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Abstract The globally modified Navier-Stokes equations (GMNSE) wereintro-
duced by Caraballo, Kloeden & Real [1] in 2006 and have been investigated in a
number of papers since then, both for their own sake and as a means of obtaining re-
sults about the 3-dimensional Navier-Stokes equations. These results were reviewed
by Kloedenet al [11], which was published in 2009, but there have been some im-
portant developments since then, which will be reviewed here.

Herrn Prof. Dr. J̈urgen Scheurle zu seinem sechzigsten Geburtstag gewidmet.

1 Introduction

The 3-dimensional Navier-Stokes equations (NSE) are an intriguing system of par-
tial differential equations. They have been intensively investigated for many years,
but some very basic issues on their solvability remain unresolved. For example, al-
though weak solutions are known to exist for all future time for each initial condition
in the function spaceH, it is not known if there is a unique weak solution. Nor is
it known if a strong solution for each initial condition in the function spaceV can
exist for more than a short time.

Let Ω ⊂ R
3 be an open bounded set with regular boundaryΓ . The system of

Navier-Stokes equations (NSE) onΩ with a homogeneous Dirichlet boundary con-
dition is given by
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∂u
∂ t

−ν∆u+(u ·∇)u+∇p= f (t) in (τ,+∞)×Ω ,

∇ ·u = 0 in (τ,+∞)×Ω ,

u= 0 on(τ,+∞)×Γ ,

u(τ,x) = u0(x), x∈ Ω ,

(1)

whereν > 0 is the kinematic viscosity,u is the velocity field of the fluid,p the pres-
sure,τ ∈ R the initial time,u0 the initial velocity field, andf (t) a given external
force field.

There have been many modifications of the Navier-Stokes equations, starting
with Leray and mostly involving the nonlinear term, see the review paper of Con-
stantin [6]. Another modification, called the globally modified Navier-Stokes equa-
tions (GMNSE), was introduced by Caraballo, Kloeden & Real [1] in 2006.

Fix N ∈ R
+ and defineFN : R+ → R

+ by

FN(r) := min

{

1,
N
r

}

, r ∈ R
+.

The system































∂u
∂ t

−ν∆u+FN (‖u‖)[(u ·∇)u]+∇p= f (t) in (τ,+∞)×Ω ,

∇ ·u = 0 in (τ,+∞)×Ω ,

u= 0 on(τ,+∞)×Γ ,

u(τ,x) = u0(x), x∈ Ω ,

(2)

is called theglobally modified Navier-Stokes equations (GMNSE)with parameterN.

The GMNSE (2) are indeedgloballymodified since the modifying factorFN (‖u‖)
depends on the norm‖u‖= ‖∇u‖(L2(Ω))3×3, which in turn depends on∇u over the
whole domainΩ and not just at or near the pointx∈ Ω under consideration. Essen-
tially, it prevents large gradients dominating the dynamics and leading to explosions.
It is worth mentioning that, for a different purpose, Flandoli & Maslowski [9] used a
similar global cut off function involving theD(A1/4) norm for the two-dimensional
stochastic Navier-Stokes equations.

The GMNSE (2) violate the basic laws of mechanics, but mathematically they
are a well defined system of equations, just like the modified versions of the NSE of
Leray and others with other mollifications of the nonlinear term. They are neverthe-
less interesting mathematically in their own right, but arealso useful for obtaining
new results about the 3-dimensional Navier-Stokes equations, which will be briefly
discussed below.
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1.1 Notation

The usual notation and abstract framework for the Navier-Stokes equations of Lions
[17] and Temam [24]) is used withH denoting the closure of

V =
{

u∈ (C∞
0 (Ω))3 : divu = 0

}

,

in (L2(Ω))3 with inner product(u,v) = ∑3
j=1
∫

Ω u j(x)v j(x)dx, for u,v∈ (L2(Ω))3,

with associated norm|·|, andV denoting the closure ofV in (H1
0(Ω))3 with inner

product((u,v)) = ∑3
i, j=1

∫

Ω
∂u j
∂xi

∂vj
∂xi

dx, for u,v ∈ (H1
0(Ω))3, with associated norm

‖·‖. In addition,bN andBN are defined by

bN(u,v,w) = FN(‖v‖)b(u,v,w), ∀u,v,w∈V.

and
〈BN(u,v),w〉= bN(u,v,w), ∀u,v,w∈V,

respectively, whereb is the trilinear form onV ×V ×V given by

b(u,v,w) =
3

∑
i, j=1

∫

Ω
ui

∂v j

∂xi
wj dx, ∀u,v,w∈V.

Finally, defineA : V → V ′ by 〈Au,v〉 = ((u,v)). ThenAu= −P∆u,∀u∈ D(A),
whereD(A) = (H2(Ω))3 ∩V and P is the orthonormal projector from(L2(Ω))3

ontoH.

2 Existence and regularity of solutions

The existence, uniqueness and regularity theory of strong and weak solutions of
the 3-dimensional GMNSE is closer to that of the two-dimensional than the three-
dimensional NSE due to the special properties ofbN, which is linear inu andw, but
nonlinear inv, and satisfiesbN(u,v,v) = 0 for all u,v∈V as well as the estimate

|bN(u,v,w)|= FN(‖v‖)|b(u,v,w)| ≤ NC1‖u‖‖w‖ ∀u,v,w∈V, (3)

This and many other estimates, that can be found in Caraballo, Kloeden & Real
[1], are very similar to those for the two-dimensional NSE and lead to similar re-
sults. In particular, the GMNSE have a unique global strong solution for each initial
condition in the function spaceV as well as global weak solutions for each initial
condition in the function spaceH, which instantaneously become strong solutions.
Originally, in [1] it was not known if the weak solutions wereunique, but this was
later established by Romito [23] and thus allowed a number ofproofs that had ap-
peared in some papers published in the period between these two to be simplified.
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2.1 Weak solutions

Let u0 ∈ H and f ∈ L2(τ,T;(L2(Ω))3) for all T > τ be given. A weak solution of
(2) is anyu∈ L2(τ,T ;V) for all T > τ such that







d
dt

u(t)+νAu(t)+BN(u(t),u(t)) = f (t) in D ′(τ,+∞;V ′),

u(τ) = u0,

(4)

or equivalently

(u(t),w)+ν
∫ t

τ
((u(s),w))ds+

∫ t

τ
bN (u(s),u(s),w) ds= (u0,w)+

∫ t

τ
( f (s),w) ds,

(5)
for all t ≥ τ and allw∈ V.

Due to (3), unlike the 3-dimensional NSE, any weak solutionu(t) of GMNSE
belongs toC([τ,+∞);H) and satisfies (see Remark 1 in [1]) the energy equality

|u(t)|2−|u(s)|2+2ν
∫ t

s
‖u(r)‖2dr = 2

∫ t

s
( f (r),u(r))dr for all τ ≤ s≤ t. (6)

The existence of weak solutions of the GMNSE is contained in Theorem 1 be-
low which also considers the existence of strong solutions.The following result is
the counterpart of Serrin’s classical theorem on the 3-dimensional NSE which says
that a strong solution, if it exists, is unique in the class ofweak solutions. Strong
solutions (to be defined below) for the GMNSE are examples of the weak solutions
in the next theorem.

Theorem 1.([1] Theorem 3) If there exists a weak solution u of (2) such that u∈
L2(τ,T ;D(A)) for all T > τ, then u is the unique weak solution of (2).

This result is not as important as originally thought since the weak solutions of
the GMNSE have been shown to be unique. The proof is similar tothe NSE case
and depends on the following result.

Lemma 1. ([1] Lemma 6) For all M, N, p, r∈ R
+ it holds

|FM (p)−FN (r)| ≤
|M−N|

r
+

|p− r|
r

.

2.2 Strong solutions

The following theorem is the basic existence and regularityresult for strong and
also weak solutions of the GMNSE.
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Theorem 2.([2]) Suppose f∈ L2(τ,T;(L2(Ω))3) for all T > τ, and let u0 ∈ H be
given. Then, there exists a unique weak solution u of (2), which is, in fact, a strong
solution in the sense that

u∈C([τ + ε,T];V)∩L2(τ + ε,T;D(A)), (7)

for all T > τ + ε > τ.
Moreover, if u0 ∈V, then

u∈C([τ,T];V)∩L2(τ,T;D(A)), (8)

for all T > τ.

The first statement in Theorem 2 was originally given as “there existsat least
oneweak solutionu of the GMNSE” in Theorem 7 of [1], but takes its present form
after Romito showed that “there existsat most oneweak solutionu of the GMNSE”
in Theorem 1.1 of [23]. Romito used the estimate

|(w,B(u,v)) | ≤ ‖u‖L6‖∇v‖L2‖w‖
1
2
L2‖w‖

1
2
L6 ≤ c0〈u,v〉|w|

1
2‖w‖

1
2 , (9)

for u, v, w ∈ V, since‖u‖L6 ≤ c‖u‖. He used this to show that the nonlinear term
N L (u,v) := FN(‖u‖)B(u,u)−FN(‖v‖)B(v,v) could be estimated by

(w,N L (u,v))≤ ν‖w‖2+C(c0,ν)N4|w|2,

wherew= u− v, the difference of two weak solutions.

2.2.1 Continuity of strong solutions on data

Strong solutionsu(N)(t,τ,u0) of the GMNSE (2) with parameterN depend continu-
ously on the parameterN as well as on the initial valueu0.

Theorem 3.([13] Theorem 8) Suppose that f∈ L2(τ,T ;(L2(Ω))3) for all T > τ,
and let N,M > 0, and u0,v0 ∈ V be given. Denote by u(N)(t) = u(N)(t,τ,u0) (re-
spectively, v(M)(t) = u(M)(t,τ,v0)) the solution of the GMNSE (2) corresponding to
the parameter N and the initial value u0 (respectively, to the parameter M and the
initial condition v0). Then, there exists a positive constant C> 0 depending only on
Ω andν such that for all t≥ τ

||v(M)(t)−u(N)(t)||2 ≤ [||v0−u0||
2+C(M−N)2

∫ t

τ
|Au(N)(s)|2ds]× (10)

×exp

(

C

(

M4(t − τ)+
∫ t

τ
|Au(N)(s)|2ds

))

and
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ν
∫ t

τ
|Av(M)(s)−Au(N)(s)|2ds≤ [||v0−u0||

2+C(M−N)2
∫ t

τ
|Au(N)(s)|2ds]×

(11)
[

1+

(

C
∫ t

τ

(

|Au(N)(s)|2+M4
)

ds

)

×exp

(

C

(

M4(t − τ)+
∫ t

τ
|Au(N)(s)|2ds

))]

.

As a consequence of the previous theorem, we obtain

Theorem 4.Suppose that f∈L2(τ,T;(L2(Ω))3) for all T > τ. Then, for any u0 ∈V
and N> 0 given,

u(M)(·,τ,v0)→ u(N)(·,τ,u0) in C([τ,T ];V)∩L2(τ,T;D(A))

as(M,v0)→ (N,u0) in R
+×V for all T > τ.

2.2.2 Estimates of strong solutions inD(A).

With stronger assumptions on the external forcing termf , estimates of the solution
in the norm ofD(A) can be obtained.

Theorem 5.([3] Proposition 4) Suppose that f∈ W1,∞(τ,+∞;H), and let u(N)(t)
be a solution of the GMNSE (2) with parameter N. Then

u(N)(t) ∈ D(A), ∀ t > τ, (12)

and there exist two positive constants K(N)
f and M(N)

f , independent ofε, τ, u0 and t,
and increasing with| f |∞ and| f ′|∞, such that

a) if u(τ) = u0 ∈V, then

|Au(N)(t)|2 ≤ (1+ ε−1)
[

R(N)
f +M(N)

f (1+ t− τ)‖u0‖
2e−νλ1(t−τ)

]

, (13)

for all t ≥ τ + ε, ε ∈ (0,1];
b) in general, if u(τ) = u0 ∈ H, then

|Au(N)(t)|2 ≤ (1+ε−1)R(N)
f +ε−1(1+ε−1)M(N)

f (1+ t−τ)(1+ |u0|
2)e−νλ1(t−τ),

(14)
for all t ≥ τ +2ε, 0< ε ≤ 1. In particular, there exists a T0 = T0(|u0|) depending

only on|u0|, K(N)
f and M(N)

f , such that

|Au(N)(t)|2 ≤ 2R(N)
f , ∀ t ≥ τ +T0(|u0|). (15)

Remark 1.Observe that (14) implies that iff ∈W1,∞(τ,+∞;H), then every solution
of GMNSE belongs toL∞(τ + ε,+∞;D(A)) for all ε > 0. If, moreover, the initial
datumu0 ∈ D(A), then it can be proved that the corresponding solutionu= u(N)(t)
of GMNSE belongs toL∞(τ,+∞;D(A)), and more exactly,



Modified Navier-Stokes equations 7

sup
t≥τ

|Au(t)|<+∞.

3 Global attractor in V: Existence and dimension estimate

3.1 Autonomous case

Assume now that the forcing termf does not depend on time and for eachu0 ∈ V
defineS(N)(t)u0 := u(N)(t,u0), whereu(N)(t,u0) is the unique strong solutionu(N)(t)
of (2) with initial time τ = 0. ¿From Theorems 2 and 4, it follows that{S(N)(t)}t≥0

is aC0 semigroup inV. Let u(N)(t) = S(N)(t)u0 with u0 ∈ V. The same arguments
as for the NSE give the inequality

d
dt
|u(N)|2+νλ1|u

(N)|2 ≤
1

νλ1
| f |2 (16)

and hence the estimate

|u(N)(t)|2 ≤ |u0|
2e−νλ1t +

1

ν2λ 2
1

| f |2
(

1−e−νλ1t
)

,

from which it follows thatS(N)(t) possesses a setBH in H which absorbs bounded
sets ofV, and which is given byBH := {u∈ H : |u|2 ≤ 1+ 1

ν2λ 2
1
| f |2 }. Similarly,

but more complicatedly,S(N)(t) has an absorbing setB
(N)
V in V (i.e., which absorbs

bounded sets ofV) given by

B
(N)
V :=

{

u∈V : ‖u‖2 ≤ 1+
| f |2

ν2λ1

(

2+
C(N)

νλ 2
1

)}

. (17)

Note thatB(N)
V ⊂ B

(N∗)
V for N ≤ N∗ in view of the definition of the constantC(N)

(see [1] for details).

Moreover, the semigroupS(N)(t) in V is asymptotically compact since it satisfies
the flattening property ([12], see also [22]): “For any bounded set B of V and for
anyε > 0, there exists Tε(B) > 0 and a finite dimensional subspace Vε of V , such

that
{

PεS(N)(t)B, t ≥ Tε(B)
}

is bounded and

∥

∥

∥
(I −Pε)S

(N)(t)u0

∥

∥

∥
< ε for t ≥ Tε(B),u0 ∈ B, (18)

where Pε : V → Vε is the projection operator.”It thus follows that the GMNSE (2)
has a global attractorAN in V for eachN. In particular,AN ⊂ B

(N)
V for eachN and
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Theorem 6.([1] Theorem 10) If f∈ (L2(Ω))3, then the GMNSE (2) has a global
attractor AN in V for each N> 0. Moreover the set-valued mapping N7→ AN is
upper semi continuous, i.e.

distV (AM,AN)→ 0 as M→ N, (19)

where distV is the Hausdorff semi distance on V.

The upper semi continuous dependence of the global attractors AN in N follows
by standard theorems in dynamical systems theory in view of the continuity of the
semigroupsS(N) in N established in Theorem 4.

3.1.1 Global attractor in D(A).

With time-independent forcing (so that the stronger assumption of Theorem 5 is

satisfied) it is possible to obtain an absorbing setBN := {v∈D(A) : |Av|2 ≤ 2R(N)
f }

in D(A) for the semigroup{S(N)(t)}t≥0 and hence the above global attractorAN

actually belongs toD(A). In fact

Corollary 1. ([3] Corollary 7) The global attractorAN of the GMNSE is a bounded
subset of D(A).

3.2 Nonautonomous case

In the nonautonomous case, whenf depends on time, the counterpart of a semigroup
is a 2-parameter semigroup of operatorsU (N)(t,τ), withU (N)(t,τ)u0 = u(N)(t,τ,u0)
the solution of (2) foru0 ∈V. In addition, the counterpart of an attractor is a pullback
attractor, i.e., a family of nonempty compact subsets{AN(t), t ∈ R}) in V, which
is invariant in the sense thatS(N)(t,τ)AN(τ) = AN(t) for all t ≥ τ and is pullback
attracting inV, see [13]. Supposing thatf belongs toL2

loc(R;(L2(Ω))3) and satisfies

∫ t

−∞
eνλ1s| f (s)|2 ds<+∞ for all t ∈ R, (20)

whereλ1 is the first eigenvalue ofA, the existence of a pullback attractor inV for
the GMNSE was established in [13] Theorem 13. Among other properties for the
pullback attractor inV, a finite bound on the fractal dimension, which could increase
with increasing time, was also obtained in [13].

Theorem 7.([13] Theorem 22) Suppose that f∈W1,2
loc (R;L2(Ω)3) satisfies

f ∈ L∞(−∞, t0;L2(Ω)3), and sup
r≤t0

∫ r+1

r
| f ′(s)|2 ds<+∞, for all t0 ∈ R. (21)
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Then, for each N> 0 and each t0 ∈ R there exists a d(N)(t0) ∈ [0,+∞) such that
the fractal dimension of the pullback attractor{AN(t), t ∈ R}) of the GMNSE (2)
satisfies the bound

dV
F (AN(t))≤ d(N)(t0) for all t ≤ t0. (22)

Recall that the fractal dimension of a nonempty subsetC of a metric space(X,dX)
is given by

dX
F(C) := limsup

ε↓0

log(Nε (C))
log(1/ε)

, (23)

whereNε(C) denotes the minimum number of balls inX with radiusε which are
required to coverC.

4 Globally modified NSE with delays

There are many real situations in which one can consider thata model is better
described if we allow some delay in the equations. These situations may appear,
for instance, when we want to control the system by applying aforce which takes
into account not only the present state of the system but the history of the solutions.
Therefore, it is interesting to consider the following version of GMNSE (we will
refer to it as GMNSED):







































∂u
∂ t

−ν∆u+FN (‖u‖)[(u ·∇)u]+∇p= g(t,ut) in (τ,+∞)×Ω ,

∇ ·u = 0 in (τ,+∞)×Ω ,

u= 0 on(τ,+∞)×Γ ,

u(τ,x) = u0(x), x∈ Ω ,

u(τ + s,x) = φ(s,x), s≤ 0,x∈ Ω ,

(24)

whereτ ∈ R is an initial time, the termg(t,ut) is an external force depending even-
tually on the history of the solution, whereut denotes the segment of solution up to
time t (in other words,ut : s∈ (−∞,0] 7→ ut(s) := u(t+s)) andφ is a given velocity
field defined fors≤ 0.

This is a general formulation when the delay is allowed to be infinite. But on
some occasions it can be finite or bounded. In these cases, we consider the initial
vector fieldφ defined in a bounded interval[−h,0] and the segment solutionut is
also defined in the same interval.

Some examples for the delay external force will be given below, but first, it is
important to note that the functiong is not defined directly on the phase space but
on some class of continuous functions: either inR×C([−h,0];H)with the sup norm
(for finite delays), orR×Cγ((−∞,0];H) (in the infinite delay case) where the space
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Cγ (H) :=Cγ ((−∞,0];H), defined as

Cγ ((−∞,0];H) :=

{

ϕ ∈C((−∞,0];H) : ∃ lim
s→−∞

eγsϕ(s) ∈ H

}

,

is a Banach space for the norm

‖ϕ‖γ := sup
s∈(−∞,0]

eγs|ϕ(s)|.

1. Constant delay. Considerg(t,ut) := G1(u(t − h)) where G1 : H → H is a
suitable function andh > 0 is the constant delay. Here the functiong : R×
C([−h,0];H)→ H is defined as:

g(t,ξ ) = G1(ξ (−h)), ξ ∈C([−h,0];H).

Notice that the time variablet does not play any role, so we are in an autonomous
situation.

2. Variable delay. In this case, the delay term is given byg(t,ut) := G2(t,u(t −
ρ(t))), whereρ(t) ∈ [−h,0] is a delay function. Now, the functiong is given by

g(t,ξ ) = G2(ξ (−ρ(t))), ξ ∈C([−h,0];H),

where it is clear that the time variablet is necessary for this case. So, we are in a
non-autonomous model.

3. Distributed infinite delay . (cf. [19]) Let us consider the operatorg : R×
Cγ(H)→ (L2(Ω))3 defined as

g(t,ξ ) =
∫ 0

−∞
G3(t,s,ξ (s))ds, t ∈ R, ξ ∈Cγ (H),

where the functionG3 : R× (−∞,0)×R
3 → R

3 satisfies suitable assumptions.
This situation corresponds to the case

g(t,ut) =

∫ 0

−∞
G3(t,s,u(t + s))ds,

which is also non-autonomous.

On the one hand, the two first cases (constant and variable delay) have been
analyzed in [5] where the authors proved existence and uniqueness of weak solu-
tions, existence and asymptotic behaviour of stationary solutions, and the existence
of pullback attractor (which becomes the global attractor in the autonomous case).
On the other hand, the infinite delay case is studied in [19], where the existence and
uniqueness of solutions, and the existence and asymptotic behaviour of stationary
solutions is proved.

We will only include below some representative results fromthe paper [5], so we
considerg to be defined as in case (2).
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AssumeG2 : R×H −→ H is such that

c1) G2(·,u) : R−→ H is measurable,∀u∈ H,
c2) there exists nonnegative functionm∈ Lp

loc(R) for some 1≤ p≤+∞, and a non-
decreasing functionL : (0,∞) → (0,∞), such that for allR> 0 if |u| , |v| ≤ R,
then

|G2(t,u)−G2(t,v)| ≤ L(R)m1/2(t) |u− v| ,

for all t ∈ R, and
c3) there exists a nonnegative functionf ∈ L1

loc(R), such that for anyu∈ H,

|G2(t,u)|
2 ≤ m(t) |u|2+ f (t), ∀ t ∈R.

Finally, we supposeφ ∈ L2p′(−h,0;H) andu0 ∈ H, where1
p +

1
p′ = 1.

In this situation, we consider a delay functionρ ∈C1(R) such that 0≤ ρ(t)≤ h for
all t ∈ R, and there exists a constantρ∗ satisfying

ρ ′(t)≤ ρ∗ < 1 ∀ t ∈ R. (25)

Definition 1. Let τ ∈ R, u0 ∈ H andφ ∈ L2p′(−h,0;H) be given. A weak solution
of (24) is a function

u∈ L2p′(τ −h,T;H)∩L2(τ,T;V)∩L∞(τ,T;H)

for all T > τ, such that














d
dt

u(t)+νAu(t)+BN(u(t),u(t)) = G(t,u(t −ρ(t))) in D ′(τ,+∞;V ′),

u(τ) = u0,
u(t) = φ(t − τ) t ∈ (τ −h,τ),

or equivalently

(u(t),w)+ν
∫ t

τ
((u(s),w))ds+

∫ t

τ
bN (u(s),u(s),w) ds=

(

u0,w
)

(26)

+
∫ t

τ
(G(s,u(s−ρ(s))),w) ds,

for all t ≥ τ and allw∈ V, and coincides withφ(t) in (τ −h,τ).

The existence and uniqueness of weak (and strong) solutionsof our problem is
established in a similar way as we did in the non-delay case, but with necessary
changes due to the delay term.

Theorem 8.([5], Theorem 3.1) Under the conditions c1)-c3), assume that τ ∈ R,
u0 ∈ H andφ ∈ L2p′(−h,0;H) are given. Then, there exists a unique weak solution
u of (24) which is, in fact, a strong solution in the sense that



12 T. Caraballo and P.E. Kloeden

u∈C([τ + ε,T];V)∩L2(τ + ε,T;D(A)), (27)

for all T − τ > ε > 0.
Moreover, if u0 ∈V, then u∈C([τ,T];V)∩L2(τ,T;D(A)), for all T > τ.

Next, we state a result about the asymptotic behavior of the solutions of problem
(24) whent goes to+∞.

Let us suppose that c1)-c3) hold withm∈ L∞(R), assume also that

ν2λ 2
1 (1−ρ∗)> |m|∞,

where|m|∞ := ‖m‖L∞(R),
and let us denote byε > 0 the unique solution of

ε −νλ1+
|m|∞eεh

νλ1(1−ρ∗)
= 0. (28)

We can now formulate the following result (see also [19] for asimilar result in the
infinite delay case).

Theorem 9.([5], Theorem 4.1) Under the previous assumptions, for any(u0,φ) ∈
H ×L2(−h,0;H), and anyτ ∈ R, the corresponding solution u(t;τ,u0,φ) of prob-
lem (24) satisfies

∣

∣u(t;τ,u0,φ)
∣

∣

2

≤

(

∣

∣u0
∣

∣

2
+

|m|∞eεh

νλ1(1−ρ∗)

∫ 0

−h
eεs|φ(s)|2ds

)

eε(τ−t)

+
e−εt

νλ1

∫ t

τ
eεs f (s)ds, (29)

for all t ≥ τ.
In particular, if

∫ ∞
τ eεs f (s)ds< ∞, then every solution u(t;τ,u0,φ) of (24) con-

verges exponentially to0 as t→+∞.

Finally, the existence of pullback attractor is also provedin [5] by following a
similar scheme to the one used in [4] for the two-dimensionalNavier-Stokes equa-
tions with delay.

5 Statistical solutions of GMNSE

The autonomous GMNSE withτ = 0 and f ∈ H, i.e. f is independent of timet,
are considered in this section andN is held fixed here. LetS(N) be the semigroup
in V generated by the autonomous GMNSE and letAN be its global attractor inV.
Probability measures onH here are with respect to theσ -algebra of Borel subsets
of H.
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Definition 2. A probability measure onH is said to beS(N)-invariant if

µ(V) = 1 and µ(E) = µ
(

S(N)(t)−1E
)

, ∀ t ≥ 0, (30)

for every Borel subsetE of V (recall that a Borel set inV is a Borel set inH).

Theorem 10.([3] Theorem 10) The support of any S(N)-invariant measure on H is
included in the global attractorAN.

The existence of such measures is obtained by time averaging. The results be-
low generalize those of Foiaset al. [10] (see also Lukaszewicz [18]) for the two-
dimensional NSE to the GMNSE.

5.1 Time-averages solutions in the autonomous case

Let LIM denote a generalized limit onB([0,∞)), the space of all bounded real-
valued functions on[0,∞) (see [3] for the definition).

Definition 3. A time-average measure of the solutionu(t) of the autonomous GMNSE
is a probability measureµ onH such thatC(H)⊂ L1(H,µ) and

LIM T→∞
1
T

∫ T

0
ϕ(u(t))dt =

∫

H
ϕ(v)dµ(v), ∀ϕ ∈C(H). (31)

Proposition 1. ([3] Proposition 13) Any time-average measureµ of a solution u(t)
of the autonomous GMNSE is carried by D(A), i.e.,µ(D(A)) = 1.

Proposition 2. ([3] Proposition 14) For any solution u(t) of the autonomous GMNSE
such that u(0) ∈V there exists a time-average measureµ of this solution such that
moreover C(V)⊂ L1(H,µ) and

LIM T→∞
1
T

∫ T

0
ϕ(u(t))dt =

∫

H
ϕ(v)dµ(v) ∀ϕ ∈C(V). (32)

Proposition 3. ([3] Proposition 16) Let u(t) be the solution of the autonomous
GMNSE corresponding to u0 ∈ V and let µ be a time-average measure of u(t)
such that C(V) ⊂ L1(H,µ) and (32) is satisfied for allϕ ∈ C(V). Thenµ is an
S(N)-invariant measure.

5.2 Stationary statistical solutions of the autonomous GMNSE

Define
GN(v) =−νAv−BN(v,v)+ f , ∀v∈V, (33)

and letT be the set of real valued functionalsΦ = Φ(v) onH such that
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(i) cr := sup
|v|≤r

|Φ(v)|<+∞ for all r > 0;

(ii)for any v∈V there existsΦ ′(v) ∈V such that

|Φ(v+w)−Φ(v)− (Φ ′(v),w)|
|w|

→ 0 as|w| → 0 with w∈V; (34)

(iii)the mappingv 7→ Φ ′(v) is continuous and bounded as function fromV into V.

Definition 4. A stationary statistical solution of the GMNSE is a probability mea-
sureµ onH such that

(i)
∫

H
‖v‖2dµ(v)<+∞;

(ii)
∫

H
〈GN(v),Φ ′(v)〉dµ(v) = 0 for anyΦ ∈ T ;

(iii)
∫

{a≤|v|2<b}
{ν‖v‖2− ( f ,v)}dµ(v)≤ 0 for any 0≤ a< b≤+∞.

The following results were proved in [3].

Theorem 11.([3] Theorem 19) Any S(N)-invariant probability measure on H is a
stationary statistical solution of the autonomous GMNSE.

Corollary 2. ([3] Corollary 20) Let µ be a time-average measure of a solution u(t)
of the GMNSE such that C(V) ⊂ L1(H,µ) holds and (32) is satisfied for allϕ ∈
C(V). Thenµ is a stationary statistical solution of the autonomous GMNSE.

As partial counterpart of Theorem 11 was given in [19].

Theorem 12.([19], Theorem 15) Letµ be a stationary statistical solution of
GMNSE such that there exists a bounded and measurable subsetBN of D(A) satis-
fying µ(H \BN) = 0. Thenµ is an SN-invariant probability measure on H.

6 Numerical solution of the globally modified NSE

There is an extensive literature on the numerical analysis of the 3-dimensional
Navier-Stokes equations, much of which is based on the pioneering ideas of Temam
[24]. In this spirit Deugoue & Djoko [8] investigated the implicit Euler scheme ap-
plied to the GMNSE, specifically

um+1−um

k
+νAum+1+BN(u

m+1,um+1) = f m+1 (35)

with time stepsizek, where

f m+1 =
1
k

∫ (m+1)k

mk
f (t)dt.
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They establish uniform bounds onum (with respect tom) and its temporal difference
quotient in different function spaces and find conditions under whichum is contin-
uous inN andu0 and for which (35) is uniquely solvable. They also establishthe
existence of absorbing sets in bothH andV spaces, which is the first step in showing
the existence of attractors. Finally they consider the limit asN → ∞ and prove the
following theorem.

Theorem 13.([8], Theorem 6.11) Let f , f′ ∈ L∞(R
+,H) and v0 ∈ D(A) with k suf-

ficently small. Then the sequence{um,N}N of solutions of the implicit Euler scheme
(35) converges to a weak solution of the following time discrete3-dimensional
Navier-Stokes equations

1
k
(um+1−um,w)+ν(∇um,∇w)+b(um,um,w) = ( f m,w), for all w ∈V, (36)

as N→ ∞.

7 Weak solutions of the3-dimensional Navier-Stokes Equations

Useful results about the 3-dimensional Navier-Stokes equations can be obtained
from the GMNSE.

7.1 Weak Kneser property of the attainability set of weak solutions

The Kneser property for ordinary differential equations says that the attainability set
of the solutions emanating from a given initial value is compact and connected. This
property was shown by Kloeden & Valero [15] in a combination of Corollary 3.2 and
Theorem 3.3 to hold for the weak solutions of the GMNSE in the strong topology
of spaceH before it was known that the weak solutions of the GMNSE for a given
initial value were unique, which makes the result trivial. This result was then used
in [15] to show that the attainability set of the weak solutions of the 3-dimensional
Navier-Stokes equations satisfying an energy inequality are weakly compact and
weakly connected. A simplified proof, also using propertiesof the GMNSE, was
later given in [16].

More precisely, for every initial datumu0 ∈ H it is well known that at least one
weak solution of (1) exists such that

Vτ (u(t))≤Vτ (u(s)) for all t ≥ s, a.a.s> τ ands= τ, (37)

whereVτ (u(t)) := 1
2|u(t) |

2+ ν
∫ t

τ ‖u(r)‖2dr−
∫ t

τ ( f (r) ,u(r))dr. Denote the cor-
responding attainability set fort ≥ τ by

Kt (u0) = {u(t) : u(·) is a weak solution of (1) satisfying (37)}.
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We have:

Theorem 14.([15] Theorem 2.1) Let f∈ L∞ (τ,T ;H) for all T > τ. Then, for all
t ≥ 0 and u0 ∈H, the attainability set Kt (u0) is compact and connected with respect
to the weak topology on H.

7.2 Convergence to weak solutions of the 3-dimensional NSE

Theorem 15.([1] Theorem 13) Suppose that f∈ L2(τ,T;(L2(Ω))3) for each T>

τ and let u(N)(t) be a weak solution of the GMNSE (2) with the initial value u(N)
0 ∈

H, where u(N)
0 ⇀ u0 weakly in H as N→ ∞.

Then, there exists a subsequence
{

u(Nj )(t)
}

which converges as Nj → ∞, weak-

star in L∞(τ,T ;H), weakly in L2(τ,T;V) and strongly in L2(τ,T;H), to a weak
solution u(t) on the interval[τ,T ] of the NSE (1) with initial condition u0, for every
T > τ.

The proof is based on the fact that a weak solution of the GMNSE(2) with the

initial valueu(N)
0 ∈ H, whereu(N)

0 ⇀ u0 weakly inH asN → ∞, satisfies the energy
inequality

d
dt
|u(N)|2+ν‖u(N)‖2 ≤

1
νλ1

| f |2 (38)

uniformly in N > 0. One easily obtains a convergent subsequence. The main dif-
ficulty is to show that limiting function is a weak solution ofthe NSE (1) for the
given initial conditionu0, i.e satisfies the variational equation (4) withbN replaced
by b. The following lemma is required here.

Lemma 2. ([1] Lemma 12) For each p≥ 1, it follows that

FN

(

‖u(N)(s)‖
)

→ 1 in Lp(τ,T;R), as N→ ∞.

7.3 Existence of bounded entire weak solutions of 3-dimensional
NSE

When the forcing termf ∈ (L2(Ω))3 is independent of time, Theorem 15 and the
existence of a global attractorAN of the GMNSE (2) for eachN can be used to show
that the NSE (1) have bounded entire weak solutions, that is,weak solutions which
exist and are bounded for allt ∈ R. Such solutions are interesting as they would
belong to a global attractor of the 3-dimensional NSE, if such an attractor were to
exist.
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Theorem 16.([1] Theorem 11) Suppose that f∈ (L2(Ω))3. Then there exists a
bounded entire weak solution of the NSE (1). More exactly, there exists a bounded
entire weak solution of the NSE (1) with initial value u0 for each u0 ∈ U0, whereU0

is the subset in H consisting of the weak H-cluster points of sequences u(N)
0 ∈ AN

for N → ∞.

The setU0 here is obviously a non-empty subset of the closed and bounded sub-
setBH of H. A similar result holds with essentially the same proof in the nonau-
tonomous case, as well as for the GMNED analyzed in Section 4 (see [21] for more
details).
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