5.21 are equal.

5.4.1 Hardness

We start with a technical lemma that is proven in the appendix of this
chapter, Section 5.6.

Lemma 5.23 Let a, b and c be three distinct integers and M = max{|a|, |b|, |c|}.
Let ε be a real positive value such that ε < 1

6M2 . Then there is no line
that simultaneously intersects the horizontal segments [a − ε, a + ε] × a3,
[b− ε, b + ε]× b3 and [c− ε, c + ε]× c3 unless the points (a, a3), (b, b3) and
(c, c3) are collinear.

Theorem 5.24 Given d ≥ 1, it is 3SUM-hard to decide if d2(S) = d.

128 5. Bichromatic Discrepancy via Convex Partitions

Proof. We will use a reduction from the 3SUM-problem similar to the
3SUM-hardness proof of the 3-POINTS-ON-LINE-problem [55]. Consider
the set X = {x1, . . . , xn} of n integer numbers (positive and negative), an
instance of the 3SUM-problem, and assume w.l.o.g. that x1 < · · · < xj <

0 < xj+1 < · · · < xn (1 ≤ j < n). Let M = max{|x1|, |xn|}. If d = 1,
put a blue point in (−2M, 0) and a red point in (2M, 0). If d > 2, then for
each 1 ≤ i ≤ d− 2 put a red point in (−2M − i + 1, 0) and a blue point in
(2M + i − 1, 0). Let ε be a small real positive number such that ε < 1

6M2 .
For each 1 ≤ i ≤ n put a red point pi in (xi − ε, x3

i) and a blue point qi in
(xi + ε, x3

i); see Figure 5.10. Since ε < 1
6M2 we obtain by Lemma 5.23 that

there is a line separating three distinct pairs (pi, qi), (pj , qj), and (pk, qk) if
and only if (xi, x

3
i), (xj , x

3
j), and (xk, x

3
k) are collinear (i.e., xi+xj +xk = 0).

Let S be the set of red an blue points as above. We have that d2(S) ≥ d

because d2(S, Π`) = d for every line ` separating exactly two distinct pairs
(pi, qi) and (pj , qj). If d2(S) > d, then there is a line separating more than
two pairs, implying that three elements in X sum to zero. Therefore, three
elements in X sum to zero if and only if d2(S) 6= d.

y = x3

p1

pi

x

y

qi

Figure 5.10: Reduction from 3SUM-problem when d = 5.

Theorem 5.25 Computing the linear discrepancy of a bichromatic point
set is 3SUM-hard and it can be done in O(n2) time.

Proof. The hardness is due to Theorem 5.24, and duality can be used to
find d2(S).

5.5. Conclusions and further research 129

5.4.2 The Weak Separator problem

Given a bichromatic set of points in the plane, the Weak Separator Problem
(WS-problem) looks for a line that maximizes the sum of the number of
blue points on one side of it and the number of the red points on the other.
The WS-problem can be solved in O(n2) [70] or in O(nk log k + n log n)
time [50], where k is the number of misclassified points. An O((n+k2) log n)
expected-time algorithm was presented recently in [29]. We prove that the
WS-problem is 3SUM-hard.

Lemma 5.26 Let S = R ∪B such that r = b. Solving the WS-problem for
S is equivalent to finding a line ` such that d(S, Π`) = d2(S).

Proof. Let ` be any line such that d(S, Π`) = d2(S). Since r = b then
∇′(S`+) = −∇′(S`−). Suppose w.l.o.g. that d2(S, Π`) = ∇′(S`+) = |S`+ ∩
R| − |S`+ ∩B| > 0. We have that |S`+ ∩R|+ |S`− ∩B| = |S`+ ∩R|+ |B| −
|S`+ ∩B| = b+ |S`+ ∩R|−|S`+ ∩B|. Hence |S`+ ∩R|+ |S`− ∩B| is maximum
if and only if |S`+ ∩R| − |S`+ ∩B| = d2(S) is maximum.

Theorem 5.27 The WS-problem is 3SUM-hard.

5.5 Conclusions and further research

In this chapter we have presented a new parameter to measure how blended
a bichromatic set of points is. Basically, we introduced a new concept of
discrepancy for bicolored point sets that uses convex partitions of the points
to determine if the set is good or not for clustering.

We proved combinatorial properties of the discrepancy, and provided a com-
plete characterization if R and B are linearly separable. As an interesting
result, it was shown that the discrepancy of points in convex position can be
computed in O(n log n) time by using a reduction to instances of problems
on circular sequences of weighted elements. The case in which the discrep-
ancy is induced by partitions with a straight line was also studied, and we
gave exact combinatorial lower and upper bounds of the value of discrep-
ancy. Furthermore, we showed that computing this type of discrepancy is
3SUM-hard [55]. Additionally and as a consequence, we proved that the
well-known Weak Separator problem [29, 50, 70] is also 3SUM-hard.

An important open problem of the present chapter is to give an exact algo-
rithm or a hardness proof to the problem of computing the discrepancy of

130 5. Bichromatic Discrepancy via Convex Partitions

a bichromatic point set. If the problem is hard, as we believe, it would be
interesting to obtain approximation algorithms.

A similar definition of discrepancy of S, denoted as d′(S), can be established
by considering partitions Π of the plane into convex cells C1, C2, . . . , Ck,
instead of convex partitions of S. We can define d′(S, Π) = mini=1..k∇(S ∩
Ci) and d′(S) = maxΠ d′(S, Π). It is easy to see that d′ is a restricted version
of d since we can induce a convex partition of S from any convex partition of
the plane, and then 1 ≤ d′(S) ≤ d(S). In some sense, the optimal partition
giving discrepancy d′(S) can be viewed as a specific tessellation in which
every cell has a dominant color. This version of discrepancy could be useful,
for example, for coloring the plane. Furthermore, most of the results we
have presented here are also valid for this new version of discrepancy. It is
worthy to study the hardness of computing both versions of discrepancy for
general configurations of bicolored point sets.

We leave also to further research the study of some specific types of discrep-
ancy. For example, if we have a set of k parallel lines dividing the point set
S into k + 1 groups, then those groups form a convex partition of S (Fig-
ure 5.11 a)). Then, we can measure the discrepancy of S by only considering
the convex partitions generated by parallel lines. Other variants of discrep-
ancy can be studied if we only use the convex partitions generated by: a
binary partition of the plane (Figure 5.11 b)), a straight binary partition of
the plane (Figure 5.11 c)), a rectangular grid (Figure 5.11 d)), and a set of
of pairwise disjoint boxes (Figure 5.11 e)).

b) c)

d) e)

a)

Figure 5.11: Different types of discrepancy of a point set induced by: a) a set of
parallel lines, b) a binary partition of the plane, c) a straight binary partition of
the plane, d) a rectangular grid, and e) a set of pairwise disjoint boxes.

5.6. Appendix 131

5.6 Appendix

Proof of Lemma 5.23

Suppose w.l.o.g. that a < b < c. For a given ε > 0 denote as sa, sb, and sc

the horizontal segments [a−ε, a+ε]×a3, [b−ε, b+ε]×b3, and [c−ε, c+ε]×c3,
respectively. Let δ(b, ac) be the horizontal distance from (b, b3) to the line
through (a, a3) and (c, c3), then:

δ(b, ac) =
∣∣∣∣b− ((b3 − a3)

c− a

c3 − a3
+ a

)∣∣∣∣
=

∣∣∣∣b− a− (b− a)(b2 + ab + a2)
c2 + ac + a2

∣∣∣∣
=

∣∣∣∣(b− a)
(

1− b2 + ab + a2

c2 + ac + a2

)∣∣∣∣
=

∣∣∣∣(b− a)
(

c2 − b2 + ac− ab

c2 + ac + a2

)∣∣∣∣
=

∣∣∣∣(b− a)(c− b)(a + b + c)
c2 + ac + a2

∣∣∣∣
= (b− a)(c− b)

|a + b + c|
|c2 + ac + a2|

If a + b + c = 0 then δ(b, ac) = 0, and thus (a, a3), (b, b3), and (c, c3) are
collinear, and for all ε > 0 the line through them intersects the segments sa,
sb, and sc.

Now, suppose that a + b + c 6= 0 (i.e. |a + b + c| ≥ 1). Since a < b < c we
have that b− a ≥ 1 and that c− b ≥ 1. Therefore:

δ(b, ac) ≥ 1
|c2 + ac + a2|

≥ 1
|c|2 + |a||c|+ |a|2

≥ 1
3M2

Note that for a given ε > 0 there is no line that intersects sa, sb, and sc if
and only if 2ε < δ(b, ac). This can be ensured if ε < 1

6M2 . Hence, the result
follows.

Bibliography

[1] P.K. Agarwal, B. Aronov, and V. Koltun. Efficient algorithms for
bichromatic separability. ACM Transactions on Algorithms (TALG),
Vol. 2, No. 2, pp. 209–227, 2006.

[2] P.K. Agarwal and J. Pach. Combinatorial Geometry. Wiley-Interscience
Series in Discrete Mathematics and Optimization, Vol. 16, pp. 267–290,
1995.

[3] P.K. Agarwal and M. Sharir. Efficient Algorithms for Geometric Opti-
mization. ACM Computing Surveys, Vol. 30, No. 4, 1998.

[4] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Paghavan. Automatic
subspace clustering of high dimensional data for data mining appli-
cations. ACM SIGMOD International Conference on Management of
Data, 1998.

[5] M. Ali Abam. New Data Structures and Algorithms for Mobile Data.
Ph. Thesis. Advisor: M. de Berg. Technische Universiteit Eindhoven,
Eindhoven, 2007.

[6] L. Allison. Longest Biased Interval and Longest Non-Negative Sum In-
terval. Bioinformatics, Vol. 19, pp. 1294—1295, 2003.

[7] E. M. Arkin, G. Barequet, and J. S. B. Mitchell. Algorithms for Two-
Box Covering. Proceedings SoGC’06, Arizona, USA, 2006.

[8] E.M. Arkin, F. Hurtado, J.S.B. Mitchell, C. Seara, and S.S. Skiena.
Some lower bounds on geometric separability problems. International
Journal of Computational Geometry and Applications. Vol. 16, No. 1,
pp. 1-26, 2006.

[9] B. Aronov, E. Ezra, and M. Shair. Small-size ε-nets for axis-parallel
rectangles and boxes. Proceedings of the 41st Annual ACM Symposium
on Theory of Computing, Bethesda, USA, 2009.

133

134 BIBLIOGRAPHY

[10] B. Aronov and S. Har-Peled. On approximating the depth and related
problems. SIAM J. Comput. Vol. 38, pp. 899–921, 2008.

[11] M.J. Atallah. Some dynamic computational geometry problems. Com-
put. Math. Appl., Vol. 11, No. 12, pp. 1171—1181, 1985.

[12] L.J. Aupperle, H.E. Corm, J.M. Keil, and J. O’Rourke. Covering Or-
thogonal Polygons with Squares. In Proc. 26th Annu. Allerton Conf.
on Communications, Control and Computing, pp. 97–106, 1988.

[13] J. Basch, L. J. Guibas, and J. Hershberger. Data structures for mobile
data. Journal of Algorithms, Vol. 31, pp. 1—28, 1999.

[14] C. Bautista-Santiago, J.M. Dı́az-Báñez, D. Lara, P. Pérez-Lantero, J.
Urrutia, and I. Ventura. Computing Maximal Islands. Proceedings of
the 25th European Workshop on Computational Geometry - EWCG’09,
Brusseles, Belgium, 2009.

[15] C. Bautista-Santiago, J.M. Dı́az-Báñez, D. Lara, C. Peláez, and J. Ur-
rutia. On Covering a Class with Arbitrary Disks. Technical Report.

[16] K.P. Bennett and E. Bredensteiner. Geometry in Learning. In Geome-
try at Work. Mathematical Association of America. Washington, D.C.,
1998.

[17] J. L. Bentley. Programming pearls: algorithm design techniques.
Comm. ACM, Vol. 27, No. 9, pp. 865–873, 1984.

[18] J. L. Bentley and M. I. Shamos. A problem in multivariate statistics:
Algorithms, data structure and applications. Proceedings of the 15th
annual Allerton Conference on Communications, Control, and Com-
puting, pp. 193–201, 1977.

[19] S. Bespamyatnikh and M. Segal. Covering a set of points by two axis-
parallel boxes. Information Processing Letters, Vol. 75, pp. 95–100,
2000.

[20] B.K. Bhathacharya. Circular Separability of Planar Point Sets. Com-
putatioanl Morphology, G.T. Toussaint ,editor. North Holland, 1988.

[21] P. Bonnet, J. Gehrke, P. Seshadri. Towards Sensor Database Systems.
Proceedings of the Second International Conference on Mobile Data
Management, Hong Kong. Lecture Notes Comp. Sci., Vol. 1987, pp.
3–14, 2001.

BIBLIOGRAPHY 135

[22] E. Boros, P.L. Hammer, T. Ibaraki, and A. Kogan. Logical analysis
of numerical data. Mathematical Programming, Vol. 79, pp. 163—190,
1997.

[23] S. Brakatsoulas, D. Pfoser, and N. Tryfona. Modeling, storing, and
mining moving object databases. In Proc. International Database En-
gineering and Applications Symposium (IDEAS), pp. 68—77, 2004.

[24] H. Brönnimann and M.T. Goodrich. Almost optimal set covers in finite
VC-dimension. Discrete and Computational Geometry, Vol. 14, pp. 463–
479, 1995.

[25] H. Brönnimann and J. Lenchner. Fast almost-linear-sized nets for boxes
in the plane. In Proc. 14th Annu. Fall Workshop Comput. Geom., pp.
36—38, 2004.

[26] S. Cabello, J.M. Dı́az-Báñez, C. Seara, J.A. Sellarès, J. Urrutia and I.
Ventura. Covering point sets with two disjoint disks or squares. Com-
putational Geometry: Theory and Applications, Vol. 40, No. 3, pp. 195–
206, 2008.

[27] A.H. Cannon and L.J. Cowen. Approximation algorithms for the class
cover problem. Annals of Mathematics and Artificial Intelligence, Vol.
40, pp. 215–223, 2004.

[28] E. Carrizosa y B. Mart́ın. Problemas de clasificación: una mirada desde
la localización. Avances en Localización de Servicios y sus aplicaciones,
Universidad de Murcia, pp. 249–275, 2004.

[29] T. M. Chan. Low-Dimensional Linear Programming with Violations.
SIAM Journal on Computing, Vol. 34, No. 4, pp. 879–893, 2005.

[30] B. Chazelle. The Discrepancy Method in Computational Geometry.
Handbook of Discrete and Computational Geometry, Second Edition.
J. E. Goodman and J. O’Rourke, editors. CRC Press 44, pp. 983–996,
2004.

[31] B. Chazelle and L. J. Guibas. Fractional cascading: A data structuring
technique. Algorithmica, No. 1, pp. 133–162, 1986.

[32] K.-Y. Chen and K.-M. Chao. On the range maximum-sum segment
query problem. R. Fleischer and G. Trippen Eds., ISAAC 2004, LNCS
3341, pp. 294–305, 2004.

136 BIBLIOGRAPHY

[33] A. Civilis, C. S. Jensen, S. Pakalnis. Techniques for Efficient Road-
Network-Based Tracking of Moving Objects. IEEE Transactions On
Knowledge And Data Engineering, Vol. 17, No. 5, pp. 698–712, 2005.

[34] K.L. Clarkson and K. Varadarajan. Improved Approximation Algo-
rithms for Geometric Set Cover. Discrete and Computational Geometry,
Vol. 37, pp. 43–58, 2007.

[35] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-
rithms, Second Edition. MIT Press, McGraw-Hill, 2001.

[36] C. Cortés, J. M. Dı́az-Báñez, and J. Urrutia. Finding enclosing boxes
with empty intersection. Proceedings of the 23rd. European Workshop
on Computational Geometry, Delphi (Greece), pp. 185–188, 2006.

[37] Y. Crama, P.L. Hammer, and T. Ibaraki. Cause-effect relationships and
partially defined Boolean functions. Annals of Operations Research, Vol.
16, pp. 299—325, 1988.

[38] J. C. Culberson and R. A.Reckhow. Covering polygons is hard. J. Al-
gorithms, Vol. 17, pp. 2-–44, 1994.

[39] J. Czyzowicz, E. Rivera Campo, J. Urrutia, and J. Zaks. Separating
convex sets in the plane. Discrete and Computational Geometry, Vol.
7, pp. 189–195, 1992.

[40] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf,
Computational Geometry: Algorithms and Applications, Third Edition,
Springer - Verlag, 2008.

[41] J.G. Devinney and C. Priebe. The class cover problem and its applica-
tions in pattern recognition. The Johns Hopkins University, 2003.

[42] D.P. Dobkin and D. Gunopulos. Concept learning with geometric hy-
potheses. Proceedings of the 8th Annu. Conference on Computational
Learning Theory, ACM Press, pp. 329–336, 1995.

[43] D.P. Dobkin and D. Gunopulos. Geometric Problems in Machine Learn-
ing. Selected papers from the Workshop on Applied Computational
Geormetry, Towards Geometric Engineering, Vol. 1148, pp. 121–132,
1996.

[44] D.P. Dobkin, D. Gunopulos, and W. Maass. Computing the maximum
bichromatic discrepancy, with applications to computer graphics and

BIBLIOGRAPHY 137

machine learning. J. Computer and Systems Sciences, Vol. 52, No. 3,
pp. 453–470, 1996.

[45] D.P. Dobkin, D. Eppstein, and D.P. Mitchell. Computing the discrep-
ancy with applications to supersampling patterns. ACM Transactions
on Graphics (TOG), Vol. 15, No.4, pp. 354–376, 1996.

[46] R. Duda, P. Hart, and D. Stork. Pattern classification. John Wiley and
Sons, Inc., New York, 2001.

[47] A. Dumitrescu and J. Pach. Partitioning Colored Point Sets into
Monochromatic Parts. F. Dehne, J.-R. Sack, and R. Tamassia (Eds.):
WADS 2001, LNCS 2125, pp. 264—275, 2001.

[48] J. Eckstein, P. L. Hammer, Y. Liu, M. Nediak, and B. Simeone. The
maximum box problem and its applications to data analysis. Comput.
Optim. Appl., Vo. 23, pp. 285–298, 2002.

[49] H. Edelsbrunner and F. P. Preparata. Minimum polygonal separation.
Inform. Comput., Vol. 77, pp. 218–232, 1988.

[50] H. Everett, J.M. Robert, M. Kreveld. An Optimal Algorithm for Com-
puting (≤ k)-Levels, with Applications to Separation and Transversal
Problems. Int. J. Comput. Geom. Appl., Vol. 6, pp. 247–261, 1996.

[51] T.H. Fan, S. Lee, H.I. Lu, T.S. Tsou, T-C. Wang, and A. Yao. An
Optimal Algorithm for Maximum-Sum Segment and Its Application in
Bioinformatics. CIAA, LNCS 2759, pp. 251–257, 2003.

[52] U. Feige. A threshold of ln n for approximating set cover. Journal of
ACM, Vol. 45, No. 4, pp. 634-–652, 1998.

[53] S. P. Fekete. On the complexity of min-link red-blue separation.
Manuscript, Department of Applied Mathematics, SUNY Stony Brook,
NY, 1992.

[54] M.L. Fredman. On computing the length of longest increasing subse-
quences. Discrete Mathematics, Vol. 11, pp. 29–35, 1975.

[55] A. Gajentaan and M. H. Overmars. On a class of O(n2) problems in
computational geometry. Computational Geometry: Theory and Appli-
cations, Vol. 5, pp. 165–185, 1995.

[56] V. Garćıa, J.S. Garreta, R.M. Cardenas, R. Alejo, and J.M. Sotoca. The
class imbalance problem in pattern classification and learning. CEDI
2007, II Congreso Español de Informatica. Zaragoza, 2007.

138 BIBLIOGRAPHY

[57] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, 1979.

[58] J. E. Goodman and J. O’Rourke, editors. Handbook of Discrete and
Computational Geometry, CRC Press LLC, Boca Raton, FL, 1997.

[59] Q. Gu, Z. Cai, L. Zhu, and B. Huang. Data Mining on Imbalanced Data
Sets. 2008 International Conference on Advanced Computer Theory and
Engineering. ICACTE, pp. 1020–1024, 2008

[60] L.J. Guibas. Kinetic Data Structures. Handbook Of Data Structures
And Applications (Chapman & Hall/Crc Computer and Information
Science Series.). D.P. Mehta and S. Sahni, editors. Chapman &
Hall/CRC, 2004.

[61] L.J. Guibas. Kinetic Data Structures: A State of the Art Report. In
Proceedings of the Third Workshop on the Algorithmic Foundations
of Robotics on Robotics: the algorithmic perspective. Houston, Texas,
United States, pp. 191–209, 1998.

[62] P. Gupta, R. Janardan, and M. Smid. Fast algorithms for collision and
proximity problems involving moving geometric objects. Computational
Geometry, Theory and Applications, Vol. 6, pp. 371—391, 1996.

[63] P. L. Hammer and T. Bonates. Logical analysis of data: from combi-
natorial optimization to medical applicatios. Rutcor Research Report,
RRR 10-2005, Rutger University, New Jersey, USA, 2005.

[64] P.L. Hammer, A. Kogan, B. Simeone, and S. Szedmak. Pareto-optimal
patterns in logical analysis of data. RUTCOR Research Report 7-2001,
2001.

[65] J. Han and M. Kamber. Data mining: concepts and techniques, Morgan
Kaufmann Publishers, USA, 2006.

[66] H. Hand, H. Mannila, and P. Smyth. Principles of data mining. The
MIT Press, 2001.

[67] S. Har-Peled. Being Fat and Friendly is Not Enough. CoRR, 2009.

[68] D. Haussler and E. Welzl. ε-nets and simplex range queries. Discrete
Computational Geometry, Vol. 2, pp. 127–151, 1987.

BIBLIOGRAPHY 139

[69] J.E. Hopcroft and R.M. Karp. An n5/2 algorithm for maximum match-
ings in bipartite graphs. SICOMP, Vol. 2, pp. 225—231, 1973.

[70] M. E. Houle. Algorithms for weak and wide separation of sets. Proceed-
ings of the International Workshop on Discrete Algorithms and Com-
putation, pp. 61—68, 1989.

[71] X. Huang. An Algorithm for Identifying Regions of a DNA Sequence
that Satisfy a Content Requirement. CABIOS, Vol. 10, pp. 219–225,
1994.

[72] P. Indyk. High-dimensional computational geometry. Ph. Thesis. Advi-
sor: R. Motwani. Stanford University Stanford, CA, USA, 2001.

[73] A. Kaneko and M. Kano, Discrete geometry on red and blue points
in the plane–a survey. In Discrete and Computational Geometry, The
Goodman-Pollack Festschrift, Vol. 25 of Algorithms and Combinatorics,
Springer-Verlag, pp. 551–570, 2003.

[74] M. Kano and M. Uno. General Balanced Subdivision of Two Sets of
Points in the Plane. J. Akiyama et al. (Eds.): CJCDGCGT 2005, LNCS
4381, pp. 79–87, 2007.

[75] S. Kotsiantis. Educational data mining: a case study for predicting
dropout-prone students. International Journal of Knowledge Engineer-
ing and Soft Data Paradigms. Vol. 1, No. 2, pp. 101–111, 2009

[76] D. E. Knuth. Sorting and searching. The art of computer programming.
Addison-Wesley, 2000.

[77] D. E. Knuth and A. Raghunathan. The problem of compatible repre-
sentatives. SIAM Journal of Discrete Mathematics. Vol. 5, No. 3, pp.
422–427, 1992.

[78] S.R. Kosaraju, N. Megiddo, and J. O’Rourke. Computing Circular Sep-
arability. Discrete Computatioanl Geometry. Vol. 1, pp. 105–113, 1986.

[79] L.V.S. Lakshmanan, R.T. Ng, C.X. Wang, X. Zhou, and T.J. John-
son. The generalized MDL approach for summarization. International
Conference on Very Large Data Bases, 2002.

[80] P.F. Lambert. Designing Pattern Categorizers with Extremal Paradigm
Information. Proceedings of the International Conference on Mehtodolo-
gies of Pattern Recognition, pp. 359–391, 1969.

140 BIBLIOGRAPHY

[81] D. Lichtenstein. Planar formulae and their uses. SIAM Journal of Com-
puting. Vol. 11, No. 2, pp. 329–343, 1982.

[82] Y.L. Lin, T. Jiang, and K.M. Chao. Efficient Algorithms for Locat-
ing the Length-constrained Heaviest Segments with Applications to
Biomolecular Sequence Analysis. Journal of Computer and System Sci-
ences, Vol. 65, pp. 570–586, 2002.

[83] Y. Liu and M. Nediak. Planar Case of the Maximum Box and Related
Problems. Proceedings of the Canadian Conference on Computational
Geometry, Halifax, Nova Scotia, 2003.

[84] D. Marchette. Class cover catch digraphs. Wiley Interdisciplinary Re-
views: Computational Statistics, Vol. 2, No. 2, pp. 171–177, 2010.

[85] W. J. Masek. Some NP-complete set covering problems. Manuscript,
MIT, Cambridge, MA, 1979.

[86] J. Matoušek. Geometric Discrepancy: An Illustrated Guide. Springer-
Verlag, 1999.

[87] J. Matoušek, R. Seidel, and E. Welzl. How to Net a Lot with Little:
Small ε-Nets for Disks and Halfspaces. Proceedings of the 6th Annual
ACM Symposium on Computational Geometry, pp. 16–22, 2000.

[88] J.S.B. Mitchell. Approximation algorithms for geometric separation
problems. Technical report, Dept. of Applied Math. and Statistics,
State U. of New York at Stony Brook, July 1993.

[89] M. S. Paterson and F. F. Yao. Optimal binary space partitions for
orthogonal objects. Journal of Algorithms, Vol. 13, pp. 99–113, 1992.

[90] S. Har-Peled and and V. Koltun. Separability with Outliers. Lecture
Notes in Computer Science, Vol. 3827, pp. 28–39, 2005.

[91] F.P. Preparata and M. I. Shamos. Computacional Geometry, An Intro-
duction, Springer-Verlag, 1988.

[92] J.R. Sack and J. Urrutia, editors. Handbook of Computational Geome-
try, North-Holland, Elsevier, 2000.

[93] E. Schömer and C. Thiel. Efficient collision detection for moving poly-
hedra. In Proc. 11th Annu. ACM Sympos. Comput. Geom., pp. 51—60,
1995.

BIBLIOGRAPHY 141

[94] C. Seara. On geometric separability. Ph. Thesis. Advisor: F. Hurtado.
Universitat Politècnica de Catalunya, Barcelona, 2002.

[95] M. Segal. Planar Maximum Box Problem. Journal of Mathematical
Modeling and Algortihms. Vol. 3, pp. 31–38, 2004.

[96] A.P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and
querying moving objects. In Proc. International Conference on Data
Engineering (ICDE), pp. 422—432, 1997.

[97] A.P. Sistla, O. Wolfson, S. Chamberlain, and Y. Yesha. Updating and
querying databases that track mobile units. Distributed and Parallel
Databases, Vol. 7, No. 3, pp. 257—387, 1999.

[98] T. Takaoka. Efficient Algorithms for the Maximum Subarray Prob-
lem by Distance Matrix Multiplication. Electronic Notes in Theoretical
Computer Science, Vol. 61, pp. 191–200, 2002.

[99] H. Tamaki and T. Tokuyama. Algorithms for the Maximum Subarray
Problem Based on Matrix Multiplication. Interdisciplinary Information
Sciences, Vol. 6, No. 2, pp. 99–104, 2000.

[100] V.V. Vazirani. Approximation algorithms. Springer-Verlag New York,
Inc., New York, NY, 2001.

[101] V. N. Vapnik and A. Ya. Červonenkis. On the uniform convergence
of relative frequencies of events to their probabilities. Theory Probab.
Appl., Vol. 16, pp. 264–280, 1971.

	Abstract, Resumen
	Introduction
	Computational Geometry
	Geometric Optimization
	Data Mining and Classification
	Overview, related work and motivation
	Notation

	Contribution of this Thesis
	Chapter 2: Bichromatic Separability with two Boxes
	Chapter 3: The Maximum Box Problem for Moving Points on the Plane
	Chapter 4: The Class Cover Problem with Boxes
	Chapter 5: Bichromatic Discrepancy via Convex Partitions
	Publications

	Bichromatic Separability with two Boxes
	The dynamic MCS-problem
	The MCS-tree
	Conclusions

	Notation and preliminary results
	Exact and efficient solution
	Approximated solution
	The three chromatic case with three disjoint boxes
	Generalization and Applications
	Generalization
	Applications

	The problem in three dimensions
	Conclusions and open problems

	The Maximum Box Problem for Moving Points on the Plane
	The KDS framework
	The static version of the Maximum Box Problem
	The Smallest-Area Maximum Box Problem

	The Maximum Box Problem for moving points
	A particular case

	The Arbitrarily Oriented Maximum Box Problem
	An approximation approach
	Dynamic operations
	The approximated KDS

	Conclusions and open problems

	The Class Cover Problem with Boxes
	Hardness
	A simple approach
	Related results
	Solving particular cases
	Covering with horizontal and vertical strips
	Covering with half-strips in one direction
	Covering with half-strips
	Covering with vertical half-strips

	Covering with squares
	The disjoint version
	Conclusions and further research

	Bichromatic Discrepancy via Convex Partitions
	Basic properties
	Point sets in convex position
	Two maximum weight problems on circular sequences
	Computing the discrepancy of point sets in convex position

	Point sets in general position
	Partitions with a line
	Hardness
	The Weak Separator problem

	Conclusions and further research
	Appendix

	Bibliography

