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SYNCHRONIZATION OF A STOCHASTIC REACTION-DIFFUSION
SYSTEM ON A THIN TWO-LAYER DOMAIN∗

TOMÁS CARABALLO† , IGOR D. CHUESHOV‡ , AND PETER E. KLOEDEN§

Abstract. A system of semilinear parabolic stochastic partial differential equations with additive
space-time noise is considered on the union of thin bounded tubular domains D1,ε := Γ × (0, ε) and
D2,ε := Γ × (−ε, 0) joined at the common base Γ ⊂ R

d, where d ≥ 1. The equations are coupled by
an interface condition on Γ which involves a reaction intensity k(x′, ε), where x = (x′, xd+1) ∈ R

d+1

with x′ ∈ Γ and |xd+1| < ε. Random influences are included through additive space-time Brownian
motion, which depend only on the base spatial variable x′ ∈ Γ and not on the spatial variable xd+1

in the thin direction. Moreover, the noise is the same in both layers D1,ε and D2,ε. Limiting
properties of the global random attractor are established as the thinness parameter of the domain ε
→ 0, i.e., as the initial domain becomes thinner, when the intensity function possesses the property
limε→0 ε−1k(x′, ε) = +∞. In particular, the limiting dynamics is described by a single stochastic
parabolic equation with the averaged diffusion coefficient and a nonlinearity term, which essentially
indicates synchronization of the dynamics on both sides of the common base Γ. Moreover, in the case
of nondegenerate noise we obtain stronger synchronization phenomena in comparison with analogous
results in the deterministic case previously investigated by Chueshov and Rekalo [EQUADIFF -2003,
F. Dumortier et al., eds., World Scientific, Hackensack, NJ, 2005, pp. 645–650; Sb. Math., 195 (2004),
pp. 103–128].
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1. Introduction. Let D1,ε and D2,ε be thin bounded domains in R
d+1, where

d ≥ 1, of the form

D1,ε = Γ × (0, ε), D2,ε = Γ × (−ε, 0),

where 0 < ε ≤ 1 and Γ is a bounded C2-domain in R
d. We write x ∈ Dε := D1,ε∪D2,ε

as x = (x′, xd+1), where x′ ∈ Γ and xd+1 ∈ (0, ε) or xd+1 ∈ (−ε, 0), and will not
distinguish between the sets Γ × {0} ⊂ R

d+1 and Γ ⊂ R
d.

We consider the following system of semilinear parabolic equations:

∂

∂t
U i − νiΔU i + aU i + fi(U

i) + hi(x) = Ẇ (t, x′), t > 0, x ∈ Di,ε, i = 1, 2,(1)

with the initial data

U i(0, x) = U i
0(x), x ∈ Di,ε, i = 1, 2,(2)
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Correos 1160, 41080-Sevilla, Spain (caraball@us.es).
‡Department of Mechanics and Mathematics, Kharkov National University, 4 Svobody sq., 61077,

Kharkov, Ukraine (chueshov@univer.kharkov.ua).
§Institut für Mathematik, Johann Wolfgang Goethe-Universität, D-60054 Frankfurt am Main,

Germany (kloeden@math.uni-frankfurt.de). This author’s work was supported by Ministerio de
Educación y Ciencia (Spain) under grant SAB2004-0146, within the Programa de Movilidad del
Profesorado universitario español y extranjero.
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where the Ẇ (t, x′) is a Gaussian white noise depending on the spatial variable x′ ∈
Γ (but not on the xd+1 spatial variable).

We assume that U1 and U2 satisfy the Neumann boundary conditions(
∇U i, ni

)
= 0, x ∈ ∂Di,ε \ Γ, i = 1, 2,(3)

on the external part of the boundary of the compound domain Dε, where n is the
outer normal to ∂Dε, and a matching condition on Γ of the form(

−ν1
∂U1

∂xd+1
+ k(x′, ε)(U1 − U2)

)∣∣∣∣
Γ

= 0,

(
ν2

∂U2

∂xd+1
+ k(x′, ε)(U2 − U1)

)∣∣∣∣
Γ

= 0.

(4)

Here the above constants νi and a are positive numbers.
We impose the following assumptions:
• for i = 1, 2 the function fi ∈ C1(R) possesses the property f ′

i(v) ≥ −c for all
v ∈ R and also satisfies the relations

vfi(v) ≥ a0|v|p+1 − c, |f ′
i(v)| ≤ a1|v|p−1 + c, v ∈ R,(5)

where aj and c are positive constants and 1 ≤ p < 3;
• hi ∈ H1(Di,1), i = 1, 2;
• the interface reaction intensity k(x′, ε) satisfies

k(·, ε) ∈ L∞(Γ), k(x′, ε) > 0 for x′ ∈ Γ, ε ∈ (0, 1],

and

lim
ε→0

1

ε
k(x′, ε) = +∞, x′ ∈ Γ, in Lebesgue measure (see Remark 1.1);(6)

• W (t), t ∈ R, is a two-sided L2(Γ)-valued Wiener process with covariance
operator K = K∗ ≥ 0 such that

tr
[
K (−ΔN + 1)

2β−1
]
< ∞ for some β > max

{
1 ,

d

4

}
,(7)

where ΔN is the Laplace operator in L2(Γ) with the Neumann boundary con-
ditions on ∂Γ. We denote by (Ω,F ,P) the corresponding probability space,
and by Ẇ ≡ ∂tW the generalized derivative with respect to t.

Remark 1.1. Our main example of the interface reaction intensity is the following
function:

k(x′, ε) = εαk0(x
′) ∈ L∞(Γ), k0(x

′) > 0 for x′ ∈ Γ, ε ∈ (0, 1],

for some α ∈ [0, 1). We also note that the convergence in (Lebesgue) measure to
infinity means that

lim
ε→0

Leb
{
x′ ∈ Γ : ε−1k(x′, ε) ≤ N

}
= 0 for any N > 0.

Problem (1)–(4) is a model for a reaction-diffusion system consisting of two com-
ponents filling thin contacting layers D1,ε and D2,ε separated by a penetrable mem-
brane Γ. Reaction of the components is possible on the surface Γ only, and the reaction
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intensity k(x′, ε) depends on the thickness of the domains filled by the reactants. The
deterministic version of the model was considered by Chueshov and Rekalo [12, 13],
while Rekalo [27] investigated the special case of identical equations in both layers
with k(ε, x) independent of ε. The stochastic version considered in the present paper
allows for irregularities and random effects on the separating membrane.

Hale and Raugel [21, 22] initiated the analysis of asymptotic dynamics of deter-
ministic semilinear reaction-diffusion equations on thin domains. Some extensions
of their results can be also found in [16] and [26]. In all these papers, a reaction-
diffusion equation is endowed with homogeneous Neumann boundary conditions. To
our knowledge stochastic evolution equations have not previously been investigated
on thin domains.

In this paper we investigate the pathwise asymptotic behavior of the above stochas-
tic evolution system by converting it into a system of pathwise random partial differ-
ential equations (PDEs) to which deterministic methods can be applied in a pathwise
manner.

Our main result deals with properties of random (global) pullback attractors for
the random dynamical system generated by (1)–(4) in L2(Dε). In particular, we prove
that these pullback attractors are closely related to the corresponding object for the
problem

∂

∂t
U − νΔx′U + aU + f(U) + h(x′) = Ẇ (t, x′), t > 0, x′ ∈ Γ,(8)

on the spatial domain Γ with the Neumann boundary conditions on ∂Γ. Here we
denote

ν =
ν1 + ν2

2
, f(U) =

f1(U) + f2(U)

2
, h(x′) =

h1(x
′, 0) + h2(x

′, 0)

2
.(9)

This is essentially a statement about the synchronization of the dynamics of the system
in the two thin layers at the level of global pullback attractors. Since, in principle,
a global attractor can be a rather complicated set, the synchronization at this level
does not imply that any pair of trajectories becomes asymptotically synchronized.
However, in the case of nondegenerate noise (Kh = 0 if and only if h = 0 and
the image of K is dense in L2(Γ)) we can prove, in contrast with the deterministic
counterpart, that the global pullback attractor for (8) is a singleton. This means that
we also have asymptotic synchronization in our system at the level of trajectories.
Thus we observe a stronger synchronizing effect of a nondegenerate stochastic noise
in the system under consideration.

The synchronization of stochastic stationary solutions (i.e., single-valued random
attractors) of finite dimensional stochastic systems was considered in [5]. See also
[1, 23] for similar results in deterministic nonautonomous systems and [7, 28] for
autonomous infinite dimensional systems.

The synchronization of coupled systems is a ubiquitous phenomenon in the bio-
logical and physical science and is also known to occur in a number of social science
contexts. A descriptive account of its diversity of occurrence can be found in the re-
cent book of Strogatz [32], which contains an extensive list of references. In particular,
synchronization provides an explanation for the emergence of spontaneous order in
the dynamical behavior of coupled systems, which in isolation may exhibit chaotic dy-
namics. It has been shown to persist in the presence of environmental noise provided
that appropriate concepts of random attractors and stochastic stationary solutions
are used instead of their deterministic counterparts [5]. As mentioned above, in this
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paper we will see that the presence of additive noise can lead to a strengthening of
the synchronization, i.e., at the level of trajectories rather than attractors, which does
not occur in the absence of noise.

Since most of our analysis is a pathwise analysis applied to pathwise defined
random PDEs, i.e., with the stationary Ornstein–Uhlenbeck process appearing as a
space-time dependent coefficient, it is reasonable to expect that similar results will
also hold for other kinds of noise, for example, with fractional Brownian motion in
the original stochastic partial differential equations (SPDEs). The results will be
presented in a forthcoming paper.

The paper is organized as follows. We start with preliminary section 2 containing
background material from the theory of random systems which we need to state and
discuss our main results in section 3. Further sections are devoted to the proof of our
main theorem, Theorem 3.1.

2. Random dynamical systems. In order to formulate our results we need
some notation and results from the theory of random dynamical systems (with con-
tinuous time) and random attractors.

Let (Ω,F ,P) be a probability space and let (X , dX ) be a complete separable
metric (Polish) space. Arnold [2] defined a random dynamical system (RDS) (θ, φ)
on Ω × X in terms of a metric dynamical system θ on Ω, which represents the noise
driving the system, and a cocycle mapping φ : R+ × Ω × X → X , which represents
the dynamics in the state space X and satisfies the following properties:

1. φ(0, ω)φ0 = φ0 for all φ0 ∈ X and ω ∈ Ω;
2. φ(s + t, ω)φ0 = φ(s, θtω)φ(t, ω)φ0 for all s, t ≥ 0, φ0 ∈ X , and ω ∈ Ω;
3. (t, φ0) �→ φ(t, ω)φ0 is continuous for each ω ∈ Ω; and
4. ω �→ φ(t, ω)φ0 is F-measurable for all (t, φ0) ∈ R+ ×X .
We recall that a metric dynamical system θ ≡ (Ω,F ,P, {θt, t ∈ R}) is a family of

measure-preserving transformations {θt : Ω �→ Ω, t ∈ R} such that
(i) θ0 = id, θt ◦ θs = θt+s for all t, s ∈ R;
(ii) the map (t, ω) �→ θtω is measurable, and θtP = P for all t ∈ R.
RDSs (with continuous time) are generated by differential equations with random

coefficients or stochastic differential equations with a unique and global solution, as
well as by infinite dimensional stochastic evolution equations with additive noise. We
refer to [2] for more details on the general theory of RDS theory.

To construct an RDS in our case we first need to associate a metric dynamical
system θ with the Wiener process W on (Ω,F ,P) with values in L2(Γ). The prob-
ability measure P of this process can be realized on F = B(C0(R, L2(Γ))), where
C0(R, L2(Γ)) is the Fréchet space of continuous functions on R with values in L2(Γ)
which are zero at time zero. For this realization we introduce the flow (θt)t∈R given
by the Wiener shift

θtω(·) = ω(· + t) − ω(t), t ∈ R.(10)

Interpreting the above Wiener process in the canonical sense W (·, ω) = ω(·), it follows
that (10) is the well-known helix property of a Wiener process:

W (t + s, ω) −W (s, ω) = W (t, θsω), s, t ∈ R, ω ∈ Ω.

We now introduce the Ornstein–Uhlenbeck process as a stationary solution of the
linear stochastic evolution equation

∂

∂t
U = νΔx′U − aU + Ẇ (t, x′), t > 0, x′ ∈ Γ,
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on the spatial domain Γ with Neumann boundary conditions on ∂Γ. Here, as above,
we denote ν = (ν1 + ν2)/2. This process η(t) can be written in the form

η(t, ω) :=

(∫ t

−∞
e−(t−τ)A0dW (τ)

)
(ω),(11)

where A0 = −νΔN + a and ΔN is the Laplace operator in L2(Γ) with the Neumann
boundary conditions on ∂Γ. The integral in (11) exists as an operator stochastic
integral (see, e.g., [24] or [19]) We can also involve a perfection procedure to define
η(t, ω) ≡ η̄(θtω) for all ω ∈ Ω (for details see [14]). Moreover, under condition (7),

t �→ η̄(θtω) is continuous from R into D(Aβ′

0 ) ⊂ H2β′
(Γ) for each ω ∈ Ω, where

β′ ∈ [0, β) is arbitrary, and the temperedness condition

sup
t∈R

{‖ Aβ′

0 η̄(θtω) ‖ e−γ|t|} < ∞ ∀ γ > 0, ω ∈ Ω,

is satisfied. We also note that under condition (7), since Hs(Γ) ⊂ C(Γ) for s > d/2,
we have that t �→ η̄(θtω) is a pathwise continuous tempered process with values in
D(A0) ∩ C(Γ). In particular

η̄(θtω) ∈ C
(
R;C(Γ) ∩

{
ψ ∈ H2(Γ) : ψ satisfies Neumann b.c. on ∂Γ

})
(12)

for every ω ∈ Ω. We will use this observation later.
We recall the following definition of a random set (see [2] or [4]).
Definition 2.1 (random set). Let X be a Polish space with a metric dX . A multi-

function ω �→ D(ω) �= ∅ is said to be a random set if the mapping ω �→ distX (v,D(ω))
is measurable for any v ∈ X , where distX (v,B) is the distance in X between the ele-
ment v and the set B ⊂ X . For ease of notation we denote the random set ω �→ D(ω)

by D̂ or {D(ω)}. If D(ω) is closed for each ω ∈ Ω, then D̂ is called a random closed

set, while if D(ω) is a compact set for all ω ∈ Ω, then D̂ is called a random com-
pact set. A random set {D(ω)} is said to be tempered if there exists a v0 ∈ X such
that D(ω) ⊂ {v ∈ X : dX (v, v0) ≤ r(ω)} for all ω ∈ Ω, where the random variable
r(ω) > 0 is tempered, i.e.,

sup
t∈R

{r(θtω)e−γ|t|} < ∞ ∀ γ > 0, ω ∈ Ω.

We denote by D the collection of all tempered random sets in X .
Below we also need the concept of a random attractor for RDSs (see, e.g., [2, 17,

18, 29] and the references therein), which extends the corresponding definition of a
global attractor in autonomous systems (cf. [3, 9, 33], for example).

Definition 2.2. Let (θ, φ) be an RDS with the phase space X . A random closed

set {A(ω)} from D is said to be a random pullback attractor for (θ, φ) in D if (i) Â

is an invariant set, i.e., φ(t, ω)A(ω) = A(θtω) for t ≥ 0 and ω ∈ Ω, and (ii) Â is
pullback attracting in D, i.e.,

lim
t→+∞

dX {ϕ(t, θ−tω)D(θ−tω) |A(ω)} = 0, ω ∈ Ω,

for all D̂ ∈ D, where dX {A|B} = supa∈A distX (a,B).
Note that a pullback attractor is also a weak forward attractor; i.e., we have that

lim
t→+∞

∫
Ω

dX {ϕ(t, ω)D(ω) |A(θtω)}P(dω) = 0 ∀D̂ ∈ D.
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If the random attractor consists of singleton sets, i.e., A(ω) = {X∗(ω)} for some ran-
dom variable X∗ with X∗(ω) ∈ X , then X∗

t (ω) := X∗(θtω)) is a stationary stochastic
process on X .

The following result [18] ensures the existence of a random attractor for an RDS
on a Polish space.

Theorem 2.3. Let (θ, φ) be a continuous or discrete time RDS on Ω × X such
that φ(t, ω, ·) : X → X is a compact operator for each fixed t > 0 and ω ∈ Ω. If there

exists a tempered random set B̂ = {B(ω), ω ∈ Ω} and a TD̂,ω ≥ 0 such that

φ(t, θ−tω)D(θ−tω) ⊂ B(ω) ∀t ≥ TD̂,ω,

for every tempered random set D̂, then the RDS (θ, φ) has a random pullback attractor

Â = {A(ω), ω ∈ Ω} with the component subsets defined for each ω ∈ Ω by

A(ω) =
⋂
s>0

⋃
t≥s

φ(t, θ−tω)B(θ−tω)
dX

.

The family {B(ω)} is called a pullback absorbing random set for the RDS.

3. Main results. Now we are in position to state our main results which we
formulate in the theorem below. This says that the limiting dynamics of the system
(1)–(4) is given by that of the averaged system (8) on Γ, which one can interpret as the
synchronization of dynamics of the original system on the two sides of the membrane
Γ. In addition, if the system is the same on both sides of the membrane, then the
limiting behavior is independent of the thinness parameter ε when it is sufficiently
small.

Theorem 3.1. Under the conditions above the following assertions hold.
1. Problem (1)–(4) generates an RDS (θ, φ̄ε) in the space

Hε = L2(D1,ε) ⊕ L2(D2,ε) ∼ L2(Dε)

with the metric dynamical system θ generated by the Wiener process W and the
cocycle φ̄ε defined by the formula φ̄ε(t, ω)U0 = U(t, ω), where U(t, ω) =
(U1(t, ω);U2(t, ω)) is a strong (in the sense of stochastic equations [19]) so-
lution to problem (1)–(4) and U0 = (U1

0 ;U2
0 ).

2. Similarly, problem (8) generates an RDS (θ, φ̄0) in the space L2(Γ).
3. The cocycles φ̄ε converge to φ̄0 in the sense that

lim
ε→0

sup
t∈[0,T ]

1

ε

∫
Dε

|φ̄ε(t, ω)v − φ̄0(t, ω)v|2dx = 0 ∀ω ∈ Ω,

for any v(x) ∈ Hε independent of the variable xd+1, and for any T > 0.
4. These RDS (θ, φ̄ε) and (θ, φ̄0) have random compact pullback attractors {Āε(ω)}

and {Ā0(ω)} in their corresponding phase spaces. Moreover, if the correlation
operator K of the Wiener process W is nondegenerate in the sense that (i)
Kh = 0 if and only if h = 0, and (ii) the image of K is dense in L2(Γ), then
the attractor {Ā0(ω)} is a singleton, i.e., Ā0(ω) = {v̄0(ω)}, where v̄0(ω) is a
tempered random variable with values in L2(Γ).

5. The attractors {Āε(ω)} are upper semicontinuous as ε → 0 in the sense that

lim
ε→0

sup
v∈Āε(ω)

{
inf

v0∈Ā0(ω)

1

ε

∫
Dε

|v(x′, xd+1) − v0(x
′)|2dx

}
= 0 ∀ω ∈ Ω.(13)
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6. In addition, if

ν1 = ν2 := ν, f1(U) = f2(U) := f(U),

h1(x
′, xd+1) = h(x′), h2(x

′, xd+1) = h(x′);(14)

f(U) is globally Lipschitz, i.e., there exists a constant L > 0 such that

|f(U) − f(V )| ≤ L|U − V |, U, V ∈ R,(15)

and also that

k(x′, ε) > kε for x′ ∈ Γ, ε ∈ (0, 1]; and lim
ε→0

ε−1kε = +∞,(16)

then there exists ε0 > 0 such that for all ε ∈ (0, ε0] the global random pullback
attractor {Āε(ω)} for (θ, φ̄ε) has the form

Ā
ε(ω) ≡

{
v(x′, xd+1) ≡ v0(x

′) : v0 ∈ Ā
0(ω)

}
,

where {Ā0(ω)} is the random pullback attractor for the RDS (θ, φ̄0).
Remark 3.2. In the case when Ā0(ω) = {v̄0(ω)} is a singleton, relation (13) turns

into the equality

lim
ε→0

sup
v∈Āε(ω)

{
1

ε

∫
Dε

|v(x′, xd+1, ω) − v̄0(x
′, ω)|2dx

}
= 0 ∀ω ∈ Ω.

In particular, this implies that for any U0, U
∗
0 ∈ Hε we have that

lim
ε→0

lim sup
t→+∞

{
1

ε
‖φ̄ε(t, θ−tω)U0 − φ̄ε(t, θ−tω)U∗

0 ‖2
L2(Dε)

}
= 0 ∀ω ∈ Ω,(17)

where we can omit the limε→0 under conditions (14)–(16). Thus we obtain the syn-
chronization effect not only at the level of global attractors (see (13)) but also at the
level of trajectories in relation (17). We emphasize that this double synchronization
phenomenon is not true for the deterministic (K ≡ 0) counterpart of the problem.
In the latter case the global attractor for (8) (without the noise Ẇ ) is not a single
point when the reaction term au + f(u) has several roots, and thus (17) cannot be
true for all initial data. In this case we have synchronization at the level of the global
attractors only.

Remark 3.3. The statements of Theorem 3.1 deal with the case when the intensity
interaction k(x′, ε) between layers is asymptotically strong enough (see condition (6)).
However, similarly to [12, 13] we can also consider the case when the limit in (6) is
finite by assuming that

lim
ε→0

ε−1k(x′, ε) = k(x′) strongly in L2(Γ)(18)

for some bounded nonnegative function k(x′) ∈ L2(Γ). In this case the limiting
problem for (1)–(4) is a system of two parabolic SPDEs on Γ of the form

∂

∂t
U i − νiΔx′U i + aU i + fi(U

i) + k(x′)(−1)i+1(U1 − U2) + hi(x
′, 0) = Ẇ (t, x′),

(19)
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where i = 1, 2 and (t;x′) ∈ R+ × Γ, with the Neumann boundary condition on
∂Γ. Using the same method as for the case (6) in combination with deterministic
arguments given in [13] for a particular case of (18), one can prove upper semi-
continuity of {Āε(ω)} in the limit ε → 0 in the case (18). However we will not present
the case because (i) our main point of interest is the phenomenon of synchronization,
and (ii) under condition (18) synchronization is possible only in some very special
cases.

The proof of Theorem 3.1 is given in the remaining sections of the paper. To
begin, in section 4 the problem is reformulated in terms of pathwise random PDEs on
a scaled domain and appropriate function spaces are introduced. Then we show that
(1)–(4) generates an RDS. In section 5 the existence of a random pullback attractor
is proved. Then in section 5.1 the limiting dynamics on finite time intervals as ε → 0
is established, and in section 7 the upper continuous dependence of the attractors as
ε → 0 is shown. Finally, in section 8 the synchronization of the systems for fixed ε >
0 is considered.

4. Generation of an RDS by the two-layer problem.

4.1. Equivalent random PDEs. We introduce the new dependent variables
V i (which are also stochastic processes):

V i(t, x, ω) := U i(t, x′, xd+1, ω) − η̄(θtω, x
′), t > 0, x = (x′, xd+1) ∈ Di,ε, i = 1, 2,

where η̄(ω, x′) is given by (11) after perfection. Let

h1(x, ω) = −1

2
(ν1 − ν2)Δη̄(ω) + h1(x),

h2(x, ω) =
1

2
(ν1 − ν2)Δη̄(ω) + h2(x).

(20)

Then equations (1)–(4) can be transformed into the pathwise random semilinear
parabolic PDEs

∂tV
i − νiΔV i + aV i + fi

(
V i + η̄(θtω)

)
+ hi(x, θtω) = 0, t > 0, x ∈ Di,ε,(21)

for i = 1, 2, with the random initial data

V i(0, x, ω) = U i
0(x) − η̄(ω), x ∈ Di,ε, i = 1, 2.(22)

Since the Ornstein–Uhlenbeck process η̄(θtω;x′) does not depend on xd+1, due to (12)
we obtain the Neumann boundary conditions(

∇V i(x), ni(x)
)

= 0, x ∈ ∂Di,ε \ Γ, i = 1, 2,(23)

on the external part of the boundary of the compound domain Dε, where n is the
outer normal to ∂Dε. Condition (4) turns into a matching condition on Γ of the form(

−ν1
∂V 1

∂xd+1
+ k(x′, ε)(V 1 − V 2)

)∣∣∣∣
Γ

= 0,

(
ν2

∂V 2

∂xd+1
+ k(x′, ε)(V 2 − V 1)

)∣∣∣∣
Γ

= 0,

(24)

which is now pathwise random and homogeneous.
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4.2. Scaling and functional spaces. It is convenient to deal with a fixed do-
main where every equation is defined for ε > 0. Let us introduce the new coordinates
(x, y) ∈ R

d+1, as follows:

x = x′, x ∈ Γ, y = ε−1xd+1, y ∈ (−1, 1).

In so doing, we transform the domain Dε into D = D1 ∪D2, where D1 = Γ × (0, 1),
D2 = Γ × (−1, 0); the operator ∇ = (∇x′ and ∂xd+1

) into ∇ε = (∇x, ε
−1∂y); and

Δ = Δx′ + ∂2
xd+1

into Δε = Δx + ε−2∂yy. Problem (21)–(24) takes the form

∂tv
i − νiΔεv

i + avi + fi(v
i + η̄) + hε

i (x, y, θtω) = 0, t > 0, (x, y) ∈ Di,(25)

for i = 1, 2, with the initial data

vi(0, x, y) = V i
0 (x, y), (x, y) ∈ Di, i = 1, 2,(26)

and the boundary conditions

∂vi

∂ni

∣∣∣∣
∂Di\Γ

= 0, i = 1, 2,(27)

(
νi
∂vi
∂y

− εk(x, ε)(v1 − v2)

)∣∣∣∣
y=0

= 0, i = 1, 2.(28)

Here hε
i (x, y, ω) = hi(x, εy, ω) and ni is the outward normal to the boundary ∂Di. A

solution V (t, x′, xd+1) to problem (21)–(24) is expressed in terms of a solution v(t, x, y)
to problem (25)–(28) by the formula V (t, x′, xd+1) = v(t, x′, ε−1xd+1).

Let us introduce the space

H = L2(D1) ⊕ L2(D2) � L2(D)

endowed with the norm ‖u‖2 ≡ ‖u1‖2
L2(D1)

+ ‖u2‖2
L2(D2)

, where u = (u1;u2), ui ≡
u|Di

, and let us define a family of Sobolev spaces

H1
ε = H1(D1) ⊕H1(D2), ε ∈ (0, 1],

endowed with the norm

‖u‖2
1,ε ≡

2∑
i=1

(
‖ui‖2

H1(Di)
+ ε−2‖∂yui‖2

L2(Di)

)
.

Every element v ∈ H1(Γ) ⊕H1(Γ) can be extended naturally to an element u ∈ H1
ε

by the formula ui(x, y) ≡ vi(x), (x, y) ∈ Di, i = 1, 2; in what follows, this will be
done without further comment.

4.3. Abstract representation. Now we represent problem (25)–(27) in the
abstract form. To do this we first consider the bilinear form

aε(u, v) =

2∑
i=1

νi

[
(∇xui,∇xvi)L2(Di) +

1

ε2
(∂yui, ∂yvi)L2(Di)

]
+ a · (u, v)H

+
1

ε

∫
Γ

k(x, ε)(u1(x, 0) − u2(x, 0))(v1(x, 0) − v2(x, 0)) dx,
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defined on the elements u = (u1;u2), v = (v1; v2) of the space H1
ε = H1(D1)⊕H1(D2).

One can show that aε(u, v) is a closed symmetric form in H possessing the property

c0
∑
i=1,2

‖u‖2
H1(Di)

≤ c1‖u‖2
1,ε ≤ aε(u, u), u ∈ H1

ε.(29)

Here and in what follows we drop the subscript ε in constants which can be chosen
independently of ε ∈ (0, 1]. Therefore, there exists a unique positive self-adjoint
operator Aε such that D(Aε) ⊂ H1

ε and

aε(u, v) = (Aεu, v)H, u ∈ D(Aε), v ∈ H1
ε.

It can be shown that

D(Aε) =
{
u ∈ H2(D1) ⊕H2(D2) : u satisfies (27) and (28)

}
and also that

Aεu = (−ν1Δεu1 + au1, −ν2Δεu2 + au2), u = (u1, u2) ∈ D(Aε).

Moreover, D(A
1/2
ε ) = H1

ε, aε(u, u) = ‖A1/2
ε u‖2. For more details concerning the

operator Aε we refer to [13].
Now we can rewrite the pathwise random PDE in problem (25)–(28) in the ab-

stract form

d

dt
v + Aεv = B(v, θtω), v|t=0 = v0,(30)

in the space H, where

B(v, ω) =

{ −f1(v
1 + η̄(ω)) − h1(x, εy, ω), y > 0,

−f2(v
2 + η̄(ω)) − h2(x, εy, ω), y < 0.

4.4. Generation of an RDS. By the same method as in [25] (see also [30,
Chap. 3]) one can prove that there exists a deterministic constant M such that the
nonlinear mapping Aε−B(·, ω)+M is a maximal monotone operator on D(Aε). This
observation makes it possible (some details can be found in [8, Chap. 15] for the
general nonautonomous case) to prove that for each ω ∈ Ω and v0 ∈ H on any time
interval [0, T ] there exists a unique weak solution v(t, ω) to (30) from the class

Lp+1(0, T ;Lp+1(D)) ∩ L2(0, T ;H1
ε) ∩ C(0, T ;H).

Since this solution can be constructed as a limit of the corresponding Galerkin approx-
imations, the mapping (t;ω) �→ v(t, ω) is measurable. Moreover, it is easy to derive
from the uniqueness property that the mapping φε(t, ω) : H �→ H defined by the
relation φε(t, ω)v0 = v(t, ω), where v(t, ω) solves (30), satisfies the cocycle property.
Thus (30) generates an RDS.

Now using inverse transformation we define the cocycle φ̄ε for problem (1)–(4) by
the formula

φ̄ε(t, ω) = R−1
ε (θtω) ◦ φε(t, ω) ◦Rε(ω),

where Rε(ω) : L2(Dε) �→ L2(D) is an affine random mapping of the form

[Rε(ω)U ] (x, y) = U(x, εy) − η̄(ω), U ∈ L2(Dε).

This proves the first statement in Theorem 3.1.
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It is clear that Rε(ω) maps tempered random sets in L2(Dε) into tempered sets in
L2(D). Therefore all other statements of Theorem 3.1 can be easily reformulated as
statements concerning the RDS (θ, φε) generated by the random evolution equation
in (30). In our further considerations we deal with this RDS (θ, φε).

5. Random pullback attractors. In this section we prove the existence of a
random pullback attractor for problem (25)–(28) for every fixed ε ∈ (0, 1] and also for
the limiting problem (8).

5.1. The case ε > 0. We first want to emphasize that we do not use any
information concerning the behavior of the intensity k(x′, ε) as ε → 0, and hence our
results in this subsection cover both of the cases (6) and (18).

Our main result in this section is the following assertion.
Proposition 5.1. In the space H the RDS (θ, φε) generated by problem (25)–(28)

possesses a compact pullback attractor Âε which belongs to the space H1
ε. Moreover,

there exists a tempered random variable R(ω), which does not depend on ε, such that

A
ε(ω) ⊂

{
v ∈ H1

ε : aε(v, v) + ‖v‖p+1
Lp+1(D) ≤ R2(ω)

}
, ω ∈ Ω.(31)

We split the proof into several lemmata which are also important for the limit
transition on finite time intervals.

Lemma 5.2 (pullback dissipativity). The RDS (θ, φε) is pullback dissipative in
D; i.e., there exists a tempered random variable R(ω) > 0 such that for any random

set D̂ from D we can find t0(ω, D̂) > 0 for which

‖φε(t, θ−tω)U‖H ≤ R(ω) ∀ U ∈ D(θ−tω), t ≥ t0(ω, D̂).

Thus the random ball B0(ω) = {U ∈ H : ‖U‖H ≤ R(ω)} is pullback absorbing. This
ball is also forward invariant and absorbing if we take

R2(ω) = c1

∫ 0

−∞
ec0τ

(
1 + ‖η̄(θτω)‖p+1

Lp+1(Γ) + ‖η̄(θτω)‖2
H1(Γ)

)
dτ,

with appropriate c0 > 0 and c1 > 0 independent of ε ∈ (0, 1].
Proof. The calculations below are formal, but can be justified by considering

Galerkin approximations.
Multiplying (25) by vi in L2(Di) for i = 1, 2, after some calculations we obtain

that

1

2

d

dt
‖v‖2

H + aε(v, v) +
∑
i=1,2

[∫
Di

fi(v
i + η̄)vidx + (hε, vi)L2(Di)

]
= 0.(32)

From (5) we have that

(fi(v
i + η̄), vi) =

∫
Di

f(vi)vidx +

∫
Di

[∫ 1

0

f ′
i(v

i + λη̄)dλ

]
η̄vidx

≥ a0‖vi‖p+1
Lp+1(Di)

− c1

∫
Di

(
1 + |vi|p−1 + |η̄|p−1

)
|η̄||vi|dx− c2

≥ a0

2
‖vi‖p+1

Lp+1(Di)
− b0

(
1 + ‖η̄‖p+1

Lp+1(Γ)

)
(33)
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and from (20) and (29) we also have that

∑
i=1,2

(hε, vi)L2(Di) ≤ C

⎛⎝‖η̄‖H1(Γ) +
∑
i=1,2

‖h‖H1(Di)

⎞⎠ [aε(v, v)]
1/2

.(34)

Now from (32)–(34) we obtain that

d

dt
‖v‖2

H + aε(v, v) + a0‖v‖p+1
Lp+1(D) ≤ R2

0(θtω),(35)

where

R2
0(ω) = c

(
1 + ‖η̄(ω)‖p+1

Lp+1(Γ) + ‖η̄(ω)‖2
H1(Γ)

)
.(36)

Since aε(v, v) ≥ c0‖v‖2
H + 1

2aε(v, v), by differentiating eν∗t‖v‖2
H, taking into account

(35), and integrating, we have that

‖v(t)‖2
H +

∫ t

0

e−ν∗(t−τ)V 0
ε (v(τ))dτ ≤ ‖v0‖2

He−ν∗t +

∫ t

0

e−ν∗(t−τ)R2
0(θτω)dτ,(37)

for any 0 < ν∗ ≤ c0, where R0(ω) is given by (36) and

V 0
ε (v) =

1

2
aε(v, v) + a0‖v‖p+1

Lp+1(D).(38)

This allows us to complete the proof of Lemma 5.2.
Lemma 5.3 (compact absorbing set). For each ε ∈ (0, 1] there exists a compact,

forward invariant tempered absorbing set.
Proof. Multiplying (25) by ∂tv

i in L2(Di) we find that

∂tΨε(v(t)) + ‖∂tv(t)‖2
H(39)

+
∑
i=1,2

∫
Di

[
f(vi + η̄) − f(vi)

]
∂tv

idxdy +

∫
D

hε∂tv
idxdy = 0,

where

Ψε(u) =
1

2
aε(u, u) +

2∑
i=1

∫
Di

Fi(u
i) dxdy, u = (u1;u2) ∈ H1

ε.(40)

Here Fi(u) =
∫ u

0
fi(ξ)dξ. It is clear from the assumptions concerning fi that∣∣∣∣∣∣

∑
i=1,2

∫
Di

[
f(vi + η̄) − f(vi)

]
∂tv

idxdy

∣∣∣∣∣∣
≤ c

∑
i=1,2

∫
Di

∣∣f(vi + η̄) − f(vi)
∣∣2 dxdy +

1

4
‖∂tv(t)‖2

H

≤ c1 + c2

∫
D

|v|p+1
dxdy + c3

[
|η̄|p+1

Lp+1(Γ) + |η̄|p∗
Lp∗ (Γ)

]
+

1

4
‖∂tv(t)‖2

H,

where p∗ = 2(p + 1)/(3 − p). We also have that∣∣∣∣∫
D

hε∂tv
idxdy

∣∣∣∣ ≤ c1 + c2‖η̄‖2
H2(Γ) +

1

4
‖∂tv(t)‖2

H
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Therefore from (39) we have that

∂tΨε(v(t)) +
1

2
‖∂tv(t)‖2

H(41)

≤ c1 + c2‖v‖p+1
Lp+1(D) + c3

(
‖η̄‖2

H2(Γ) + |η̄|p+1
Lp+1(Γ) + |η̄|p∗

Lp∗ (Γ)

)
.

Consequently, choosing positive constants b0 and b1 in an appropriate way one can
see that

Vε(u) := b0‖u‖2
H + Ψε(u) + b1(42)

with Ψε given by (40) satisfies the relations

c0V
0
ε (v) ≤ Vε(v) ≤ c1

[
1 + V 0

ε (v)
]

(43)

with V 0
ε (v) given by (38). Moreover, due to (35) we can choose b0 and b1 such that

d

dt
Vε(v) + γVε(v) +

1

2
‖∂tvε(t)‖2

H ≤ R2
1(θtω),(44)

with positive γ, where

R2
1(ω) = c

(
1 + ‖η̄(ω)‖p+1

Lp+1(Γ) + |η̄(ω)|p∗
Lp∗ (Γ) + ‖η̄(ω)‖2

H2(Γ)

)
, p∗ =

2p + 2

3 − p
.(45)

We note that R1(ω) is a tempered random variable because t �→ η̄(θtω) is a tempered
process with values in H2(Γ) ∩ C(Γ). From (44) we have that

Vε(v(t)) ≤ e−γ(t−s)Vε(v(s)) +

∫ t

s

e−γ(t−τ)R2
1(θτω)dτ, t ≥ s.(46)

By (43) we also have

V 0
ε (v(t)) ≤ c1e

−γ(t−s)V 0
ε (v(s)) + c2

∫ t

s

e−γ(t−τ)R2
1(θτω)dτ, t ≥ s.

Therefore using (37) after integration with respect to s over the interval [0, t] we
obtain

V 0
ε (v(t)) ≤ c1

t
‖v0‖2

He−γ∗t + c2

(
1 +

1

t

)∫ t

0

e−γ∗(t−τ)R2
1(θτω)dτ, t > 0,(47)

for some 0 < γ∗ ≤ γ. Relations (46) and (47) makes it possible to conclude that there
exists a tempered random variable R∗(ω) such that the set

B(ω) =
{
v : Vε(v) ≤ R2

∗(ω)
}

(48)

is forward invariant and absorbing. It is clear that B(ω) is compact in H for each
ω ∈ Ω. Moreover, R2

∗(ω) does not depend on ε.
Completion of the proof of Proposition 5.1. The proof follows from Theo-

rem 2.3 and Lemmata 5.2 and 5.3. Relation (31) follows from (47), (48), and properties
of the functionals V 0

ε and Vε given in (38), (42), and (43).



1502 T. CARABALLO, I. D. CHUESHOV, AND P. E. KLOEDEN

Remark 5.4. It also follows from (44) and (37) that

∫ t

0

τe−γ∗(t−τ)‖∂tvε(τ)‖2
Hdτ ≤ c1‖v0‖2

He−γ∗t + c2

∫ t

0

(1 + τ)e−γ∗(t−τ)R2
1(θτω)dτ,

(49)

for all t ≥ 0, where γ∗ > 0. Below we will also need the next lemma.
Lemma 5.5. For any initial data v, v∗ ∈ H we have the estimate

‖φε(t, ω)v − φε(t, ω)v∗‖H ≤ c1e
c2t‖v − v∗‖H, ω ∈ Ω,(50)

where c1 and c2 do not depend on ω ∈ Ω and ε ∈ (0, 1].
Proof. We use the same method as in Lemma 5.2 by considering the difference of

two solutions and relying on the property(
fi(v

i + η̄) − fi(v
i
∗ + η̄)

)
(vi − vi∗) ≥ −c0|vi − vi∗|2,

where c0 does not depend on ω and ε.

5.2. Limiting system. The same change of unknown variable U = v+ η̄ trans-
forms equation (8) into the following random PDE on Γ:⎧⎨⎩

∂tv − νΔv + av + f(v + η̄(θtω)) + h(x′) = 0, t > 0, x′ ∈ Γ,

∂v
∂n

∣∣
∂Γ

= 0, v|t=0 = v0,
(51)

where ν, f(v), and h are given by (9). The same argument as in section 4 allows us
to prove that problem (51) generates an RDS (θ, φ0) in the space L2(Γ) and thus to
establish Theorem 3.1(2).

The following assertion states the existence of a pullback attractor for this RDS
(θ, φ0).

Proposition 5.6. In the space L2(Γ), problem (51) generates an RDS (θ, φ0)
possessing a compact pullback attractor {A0(ω)} which belongs to the space H1(Γ). If
the correlation operator K possesses the properties (i) Kh = 0 if and only if h = 0
and (ii) the image of K is dense in L2(Γ), then the attractor {A0(ω)} is a singleton;
i.e., there exists a tempered random variable v0(ω) with values in H1(Γ) such that
A0(ω) = {v0(ω)} for all ω ∈ Ω.

Proof. To prove the existence of the attractor we argue exactly as in Proposi-
tion 5.1 and we do not repeat it again.

As for the second part, we first note that the RDS (θ, φ0) is monotone; i.e., the
property v(x) ≤ v∗(x) for almost all x ∈ Γ implies that

[φ0(t, ω)v] (x) ≤ [φ0(t, ω)v∗] (x) for almost all x ∈ Γ,

for all t > 0, and for ω ∈ Ω. This monotonicity property can be established by
the standard (pathwise) argument (see, e.g., [31]). We also refer to [10] for a general
discussion of monotone RDSs. Our next step is to apply a result from [15] which states
that, under some conditions, the global pullback attractor of a monotone RDS consists
of a single random equilibrium. The main hypothesis in [15] is the weak convergence
of distributions of the process t �→ φ0(t, ω)v to some limiting probability measure. In
our case we can guarantee this property because the noise Ẇ is nondegenerate in the
phase space of the system (θ, φ0). We refer to [15, subsection 4.5] for details.
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Propositions 5.1 and 5.6 imply Theorem 3.1(4).
Remark 5.7. Although it is possible to prove that the RDS (θ, φε) generated by

problem (25)–(28) is also monotone, we cannot apply the result from [15] to prove that

Âε is a single equilibrium. The point is that the noise Ẇ is nondegenerate in L2(Γ) (the
phase space of the system (θ, φ0)), but it is degenerate in H = L2(D) (the phase space
for (θ, φε)), and hence we cannot guarantee the weak convergence of distributions of

the process t �→ φε(t, ω)U0. Thus the pullback attractor Âε may contain more than
one equilibrium. The same conclusion is valid for problem (19). One can prove that
(19) generates a monotone RDS with a compact pullback attractor, but to conclude
that this attractor is a random equilibrium we need the nondegeneracy of the noise
in L2(Γ) × L2(Γ), which is obviously not true for this case.

Remark 5.8. 1. It is clear from the argument in the proof of Lemma 5.5 that

‖φ0(t, ω)v − φ0(t, ω)v∗‖L2(Γ) ≤ c1e
c2t‖v − v∗‖L2(Γ), ω ∈ Ω,(52)

for some constants c1 and c2 independent of ω, where v, v∗ ∈ L2(Γ).
2. Since L2(Γ) can be embedded naturally into L2(D) ∼ H as the subspace of

functions independent of y, we can consider the cocycle φ0 as a mapping from L2(Γ)

into H. Therefore we can compare it with φε. Below we also consider the image Ã0(ω)
of A0(ω) under this embedding.

6. Limit transition on finite time intervals. Our main result in this section
is the following theorem, which implies the third statement in Theorem 3.1.

Theorem 6.1. For any time interval we have that

lim
ε→0

sup
t∈[δ,T ]

‖φε(t, ω)v − φ0(t, ω)v∗‖H = 0 ∀δ ∈ (0, T ),(53)

where v∗ = 〈v〉 := 1
2

∫ 1

−1
v(x, y)dy. If v does not depend on y, i.e., v = v∗, then

lim
ε→0

sup
t∈[0,T ]

‖φε(t, ω)v − φ0(t, ω)v∗‖H = 0.(54)

Proof. Let wε(t) = φε(t, ω)v. It follows from (37), (47), and (49) that

sup
t∈[0,T ]

∑
i=1,2

‖wi
ε(t)‖2

L2(Di)
+

∫ T

0

‖wi
ε(t)‖2

H1(Di)
dt ≤ CT (ω),(55)

and, for every δ > 0,

sup
t∈[δ,T ]

∑
i=1,2

‖wi
ε(t)‖2

H1(Di)
+
∑
i=1,2

∫ T

δ

‖∂twi
ε(t)‖2

L2(Di)
dt ≤ CT,δ(ω),(56)

1

ε2

⎡⎣ sup
t∈[δ,T ]

∑
i=1,2

‖∂ywi
ε(t)‖2

L2(Di)
+
∑
i=1,2

∫ T

0

‖∂ywi
ε(t)‖2

L2(Di)
dt

⎤⎦ ≤ CT,δ(ω).(57)

Moreover, we have that

sup
t∈[δ,T ]

∫
Γ

k(x′, ε)

ε
|w1

ε(t) − w2
ε(t)|2dx′ +

∫ T

0

dt

∫
Γ

k(x′, ε)

ε
|w1

ε(t) − w2
ε(t)|2dx′ ≤ CT,δ(ω)

(58)
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for all intervals [0, T ] and ε ∈ (0, 1]. Therefore, using relations (55)–(57) and Aubin’s
compactness theorem we can conclude that there exist a pair of functions

ui ∈ C(δ, T ;L2(Γ)) ∩ L∞(δ, T ;H1(Γ)), i = 1, 2, ∀δ > 0

and a sequence {εn} such that

lim
n→∞

∑
i=1,2

sup
t∈[δ,T ]

‖wi
εn(t) − ui(t)‖L2(Di) = 0.(59)

Moreover, we also have weak convergence in L2(0, T ;H1(D)). One can also see from
(58) and (6) that u1(t) = u2(t) ≡ u(t) on the set Γ. Considering a variational form of
(25)–(28), one can show that u(t) solves problem (51). The corresponding argument
is exactly the same as in [13] for the deterministic case and therefore we do not give
details here. Thus (53) follows from (59) and from the uniqueness theorem for (51).

To prove (54) we first consider v ≡ v∗ from the space H1(Γ) ∩ Lp+1(Γ). In this
case relying on (46) with s = 0 and using the fact that Vε(v) does not depend on ε
for this choice of v, we can easily prove estimates (56) and (57) with δ = 0. Thus the
same argument as above gives (54) for v ≡ v∗ from H1(Γ) ∩ Lp+1(Γ). To obtain (54)
for v∗ ∈ L2(Γ) we use an appropriate approximation procedure and relations (50) and
(52).

Remark 6.2. By a standard argument we can prove that (53) and (54) hold
uniformly with respect to v in every compact set.

Remark 6.3. Since the arguments given in Lemmata 5.2 and 5.3 do not depend
on the behavior of k(x, ε) as ε → 0, the estimates in (55)–(58) hold for both cases
(6) and (18). Thus, in the latter case, we can also conclude from (55)–(57) that w1

ε

and w2
ε converge to some functions u1 and u2 defined on Γ. However, in that case we

cannot prove that u1 and u2 are the same because under condition (18) estimate (58)
does not lead to the conclusion. In the case (18) the same arguments as in [12, 13]
give us the convergence of φ̄ε(t, ω) generated by (1)–(4) to the cocycle generated by
(19).

7. Upper semicontinuity of attractors. In this section we prove the following
assertion, which is our first result on synchronization.

Theorem 7.1. Let {Aε(ω)} be the global random pullback attractor for the RDS
(θ, φε) generated by (25)–(28). Then

lim
ε→0

sup
{

distH

(
u, Ã0(ω)

)
: u ∈ A

ε(ω)
}

= 0 ∀ω ∈ Ω,(60)

where Ã0(ω) =
{
J(v) : v ∈ A0(ω)

}
⊂ H. Here {A0(ω)} is the random pullback at-

tractor for the RDS (θ, φ0) and J : L2(Γ) �→ L2(D) = H is the natural embedding
operator.

Proof. Assume that (60) does not hold for some ω ∈ Ω. Then there exist a
sequence {εn} with εn → 0 and a sequence un ∈ Aεn(ω) such that

distH(un, Ã
0(ω)) ≥ δ > 0 ∀ n = 1, 2, . . . .(61)

By the invariance property of the attractor Aεn(ω), for every t > 0 there exists
vtn ∈ Aεn(θ−tω) such that un = φεn(t, θ−tω)vtn. Since Aεn(ω) is compact and estimate
(31) holds, we can assume that there exist u∗ and vt∗ in H1(D1) ⊕H1(D2) such that

lim
n→∞

‖un − u∗‖H = 0, lim
n→∞

‖vtn − vt∗‖H = 0.(62)
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As in the proof of Theorem 6.1 one can see that

u∗ = ũ⊕ ũ, vt∗ = ṽt ⊕ ṽt,

where ũ, ṽt ∈ H1(Γ). Therefore, if we show that ũ ∈ A0(ω), then we obtain a
contradiction to (61).

It follows from Lemma 5.5 and Theorem 6.1 that

ũ = φ0(t, θ−tω)ṽt.

However, it follows from (31) and (62) that ṽt ∈ B0(θ−tω), where

B0(ω) =
{
v ∈ H1(Γ) : ‖v‖H1(Γ) ≤ R̃(ω)

}
,

where R̃(ω) is a tempered random variable. Thus we have that

ũ ∈ φ0(t, θ−tω)B0(θ−tω) for every t > 0.

Since φ0(t, θ−tω)B0(θ−tω) → A0(ω) as t → ∞, this implies that ũ ∈ A0(ω).
Theorem 3.1(5) follows from Theorem 7.1.
Remark 7.2. In the case (18), similarly to the deterministic case (see [12, 13]), we

can prove the upper convergence of the pullback attractors Âε to the corresponding
object for the RDS generated by (19). We also refer to [6] and to the references
therein for a general study of upper semicontinuity of random and nonautonomous
attractors.

8. Synchronization for fixed ε > 0. Now we consider the case when the
equations are the same in both domains; i.e., we assume that relations (14), (15), and
(16) hold.

Under conditions (14) the cocycle φε has a deterministic forward invariant sub-
space L in H consisting of functions which are independent of the variable y, i.e.,

L = {u(x, y) ∈ L2(D) : u(x, y) ≡ u(x, 0) ≡ v ∈ L2(Γ)} .

It is clear that φε(t, ω)L ⊂ L and φε(t, ω) ≡ φ0(t, ω) on L.
Theorem 8.1. Under conditions (14), (15), and (16) there exists ε0 > 0 such

that for all ε ∈ (0, ε0] the global random pullback attractor Aε(ω) for (θ, φε) has the
form

A
ε(ω) ≡ Ã

0(ω) =
{
J(v) : v ∈ A

0(ω)
}
⊂ H,(63)

where J : L2(Γ) �→ L2(D) = H is the natural embedding operator and A0(ω) is the
random pullback attractor for the RDS (θ, φ0).

Proof. Let P be the orthoprojector in H onto L. This operator has the form

(Pu)(x, y) =
1

2

∫ 1

−1

u(x, ξ)dξ, u ∈ H ∼ L2(D).

Let Q = 1−P . Both of the operators P and Q map the domain D(Aε) of the operator
Aε into itself and commute with Aε. Therefore it follows from (30) that Qvε satisfies
the equation

d

dt
Qvε + AεQvε = QB(vε, θtω), Qv|t=0 = Qv0.(64)



1506 T. CARABALLO, I. D. CHUESHOV, AND P. E. KLOEDEN

Multiplying this equation by Qvε we obtain

1

2

d

dt
‖Qvε‖2

H + aε(Qvε, Qvε)H = (QB(vε, θtω), Qvε)H.(65)

From (15) we have that

(QB(vε, θtω), Qvε)H =

∫
D

[
f(vε(x, y)) −

1

2

∫ 1

−1

f(vε(x, ξ))dξ

]
Qvε(x, y)dxdy

≤ L

2

∫
D

∫ 1

−1

|vε(x, y) − vε(x, ξ)|Qvε(x, y)dξdxdy

≤ L√
2

[∫
Γ

dx

∫ 1

−1

dy

∫ 1

−1

dξ |vε(x, y) − vε(x, ξ)|2
]1/2

‖Qvε‖H.

If we add and subtract Pvε in the expression under the integral, then we easily arrive
at the relation

(QB(vε, θtω), Qvε)H ≤ 2L‖Qvε‖2
H.(66)

Thus from (65) we obtain that

1

2

d

dt
‖Qvε‖2

H + aε(Qvε, Qvε)H ≤ 2L‖Qvε‖2
H.(67)

Lemma 8.2. Under conditions (14) and (16) we have that

lim
ε→0

sup

{
aε(Qvε, Qvε)H

‖Qvε‖2
H

: v ∈ H1
ε

}
= +∞.(68)

Proof. Basically we use the same calculations of the spectrum of Aε as
in [11].

Lemma 8.2 implies that there exists ε0 > 0 such that

d

dt
‖Qvε‖2

H + γ0‖Qvε‖2
H ≤ 0

for all 0 < ε ≤ ε0 and for some γ0 > 0. Therefore,

‖Qvε(t)‖2
H ≤ ‖Qvε(0)‖2

He−γ0t, t ≥ 0.

This implies that the subspace L attracts all tempered sets (in both the forward and
the pullback sense) with exponential (deterministic) speed. Since φε(t, ω) ≡ φ0(t, ω)
on L, this implies (63).

Theorem 8.1 implies Theorem 3.1(6).
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