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The three dimensional globally modified
Navier-Stokes equations: Recent developments

T. Caraballo and P.E. Kloeden

Abstract The globally modified Navier-Stokes equations (GMNSE) wiateo-
duced by Caraballo, Kloeden & Real [1] in 2006 and have beeestigated in a
number of papers since then, both for their own sake and asaswé obtaining re-
sults about the 3-dimensional Navier-Stokes equationssd hesults were reviewed
by Kloedenet al[11], which was published in 2009, but there have been sormme im
portant developments since then, which will be reviewe@ her

Herrn Prof. Dr. Jirgen Scheurle zu seinem sechzigsten Geburtstag gewidmet.

1 Introduction

The 3-dimensional Navier-Stokes equations (NSE) are aiginhg system of par-
tial differential equations. They have been intensivelyestigated for many years,
but some very basic issues on their solvability remain wivesl. For example, al-
though weak solutions are known to exist for all future timedach initial condition
in the function spacel, it is not known if there is a unique weak solution. Nor is
it known if a strong solution for each initial condition ingHunction spac® can
exist for more than a short time.

Let Q c R® be an open bounded set with regular boundaryThe system of
Navier-Stokes equations (NSE) éhwith a homogeneous Dirichlet boundary con-
dition is given by
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M vau+ (u-DutOp= (1) in (1,4e)x Q,

O-u=0 in (T,+0)x Q, (1)
u=0 on(t,+o) x I,

u(t,x) = Up(x), xe Q,

wherev > 0 is the kinematic viscosity is the velocity field of the fluidp the pres-
sure,T € R the initial time, up the initial velocity field, andf (t) a given external
force field.

There have been many modifications of the Navier-Stokestiemqsa starting
with Leray and mostly involving the nonlinear term, see teg@ew paper of Con-
stantin [6]. Another modification, called the globally mfieldl Navier-Stokes equa-
tions (GMNSE), was introduced by Caraballo, Kloeden & Réair 2006.

Fix N € R™ and defind : R — R* by

Fn(r) = min{l,?}, reR".

The system

28— vaut Ry (lul) (- D)+ Op= (1) in (7, +) x Q.

O-u=0 in (T,+%)x Q, o)
u=0 on(t,+o0) x I,

u(t,x) =Up(x), xe€ Q,
is called theglobally modified Navier-Stokes equations (GMN®H) parameteN.

The GMNSE (2) are indeggloballymodified since the modifying factéw (||u||)
depends on the noriful| = [|Dul| 2(g))sxs, Which in turn depends oflu over the
whole domainQ and not just at or near the poxt Q under consideration. Essen-
tially, it prevents large gradients dominating the dynasaied leading to explosions.
It is worth mentioning that, for a different purpose, Flahidoviaslowski [9] used a
similar global cut off function involving th®(A/4) norm for the two-dimensional
stochastic Navier-Stokes equations.

The GMNSE (2) violate the basic laws of mechanics, but matieally they
are a well defined system of equations, just like the modifezdions of the NSE of
Leray and others with other mollifications of the nonlineant. They are neverthe-
less interesting mathematically in their own right, but also useful for obtaining
new results about the 3-dimensional Navier-Stokes equstishich will be briefly
discussed below.
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1.1 Notation

The usual notation and abstract framework for the Naviek&t equations of Lions
[17] and Temam [24]) is used witH denoting the closure of

¥ = {u e (C2(Q))%: divu = o},

in (L2(Q))® with inner produc(u,v) = 33 ; [, uj(x)vj(x)dx, for u,v € (L3(Q))3,
with associated norm|, andV denoting the closure of in (H}(Q))3 with inner
product((u,v)) = ¥%_1 fo %% dx, for u,v € (H}(Q))3, with associated norm
|I-||- In addition,by andBy are defined by

bn (u, v, w) = Fn(|lv])b(u,v,w),  Yu,v,we V.

and
<BN(U7V>’W>:bN(u7V5W)7 vL'I7V5WEV7

respectively, wherb is the trilinear form oV x V x V given by

b(u,v,w) = 3 / u-avjw-dx Yu,v,weV
V¥ 7“2:1.9 Idxi ] ] s Yy .

Finally, defineA:V — V'’ by (Au,v) = ((u,v)). ThenAu= —PAu,Yu € D(A),
whereD(A) = (H?(Q))®NV andP is the orthonormal projector frorfL?(Q))3
ontoH.

2 Existence and regularity of solutions

The existence, uniqueness and regularity theory of straowgveeak solutions of
the 3-dimensional GMNSE is closer to that of the two-dimenal than the three-
dimensional NSE due to the special propertiebgfwhich is linear inu andw, but
nonlinear inv, and satisfieby (u,v,v) = 0 for allu,v € V as well as the estimate

b (U, v, w)[ = B ([[vID[o(u,v,w)[ < NGf[ul[[[w] - Vu,vweV, 3)

This and many other estimates, that can be found in Carabdb@den & Real
[1], are very similar to those for the two-dimensional NSH é&ad to similar re-
sults. In particular, the GMNSE have a unique global straxigten for each initial
condition in the function spacé as well as global weak solutions for each initial
condition in the function spadd, which instantaneously become strong solutions.
Originally, in [1] it was not known if the weak solutions weuaique, but this was
later established by Romito [23] and thus allowed a numbg@roéfs that had ap-
peared in some papers published in the period between tlvede be simplified.
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2.1 Weak solutions

Letup € H andf € L?(1,T;(L%(Q))3) for all T > 1 be given. A weak solution of
(2)is anyu € L?(1,T;V) forall T > 7 such that

{ %u(t) + VAU(t) + Bu(u(t), u(t)) = f(t) in 2 (1, +oo3V"),

4)
u(T) = U,
or equivalently
(u(t), )+v/ ds+/bN W) ds= (U, w +/ W) ds
(5)

forallt >tandallwe V.

Due to (3), unlike the 3-dimensional NSE, any weak soluti@r) of GMNSE
belongs taC([1,+); H) and satisfies (see Remark 1 in [1]) the energy equality

t ot
|u(t)|27|u(s)|2+2v/ ||u(r)||2dr:2/(f(r),u(r))dr forallT<s<t. (6)

The existence of weak solutions of the GMNSE is containedhiacfem 1 be-
low which also considers the existence of strong solutidhg. following result is
the counterpart of Serrin’s classical theorem on the 3-dsimmal NSE which says
that a strong solution, if it exists, is unique in the classvefk solutions. Strong
solutions (to be defined below) for the GMNSE are exampleb®fiteak solutions
in the next theorem.

Theorem 1.([1] Theorem 3) If there exists a weak solution u of (2) sudcit the
L?(t,T;D(A)) for all T > 1, then u is the unique weak solution of (2).

This result is not as important as originally thought sirtoe weak solutions of
the GMNSE have been shown to be unique. The proof is similaned\NSE case
and depends on the following result.

Lemma 1. ([1] Lemma 6) For all M, N, p, re R™ it holds

M —N —
M-N Jp-r|
r r

IFw (p) = Fn ()] <

2.2 Strong solutions

The following theorem is the basic existence and regulagsult for strong and
also weak solutions of the GMNSE.



Modified Navier-Stokes equations 5

Theorem 2.([2]) Suppose fc L?(1,T;(L?(Q))%) forall T > 1, and let € H be
given. Then, there exists a unique weak solution u of (2);lwisj, in fact, a strong
solution in the sense that

ueC([T+¢&,TIV)NL2(T+¢,T;D(A)), (7)

forall T >1+¢€>T1.
Moreover, if €V, then

ueC([t,T];V)NL2(1,T;D(A)), (8)
forall T > 1.

The first statement in Theorem 2 was originally given as ‘#hexistsat least
oneweak solutioru of the GMNSE” in Theorem 7 of [1], but takes its present form
after Romito showed that “there exigtsmost onaveak solutioru of the GMNSE”
in Theorem 1.1 of [23]. Romito used the estimate

1 1 1 1
[ (w.B(u,v)) | < [lull el OVi] 2 [[wil % [[wil 76 < Co(u, v) w2 [[wi|2, (9)

for u, v, w eV, since||u|| s < c|jul|. He used this to show that the nonlinear term
A ZL(u,v) == Fn(JJul])B(u,u) — Fn(||v]|)B(v, v) could be estimated by

(W, A"Z(u,v)) < v|[w? +C(co, vIN*|wi?,

wherew = u— v, the difference of two weak solutions.

2.2.1 Continuity of strong solutions on data

Strong solutionsi™) (t, T, ug) of the GMNSE (2) with parametét depend continu-
ously on the paramet&t as well as on the initial valuey.

Theorem 3. ([13] Theorem 8) Suppose thatd L?(1,T;(L?(Q))3) forall T > T,
and let NM > 0, and w,vo € V be given. Denote by (t) = uN(t,1,up) (re-
spectively, M (t) = uM)(t, 1,vp)) the solution of the GMNSE (2) corresponding to
the parameter N and the initial valug @respectively, to the parameter M and the
initial condition ). Then, there exists a positive constant@ depending only on
Q andv such thatforallt> 1

VM) () —u™N) ()] |? < [|[vo — Uo|[2 + C(M — N)Z/t AUN(9))2dgx  (10)

x exp(C (M“(t —1)+ /Tt |Au(N)(s)|2ds))

and
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v [ 1AV (9) — AuN (9= [Ivo — o]+ CM - N)? [ ™ (5)ds x
(11)

(e <|Au<w><s>|2+w)ds) cenp(c (e + (o) )|

As a consequence of the previous theorem, we obtain
Theorem 4. Suppose that & L?(1,T;(L?(Q))%) forall T > 1. Then, forany gy V
and N> 0 given,
uM (. 1,v0) — uN (- T,u0) in C([1,T];V)NLE(1,T;D(A))

as(M,vp) = (N,up) inR* xV forall T > 1.

2.2.2 Estimates of strong solutions iD(A).

With stronger assumptions on the external forcing térrastimates of the solution
in the norm ofD(A) can be obtained.

Theorem 5. ([3] Proposition 4) Suppose that ¢ W1(1,40;H), and let 4N (t)
be a solution of the GMNSE (2) with parameter N. Then
uN(t)eDA), Vt>T, (12)

and there exist two positive constantg\'kand WN), independent of, 1, ug and t,
and increasing with f |, and|f’|,, such that

a) ifu(t) =up eV, then
AN < (1467 [RY + MY L+t D)JuolPe M) (29)

forallt > 1+¢, €€ (0,1];
b) in general, if 1) = up € H, then

AN < 14+ HRN 4 e L1+ e HYMN 14+t — 1) (1+ jup[D)e el

(14)
forallt > 1+ 2¢,0< € < 1. In particular, there exists agl= To(|Up|) depending
only on|ug|, K%N) and WN), such that

AUN ())2 < 2RV Wt > 14 To(|uo)). (15)

Remark 10Observe that (14) implies thatifc W1 (1, +o0;H), then every solution
of GMNSE belongs td-"(1 4 &,+c0;D(A)) for all € > 0. If, moreover, the initial
datumug € D(A), then it can be proved that the corresponding solutienu™) (t)
of GMNSE belongs t&."(1,+;D(A)), and more exactly,
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suplAu(t)| < 4-oo.

t>1

3 Global attractor in V: Existence and dimension estimate

3.1 Autonomous case

Assume now that the forcing terfndoes not depend on time and for eaghe V
defineS™ (t)up := uN)(t, ug), whereu™ (t, up) is the unique strong solutian™) (t)

of (2) with initial time T = 0. ¢, From Theorems 2 and 4, it follows the&&™N) (t) }1>0

is aC? semigroup inV. Let u™N) (t) = SN)(t)up with up € V. The same arguments
as for the NSE give the inequality

d 1

g2 N2« = 1§12

dt|u |+ VA ut™ e < v)\1|f| (16)
and hence the estimate

1
|u(N) (t)|2 < |U0|287VA1t + - 2|f|2 (1—87VA1t),
V2AS

from which it follows thatSN) (t) possesses a sét in H which absorbs bounded
sets oV, and which is given byZy := {uc H :|u|? <1+ —5|f|? }. Similarly,
1

but more complicated8™) (t) has an absorbing s@f,N) inV (i.e., which absorbs
bounded sets d&f) given by

12 (N)
BN = {uev :||u||2g1+i<2+c—)}. 17)

V2Ay VA2

Note that") ¢ 2" for N < N* in view of the definition of the constaa™)
(see [1] for details).

Moreover, the semigrou@™ (t) in V is asymptotically compact since it satisfies
the flattening property ([12], see also [22])Fdr any bounded set B of V and for
anye > 0, there exists d{B) > 0 and a finite dimensional subspacg & V, such

that {PgS<N)(t)B,t > TS(B)} is bounded and

H(I7P5)3<N)(t)u0H<e for t>Te(B),uo € B, (18)

where R :V — V; is the projection operatorlt thus follows that the GMNSE (2)
has a global attractawy in V for eachN. In particular,ay C %’\(,N) for eachN and
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Theorem 6. ([1] Theorem 10) If fe (L?(Q))3, then the GMNSE (2) has a global
attractor 4y in V for each N> 0. Moreover the set-valued mapping-N o is
upper semi continuous, i.e.

disty (o, o) -0 as M—N, (29)
where disy is the Hausdorff semi distance on V.

The upper semi continuous dependence of the global attgaetg in N follows
by standard theorems in dynamical systems theory in viewetbntinuity of the
semigroupsSNV) in N established in Theorem 4.

3.1.1 Global attractorin D(A).

With time-independent forcing (so that the stronger assionf Theorem 5 is
satisfied) it is possible to obtain an absorbing®gt:= {ve D(A) : |Av]2 < ZRECN)}
in D(A) for the semigroug SN)(t)}+~0 and hence the above global attracte
actually belongs t®(A). In fact

Corollary 1. ([3] Corollary 7) The global attractorery of the GMNSE is a bounded
subset of DA).

3.2 Nonautonomous case

In the nonautonomous case, whiedepends on time, the counterpart of a semigroup
is a 2-parameter semigroup of operatdf¥) (t, 7), with U N (t, T)up = uM (t, T, up)

the solution of (2) foup € V. In addition, the counterpart of an attractor is a pullback
attractor, i.e., a family of nonempty compact subdetg(t),t € R}) in V, which

is invariant in the sense that") (t, 7).o(T) = o (t) for allt > 1 and is pullback
attracting inv, see [13]. Supposing th&toelongs td_2 .(R; (L?(Q))3) and satisfies

loc
t
/ e"15f(s)|?ds< 4 forallt e R, (20)

whereA; is the first eigenvalue oA, the existence of a pullback attractor\infor
the GMNSE was established in [13] Theorem 13. Among othepgnt@es for the
pullback attractor iV, a finite bound on the fractal dimension, which could inceeas
with increasing time, was also obtained in [13].

Theorem 7.([13] Theorem 22) Suppose thatsfW>2(R; L2(Q)3) satisfies
r+1
f e L®(—o,tp;L2(Q)%), and sup/  |f'(s)]?ds< 4o, foralltgcR. (21)

r<tpJr
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Then, for each N> 0 and each ¢ € R there exists a @ (tg) € [0,4) such that
the fractal dimension of the pullback attractbry(t),t € R}) of the GMNSE (2)
satisfies the bound

dY (an(t)) <dN(to) forallt <t (22)
Recall that the fractal dimension of a nonempty sulisef a metric spacéX, dx)

is given by
- log(N(C))
d¥(C) := limsup———22
F© £l0 P log(1/¢)
whereNg(C) denotes the minimum number of ballsXwith radiuse which are
required to coveC.

(23)

4 Globally modified NSE with delays

There are many real situations in which one can considerahabdel is better
described if we allow some delay in the equations. Thesat#tus may appear,
for instance, when we want to control the system by applyifgree which takes
into account not only the present state of the system butisiieriy of the solutions.
Therefore, it is interesting to consider the following versof GMNSE (we will
refer to it as GMNSED):

%*VAU+FN(||U||)[(U~D)U]+DF):g(t,Ut) in (T, +0) x Q,
O-u=0in (1,4%)x Q,
u=0 on(t,+0) xT, (24)

u(t,x) =w(x), xeQ,

u(t+s,x) = @(s,x), s<0,x€ Q,

wheret € R is an initial time, the terng(t, u;) is an external force depending even-
tually on the history of the solution, wheute denotes the segment of solution up to
timet (in other wordsyy : s€ (—,0] — Ww(s) := u(t+s)) andg@is a given velocity
field defined fors < 0.

This is a general formulation when the delay is allowed torfmite. But on
some occasions it can be finite or bounded. In these casexsaler the initial
vector fieldg defined in a bounded intervilh, 0] and the segment solutiag is
also defined in the same interval.

Some examples for the delay external force will be givenwgehut first, it is
important to note that the functianis not defined directly on the phase space but
on some class of continuous functions: eithéRir C([—h, 0]; H) with the sup norm
(for finite delays), oiR x Cy((—,0];H) (in the infinite delay case) where the space
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Cy(H) :=Cy((—,0];H), defined as

(-0 H)i= { # < Cl(-.03H) 3 im e20(6) < 1.
is a Banach space for the norm

¢lly:= sup €®g(s)|.

se(—,0]

1. Constant delay. Considerg(t,u) := Gy(u(t — h)) whereG; : H — H is a
suitable function and > 0 is the constant delay. Here the functign R x
C(]=h,0];H) — H is defined as:

g(t, &) = Gu(&(=h)), £ C([=h,0H).

Notice that the time variabledoes not play any role, so we are in an autonomous

situation.
2. Variable delay. In this case, the delay term is given b, u) := Ga(t,u(t —
p(t))), wherep(t) € [—h,0] is a delay function. Now, the functianis given by

gt &) = Gz2(&(—p(1))), & C([=h,0;H),

where it is clear that the time variakilés necessary for this case. So, we are in a
non-autonomous model.

3. Distributed infinite delay. (cf. [19]) Let us consider the operatgr: R x
Cy(H) — (L?(Q))3 defined as

0t.)= [ Golt.sE(s)ds te R, £ CyH),

where the functiorG; : R x (—o0,0) x R® — R? satisfies suitable assumptions.
This situation corresponds to the case

-0
g(t,uw) = ./700 Gs(t,s u(t +s))ds

which is also non-autonomous.

On the one hand, the two first cases (constant and variabdg)deave been
analyzed in [5] where the authors proved existence and eniegs of weak solu-
tions, existence and asymptotic behaviour of stationarytisms, and the existence
of pullback attractor (which becomes the global attraatdthie autonomous case).
On the other hand, the infinite delay case is studied in [LBEre the existence and
uniqueness of solutions, and the existence and asympiehiaviour of stationary
solutions is proved.

We will only include below some representative results fthmpaper [5], so we
considem to be defined as in case (2).
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AssumeG; : R x H — H is such that

cl) Gy(-,u) : R — H is measurabléju € H,

c2) there exists honnegative functiomne Lfgc(R) for some 1< p < +o0, and a non-

decreasing functioh : (0,00) — (0,), such that for alR > 0 if |u[,|v] <R,
then
Ga(t,u) — Ga(t,v)| < LRIMY2(t) ju—v],

forall t € R, and

c3) there exists a nonnegative functibe L, (R), such that for any € H,

Go(t, w2 < m(t) [u?+ (1), VteR.

Finally, we suppose € L2" (—h,0;H) andu® € H, wheres + 5 = 1.
In this situation, we consider a delay functipre C1(R) such that 0< p(t) < h for
allt € R, and there exists a constgmt satisfying

Pt)<p.<1l VteR. (25)

Definition 1. Let T € R, u° € H and@ € L2P (—h,0;H) be given. A weak solution
of (24) is a function

ue L (1—hT;H)NLA(T,T;V)NL®(1,T;H)

forall T > 1, such that

u(t) + VAU(t) +Bn(u(t), u(t)) = G(t,u(t — p(t))) in Z'(1, +-e0;V’),

or equivalently
t t
(u(t),w)+v/ ((u(s),w))ds+/ bn (u(s),u(s),w) ds= (uO,W) (26)

t
+ [ (Gls uls—p(s)).w ds

forallt >t and allw € V, and coincides withp(t) in (1 —h, 7).

The existence and uniqueness of weak (and strong) solutfomsr problem is
established in a similar way as we did in the non-delay casewiih necessary
changes due to the delay term.

Theorem 8.([5], Theorem 3.1) Under the conditions c1)-c3), assumé tha R,
uweHandgpe LZF”(—h,O;H) are given. Then, there exists a unique weak solution
u of (24) which is, in fact, a strong solution in the sense that
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ueC([T+¢&,TIV)NL2(T+¢,T;D(A)), (27)

forall T —7>¢>0.
Moreover, if € V, then uc C([1,T];V)NL%(1,T;D(A)), forall T > 1.

Next, we state a result about the asymptotic behavior ofdghdisns of problem
(24) whent goes to+oo.
Let us suppose that c1)-c3) hold withe L*(R), assume also that

V2A2(1—p,) > |Mle,

where|m|e := [|M[| =k,

and let us denote by > 0 the unique solution of
|m|e€#"

vA1(1-p.)

We can now formulate the following result (see also [19] fairailar result in the
infinite delay case).

E—VA1+ =0. (28)

Theorem 9. ([5], Theorem 4.1) Under the previous assumptions, for afyg) ¢
H x L2(—h,0;H), and anyt € R, the corresponding solution(ts T,u®, @) of prob-
lem (24) satisfies

lu(t; 1, 0°, )|

02, Imloef 0 o 2 (1—t)
< (\u\ Fohi=p) ./7hef @(s)2ds) &

Jrﬁ/t 51 (s)ds (29)

forallt > 1.
In particular, if [;°€5f(s)ds < «, then every solution(s; T,u’, @) of (24) con-
verges exponentially tdas t— +oo.

Finally, the existence of pullback attractor is also proire¢b] by following a
similar scheme to the one used in [4] for the two-dimensidtealier-Stokes equa-
tions with delay.

5 Statistical solutions of GMNSE

The autonomous GMNSE with =0 andf € H, i.e. f is independent of timg,
are considered in this section aNdis held fixed here. Le§N) be the semigroup
in V generated by the autonomous GMNSE andagtbe its global attractor il .
Probability measures ad here are with respect to the-algebra of Borel subsets
of H.
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Definition 2. A probability measure ohi is said to beSN)-invariant if
uv)=1 and p(E)=u(sM)E), vi=o, (30)

for every Borel subsdt of V (recall that a Borel set iX is a Borel set irH).

Theorem 10.([3] Theorem 10) The support of any"-invariant measure on H is
included in the global attractorzy.

The existence of such measures is obtained by time averabfiregresults be-
low generalize those of Foiag al [10] (see also Lukaszewicz [18]) for the two-
dimensional NSE to the GMNSE.

5.1 Time-averages solutionsin the autonomous case

Let LIM denote a generalized limit o#([0,)), the space of all bounded real-
valued functions o0, ) (see [3] for the definition).

Definition 3. Atime-average measure of the solutigh) of the autonomous GMNSE
is a probability measurg onH such thaC(H) c L*(H, u) and

1 /T
uMHm?/O ¢(u(t))dt:/H¢(v)du(v), ¥ € C(H). (31)
Proposition 1. ([3] Proposition 13) Any time-average measyref a solution (t)
of the autonomous GMNSE is carried byA), i.e.,u(D(A)) = 1.

Proposition 2. ([3] Proposition 14) For any solution (1) of the autonomous GMNSE
such that @0) € V there exists a time-average measpref this solution such that
moreover QV) c LY(H,u) and

T .
L|MHW%/O ¢(u(t))dt:./H¢(v)du(v) v €C(V). (32)

Proposition 3. ([3] Proposition 16) Let \t) be the solution of the autonomous
GMNSE corresponding togue V and letu be a time-average measure oft
such that QV) ¢ LY(H, ) and (32) is satisfied for alhy € C(V). Thenpu is an
SN)-invariant measure.

5.2 Stationary statistical solutions of the autonomous GMNSE
Define

Gn(V) = —VAV—Bn(V,v)+ f, Vvev, (33)

and let7 be the set of real valued functionais= ®(v) onH such that
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(i) cr == sup|@(v)| < oo forallr > 0;
IM<r

(ihfor any v e V there existsd’(v) € V such that

[@(V+W) — B(V) — (P(V),W)]
I\

—0 asjw|—O0withweV; (34)

(iiiyhe mappingv — @’(v) is continuous and bounded as function frenmto V.

Definition 4. A stationary statistical solution of the GMNSE is a probipinea-
sureu onH such that

0) [, IVIZdu(v) <+
(ii)L(GN(v), @' (v)) du(v) = O for any®d € 7;

(i”)-/{ang\2<b}

{v||v][2= (f,v)}du(v) <0 forany 0<a< b < 4.

The following results were proved in [3].

Theorem 11.([3] Theorem 19) Any ®)-invariant probability measure on H is a
stationary statistical solution of the autonomous GMNSE.

Corollary 2. ([3] Corollary 20) Let u be a time-average measure of a solutigtju
of the GMNSE such that(®@) c L*(H, ) holds and (32) is satisfied for a§f €
C(V). Thenu is a stationary statistical solution of the autonomous GNINS

As partial counterpart of Theorem 11 was given in [19].

Theorem 12.([19], Theorem 15) Letu be a stationary statistical solution of
GMNSE such that there exists a bounded and measurable s#hseft D(A) satis-
fying u(H\ %) = 0. Thenp is an Sy-invariant probability measure on H.

6 Numerical solution of the globally modified NSE

There is an extensive literature on the numerical analysith® 3-dimensional
Navier-Stokes equations, much of which is based on the pramgideas of Temam
[24]. In this spirit Deugoue & Djoko [8] investigated the iffigit Euler scheme ap-
plied to the GMNSE, specifically

um+li um
T VAU™L 4 By (U™ umly = fml (35)

with time stepsizé, where
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They establish uniform bounds off (with respect tan) and its temporal difference
quotient in different function spaces and find conditiondemwhichu™ is contin-
uous inN andu® and for which (35) is uniquely solvable. They also estabiish
existence of absorbing sets in béthandV spaces, which is the first step in showing
the existence of attractors. Finally they consider thetlasiN — co and prove the
following theorem.

Theorem 13.([8], Theorem 6.11) Let f/fc Lo(R™,H) and ¥’ € D(A) with k suf-
ficently small. Then the sequenagé™™}y of solutions of the implicit Euler scheme
(35) converges to a weak solution of the following time disc@@imensional
Navier-Stokes equations

1
(U™ UM w) v (OU™, Ow) + b(u™, U™ w) = (™ w), forallweV, (36)

as N— co,

7 Weak solutions of the3-dimensional Navier-Stokes Equations

Useful results about the 3-dimensional Navier-Stokes &gus can be obtained
from the GMNSE.

7.1 Weak Kneser property of the attainability set of weak solutions

The Kneser property for ordinary differential equationgssihat the attainability set
of the solutions emanating from a given initial value is cattand connected. This
property was shown by Kloeden & Valero [15] in a combinatié@orollary 3.2 and
Theorem 3.3 to hold for the weak solutions of the GMNSE in tihergy topology
of spaceH before it was known that the weak solutions of the GMNSE foivary
initial value were unique, which makes the result trivighi§ result was then used
in [15] to show that the attainability set of the weak solo®f the 3-dimensional
Navier-Stokes equations satisfying an energy inequatigyveeakly compact and
weakly connected. A simplified proof, also using propertéshe GMNSE, was
later given in [16].

More precisely, for every initial datumy € H it is well known that at least one
weak solution of (1) exists such that

Vr(u(t)) <V¢(u(s)) forallt>s a.as>rtands=r, (37)

whereV; (u(t)) := 3ju(t) 2+ v /i |\u(r)||2drff§ (f(r),u(r))dr. Denote the cor-
responding attainability set for> 1 by

Kt (Up) = {u(t) : u(-) is a weak solution of (1) satisfying (3}7)
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We have:

Theorem 14.([15] Theorem 2.1) Let fe L* (7, T;H) for all T > 1. Then, for all
t > 0and w € H, the attainability set K(up) is compact and connected with respect
to the weak topology on H.

7.2 Convergence to weak solutions of the 3-dimensional NSE

Theorem 15.([1] Theorem 13) Suppose thatd L?(1, T;(L?(Q))®) for each T>
1 and let UN)(t) be a weak solution of the GMNSE (2) with the initial Va|lgé>LE
H, where léN) — Up weakly in H as N— oo,

Then, there exists a subsequer{a:é’\‘i) (t)} which converges asjN- «, weak-
star in L°(1,T;H), weakly in (1, T;V) and strongly in E(1,T;H), to a weak
solution yt) on the intervalt, T] of the NSE (1) with initial conditiong for every
T>r1.

The proof is based on the fact that a weak solution of the GMK&Skvith the
initial valueuéN) eH, whereuéN) — uUp weakly inH asN — oo, satisfies the energy
inequality

d 1
aIUW)IZJrVIIU(N)HzS V—/\llfl2 (38)

uniformly in N > 0. One easily obtains a convergent subsequence. The main dif
ficulty is to show that limiting function is a weak solution thfe NSE (1) for the
given initial conditionup, i.e satisfies the variational equation (4) wii replaced

by b. The following lemma is required here.

Lemma 2. ([1] Lemma 12) For each p> 1, it follows that

FN(||u<N>(s)H)—>1 in LP(T,T;R), as N-— oo.

7.3 Existence of bounded entire weak solutions of 3-dimensional
NSE

When the forcing ternf € (L?(Q))2 is independent of time, Theorem 15 and the
existence of a global attractory of the GMNSE (2) for eacN can be used to show
that the NSE (1) have bounded entire weak solutions, thatgak solutions which
exist and are bounded for dlle R. Such solutions are interesting as they would
belong to a global attractor of the 3-dimensional NSE, iftsan attractor were to
exist.
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Theorem 16.([1] Theorem 11) Suppose that & (L?(Q))3. Then there exists a
bounded entire weak solution of the NSE (1). More exactyyetixists a bounded
entire weak solution of the NSE (1) with initial valugfar each @ € %, whereZg

is the subset in H consisting of the weak H-cluster pointsaqﬁencesé’)') € 9N
for N — oo,

The setZy here is obviously a non-empty subset of the closed and balswe
set%y of H. A similar result holds with essentially the same proof ia tlonau-
tonomous case, as well as for the GMNED analyzed in Sectised[21] for more
details).
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