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1 Introduction

The pathwise approximation of stationary solutions of semilinear stochastic evolution equa-
tions through both spatial discretization in the form of Galerkin stochastic differential equa-
tions (SDEs) and temporal discretization in the form of implicit Euler approximations of the
Galerkin SDEs is the main interest of this paper. A typical motivating example is the noisy
reaction-diffusion equation with additive noise

∂u

∂t
= ∆u + f(u) + ηt,

reformulated as a semilinear parabolic stochastic partial differential equation (SPDE)

dUt = [∆U + f(U)] dt + dWt,

on a bounded domain O in Rd with sufficiently smooth boundary ∂O and a Dirichlet bound-
ary condition, where ηt is a Gaussian white noise corresponding to a scalar space-time Wiener
process and f : R1 → R1 satisfies a one-sided dissipative Lipschitz condition and is suffi-
ciently regular to ensure that the above system has a strong as well as a weak (variational)
solution on each finite time interval [7, 12].

Da Prato and Zabczyk [8], section 11, have shown the existence of a unique asymp-
totically stable invariant measure for such equations. Here we will focus on the pathwise
dynamics and establish the existence of unique asymptotically stable stationary solution of
each of the SPDE, its Galerkin SDE approximations and their implicit Euler schemes and
their pathwise convergence as the dimension of the Galerkin approximation increases and
the Euler step size decreases. In order to obtain pathwise estimates we will first convert
these into random PDE, ODE and difference equations with linear transformations in which
appropriate Ornstein-Uhlenbeck stationary stochastic processes are subtracted.

The paper is structured as follows: In the next section we formulate the stochastic
evolution equations to be considered in a functional analytical setting. In section 3 we
briefly review basic ideas and results from the theory of random dynamical systems and
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then in section 4 we informally state our main result, which is proved in the remaining
sections of the paper. We prove the existence and uniqueness of a stochastic stationary
solution successively for the random PDE, then its random Galerkin ODE and then for their
implicit Euler schemes. Finally in section 8 we prove the pathwise convergence of these
stationary solutions, first those of the Galerkin systems to that of the random PDE as the
dimension increases, and then of the stationary solutions the numerical schemes to that of
corresponding Galerkin system as the time step tends to zero. These results then transfer
back to the original Ito stochastic setting by addition of the appropriate Ornstein-Uhlenbeck
processes.

2 Semilinear stochastic evolution equations

We will consider a general setup involving Hilbert-valued Wiener process which contains
the motivating example as a special case. Let H be a separable Hilbert space H and let
W be an H−valued Wiener process on a filtered probability space (Ω,F , {Ft}t∈R,P) with a
symmetric covariance operator Q of trace class. In addition, we assume that there exists a
Gelfand triplet V ⊂ H ⊂ V ′ of separable Hilbert spaces, where V ′ denotes the dual of V (see
Temam [25] page 55 for more details) and a1 > 0 is the constant of the injection V ⊂ H, i.e.

a1|u|2 ≤ ‖u‖2, for v ∈ V,

where | · | and ‖· || denote the norms of H and V , respectively, (·, ·) denotes the inner product
in H and 〈·, ·〉 denote the duality mapping between V ′ and V .

Let −A : V → V ′ be a positive, linear and continuous operator for which there exists
α > 0 such that

〈−Au, u〉 ≥ α‖u‖2, for all u ∈ V, (1)

and a sequence of eigenvalues λj and corresponding eigenfunctions φj ∈ V , that is with

−Aφj = λjφj, j = 1, 2, . . . , (2)

such that they form an orthonormal basis in H with λj → ∞ monotonically as j → ∞
(see [7] for operators satisfying this condition). We note that each u ∈ H has the unique
representation in terms of the eigenfunctions of the operator −A, specifically, u =

∑∞
j=1 ujφj

with norm |u| =
√∑∞

j=1 u2
j . Similarly, ‖u‖V =

√∑∞
j=1 λju2

j for u ∈ V . In addition, we note

that condition (1) ensures that

‖u‖2
V = 〈−Au, u〉, u ∈ V,

defines a norm which is equivalent to the original one in V , which we will use in the remaining
of the paper. Then, it is well known (see, for instance, Dautray and Lions [9]) that A is the
generator of a strongly continuous semigroup {SA(t)}t≥0 in H satisfying that

‖SA(t)‖L(H) ≤ e−at, (3)
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where a = λ1α > 0.

Finally, we assume that the nonlinear operator f : H → H is sufficient regular (in
particular, at least continuous) and satisfies a one-sided Lipschitz condition:

(u− v, f(u)− f(v)) ≤ L|u− v|2, u, v ∈ H, (4)

for some L ∈ R. (Typically, f will be formed from a corresponding mapping of R into itself
with similar properties.)

We will investigate stochastic evolution equations on H of the form

dUt = AUtdt + f(Ut)dt + dWt, U0 = u0, (5)

with an initial random variable u0 which is (F0,B(H))–measurable.

Our motivating example can be set in this abstract formulation by simply taking H =
L2(O) and V = H1

0 (O), where H1
0 (O) is the Sobolev space of functions u : O 7→ R1 which

vanish on ∂O such that u and its first order generalized derivatives Du belong to L2(O) with
the norm ‖ · ‖.

There are a number of well known existence and uniqueness theorems (e.g. Pardoux
[19], Krylov & Rozovskii [18]) for weak (i.e. variational and understood in the sense of
distributions) solution U ∈ I2(0, T ; V ) ∩ L2(Ω; C(0, T ; H)) of (5) for any T ≥ 0 and initial
value u0 ∈ L2(Ω,F0,P, H), which is also a mild solution and satisfies

E sup
t∈[0,T ]

‖U(t)‖2 < ∞,

for any T > 0, where I2(0, T ; V ) is the closed subspace of L2(Ω×(0, T ),F⊗B ([0, T ]) ,P⊗dt; V )
of all stochastic processes which are Ft-adapted for almost every t in (0, T ). For this it is
typically assumed that f satisfies a linear growth bound or some kind of dissipativity con-
diton.

3 Random dynamical systems

We first recall some background notation and results. Let (Ω,F ,P) be a probability space
and let X be a Hilbert space

Following Arnold [1] a random dynamical system (RDS) (θ, φ) on Ω × X consists of a
metric dynamical system θ on Ω and a cocycle mapping φ : R+ × Ω × X → X . Essen-
tially (and sufficient for our purposes here), θ represents the driving noise process and φ the
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state space evolution of the system in X . For example, for a stochastic differential equation
on the Hilbert space X with a two-sided Hilbert valued Wiener process Wt, i.e. defined
for all t ∈ R, θ is defined by θtω(·) = ω(t + ·) − ω(·) on a canonical sample space Ω =
C0(R,X ) = {w ∈ C(R,X ) : ω(0) = 0} and φ is defined by φ(t, ω, x0) = Xx0

t (ω), the solution
of the SDE starting at Xx0

0 (ω) = x0. See [1, 16] for more details.

A family Â = {A(ω), ω ∈ Ω} of nonempty measurable compact subsets A(ω) of X is
called φ-invariant if φ(t, ω,A(ω)) = A(θtω) for all t ≥ 0 and is called a random attractor if
in addition it is pathwise pullback attracting in the sense that

H∗
X (φ(t, θ−tω, D(θ−tω)),A(ω)) → 0 as t → −∞

for all suitable (i.e. in a given attracting universe [16]) families of D̂ = {D(ω), ω ∈ Ω} of
nonempty measurable bounded subsets D(ω) of X . Here H∗

X is the Hausdorff semi-distance
on X . The following result ensures the existence of a random attractor (see, e.g., Crauel et
al. [6], Schmalfuss [23]).

Theorem 1 Let (θ, φ) be an RDS on Ω × X . If there exists a family B̂ = {B(ω), ω ∈ Ω}
of nonempty measurable compact subsets B(ω) of X and a T bD,ω ≥ 0 such that

φ(t, θ−tω,D(θ−tω)) ⊂ B(ω), ∀t ≥ T bD,ω

for all families D̂ = {D(ω), ω ∈ Ω} in the given attracting universe, then the RDS (θ, φ) has

a random attractor Â = {A(ω), ω ∈ Ω} with the component subsets defined for each ω ∈ Ω
by

A(ω) =
⋂
s>0

⋃
t≥s

φ(t, θ−tω, B(θ−tω)).

Alternatively, the sets B(ω) need only be closed and bounded provided the cocycle operator φ
is compact.

Note that if the random attractor consists of singleton sets, i.e A(ω) = {X∗(ω)} for some
random variable X∗, then X∗

t (ω) := X∗(θtω)) is a stationary stochastic process (see, e.g., [3]
for more details).

It is not known if a general SPDE generates an RDS, but our special case with additive
noise does (see [2] and [5] for similar situations on this field). In this case, the probability
space Ω will be the canonical sample space of the infinite dimensional Wiener process, i.e.
C0(R, H) and θt will be the shift operator as defined above.
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4 Main result: Existence of stationary solutions and

the pathwise convergence of their approximations

To ensure the existence of a unique stationary solution for the SPDE as well as for each of its
approximating systems, we need some additional properties of the function f in the SPDE,
cf. Da Prato and Zabczyk [8].

1) f satisfies a polynomial growth bound, i.e. there is a positive integer p such that for all
u ∈ H

|f(u)| ≤ K(1 + |u|p). (6)

Hence there exists m0 > 0 such that
∫ t

−∞
ems|f(u(s))|2 ds < +∞ (7)

for any m ∈ (0,m0], and any continuous function u : R → H with sub-exponential growth.

2) the constant L in the one-sided Lipschitz condition (4) of f satisfies

αλ1 − L > 0. (8)

Let XN be the N–dimensional subspace of V spanned by the {φ1, · · · , φN} and let PN

denote the projection of H or V onto XN . Write UN synonomously for (UN,1, · · · , UN,N)T

∈ RN and
∑N

j=1 UN,jφj ∈ XN according to context and define AN = PNA
∣∣
XN

, WN
t = PNWt

and fN = PNf
∣∣
XN

. Since the probability space Ω under consideration is the canonical sample

space of our infinite dimensional Wiener process, i.e. C0(R, H), when we project onto a finite
dimensional subspace XN we use WN = PNW instead of W , i.e., essentially just the first
N components of ω in Ω. We can handle this by extending the projector PN to another
operator QN defined on Ω by

QNω(·) = {PNω(t), t ∈ R}.
Then, QN and θt commute.

We now state our main result in a somewhat informal way, leaving a more formal for-
mulation to the reader once the various necessary definitions have been presented in the
sequel.

Theorem 2 Under the above setup and assumptions the SPDE, its Galerkin approximation
in XN and their implicit Euler approximations for sufficiently small time step ∆ each has a
unique stochastic stationary solution, denoted respectively by

Ūt(ω) = Ū0(θtω), ŪN
t (ω) = ŪN

0 (θtω), ŪN,∆
k (ω) = ŪN,∆

0 (θk∆ω),
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which pathwise attract all other solutions of their respective systems. Moreoever,

ŪN,∆
0 (ω) → ŪN

0 (ω) as ∆ → 0

and
ŪN

0 (ω) → ŪN
0 (ω) as N →∞

for each ω.

We will first prove the existence and uniqueness of the stochastic stationary solutions for
each the SPDE, Galerkin SDE and implicit Euler schemes in turn in the following consecutive
sections. In order to obtain pathwise estimates we will first convert these into random PDE,
ODE and difference equations. The pathwise convergences will be proved in the final section.

5 SPDE and random PDE

It follows from the one-sided Lipschitz condition (4) and assumption (8) that all solutions
of the SPDE (5) converge to each other. To see this, notice that, due to the additive nature
of the noise, we can subtract any two (strong or variational) solutions Ut and Vt, giving

d(Ut − Vt) = {A(Ut − Vt) + f(Ut)− f(Vt)} dt

which means that the sample paths of Ut − Vt are in fact differentiable with respect to time
and satisfy pathwise the deterministic parabolic PDE

∂

∂t
(Ut − Vt) = A(Ut − Vt) + f(Ut)− f(Vt).

Then we have

1

2

d

dt
|Ut − Vt|2 = 〈Ut − Vt, A(Ut − Vt)〉+ (Ut − Vt, f(Ut)− f(Vt))

≤ −α‖Ut − Vt‖2 + L|Ut − Vt|2 ≤ − (αλ1 − L) |Ut − Vt|2,

from which it follows that

d

dt
|Ut − Vt|2 ≤ −2 (αλ1 − L) |Ut − Vt|2

and hence that
|Ut − Vt| ≤ e−(αλ1−L)t|U0 − V0| → 0 as t →∞.

We will now show that the solutions converge pathwise to a unique stationary solution.
For this it will be more convenient to rewrite the SPDE (5) as a random PDE. Recall that
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SA(t) denotes the strongly continuous semigroup operator generated by the operator A, thus
informally SA(t) = eAt. First we observe that (see Da Prato and Zabczyk [8, page 56])

Û0(θtω) ≡ Ût(ω) :=

∫ t

−∞
SA(t− s) dWs(ω)

is the unique stationary solution of the linear SPDE

dUt = AUt dt + dWt.

Subtracting it from any solution Ut of the SPDE (5) we see that the difference Xt = Ut− Ût

is pathwise differentiable in time and satisfies pathwise the random PDE

∂

∂t
Xt = AXt + f(Xt + Ût)

Thus we obtain

d

dt
|Xt|2 = 2 〈AXt, Xt〉+ 2

(
Xt, f(Xt + Ût)− f(Ût)

)
+ 2

(
Xt, f(Ût)

)

≤ −2α‖Xt‖2 + 2L|Xt|2 + 2|Xt| |f(Ût)|.
Since αλ1 − L > 0 we have

d

dt
|Xt|2 ≤ −(αλ1 − L)|Xt|2 +

1

αλ1 − L
|f(Ût)|2.

Integrating from t0 to t we have

|Xt|2 ≤ e−(αλ1−L)(t−t0)|Xt0|2 +
e−(αλ1−L)t

αλ1 − L

∫ t

t0

e(αλ1−L)s|f(Ûs)|2 ds

Taking pullback convergence as t0 → −∞ pathwise in H we obtain

|Xt|2 ≤ 1 +
e−(αλ1−L)t

αλ1 − L

∫ t

−∞
e(αλ1−L)s|f(Ûs)|2 ds

for all t ≥ TD(ω) for appropriate initial conditions Xt0(ω) ∈ D, an arbitrary closed and
bounded subset of H.

This means that the family of closed and bounded random balls {B[0, R0(ω)], ω ∈ Ω} in
H centred on the origin with radius R0(ω), where

R0(ω)2 := 1 +
1

αλ1 − L

∫ 0

−∞
e(αλ1−L)s|f(Û0(θsω))|2 ds (9)

is an absorbing family of sets for the cocycle generated by the SPDE. Since operator A has a
sequence of eigenvalues satisfying (2), then (see Chueshov [4], Chapter 2) the random PDE
has a random attractor which in fact consists of a single unique stationary solution in H,
which we will denote by X̄t. Hence the SPDE has a unique stationary solution Ūt = X̄t + Ût,
which pathwise attracts all other solutions.
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6 Ito-Galerkin SDE and Galerkin RDE

By similar arguments to those for the above SPDE a unique stationary solution UN
t also ex-

ists for the N -dimensional Ito–Galerkin SDE of the SPDE with the initial value UN
0 = PNU0,

since fN satisfies the same assumptions as f . Moreover, this Ito–Galerkin SDE generates an
N -dimensional random dynamical system. (See Hausenblas [14, 15], where finite difference
and wavelet approximations leading to similar types of Ito SDE are also considered).

The N–dimensional Ito-Galerkin SDE corresponding to the SPDE (5) is given by

dUN
t =

{
ANUN

t + fN(UN
t )

}
dt + dWN

t , (10)

where fN(UN) inherits the one-sided dissipative Lipschitz condition (4) of f , specifically

〈
UN − V N , fN(UN)− fN(V N)

〉
RN ≤ L|UN − V N |2RN , (11)

while the matrix AN , which is a diagonal matrix with jth diagonal component −λj for j =
1, . . ., N , satisfies the dissipative bound

〈
UN , ANUN

〉
RN ≤ −αλ1|UN |2RN

for all UN ∈ RN .

The Ito-Galerkin SDE (10) inherits the strong contractivity of the SPDE, which is proved
in much the same way as for the SPDE above. As there we can show that the difference of
any two solutions is pathwise differentiable and satisfies the differential inequality

d

dt

∣∣UN
t − V N

t

∣∣
RN ≤ −(αλ1 − L)

∣∣UN
t − V N

t

∣∣
RN ,

which means all solutions converge pathwise to each other.
We introduce the Ornstein-Uhlenbeck process

ÛN
t = eAN t

∫ t

−∞
e−ANs dWN

s , (12)

which is the unique pathwise asymptotically stable stationary random solution of the SDE
with linear drift term

dXt = ANXt dt + dWN
t (13)

on RN .
The solutions paths of the Ito-Galerkin SDE (10) are generally not differentiable, so in

order to use the one-sided dissipative Lipschitz condition (11) we consider the difference XN
t

= UN
t −ÛN

t where ÛN
t is the Ornstein-Uhlenbeck stationary process (12) satisfying the linear
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equations (13). We note that ÛN
t = PN Ût, so ÛN

t (ω) converges to Ût(ω) for each ω. This
difference is pathwise differentiable since the paths are continuous and satisfy the ordinary
differential equation

d

dt
XN

t = ANXN
t + fN(XN

t + ÛN
t ) (14)

which is called a random differential equation (RDE).

It follows that

d

dt

∣∣XN
t

∣∣2
RN = 2

〈
XN

t , ANXN
t

〉
RN + 2

〈
XN

t , fN(XN
t + ÛN

t )− fN(ÛN
t )

〉
RN

+ 2
〈
XN

t , fN(ÛN
t )

〉
RN

≤ −2(αλ1 − L)
∣∣XN

t

∣∣2
RN + 2

∣∣XN
t

∣∣
RN

∣∣∣fN(ÛN
t )

∣∣∣
RN

and thus
d

dt

∣∣XN
t

∣∣2
RN ≤ −(αλ1 − L)

∣∣XN
t

∣∣2
RN +

1

αλ1 − L

∣∣∣fN(ÛN
t )

∣∣∣
2

RN
,

from which we obtain

∣∣XN
t

∣∣2
RN ≤

∣∣XN
t0

∣∣2
RN e−(αλ1−L)(t−t0) +

e−(αλ1−L)t

αλ1 − L

∫ t

t0

e(αλ1−L)s
∣∣∣fN(ÛN

s )
∣∣∣
2

RN
ds.

Pathwise pullback convergence (i.e. as t0 → −∞ and t fixed) gives pullback absorption (cf.
Theorem 1)

∣∣XN
t (ω)

∣∣2
RN ≤ RN(θtω)2 := 1 +

e−(αλ1−L)t

αλ1 − L

∫ t

−∞
e(αλ1−L)s

∣∣∣fN(ÛN
s (ω))

∣∣∣
2

RN
ds

for all t ≥ TD(ω) for any bounded set D containing the ω realization of the initial value.
It is straightforward to check that the integrability of f is transferred to fN due to the
subexponential growth of ÛN

s and condition (7). Moreover, the integrals exist here due to

the assumption (7) and the relationship between the OU processes ÛN
t and Ût.

Thus ∣∣XN
t (ω)

∣∣
RN ≤ RN(θtω), ∀t ≥ TD(ω),

which implies that this system has a random attractor Â = {A(ω), ω ∈ Ω}. The strong
contractivity condition proved earlier means that this random attractor consists of singleton
sets formed by a stationary random solution X̄N

t of the Galerkin RDE (14). Hence the Ito-
Galerkin SDE (10) has a random attractor consisting of a stationary random solution ŪN

t =

X̄N
t + ÛN

t . (It is interesting to compare the estimates used in this section with alternative
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types of estimates used by Robinson [21, 22].)

For later, we note from the definition (9) of the radius R0(ω) of the absorbing balls for
the random PDE that

RN(ω) ≤ R0(ω) for all N, ω.

In particular, this means that the difference of the stationary solution of the random PDE
and the random Galerkin systems satisfies

∣∣X̄N
t (ω)− PNX̄t(ω)

∣∣
RN ≤ 2R0(θtω) for all t, N, ω. (15)

7 Implicit Euler scheme

Rather than discretizing the Ito-Galerkin SDE (10), we will reformulate it as a random
differential equation (RDE), i.e. pathwise an ordinary differential equation, which we will
discretize. This will allow us to consider pathwise approximations rather than mean-square
approximations as is typical for Ito SDE.

Let XN
t = UN

t − ÛN
t , where UN

t is a solution of the Ito-Galerkin SDE (10) and ÛN
t the

Ornstein-Uhlenbeck stationary process defined by (12). Then XN
t is pathwise differentiable

and satisfies the RDE (14) which has an asymptotically stable stationary solution X̄N
t =

ŪN
t − ÛN

t , where ŪN
t is the asymptotically stable stationary solution of the Ito-Galerkin SDE

(10).
The implicit Euler scheme with constant time–step ∆ for the RDE (14) is given by

Y N
k+1 = Y N

k +
(
ANY N

k+1 + fN(Y N
k+1 + ÛN

(k+1)∆)
)

∆ (16)

assuming for notational convenience that one starts at time t0 = 0 (otherwise one has to

evaluate the OU process as ÛN
t0+(k+1)∆). In fact, we would have obtained the same scheme

if we had started with the implicit Euler scheme for the Ito-Galerkin SDE and then applied
our OU change of coordinates.

This scheme is strongly contractive in the same sense of the random PDE and its Galerkin
RDE. Let Y N

k and ZN
k be two numerical solutions. Then

Y N
k+1 − ZN

k+1 = Y N
k − ZN

k + AN

(
Y N

k+1)− ZN
k+1

)
∆

+
(
fN(Y N

k+1 + ÛN
(k+1)∆)− fN(ZN

k+1 + ÛN
(k+1)∆)

)
∆.
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Taking the inner product with Y N
k+1 − ZN

k+1 gives

|Y N
k+1 − ZN

k+1|2 =
〈
Y N

k+1 − ZN
k+1, Y

N
k − ZN

k

〉
+

〈
Y N

k+1 − ZN
k+1, AN(Y N

k+1 − ZN
k+1)

〉
∆

+
〈
Y N

k+1 − ZN
k+1, fN(Y N

k+1 + ÛN
(k+1)∆)− fN(ZN

k+1 + ÛN
(k+1)∆)

〉
∆

≤ |Y N
k+1 − ZN

k+1| |Y N
k − ZN

k | − (αλ1 − L)|Y N
k+1 − ZN

k+1|2 ∆

which leads to
|Y N

k+1 − ZN
k+1| ≤ (1 + (αλ1 − L)∆)−1|Y N

k − ZN
k |

and the strong pathwise contractivity follows.

Taking the inner product on both sides of the implicit Euler scheme (16) with Y N
k+1 we

obtain

|Y N
k+1|2 =

〈
Y N

k+1, Y
N
k

〉
+

〈
Y N

k+1, ANY N
k+1

〉
∆ +

〈
Y N

k+1, fN

(
Y N

k+1 + ÛN
(k+1)∆

)〉
∆

≤ |Y N
k+1| |Y N

k | − αλ1|Y N
k+1|∆ +

〈
Y N

k+1, fN

(
ÛN

(k+1)∆

)〉
∆

+
〈
Y N

k+1 + ÛN
(k+1)∆ − ÛN

(k+1)∆, fN

(
Y N

k+1 + ÛN
(k+1)∆

)
− fN

(
ÛN

(k+1)∆

)〉
∆

≤ |Y N
k+1| |Y N

k | − (αλ1 − L)|Y N
k+1|∆ + |Y N

k+1|
∣∣∣fN

(
ÛN

(k+1)∆

)∣∣∣ ∆.

Simplifying, dividing by |Y N
k+1| and rearranging, we obtain

|Y N
k+1| ≤ (1 + (αλ1 − L)∆)−1|Y N

k |+ (1 + (αλ1 − L)∆)−1
∣∣∣fN

(
ÛN

(k+1)∆

)∣∣∣ ∆

which gives

|Y N
k | ≤ (1 + (αλ1 − L)∆)−(k−k0)|Y N

k0
|+

k−1∑

j=k0

(1 + (αλ1 − L)∆)−(k−j)
∣∣∣fN

(
ÛN

(j+1)∆)
)∣∣∣ ∆,

where all norms are the Euclidean norm in RN .

This means that the Y N
k are absorbed into a ball of radius

RN
∆(θk∆ω) := 1 +

k−1∑
j=−∞

(1 + (αλ1 − L)∆)−(k−j)
∣∣∣fN

(
ÛN

(j+1)∆(ω)
)∣∣∣
RN

∆
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in finite time depending on the initial conditions. Thus Y N
k are absorbed into a ball of radius

RN
∆(θk∆) centred on 0, i.e so the numerical scheme has a random attractor in this ball. In

view of the strong pathwise contractivity property, this random attractor consists of a single
set formed by a stationary solution Ȳ N,∆

k .

We then define ŪN,∆
t = Ȳ N,∆

k + ÛN
k∆ which is also a stochastic stationary process which

we compared with that of the Galerkin approximation in Theorem 2.

For later, we note that from the definitions we have
∣∣∣fN

(
ÛN

t (ω)
)∣∣∣
RN

≤
∣∣∣f

(
Ût(ω)

)∣∣∣, so

there exists a ∆∗ > 0 such that
RN

∆(ω) ≤ R∗(ω)

for all 0 < ∆ ≤ ∆∗ and positive integers N , where

R∗(ω) := 1 +

∫ 0

−∞
e

1
2
(αλ1−L)s

∣∣∣f
(
Ûs(ω)

)∣∣∣ ds (17)

In particular, this means that the numerical approximatrions all lie in a common compact
ball for sufficeintly small step sizes.

8 Convergence of approximating stationary solutions

Note that the estimates above for the Galerkin RDE and its implicit Euler scheme remain
valid in the H-norm if it is assumed that the RDE solution XN

t and the iterates XN
k of the

numerical scheme (16) with the initial value XN
0 = PNX0 are interpreted as belonging to

XN rather than RN .

Let us write the stationary solutions of the random (not stochastic) equations in terms
of given random variables, i.e.

X̄t(ω) = X̄(θtω), X̄N
t (ω) = X̄N(θtω), Ȳ N,∆

k (ω) = Ȳ N,∆(θk∆ω).

8.1 The random PDE and random Galerkin ODE

We can compare the stationary solution X̄t of the random PDE directly with the stationary
solution X̄N

t of a Galerkin random ODE. First we notice that PNX̄t satisfies the the N -
dimensional random ODE

d

dt
PNX̄t = PNAŪt + PNf(X̄t + Ût)

13



while any solution of the N -dimensional Galerkin random DE satisfies

d

dt
XN

t = ANXN
t + fN(XN

t + ÛN
t )

Subtracting and using the definitions of AN and fN we obtain the random ODE in RN

d

dt

(
PNX̄t −XN

t

)
= AN(PNX̄t −XN

t ) + PNf(X̄t + Ût)− fN(XN
t + ÛN

t ).

Applying the estimate of the operator AN inherited from A, the one-sided Lipschitz condition
on f , and similar estimates as above we have pathwise

d

dt

∣∣PNX̄t −XN
t

∣∣2
RN = 2

〈
PNX̄t −XN

t , AN(PNX̄t −XN
t )

〉
RN

≤ −(αλ1 − L)
∣∣PNX̄t −XN

t

∣∣2
RN +

1

αλ1 − L

∣∣PNf(Ūt)− PNf(PN Ūt)
∣∣2
RN ,

where Ūt = X̄t + Ût is the stationary solution of the SPDE. Hence

d

dt

∣∣PNX̄t −XN
t

∣∣2
RN + (αλ1 − L)

∣∣PN(X̄t −XN
t )

∣∣2
RN ≤

1

αλ1 − L

∣∣f(Ūt)− f(PN Ūt)
∣∣2 .

Integrating we obtain pathwise

∣∣PN(X̄t − X̄N
t )

∣∣2
RN ≤ e−γ(t−t0)

∣∣PN(X̄t0 − X̄N
t0

)
∣∣2
RN (18)

+
e−γt

αλ1 − L

∫ t

t0

eγs
∣∣f(Ūs)− f(PN Ūs)

∣∣2 ds

for any positive γ ≤ 2(αλ1 − L), which means the integrals here exist pathwise and are
bounded for all t ≥ t0.

Now the projection bound
∣∣Ūs(ω)− PN Ūs(ω)

∣∣ =
∣∣(I − PN)Ūs(ω)

∣∣2 ≤ K(T0, T1, ω)λ−1
N+1

holds uniformly in s on any bounded interval [T0, T1], so
∣∣f(Ūs(ω))− f(PN Ūs(ω))

∣∣ converges
to 0 as N → ∞ uniformly in s on any bounded interval [T0, T1], which means that any
integral ∫ T1

T0

eγs
∣∣f(Ūs(ω))− f(PN Ūs(ω))

∣∣2 ds → 0 as N →∞.

Let ω be fixed and suppose that for some T there is an ε0 > 0 and and a subsequence
Nj → ∞ for which ∣∣∣PNj

X̄T (ω)− X̄
Nj

T (ω)
∣∣∣
2

RNj
≥ ε0 for all j.
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Then by (18) for any t0 < T we have

ε0 ≤ e−γ(T−t0) lim sup
j→∞

∣∣∣PNj
X̄t0(ω)− X̄

Nj

t0 (ω)
∣∣∣
2

RNj

But by (15) we have ∣∣∣PNj
X̄t0(ω)− X̄

Nj

t0 (ω)
∣∣∣
2

RNj
≤ 4R0(θt0ω)2

uniformly in j, which means that

ε0e
γ(T−t0) ≤ 4R0(θt0ω)2

from which we conclude that

R0(θt0ω) →∞ as t0 → −∞.

However, this is not possible from the definition (9), the polynomial growth bound on f and
the subexponential growth of the OU stationary solutions.

Thus we must have the convergence

∣∣PNX̄t0(ω)− X̄N
t0

(ω)
∣∣2
RN → 0 as N →∞,

which we will combine with a projection bound on (I − PN)X̄t0(ω) to obtain the desired
pathwise convergence ∣∣X̄0(ω)− X̄N

0 (ω)
∣∣ → 0 as N →∞

for any ω.

8.2 Galerkin RDE and its implicit Euler scheme

Fix N . We can prove that X̄N,∆(ω) converges pathwise to X̄N(ω) as ∆ → 0 using a proof
by contradiction following the Section 5 of [16] using the pathwise error bounds in [10, 13],
compare with [21, 22] which gives convergence in expectation only.

Suppose that there is an ω, sequence ∆j → 0 as j → ∞ and an ε0 > 0 such that

∣∣X̄N,∆j(ω)− X̄N(ω)
∣∣ ≥ ε0 (19)

In Section 6 we saw that X̄N,∆j(ω) belong to a common compact ball BN(ω) of radius
R∗(ω) defined by (17) each ω. Now the family of balls {BN(ω), ω} is pullback attracted to
the Galerkin RDE stationary solution. Thus there is a T (ω) such that

∣∣φN
(
t, θ−tω,XN(θ−tω)

)− X̄N(ω)
∣∣ ≤ ε0/4
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for t ≥ T (ω) and any XN(θ−tω) ∈ BN(θ−tω). Let kj be the first integer so that kj∆j ≥
T (ω). Applying this to X̄N,∆j(θ−kj∆j

ω) ∈ BN(θ−kj∆j
ω) we then have

∣∣φN
(
kj∆j, θ−kj∆j

ω, X̄N,∆j(θ−kj∆j
ω)

)− X̄N(ω)
∣∣ ≤ ε0/4

We then use the pathwise global discretization error of the implicit Euler scheme for the
RDE (see [13]) of the interval [−1− T (ω), 0] to obtain

∣∣∣Y N,∆j

kj
(θ−kj∆j

ω)− φN
(
kj∆j, θ−kj∆j

ω, X̄N,∆j(θ−kj∆j
ω)

)∣∣∣ ≤ ε0/4

for j large enough, where Y
N,∆j

kj
(θ−kj∆j

ω) is the implicit Euler solution with step size ∆j

starting at X̄N,∆j(θ−kj∆j
ω). Since this is the stationary solution, we have Y

N,∆j

kj
(θ−kj∆j

ω) =

X̄N,∆j(ω), and hence
∣∣X̄N,∆j(ω)− φN

(
kj∆j, θ−kj∆j

ω, X̄N,∆j(θ−kj∆j
ω)

)∣∣ ≤ ε0/4

We combine this with the preceding estimate to obtain
∣∣XN,∆j(ω)− X̄N(ω)

∣∣ ≤ ε0/2

which contradicts (19).

Thus we have pathwise convergence of the numerical stationary solution to that of the
Galerkin RDE.

Finally, we note that the order of convergence here may be less than that of the same
scheme for vector fields which are smooth in t due to the fact that the sample paths of the
OU process Ût are only Hölder continuous rather than differentiable [10, 13].

References

[1] L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1997.

[2] T. Caraballo, I.D. Chueshov and J.A. Langa, Existence of invariant manifolds for cou-
pled parabolic and hyperbolic stochastic partial differential equations, Nonlinearity 18
(2005), 747–767.

[3] T. Caraballo, P.E. Kloeden and B. Schmalfuß, Exponentially stable stationary solutions
for evolutions equations and their perturbation, Appl. Math. Optim. 50 (2004), 183–207.

[4] I.D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems,
Acta Scientific Publishing House, Kharkov, 1999.

16



[5] I.D. Chueshov and M. Scheutzow, Inertial manifolds and forms for stochastically per-
turbed retarded semilinear parabolic equations, J. Dyn. Diff. Eqns. 13 (2001), 355–380.

[6] H. Crauel, A. Debussche, and F. Flandoli, Random attractors, J. Dyn. Diff. Eqns. 9
(1997), 307–341.

[7] G. Da Prato and G. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge
University Press, Cambridge, 1992.

[8] G. Da Prato and G. Zabczyk, Ergodicity for Infinite Dimensional Systems, London
Mathematical Society, Lecture Note Series Vol. 229, Cambridge University Press, Cam-
bridge, 1996.

[9] R. Dautray and J.L. Lions, Mathematical Analysis and Numerical Methods for Science
and Technology: Vol. 3, Spectral Theory and Applications, Springer-Verlag, Berlin, 1990.
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