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We investigate the nonparametric, pure ac driven dynamics of nonlinear Klein-Gordon solitary waves
having an internal mode of frequency Vi . We show that the strongest resonance arises when the driving
frequency d � Vi�2, whereas when d � Vi the resonance is weaker, disappearing for nonzero damping.
At resonance, the dynamics of the kink center of mass becomes chaotic. As we identify the resonance
mechanism as an indirect coupling to the internal mode due to its symmetry, we expect similar results
for other systems.
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An important paradigm established over the last two
decades is that solitary waves or solitons behave very much
like point particles when subjected to (a large class of) ex-
ternal forces and perturbations [1–3]. However, many soli-
tary waves possess one (sometimes more than one) internal
or shape mode [4,5], and in that case the particle picture of
their dynamics may be oversimplified: Indeed, the inter-
nal mode can temporarily store energy and release it at a
later stage, giving rise to resonance phenomena in solitary
wave collisions [5] or in solitary wave interactions with in-
homogeneities [6]. As internal modes are quite common
in nonlinear systems, either intrinsically or as a result of
small perturbations [7], the question of their influence on
the dynamics of solitary waves is a very general and rele-
vant one.

One aspect of solitary wave dynamics that has proven
itself difficult to understand is that of topological solitary
waves or kinks subjected to pure, i.e., nonparametric ac
driving. Thus, only recently [8] the ac driven dynamics of
sine-Gordon kinks (that do not possess an internal mode)
has been definitely clarified. Naively, the only new phe-
nomenon one expects when a nonparametric external driv-
ing acts on solitons with internal modes is a resonance
when its frequency, D, matches that of an internal mode,
Vi . The aim of this Letter is to show that, in fact, the actual
scenario is most unexpected and highly nontrivial. As we
will see below, a strong, anomalous resonance arises when
d � Vi�2, whereas the normal resonance at d � Vi is
definitely weaker, only possible at exactly zero damping,
and even then it can be suppressed by appropriate choices
of other parameters. We expect this result to be generic,
because our analytical approach allows us to identify the
mechanism for such a peculiar phenomenon: The ac force
does not act directly on the internal mode (because of sym-
metry reasons), but rather, they interact indirectly via the
translational motion which couples to the internal mode.
Our predictions are fully confirmed by numerical simu-
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lations, which in addition show the implications of these
resonances for the kink dynamics.

As a specific example of a kink with internal mode, we
take the well known [1] f4 equation, which, when driven
with an ac force f�t� � e sin�dt 1 d0�, reads

ftt 2 fxx 1 U 0�f� � 2bft 1 f�t� , (1)

where U�f� � �f2 2 1�2�4 and b is a damping coeffi-
cient. Previous related works on this system are [9], where
resonances in the presence of an external (time indepen-
dent) potential have been considered, and [10], which dealt
with nonresonant, high frequency parametric ac drivings.
For our problem, our analytical approach will be the well
known collective coordinate (CC) method [2,3]. A first
order of approximation is given by the McLaughlin-Scott
method [11]: We assume that the solution of (1) is of the
form

f�x, t� � tanh

"
x 2 X�t�

l0

p
1 2 V �t�2

#
, (2)

where l0 �
p

2. The center of the kink X�t� and its ve-
locity V �t� are related by X�t� �

Rt
0 dt0 V �t0� 1 X�0�, and

both are unknown functions describing the motion of the
kink as a coherent entity. By means of a standard proce-
dure [2,3,8,11] involving conservation laws, an ordinary
differential equation of motion for V �t� can be obtained,
linearized [8], and solved, yielding

V �t� �
r�t�p

1 1 r�t�2
, (3)

r�t� � c̄e2bt 2
3
p

2 e

2�b2 1 d2�

3 �b sin�dt 1 d0� 2 d cos�dt 1 d0�� , (4)

c̄ � g0V �0� 1
3
p

2 e

2�b2 1 d2�
�b sin�d0� 2 d cos�d0�� ,
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where g0 � 1�
p

1 2 V �0�2. For the undamped case
(b � 0), we see that the kink oscillates if g0V �0� �
3
p

2 e cos�d0���2d�; otherwise, the kink will move either
to the right or to the left, depending on the relation between
the parameters of the ac force and the initial velocity.
This dc motion is absent when b fi 0, as has been
numerically confirmed for sine-Gordon kinks in [8].

In order to include internal mode effects, we proceed as
follows: We rewrite Eq. (1) as

�c � 2
dH
df

2 b �f 1 f�t�, �f �
dH
dc

, (5)

where c � �f, the dot meaning derivative with respect to
time, and

H �
Z 1`

2`
dx

Ω
1
2

c2 1
1
2

f2
x 1 U�f�

æ
(6)

is the Hamiltonian of the system when e � b � 0.
We now make the ansatz f�x, t� � f�x 2 X�t�, l�t��,
whereas from the definition of c we have that c�x, t� �
c�x 2 X�t�, l�t�, �X, �l�. As in the McLaughlin-Scott
method, X�t� represents the kink center position, but now
we introduce a second collective variable l�t� that will
stand for the kink width, i.e., the internal mode excitation,
below.

The procedure to obtain the CC equations correspond-
ing to this generalized traveling wave ansatz has been put
forward in [12,13]. Basically, it consists of inserting our
ansatz into (5), multiplying the first equation by ≠f�≠X
and the second one by ≠c�≠X (≠f�≠l and ≠c�≠l), tak-
ing their difference, and integrating over x. This yields a
rather cumbersome, ordinary differential equation for X�t�
[l�t�], which we omit here for brevity. The next step is
to choose a specific functional form for f, which we do
following the work of Rice [14], and let

f�x 2 X�t�, l�t�� � f0

∑
x 2 X�t�

l�t�

∏
, (7)

where f0��x 2 X��l0� is the static kink solution, which is
an odd function (with respect to its center) for the f4 and
for any other even potential. Upon particularization of the
CC equations for this form for f we finally obtain

M0l0
Ẍ
l

2 M0l0

�X�l
l2 � 2bM0l0

�X
l

2 2f�t� , (8)
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1 M0l0

�X2
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;

(9)

where Kint � 2≠E�≠l and
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1
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aM0
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µ
l0

l
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l
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(10)

is the kink energy. Importantly, in obtaining Eq. (9) a term
of the form f�t�

R`

2` dx ≠f0�≠l, coming from the cou-
pling of the ac driving to the internal mode, has vanished
872
because of symmetry. For the f4 equation, f0 � tanhx in
Eq. (7), which yields a � �p2 2 6��12 and M0 � 2

p
2�3.

Let us now simplify these expressions in order to make
its physical significance more transparent. To begin with,
Eq. (8) can be solved for �X�l, yielding

P �
M0l0

�X
l

� 22e
b sin�dt 1 d0� 2 d cos�dt 1 d0�

�b2 1 d2�

1 e2bt

∑
2e

b sin�d0� 2 d cos�d0�
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1
M0l0V �0�
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∏
,

(11)

where ls � l0�g0. Inserting Eq. (11) into Eq. (9), we find

a��l2 2 2ll̈ 2 2bl�l� �
l2

l2
0

∑
1 1

P2

M2
0

∏
2 1 . (12)

Although Eqs. (11) and (12) are quite complicated, choos-
ing V �0� and the phase d0 so that the exponential terms in
Eq. (11) vanish, we can use a change of variables (pro-
posed in [15] for the dc driving case) to transform the
Eq. (12) into a Pinney-like equation (see [16] and refer-
ences therein), which can be solved in terms of Mathieu
functions [17] if b � 0 (when b fi 0 we have not been
able to solve this problem analytically).

In any event, we do not need the analytical expressions
for the solution of the system (11) and (12) to understand
the physics predicted by our approach. The term P2 in
Eq. (12) is an oscillatory function with frequency 2d [see
Eq. (11)]; hence, we can immediately expect a resonance
when the external frequency d is half the frequency of the
internal mode, VR � 1�

p
a l0 in the Rice approximation.

For the f4 model VR overestimates Vi �
p

3�2 by 1.7%
[14]. The analytical solution for b � 0 confirms this ex-
pectation, while numerical integration of Eq. (12) proves
that the behavior of l is that of a resonant, damped oscilla-
tor when b fi 0. When d � VR , inspection of Eqs. (11)
and (12) leads to the conclusion that another resonance
should be found at d � VR only if b � 0 (otherwise it
is a transient phenomenon of lifetime b21); even then, by
choosing V �0� and d0 to cancel the nonoscillatory terms in
Eq. (11) the resonance is completely suppressed. Further-
more, both analytically and numerically we have verified
that, far away from the resonances, the behavior of the kink
center, X�t�, is practically the same as the one predicted by
the McLaughlin-Scott approach, Eq. (3). This means that,
within the CC framework, the behavior of ac driven f4

kinks is described by the McLaughlin-Scott ansatz, and
only for drivings close to VR�2 (and VR if b � 0) such
approach fails and resonant phenomena arise.

At this point, two key issues must be addressed: First,
underlying CC methods is the assumption that no (or a
negligible amount of) radiation is generated by the pertur-
bation, an assumption whose validity can be assessed only
through comparison with the corresponding PDE. Sec-
ond, even if that is the case, the CC equations predict
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an unbounded growth of l�t� at resonance, and it is dif-
ficult to understand what that means in physical terms
for the kink of the full PDE, whose width is controlled
by the properties of the equation. In view of this, we
have computed the numerical solution of the PDE (1)
by using the conservative Strauss-Vázquez scheme [18]
with Dx � 0.1, Dt � 0.01, and a total system length of
L � 400. Our initial condition was a kink at rest and
d0 � p�2, a pair of values for which we should not see a
resonance at Vi . We come back to this below. We moni-
tored the position and the velocity of the kink center as
well as the total energy in the system, computed from the
Hamiltonian (6). We also tried to measure directly the kink
width, but we found that it is quite complicated to estimate
it from the numerics, this being the reason why we have
resorted to less direct measurements.

Figure 1 shows examples of the kink center dynamics
and its energy evolution both close to and away from the
predicted resonance. Off-resonance, the behavior of both
magnitudes is periodic, whereas at the resonance it be-
comes chaotic. Specifically, the energy increases with
time: The closer to the resonance value, the faster the
increment. The center motion is initially periodic, until
the internal mode amplitude has increased too much and
stored too much energy, subsequently releasing it through
its coupling with the translation mode (which we know ex-
ists from [5]), eventually yielding the kink motion erratic
as this process is repeated once and again. This is a clear
evidence in favor of the resonance predicted from the CC
treatment. We have verified that at resonance the kink mo-
tion is very sensitive to changes in the initial conditions,
hence our claim of the appearance of chaos.

Figure 2 depicts the resonance as seen through the mean
energy, computed as a time average from t � 10 000 (af-
ter transients have died out in the damped case) to the end
of the run at t � 25 000. Figure 2(a) shows the behavior
of this magnitude around Vi�2. It is clear from the plot
that there is a strong resonance at d � 0.6102 � Vi�2,
both with and without dissipation. In fact, some points
are missing in the b � 0 line because the corresponding
kinks, in their apparently random motion, left the system
before the end of the run. On the other hand, in spite of our
choice of initial conditions, for which no resonance is pre-
dicted at Vi for b � 0, a weak resonance can be seen at
d � 1.225 � Vi in Fig. 2(b). We note that the other two
small peaks are spurious, since they appear, disappear, or
change location depending on the choice of the length for
the numerical simulation. We believe that this discrepancy
might come from the difficulty of numerically tuning the
condition for its suppression. In any event, that would be
a very special case, and the behavior we find for these pa-
rameters is representative of what occurs for other choices
of the initial velocity and the phase. Those give rise to a
similar behavior, while, remarkably, the resonance at Vi is
always weaker and narrower than that at Vi�2 (cf. Fig. 2).
We also see that the prediction that the resonance at Vi is
suppressed by the dissipation is also confirmed, the small
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FIG. 1. Results for the PDE (1) with b � 0, e � 0.01.
(a) Total energy when d � 0.6100 (upper line), d � 0.6080
(lower line). (b) Same for the kink center, X�t�. Insets show
the same for d � 0.6102, a value for which the kink reaches
the boundary of the numerical system before t � 25 000.

peak in the lower line stemming from the transients, which
are not exactly zero for 10 000 # t # 25 000. Another in-
teresting remark is that Fourier analysis shows that the mo-
notonous increasing of the energy that appears in Fig. 2(b)
comes from the fact that, when d * 1.1, the lowest phonon
mode (with frequency vp �

p
2 ) begins to be excited,

the amplitude of its excitation monotonically increasing as
d !

p
2. No evidence for lowest phonon mode excitation

is seen for the resonance at Vi�2; therefore, this is indeed
a phenomenon arising from the coupling of the translation
and the internal mode as predicted by the CC calculation.

In summary, we have studied how ac forces affect
solitary waves of kink type with an internal mode of
frequency Vi . Specifically, we have clearly shown
that the behavior of f4 kinks under ac driving is very
well described by the two-variable CC theory we have
developed here. The main feature of the nonparametri-
cally, ac driven f4 kink dynamics is that the strongest
resonance occurs at d � Vi�2, and not at the frequency
one would expect, d � Vi . We emphasize that this novel
resonance phenomenon is totally unexpected from the
knowledge of the internal mode frequency, and arises
873
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FIG. 2. Results for the PDE (1). Mean value of the energy
(see text for the way it is computed) vs driving frequency d,
(a) close to Vi�2, (b) close to Vi . In both cases, the upper line
corresponds to b � 0, and the lower line to b � 0.001.

from the indirect interaction of the external force with the
internal mode via the translational motion. Although our
results have been obtained for a specific example, the f4

equation (1), other models with even on-site potentials and
internal modes, such as the double sine-Gordon equation,
for instance, will behave similarly because a CC approach
will lead to analogous results. The resonance found at
the CC level manifests itself at the PDE level as erratic
or chaotic (strongly dependent on the initial conditions)
motion of the kink as the kinetic energy of the center of
mass is stored into, and recovered from, the internal mode.

To conclude, we note that the anomalous resonances de-
scribed here are important on their own, as examples of
the highly nontrivial behavior of nonlinear systems and as
hints about the mechanisms governing kink dynamics. In
addition, we think that this phenomenon should be very
general, in view of the recent finding [7] that perturba-
tions of kink-bearing nonlinear systems often lead to the
development of an internal mode. As this occurs in the
discrete sine-Gordon model [7], a resonance like the one
discussed here could be relevant for the mode locking phe-
nomena reported for that system in [19]. Finally, by using
874
this discreteness induced internal mode, we point out that
the resonance we find could be observed in experiments
by using Josephson junction arrays as in [20].
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