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Abstract

Sufficient conditions for exponential mean square stability of solutions to delayed

stochastic partial differential equations of second order in time are established. As

a consequence of these results, the pathwise exponential stability of the system is

also deduced. The stability results derived can be applied also to partial differential

equations without hereditary characteristics. The results are illustrated with various

examples.

1 Introduction

Stochastic differential delay equations and their asymptotic behaviour have been receiving

much attention over the last years (see [1], [2], [5], [9], [7], [8], [10], [12], [13], and the refer-

ences therein) since these retarded problems often appear in Physics, Biology, Engineering,

etc...

The delays can enter in the formulations in very different ways, e.g., as a constant or

variable delay, as a distributed one, or even some of them can appear in the model at the

same time. However, it is possible to consider all of them under a unified formulation by

using an appropriate differential functional equations. In this sense, we will carry out our

analysis in a functional framework which will cover a wide variety of situations containing

finite delays.
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There exists a wide literature concerning pathwise exponential stability of parabolic

stochastic evolution equations (with and without delays). We mention here, amongst many

others, Caraballo and Liu [4], Liu and Mao [11], Taniguchi [12], Taniguchi et al. [13] and the

references therein. In the case without hereditary characteristics the problem of the asymp-

totic stability of delay stochastic partial differential equations of second order in time has

been considered by Curtain [6], where one can find sufficient conditions for the exponential

stability of the expected energy of the system, as well as for the exponential decay of the

sample paths, when the main operator generates a strongly continuous contraction semi-

group. In this paper, we shall develop the theory in a variational framework for non-linear

operators in general.

We are going to consider the following model




u′(t) +
∫ t

0
A(s)u(s)ds +

∫ t

0
B(s, u′(s))ds = v0 +

∫ t

0
F (s, us, u

′
s)ds

+
∫ t

0
G(s, us, u

′
s)dW (s), t ≥ 0,

u(0) = u0,

u(t) = ϕ1(t), u′(t) = ϕ2(t), a.e. t ∈ (−h, 0),

(1)

where A is a family of linear operators and B, F,G are appropriate nonlinear operators on

some Hilbert spaces (usually both F and G will be first order partial derivative operators),

ϕ1, ϕ2 are suitable delay functions and h > 0 is a fixed constant.

In our recent work [3], the exponential behaviour of solutions of problem (1) has been

analysed focusing on the case in which the operators are of zero order and when a particular

family of nonlinear operators B (t, ·) appears. Our aim in this work is to obtain some

sufficient conditions ensuring exponential stability of the solution of problem (1) when F

and/or G can eventually depend on the spatial derivatives of u, and B (t, ·) is a general

family of nonlinear operators.

Although the structure of this work paralells that of [3], needless to say that several

differences will appear due to the different nature of operators appearing in the problem.

Of course, our results are a consistent extension of those in [3] in the sense that, when the

operators considered are of zero order, we recover the results in [3].

The content of the paper is as follows. In Section 2 we prove a result on the exponential

stability in mean square for the solution of problem (1) when F (t, ut, u
′
t) and G(t, ut, u

′
t) do

not depend on the spatial derivatives of u, being B a general family of nonlinear operators.

We also indicate how this result can be applied in some particular cases. As a consequence of

the mean square stability, we obtain pathwise exponential stability. In Section 3 we establish

a sufficient condition ensuring mean square stability for delay stochastic partial differential
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equations of second order in time in a more general situation: F (t, ut, u
′
t) and/or G(t, ut, u

′
t)

may depend on the spatial derivatives of u. Moreover, in this section we will exhibit how

we can prove a result on the pathwise exponential stability in this more general situation.

In Section 4 we illustrate our theory with some examples, and, finally, some conclusions are

included in the last section.

2 Delays independent of the spatial derivatives

Assume {Ω,F , P} is a complete probability space with a normal filtration {Ft}t≥0, i.e., F0

contains the null sets in F , and Ft = ∩s>tFs, for all t ≥ 0. Denote Ft = F0 for all t ≤ 0.

Let us consider a real valued {Ft}−Wiener process {W (t)}t≥0.

Given real numbers a < b and a separable Hilbert space H, we will denote by I2(a, b;H)

the closed subspace of L2(Ω×(a, b),F⊗B ([a, b]) ,dP⊗dt;H) of all stochastic processes which

are Ft-adapted for almost every t in (a, b) (in what follows, a.e. t), where B ([a, b]) denotes

the Borel σ-algebra of subsets in [a, b]. If ϕ ∈ I2(a, b;H) we will write |ϕ|I2
H

to denote the

norm |ϕ|I2(a,b;H).

We denote by L2(Ω;C(a, b;H)) the space of processes X ∈ L2(Ω,F , dP ;C(a, b;H)) such

that X(t) is Ft-measurable for each t in [a, b], where C(a, b;H) denotes the space of all

continuous functions from [a, b] into H equipped with supremum norm.

Let us fix h > 0 and consider T > 0. If we have a function x ∈ C(−h, T ;H), for

each t ∈ [0, T ] we denote by xt ∈ C(−h, 0;H) the function defined by xt(s) = x(t + s),

−h ≤ s ≤ 0. Moreover, if y ∈ L2(−h, T ;H) we also denote by yt ∈ L2(−h, 0;H), a.e.

t ∈ (0, T ), the function defined by yt(s) = y(t + s), a.e. s ∈ (−h, 0).

We will study the qualitative behaviour of the following delay stochastic functional equa-

tion:




u ∈ I2(−h, T ; V ) ∩ L2(Ω;C(0, T ;V )), for all T > 0,

v ∈ I2(−h, T ;H) ∩ L2(Ω;C(0, T ; H)), for all T > 0,

u′(t) = v(t), t ∈ [0, T ],

v(t) +
∫ t

0
A(s)u(s)ds +

∫ t

0
B(s, v(s))ds = v0 +

∫ t

0
F0(s, us, vs)ds

+
∫ t

0
G0(s, us, vs)dW (s), t ≥ 0,

u(0) = u0,

u(t) = ϕ1(t), v(t) = ϕ2(t), a.e. t ∈ (−h, 0),

(P )

where V and H are two real separable Hilbert spaces such that V ⊂ H ≡ H∗ ⊂ V ∗ where the

injections are continuous and dense. We denote by ‖·‖ , |·| and ‖·‖∗ the norms in V , H and

3



V ∗ respectively; by (·, ·) the inner product in H, and by 〈·, ·〉 the duality product between

V ∗ and V . Let us denote by c > 0 a constant such that |x| ≤ c ‖x‖ , ∀x ∈ V. We suppose

that ϕ1 ∈ I2(−h, 0; V ), ϕ2 ∈ I2(−h, 0;H), u0 ∈ L2(Ω,F0, P ; V ) and v0 ∈ L2(Ω,F0, P ; H),

and let A(t) : V → V ∗, t ≥ 0, be a family of operators satisfying:

(A.1) A(t) is self-adjoint for each t ≥ 0.

(A.2) A(t) ∈ L(V, V ∗) ∀ t ≥ 0, and there exists cA > 0 such that ‖A(t)u‖∗ ≤ cA ‖u‖ ,

∀t ≥ 0,∀u ∈ V.

(A.3) ∃α > 0 such that 〈A(t)u, u〉 ≥ α ‖u‖2 , ∀t ≥ 0,∀u ∈ V.

(A.4) 〈A(·)u, ũ〉 ∈ C1(0,+∞), ∀u, ũ ∈ V, and 〈A′(t)u, u〉 ≤ 0, ∀t ≥ 0, ∀u ∈ V, where

〈A′(t)u, ũ〉 denotes d
dt 〈A(t)u, ũ〉 .

(A.5) there exists a Banach space X such that X ⊂ {u ∈ V ; A(t)u ∈ H, ∀t ≥ 0}, the

injection of X in V is continuous, and X is dense in H.

Let B(t, ·) : V → V ∗ be a family of nonlinear operators defined a.e. t ≥ 0 and satisfying:

(B.1) ∀v ∈ V, the map t ∈ (0, +∞) → B(t, v) ∈ V ∗ is Lebesgue measurable.

(B.2) the map θ ∈ R→ 〈B(t, v + θw), z〉 ∈ R is continuous ∀v, w, z ∈ V, a.e. t ≥ 0.

(B.3) there exists cB > 0 such that ‖B(t, v)‖∗ ≤ cB ‖v‖ , ∀v ∈ V, a.e. t ≥ 0.

(B.4) there exists β > 0 such that 〈B(t, v)−B(t, ṽ), v − ṽ〉 ≥ β ‖v − ṽ‖2 , ∀v, ṽ ∈ V, a.e.

t ≥ 0.

Let F0 : [0,+∞) × C(−h, 0; V ) × C(−h, 0; H) → H and G0 : [0, +∞) × C(−h, 0; V ) ×
C(−h, 0; H) → H be two families of nonlinear operators defined a.e. t ≥ 0 such that:

(F0.1) ∀(ξ, η) ∈ C(−h, 0; V )×C(−h, 0; H) the map t ∈ (0,+∞) → F0(t, ξ, η) ∈ H is Lebesgue

measurable, a.e. t ≥ 0.

(F0.2) F0(t, 0, 0) = 0, a.e. t ≥ 0.

(F0.3) there exist CF0,H , CF0,V > 0 such that ∀ξ, ξ̃ ∈ C(−h, 0; V ), ∀η, η̃ ∈ C(−h, 0;H) and

a.e. t ≥ 0,

|F0(t, ξ, η)− F0(t, ξ̃, η̃)|2 ≤ CF0,V ||ξ − ξ̃||2C(−h,0;V ) + CF0,H |η − η̃|2C(−h,0;H) .

4



(F0.4) there exist m0 > 0 and constants KF0,H = KF0,H(m0, h),KF0,V = KF0,V (m0, h) ≥ 0

such that for all m ∈ [0,m0], ∀x, x̃ ∈ C(−h, T ;V ),∀y, ỹ ∈ C(−h, T ;H), and ∀t ≥ 0

∫ t

0

ems |F0(s, xs, ys)− F0(s, x̃s, ỹs)|2 ds

≤ KF0,V

∫ t

−h

ems ‖x(s)− x̃(s)‖2 ds + KF0,H

∫ t

−h

ems |y(s)− ỹ(s)|2 ds.

(G0.1) ∀(ξ, η) ∈ C(−h, 0; V )×C(−h, 0;H) the map t ∈ (0,+∞) → G0(t, ξ, η) ∈ H is Lebesgue

measurable, a.e. t ≥ 0.

(G0.2) G0(t, 0, 0) = 0, a.e. t ≥ 0.

(G0.3) there exist CG0,H , CG0,V > 0 such that ∀ξ, ξ̃ ∈ C(−h, 0; V ),∀η, η̃ ∈ C(−h, 0; H) and

a.e. t ≥ 0,

|G0(t, ξ, η)−G0(t, ξ̃, η̃)|2 ≤ CG0,V ||ξ − ξ̃||2C(−h,0;V ) + CG0,H |η − η̃|2C(−h,0;H) .

(G0.4) there exist m0 > 0 and constants KG0,H = KG0,H(m0, h),KG0,V = KG0,V (m0, h) ≥ 0

such that for all m ∈ [0,m0], ∀x, x̃ ∈ C(−h, T ;V ),∀y, ỹ ∈ C(−h, T ;H), and ∀t ≥ 0

∫ t

0

ems |G0(s, xs, ys)−G0(s, x̃s, ỹs)|2 ds

≤ KG0,V

∫ t

−h

ems ‖x(s)− x̃(s)‖2 ds + KG0,H

∫ t

−h

ems |y(s)− ỹ(s)|2 ds.

A similar analysis to that in Remark 1 in [8] shows that, under our assumptions all the

integrals appearing in problem (P ) are well defined, and therefore, the above problem makes

sense.

On the other hand, assumptions (F0.2), (G0.2) are motivated by our interest in analysing

the stability of the zero solution to our problem, but they are not necessary to prove existence

of solution. Several results on the existence and uniqueness of solutions for delay stochastic

evolution equations of second order in time can be seen in Garrido-Atienza [7], and Garrido-

Atienza and Real [8]. In particular, we have:

Theorem 1 Assume that hypotheses (A.1)− (A.5), (B.1)− (B.4), (F0.1)− (F0.4), (G0.1)−
(G0.4) hold. Then, if ϕ1 ∈ I2(−h, 0; V ), ϕ2 ∈ I2(−h, 0; H), u0 ∈ L2(Ω,F0, P ; V ) and

v0 ∈ L2(Ω,F0, P ;H), there exists a unique solution (u, v) to problem (P ), for all T > 0.

We start with a result on the mean square stability for problem (P ).
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Theorem 2 Suppose that assumptions (A.1)−(A.5), (B.1)−(B.4), (F0.1)−(F0.4), (G0.1)−
(G0.4) hold. In addition, assume that there exist constants ε > 0 and δ > 0 such that





2α3/2Cδ > cKε,

and

Cδ

(
2β − c2(2K

1/2
F0,H + ε + KG0,H)

)
> (4α2δ)−1(4αδc2 + (c2K

1/2
F0,H + cB)2)Kε,

(2)

where Cδ = 1 − δ − cK
1/2
F0,V α−1 and Kε = KF0,V ε−1 + KG0,V . Then, the zero solution

of problem (P ) is exponentially stable in mean square, i.e., there exist m ∈ (0,m0] and

K1 = K1(m0, h) > 0 such that, for all t ≥ 0,

E
(
|v(t)|2 + ‖u(t)‖2

)
≤ K1

(
E |v0|2 + E ‖u0‖2 + |ϕ2|2I2

H
+ ‖ϕ1‖2I2

V

)
e−mt, (3)

for any solution (u, v) of (P ).

Proof. Let m ∈ (0,m0]. Applying Itô’s formula to the process emt |v(t)|2 +emt 〈A(t)u(t), u(t)〉
and thanks to (A.4) and (B.4), we obtain for each t ≥ 0 and P -a.s.

emtE |v(t)|2 + emtE 〈A(t)u(t), u(t)〉 (4)

≤ E |v0|2 + E 〈A(0)u0, u0〉+ m

∫ t

0

emsE |v(s)|2 ds

+ m

∫ t

0

emsE 〈A(s)u(s), u(s)〉ds− 2β

∫ t

0

emsE ‖v(s)‖2 ds

+ 2
∫ t

0

emsE(F0(s, us, vs), v(s))ds +
∫ t

0

emsE |G0(s, us, vs)|2 ds.

As emt ≤ 1, ∀t ∈ [−h, 0], from (F0.4) and (A.3) we obtain

2
∫ t

0

emsE(F0(s, us, vs), v(s))ds

≤ 2
(∫ t

0

emsE |v(s)|2 ds

)1/2 (∫ t

0

emsE |F0(s, us, vs)|2 ds

)1/2

≤ 2K
1/2
F0,H

∫ t

−h

emsE |v(s)|2 ds + 2
(

KF0,V

∫ t

−h

emsE ‖u(s)‖2 ds

)1/2 (∫ t

0

emsE |v(s)|2 ds

)1/2

≤
(
2K

1/2
F0,H + ε

) ∫ t

0

emsE |v(s)|2 ds + KF0,V (αε)−1

∫ t

0

emsE 〈A(s)u(s), u(s)〉ds

+ KF0,V ε−1 ‖ϕ1‖2I2
V

+ 2K
1/2
F0,H |ϕ2|2I2

H
,

for ε > 0, and by (G0.4) and (A.3),
∫ t

0

emsE |G0(s, us, vs)|2 ds ≤ KG0,H |ϕ2|2I2
H

+ KG0,H

∫ t

0

emsE |v(s)|2 ds

+ KG0,V ‖ϕ1‖2I2
V

+ KG0,V α−1

∫ t

0

emsE 〈A(s)u(s), u(s)〉ds.
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Thus, if we substitute these inequalities into (4) we have

emtE |v(t)|2 + emtE 〈A(t)u(t), u(t)〉 (5)

≤ E |v0|2 + E 〈A(0)u0, u0〉+ Kε ‖ϕ1‖2I2
V

+ (2K
1/2
F0,H + KG0,H) |ϕ2|2I2

H

+
(
m + 2K

1/2
F0,H + ε + KG0,H

) ∫ t

0

emsE |v(s)|2 ds− 2β

∫ t

0

emsE ‖v(s)‖2 ds

+
(
m + Kεα

−1
) ∫ t

0

emsE 〈A(s)u(s), u(s)〉ds.

Now, we estimate the last integral on the right hand side of (5). From

d(emt(u(t), v(t))) = memt(u(t), v(t))dt + emt |v(t)|2 dt− emt 〈A(t)u(t), u(t)〉dt

− emt 〈B(t, v(t)), u(t)〉dt + emt(F0(t, ut, vt), u(t)) + emt(G0(t, ut, vt), u(t))dW (t),

we deduce

emtE(u(t), v(t)) = E(u0, v0) + m

∫ t

0

emsE(u(s), v(s))ds

+
∫ t

0

emsE |v(s)|2 ds−
∫ t

0

emsE 〈A(s)u(s), u(s)〉 ds

−
∫ t

0

emsE 〈B(s, v(s)), u(s)〉ds +
∫ t

0

emsE(F0(s, us, vs), u(s))ds.

Consequently,
∫ t

0

emsE 〈A(s)u(s), u(s)〉ds

≤ E(u0, v0) +
∫ t

0

emsE |v(s)|2 ds

+ (c2m + cB)
(∫ t

0

emsE ‖v(s)‖2 ds

)1/2 (
α−1

∫ t

0

emsE 〈A(s)u(s), u(s)〉 ds

)1/2

+
(∫ t

0

emsE |F0(s, us, vs)|2 ds

)1/2 (
c2

∫ t

0

emsE ‖u(s)‖2 ds

)1/2

+
(
emtE |v(t)|2

)1/2 (
c2α−1emtE 〈A(t)u(t), u(t)〉)1/2

≤ E(u0, v0) +
∫ t

0

emsE |v(s)|2 ds + cK
1/2
F0,V ‖ϕ1‖2I2

V
+ (c2(m + K

1/2
F0,H) + cB)2(4αδ)−1 |ϕ2|2I2

H

+ (c2(m + K
1/2
F0,H) + cB)2(4αδ)−1

∫ t

0

emsE ‖v(s)‖2 ds

+
(
δ + cK

1/2
F0,V α−1

) ∫ t

0

emsE 〈A(s)u(s), u(s)〉ds

+ c(2α1/2)−1emtE
(
|v(t)|2 + 〈A(t)u(t), u(t)〉

)
,
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and thus

Cδ

∫ t

0

emsE 〈A(s)u(s), u(s)〉ds (6)

≤ E(u0, v0) + cK
1/2
F0,V ‖ϕ1‖2I2

V
+ (c2(m + K

1/2
F0,H) + cB)2(4αδ)−1 |ϕ2|2I2

H

+ c(2α1/2)−1emtE
(
|v(t)|2 + 〈A(t)u(t), u(t)〉

)

+ (4αδ)−1
(
4αδc2 + (c2(m + K

1/2
F0,H) + cB)2

)∫ t

0

emsE ||v(s)||2 ds.

Due to the first condition in (2), the constant Cδ is positive. Therefore, we have
(
1− c

(
m + Kεα

−1
)
(2α1/2Cδ)−1

)
emtE

(
|v(t)|2 + 〈A(t)u(t), u(t)〉

)
(7)

≤ E |v0|2 + E 〈A(0)u0, u0〉+
(
m + α−1Kε

)
C−1

δ E(u0, v0)

+
(
Kε + c

(
m + Kεα

−1
)
K

1/2
F0,V C−1

δ

)
‖ϕ1‖2I2

V

+
(
2K

1/2
F0,H + KG0,H + (c2(m + K

1/2
F0,H) + cB)2(m + Kεα

−1)(4αδCδ)−1
)
|ϕ2|2I2

H

+
(
c2(m + 2K

1/2
F0,H + ε + KG0,H)− 2β

) ∫ t

0

emsE ‖v(s)‖2 ds

+
(
m + Kεα

−1
)
(4αδCδ)−1

(
4αδc2 + (c2(m + K

1/2
F0,H) + cB)2

) ∫ t

0

emsE ‖v(s)‖2 ds.

Finally, taking into account the expressions of Cδ and Kε, Eq. (2) implies, for m > 0 small

enough, that

0 < 1− c
(
m + Kεα

−1
)
(2α1/2Cδ)−1,

2β > c2(m + 2K
1/2
F0,H + ε + KG0,H)

+
(
m + Kεα

−1
)
(4αδCδ)−1

(
4αδc2 + (c2(m + K

1/2
F0,H) + cB)2

)
,

which together with (A.2) and (A.3) finishes the proof.

Remark 3 Observe that condition (2) can be rewritten in an easier way in some particular

cases. Indeed, if we assume that KF0,V = 0 and fix δ =1/2 in Theorem 2, then (2) holds if

we suppose




KG0,V < c−1α3/2,

KG0,H < 2βc−2 − 2(α + (cK1/2
F0,H + cBc−1)2)α−2KG0,V − 2K

1/2
F0,H .

(8)

For our functional problem (P ), we will prove that the sample paths tend to zero expo-

nentially fast as t →∞ whenever the exponential mean square stability holds, in particular,

under the assumptions of Theorem 2. To this end, we will use a technique (based on the
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Burkholder-Davis-Gundy inequality, the Doob inequality and the Borel-Cantelli lemma)

which has proven very fruitful for parabolic equations (see, e.g. [1],[12],[13]).

First, we need the following result:

Lemma 4 In the conditions of Theorem 2, there exist constants C1, C2 > 0 such that for

any solution (u, v) of problem (P ) it follows
∫ t

0

emsE |v(s)|2 ds ≤ C1

(
E |v0|2 + E ‖u0‖2 + |ϕ2|2I2

H
+ ‖ϕ1‖2I2

V

)
, (9)

∫ t

0

emsE ‖u(s)‖2 ds ≤ C2

(
E |v0|2 + E ‖u0‖2 + |ϕ2|2I2

H
+ ‖ϕ1‖2I2

V

)
, (10)

for each t ≥ 0.

Proof. We first re-write (7) as
(
1− c

(
m + Kεα

−1
)
(2α1/2Cδ)−1

)
emtE

(
|v(t)|2 + 〈A(t)u(t), u(t)〉

)

≤ C̃1(E |v0|2 + E ‖u0‖2 + |ϕ2|2I2
H

+ ‖ϕ1‖2I2
V
)

+
(
c2(m + 2K

1/2
F0,H + ε + KG0,H)− 2β

) ∫ t

0

emsE ‖v(s)‖2 ds

+
(
m + Kεα

−1
)
(4αδCδ)−1

(
4αδc2 + (c2(m + K

1/2
F0,H) + cB)2

) ∫ t

0

emsE ‖v(s)‖2 ds.

Thus, owing to Theorem 2, we can choose m > 0 such that the constant C̃2 multiplying
∫ t

0
emsE ‖v(s)‖2ds in (7) becomes negative, and hence

∫ t

0

emsE ‖v(s)‖2 ds ≤ −C̃1C̃
−1
2 (E |v0|2 + E ‖u0‖2 + |ϕ2|2I2

H
+ ‖ϕ1‖2I2

V
). (11)

Now, to check (9) it is enough to take into account (11) and that |v|2 ≤ c2 ‖v‖2 , for all

v ∈ V.

On the other hand, (10) follows from (6) by taking into account (A.2), (A.3), (3) and

(11).

Now, using this lemma, we discuss the almost sure stability of solutions to (P ).

Theorem 5 Under assumptions in Theorem 2, there exist K2 = K2(m, h), γ > 0, and a

subset Ω0 ⊂ Ω with P (Ω0) = 0 such that, for each ω /∈ Ω0, there exists a positive random

variable T (ω) such that if (u, v) is a solution of (P ), it holds

|v(t)|2 + ‖u(t)‖2 ≤ K2

(
E |v0|2 + E ‖u0‖2 + |ϕ2|2I2

H
+ ‖ϕ1‖2I2

V

)
e−γt, ∀t ≥ T (ω),

i.e., (u(t), v(t)) decays exponentially to zero almost surely.
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Proof. We first prove that there exists a positive constant C such that for any N ∈ N

E

[
sup

N≤t≤N+1

(
|v(t)|2 + ‖u(t)‖2

)]
≤ Ce−mN

(
E |v0|2 + E ‖u0‖2 + |ϕ2|2I2

H
+ ‖ϕ1‖2I2

V

)
. (12)

Indeed, Ito’s formula implies once again

|v(t)|2 + 〈A(t)u(t), u(t)〉

= |v(N)|2 + 〈A(N)u(N), u(N)〉+
∫ t

N

〈A′(s)u(s), u(s)〉ds

− 2
∫ t

N

〈B(s, v(s)), v(s)〉ds + 2
∫ t

N

(F0(s, us, vs), v(s))ds

+
∫ t

N

|G0(s, us, vs)|2 ds + 2
∫ t

N

(G0(s, us, vs), v(s))dW (s).

Now, (A.2), (A.3), (A.4) and (B.4), yield that

sup
N≤t≤N+1

(
|v(t)|2 + α ‖u(t)‖2

)

≤ 2 |v(N)|2 + 2cA ‖u(N)‖2 + 2
∫ N+1

N

(F0(s, us, vs), v(s))ds

+ 2
∫ N+1

N

|G0(s, us, vs)|2 ds + 4 sup
N≤t≤N+1

(∣∣∣∣
∫ t

N

(G0(s, us, vs), v(s))dW (s)
∣∣∣∣
)

.

From (F0.4), (9) and (10), it follows

2
∫ N+1

N

E(F0(s, us, vs), v(s))ds

≤ 2
∫ N+1

N

em(s−N)E(F0(s, us, vs), v(s))ds

≤ e−mN (ε + 2K
1/2
F0,H)

∫ N+1

0

emsE |v(s)|2 ds + 2e−mNK
1/2
F0,H |ϕ2|2I2

H

+ e−mNKF0,V ε−1

∫ N+1

0

emsE ‖u(s)‖2 ds + e−mNKF0,V ε−1 ‖ϕ1‖2I2
V

≤ e−mN (ε + 2K
1/2
F0,H)C1

(
E |v0|2 + E ‖u0‖2 + |ϕ2|2I2

H
+ ‖ϕ1‖2I2

V

)

+ e−mNKF0,V ε−1C2

(
E |v0|2 + E ‖u0‖2 + |ϕ2|2I2

H
+ ‖ϕ1‖2I2

V

)

+ 2e−mNK
1/2
F0,H |ϕ2|2I2

H
+ e−mNKF0,V ε−1 ‖ϕ1‖2I2

V
.
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On the other hand, Burkholder-Davis-Gundy’s inequality, (G0.4), (9), and (10) imply

4E

[
sup

N≤t≤N+1

(∣∣∣∣
∫ t

N

(G0(s, us, vs), v(s))dW (s)
∣∣∣∣
)]

≤ 24E




(
sup

N≤t≤N+1
|v(t)|2

)1/2
(∫ N+1

N

|G0(s, us, vs)|2 ds

)1/2



≤ 1
2
E sup

N≤t≤N+1
|v(t)|2 + 288

∫ N+1

N

E |G0(s, us, vs)|2 ds

and
∫ N+1

N

E |G0(s, us, vs)|2 ds

≤
∫ N+1

N

em(s−N)E |G0(s, us, vs)|2 ds

≤ e−mN (KG0,V (1 + C2) + KG0,H(1 + C1))
(
E |v0|2 + E ‖u0‖2 + |ϕ2|2I2

H
+ ‖ϕ1‖2I2

V

)
.

Finally, from (3) we have

E
(
|v(N)|2 + ‖u(N)‖2

)
≤ K1

(
E |v0|2 + E ‖u0‖2 + |ϕ2|2I2

H
+ ‖ϕ1‖2I2

V

)
e−mN ,

for t > N. Then (12) follows from the previous estimates.

Now, given ε > 0, the Doob inequality implies

P

[
sup

N≤t≤N+1

(
|v(t)|2 + ‖u(t)‖2

)
≥ e−(m+ε)N

]

≤ e(m−ε)NE

[
sup

N≤t≤N+1

(
|v(t)|2 + ‖u(t)‖2

)]

≤ Ce−εN
(
E |v0|2 + E ‖u0‖2 + |ϕ2|2I2

H
+ ‖ϕ1‖2I2

V

)

and the Borel-Cantelli lemma can be now applied to complete the proof.

The previous results have been established in [3] in the case in which a more particular

family of nonlinear operators B(t, ·) appears. Indeed, in that paper we have considered that

B(t, ·) : H → H is a family of nonlinear operators defined a.e. t ≥ 0 and satisfying:

(B.1) ∀v ∈ H, the map t ∈ (0, +∞) → B(t, v) ∈ H is Lebesgue measurable.

(B.2) the map θ ∈ R→ (B(t, v + θw), z) ∈ R is continuous ∀v, w, z ∈ H, a.e. t ≥ 0.

(B.3) there exists cB > 0 such that |B(t, v)| ≤ cB |v| , ∀v ∈ H, a.e. t ≥ 0.

(B.4) there exists β > 0 such that (B(t, v) − B(t, ṽ), v − ṽ) ≥ β |v − ṽ|2 , ∀v, ṽ ∈ H, a.e.

t ≥ 0.
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Then, we can prove in the same way as in Theorem 2, that the null solution to corre-

sponding problem (P ) is exponentially stable in mean square if we suppose that there exist

some constants ε > 0 and δ > 0 such that




2α3/2Cδ > cKε,

and

Cδ

(
2β − (2K

1/2
F0,H + ε + KG0,H)

)
> (4α2δ)−1(4αδ + c2(K1/2

F0,H + cB)2)Kε,

(13)

If, in addition, we suppose as a particular situation, that F0 ≡ 0, G0(., u., v.) = G0(., u.)

(which means that KG0,H = 0) and we fix δ = 1
2 , then the null solution to the corresponding

problem is exponentially stable in mean square if

KG0,V < min
{

c−1, 2βα1/2(2α + (ccB)2)−1
}

α3/2. (14)

3 Spatial derivatives in the delayed operators

This section is devoted to establish analogous asymptotic stability results for a more general

delayed stochastic problem of second order in time, that is, the objective is to point out that

a theory similar to the one developed in the preceding section can be carry out also by using

the same techniques, for the below problem, in which it is accepted that delay can appear

in operators containing first order spatial partial derivatives. First of all, we are going to

formulate the hypotheses for the new operators:

Let F1 : [0, +∞) × C(−h, 0; V ) × C(−h, 0; H) → V ∗, G1 : [0,+∞) × C(−h, 0;V ) ×
C(−h, 0; V ) → H be two nonlinear operators such that:

(F1.1) ∀(ξ, η) ∈ C(−h, 0;V ) × C(−h, 0; H) the map t ∈ (0, +∞) → F1(t, ξ, η) ∈ V ∗ is

Lebesgue measurable, a.e. t.

(F1.2) F1(t, 0, 0) = 0, a.e. t ≥ 0.

(F1.3) there exist CF1,H , CF1,V > 0 such that ∀ξ, ξ̃ ∈ C(−h, 0; V ), ∀η, η̃ ∈ C(−h, 0;H) and

a.e. t,

||F1(t, ξ, η)− F1(t, ξ̃, η̃)||2∗ ≤ CF1,V ||ξ − ξ̃||2C(−h,0;V ) + CF1,H |η − η̃|2C(−h,0;H) ,

(F1.4) there exist m0 > 0 and constants KF1,H = KF1,H(m0, h),KF1,V = KF1,V (m0, h) ≥ 0
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such that for all m ∈ [0,m0], ∀x, x̃ ∈ C(−h, T ;V ),∀y, ỹ ∈ C(−h, T ;H), and ∀t ≥ 0
∫ t

0

ems ‖F1(s, xs, ys)− F1(s, x̃s, ỹs)‖2∗ ds

≤ KF1,V

∫ t

−h

ems ‖x(s)− x̃(s)‖2 ds + KF1,H

∫ t

−h

ems |y(s)− ỹ(s)|2 ds.

(G1.1) ∀(ξ, η) ∈ C(−h, 0; V )×C(−h, 0; V ) the map t ∈ (0, +∞) → G1(t, ξ, η) ∈ H is Lebesgue

measurable, a.e. t.

(G1.2) G1(t, 0, 0) = 0, a.e. t ≥ 0.

(G1.3) there exist CG1,V , C̃G1,V > 0 such that ∀ξ, ξ̃, η, η̃ ∈ C(−h, 0;V ) and a.e. t,

|G1(t, ξ, η)−G1(t, ξ̃, η̃)|2 ≤ CG1,V ||ξ − ξ̃||2C(−h,0;V ) + C̃G1,V ‖η − η̃‖2C(−h,0;V ) .

(G1.4) there exist m0 > 0 and constants K̃G1,V = K̃G1,V (m0, h),KG1,V = KG1,V (m0, h) ≥ 0

such that ∀x, x̃, y, ỹ ∈ C(−h, T ; V ) and ∀t ≥ 0,

∫ t

0

ems |G1(s, xs, ys)−G1(s, x̃s, ỹs)|2 ds

≤ KG1,V

∫ t

−h

ems ‖x(s)− x̃(s)‖2 ds + K̃G1,V

∫ t

−h

ems ‖y(s)− ỹ(s)‖2 ds.

In this case, we consider the following problem




u ∈ I2(−h, T ; V ) ∩ L2(Ω;C(0, T ;V )), for all T > 0,

v ∈ I2(−h, T ;V ) ∩ L2(Ω;C(0, T ; H)), for all T > 0,

u′(t) = v(t), t ∈ [0, T ],

v(t) +
∫ t

0
A(s)u(s)ds +

∫ t

0
B(s, v(s))ds

= v0 +
∫ t

0
(F0(s, us, vs) + F1(s, us, vs))ds

+
∫ t

0
(G0(s, us, vs) + G1(s, us, vs))dW (s), t ∈ [0, T ],

u(0) = u0,

u(t) = ϕ1(t), v(t) = ϕ2(t), a.e. t ∈ (−h, 0),

(Q)

where ϕ1, ϕ2 ∈ I2(−h, 0; V ), u0 ∈ L2(Ω,F0, P ; V ), v0 ∈ L2(Ω,F0, P ; H) are given.

As is was pointed out in the previous section, all the integrals in problem (Q) are well

defined.

Results about the existence and uniqueness of solutions for (Q) can be found in Garrido-

Atienza and Real [8]. In particular, for our problem (Q) in the mentionated work it is

necessary the additional hypotheses:
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(H) ∃λ > 0, m, m̂ ≥ 0 such that for x, x̃, y, ỹ ∈ L2(−h, T ;V ) it holds, ∀t ≥ 0,

2
∫ t

0

ems 〈B(s, y(s))−B(s, ỹ(s)), y(s)− ỹ(s)〉ds

+m̂

∫ 0

−h

ems
(
‖x(s)− x̃(s)‖2 + ‖y(s)− ỹ(s)‖2

)
ds

≥ λ

∫ t

0

ems ‖y(s)− ỹ(s)‖2 ds +
∫ t

0

ems |G1(s, xs, ys)−G1(s, x̃s, ỹs)|2 ds.

Next, we will check that, under the previous assumptions, a similar result to Theorem 2

holds true. In the proof, we will suppose that the term F0 ≡ 0, otherwise we can consider

a new operator F̂1 : [0, +∞) × C(−h, 0; V ) × C(−h, 0; H) → V ∗ defined by F̂1 = F0 + F1.

Also, for the sake of clarity, we will assume that K̃G1,V = KG1,V , KG1 .

Theorem 6 Supose that assumptions (A.1)−(A.5), (B.1)−(B.5), (F1.1)−(F1.4), (G0.1)−
(G0.4), (G1.1)− (G1.4) and (H) hold. In addition, assume that there exist δ > 0 and λ > 0

such that




2α3/2Cδ > cKλ,

and

Cδ

(
λ
3 − c2( 3KF1,H

λ + KG0,H + 3KG1
λ KG0,H)

)

> (2α2δ)−1(2αδc2 + c2KF1,H + cB
2)Kλ,

(15)

where Cδ = 1− δ −K
1/2
F1,V α−1 and Kλ = λ

3 + 3KG1
λ KG0,V + KG0,V + 3KF1,V

λ . Then the zero

solution of problem (Q) is exponentially stable in mean square.

Proof. Let m be a positive constant. Arguing as in the proof of Theorem 2, but taking now

into account the new hypotheses on operators F1 and G1, (H) and the expression of Kλ, we

have

emtE |v(t)|2 + emtE 〈A(t)u(t), u(t)〉+
λ

3

∫ t

0

emsE ‖v(s)‖2 ds

≤ E |v0|2 + E 〈A(0)u0, u0〉+ (Kλ + m̂) ‖ϕ1‖2I2
V

+
(

λ

3
+ m̂

)
‖ϕ2‖2I2

V

+
(

KG0,H +
3KG1

λ
KG0,H +

3KF1,H

λ

)
|ϕ2|2I2

H

+
(

m +
3KF1,H

λ
+ KG0,H +

3KG1

λ
KG0,H

) ∫ t

0

emsE |v(s)|2 ds

+
(
m + Kλα−1

) ∫ t

0

emsE 〈A(s)u(s), u(s)〉ds.
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Using the expression of emtE(u(t), v(t)), we have
∫ t

0

emsE 〈A(s)u(s), u(s)〉ds

≤ E(u0, v0) +
∫ t

0

emsE |v(s)|2 ds + K
1/2
F1,V ‖ϕ1‖2I2

V
+ (mc + K

1/2
F1,H)2(2αδ)−1 |ϕ2|2I2

H

+ c(2α1/2)−1emtE
(
|v(t)|2 + 〈A(t)u(t), u(t)〉

)
+ (mc + K

1/2
F1,H)2(2αδ)−1

∫ t

0

emsE|v(s)|2ds

+
(
δ + K

1/2
F1,V α−1

) ∫ t

0

emsE 〈A(s)u(s), u(s)〉ds + c2
B(2αδ)−1

∫ t

0

emsE ‖v(s)‖2 ds

and then, it follows
(
1− c

(
m + Kλα−1

)
(2α1/2Cδ)−1

)
emtE

(
|v(t)|2 + 〈A(t)u(t), u(t)〉

)

+
λ

3

∫ t

0

emsE ‖v(s)‖2 ds

≤ E |v0|2 + E 〈A(0)u0, u0〉+
(
m + α−1Kλ

)
C−1

δ E(u0, v0)

+
(
Kλ + m̂ +

(
m + Kλα−1

)
K

1/2
F1,V C−1

δ

)
‖ϕ1‖2I2

V
+

(
λ

3
+ m̂

)
‖ϕ2‖2I2

V

+
(

KG0,H +
3KG1

λ
KG0,H +

3KF1,H

λ

)
|ϕ2|2I2

H

+ (mc + K
1/2
F1,H)2(m + Kλα−1)(2αδCδ)−1 |ϕ2|2I2

H

+
(

m +
3KF1,H

λ
+ KG0,H +

3KG1

λ
KG0,H

) ∫ t

0

emsE |v(s)|2 ds

+
(
m + Kλα−1

)
(2αδCδ)−1

(
2αδ + (mc + K

1/2
F1,H)2

) ∫ t

0

emsE|v(s)|2ds

+ c2
B(2αδCδ)−1

(
m + Kλα−1

) ∫ t

0

emsE ‖v(s)‖2 ds.

Thanks now to conditions in this theorem, for m > 0 small enough, we deduce

0 < 1− c
(
m + Kλα−1

)
(2α1/2Cδ)−1,

λ

3
> c2

(
m +

3KF1,H

λ
+ KG0,H +

3KG1

λ
KG0,H

)

+
(
m + Kλα−1

)
(2αδCδ)−1

(
2αδc2 + (mc2 + cK

1/2
F1,H)2 + c2

B

)
,

hence we have ensured that the null solution to problem (Q) is exponentially stable in mean

square.

Remark 7 It is also possible to prove that, if the solution (u, v) to (Q) is exponentially

stable in mean square then, the null solution to problem (Q) is almost surely exponentially
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stable. To this end, we can first establish a bound for E

[
sup

N≤t≤N+1

(
|v(t)|2 + ‖u(t)‖2

)]
,

for any N ∈ N, similar to that one in (12). To this end, we point out that one must use

hypothesis (H) in the particular case m = 0.

4 Examples

To illustrate our theory we are going to exhibit a couple of examples. The first corresponds

to the situation in which B(t, ·) : H → H, and, as a consequence, prove that our theory

improves a classical result on the asymptotic behaviour of partial differential equations of

second order in time without hereditary characteristics obtained due to Curtain [6].

Example 8

Consider the lateral displacement of a stretched string subjected to a random loading

with delays:




∂2u

∂t2
− ∂2u

∂x2
+ ϑ

∂u

∂t
= σ

∂u(t− τ(t))
∂x

dW (t)
dt

, in (0, +∞)× (0, 1),

u(t, 0) = u(t, 1) = 0, t ∈ (0,+∞),

u(0, x) = u0,
∂u

∂t
(0, x) = v0(x), in (0, 1),

u(t) = ϕ1(t),
∂u(t)

∂t
= ϕ2(t), t ∈ (−h, 0),

where ϑ > 0, σ ∈ R, W (t) is a one-dimensional Wiener process, and τ ∈ C1(R+) is such

that 0 ≤ τ(t) ≤ h, ∀t ≥ 0, being τ∗ = sup
t≥0

τ ′(t) < 1.

This example can be set within our formulation by taking H = L2(0, 1), V = H1
0 (0, 1),

A(t)u(t) = −∂2u

∂x2
(t), B(t, v(t)) = ϑv(t) and G0(t, ξ, η) = σ

∂ξ(−τ(t))
∂x

.

If we denote θ(t) = t − τ(t), then there exists k > 0 such that θ−1(t) ≤ t + k, ∀t ≥ −τ(0),

and consequently, with the notation above, it is easy to check all the conditions and deduce

that

β = cB = ϑ, α = 1, c =
1
π

, KG0,H(m0) = 0, KG0,V (m0) =
σ2

1− τ∗
em0k,

with m0 > 0 arbitrarily chosen.

Thus, we can ensure that given ϕ1 ∈ I2(−h, 0;V ), ϕ2 ∈ I2(−h, 0; H), u0 ∈ L2(Ω,F0, P ;V )

and v0 ∈ L2(Ω,F0, P ; H), there exists a unique solution u ∈ I2(−h, T ;V )∩L2(Ω;C(0, T ;V )),
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∂u
∂t ∈ I2(−h, T ; H)∩L2(Ω; C(0, T ; H)) to the corresponding problem (P ), and using (14) we

immediately obtain the exponential stability in mean square and pathwise of the solution

to our problem provided

σ2

1− τ∗
< min

{
π,

2ϑπ2

2π2 + ϑ2

}
=

2ϑπ2

2π2 + ϑ2 .

Observe that in the particular case in which τ(t) = h for all t ≥ 0, the previous condition

reads σ2 <
2ϑπ2

2π2 + ϑ2 , a better estimate than the condition σ2 <
4ϑπ2

4π2 + ϑ(ϑ +
√

ϑ2 + 4π2)
,

obtained by Curtain in [6] in the case without delays, i.e., when h = 0.

Example 9

Consider the problem





∂2u

∂t2
− ∂2u

∂x2
− γ

∂2

∂x2

(
∂u

∂t

)
− ∂

∂x

(
k(t,

∂2u

∂x∂t
)
)

= f1

(
t, u(t− ρ1(t)),

∂u

∂x
(t− ρ2(t)),

∂u

∂t
(t− ρ3(t))

)

+
(

g1

(
t, u(t− ρ4(t)),

∂u

∂x
(t− ρ5(t)),

∂u

∂t
(t− ρ6(t)),

∂

∂x

(
∂u

∂t
(t− ρ7(t))

))

+g0

(
t,

∂u(t− ρ8(t))
∂x

,
∂u(t− ρ9(t))

∂t

))
dW (t)

dt
, in (0,+∞)× (0, π),

u(t, 0) = u(t, π) = 0, t ∈ (0, +∞),

u(0, x) = u0,
∂u

∂t
(0, x) = v0(x), in (0, π),

u(t) = ϕ1(t),
∂u(t)

∂t
= ϕ2(t), t ∈ (−h, 0),

where γ, h > 0, and W (t) is a one-dimensional Wiener process. Let us set H = L2(0, π),

V = H1
0 (0, π), and consider A(t)u(t) = −∂2u

∂x2 (t), ∀u ∈ V, ∀t ≥ 0. On the other hand, we

assume that k : R+ × R→ R is a continuous map such that there exists ck > 0 such that

(k(t, x)− k(t, x̃))(x− x̃) ≥ 0, |k(t, x)| ≤ ck|x| ∀x, x̃ ∈ R, ∀ t ≥ 0.

Then we consider

〈B(t, v), w〉 = γ

∫ π

0

dv

dx

dw

dx
dx +

∫ π

0

k(t,
dv

dx
)
dw

dx
dx, ∀v, w ∈ V, ∀t ≥ 0.

Assume that ρi ∈ C1(R+), i = 1, · · ·, 9 are measurable functions such that 0 ≤ ρi(t) ≤ h,

∀t ∈ R+, being ρ∗ = max
1≤i≤9

(max
t∈R+

ρ′i(t)) < 1. As in the previous example, if we denote

θρi
(t) = t− ρi(t), then there exists kρ > 0 such that θ−1

ρi
(t) ≤ t + kρ, ∀t ≥ −min1≤i≤9 ρi(0).
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We suppose that f1 : R+ × R3 → R is a measurable function such that f1(t, 0, 0, 0) = 0,

and there exists Lf1 > 0 such that

|f1(t, a, y, b)− f1(t, ã, ỹ, b̃)| ≤ Lf1(|a− ã|+ |y − ỹ|+ |b− b̃|),

∀ a, ã, b, b̃, y, ỹ ∈ R, ∀ t ∈ R+. We denote by F1(t, ·, ·) the family defined by

〈F1(t, ξ, η), v〉 = −
∫ π

0

f1(t, ξ(−ρ1(t))(x),
∂ξ

∂x
(−ρ2(t))(x), η(−ρ3(t))(x))

dv

dx
(x) dx,

∀ (ξ, η) ∈ C(−h, 0; V )× C(−h, 0; H), ∀ v ∈ V, for each t ∈ R+.

Let g0 : R+ × R2 → R be a Lipschitz continuous function such that g0(t, 0, 0) = 0, with

|g0(t, x, y)− g0(t, x̃, ỹ)|2 ≤ L2
g0

(|x− x̃|2 + |y − ỹ|2), ∀ (x, y), (x̃, ỹ) ∈ R2,∀t ∈ R+.

We consider

G0(t, ξ, η) = g0

(
t,

∂ξ(−ρ8(t))
∂x

, η(−ρ9(t))
)

, ∀(t, ξ, η) ∈ R+ × C(−h, 0;V )× C(−h, 0; H).

Suppose also that g1 : R+ × R4 → R is a measurable function such that g1(t, 0, 0, 0, 0) = 0,

and there exists Lg1 > 0 such that

|g1(t, a, y, b, z)− g1(t, ã, ỹ, b̃, z̃)|2 ≤ Lg1(|a− ã|2 + |y − ỹ|2 + |b− b̃|2 + |z − z̃|2),

∀ a, ã, b, b̃, y, ỹ, z, z̃ ∈ R, ∀ t ∈ R+. For every t ∈ R+ and ξ, η ∈ C(−h, 0;V ), let G1(t, ξ, η)

be the element of H given, a.e. x ∈ O, by

G1(t, ξ, η)(x) = g1(t, ξ(−ρ4(t))(x),
∂ξ

∂x
(−ρ5(t))(x), η(−ρ6(t))(x),

∂η

∂x
(−ρ7(t))(x)),

Then, it is easy to check that if, for example

Lg1

1− σ∗
≤ γe−γT ,

we can assure existence and uniqueness of a solution to the corresponding problem (see

Garrido-Atienza [7]). In particular, for ϕ1 ∈ I2(−h, 0; V ), ϕ2 ∈ I2(−h, 0;H), u0 ∈ L2(Ω,F0, P ; V )

and v0 ∈ L2(Ω,F0, P ;H) given, there exists a unique solution u ∈ I2(−h, T ;V )∩L2(Ω;C(0, T ; V )),
∂u

∂t
∈ I2(−h, T ; H) ∩ L2(Ω; C(0, T ; H)). The constants are now

cB = ck, β = γ, α = c = 1, KF1,H(m0) = 3e−m0kρ Lf1
1−ρ∗ , KF1,V (m0) = 6πe−m0kρ Lf1

1−ρ∗ ,

KG0,V (m0) = KG0,H(m0) = 2e−m0kρ
L2

g0
1−ρ∗ ,KG1 = e−m0kρ

L2
g1

1−ρ∗

The solution is exponentially stable in mean square and almost surely if we impose the

corresponding hypothesis (15).
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5 Concluding remarks

Some results on the exponential stability of functional stochastic partial differential equations

of second order in time have been proved, these extend some results from [3]. Moreover, in

the particular case without delay, a stability criterium in [6] is also improved (see Example

8).

Another point is that, although we have only considered the case of a real Wiener process,

the results can be extended to a Hilbert valued situation. However, we have preferred to

consider this framework for the sake of clarity.
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