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Abstract. We study the asymptotic behaviour of a reaction-diffusion equation, and

prove that the addition of multiplicative white noise (in the sense of Itô) stabilizes
the stationary solution x ≡ 0. We show in addition that this stochastic equation

has a finite-dimensional random attractor, and from our results conjecture a possible

bifurcation scenario.

1. Introduction. The study of the asymptotic behaviour of evolution equations
is one of the most important problems in the field of differential equations, as the
vast literature on the subject shows. Perhaps the first step in this programme
is to investigate the stability of the stationary solutions, and this is at present a
well-developed branch of the theory of stochastic ordinary and partial differential
equations (see, among others, Has’minskii [20], Mao [23], [24], Caraballo and Liu
[5]). Such a stability analysis is essentially a local study, as we obtain information
on the dynamics only around these points. A more complete analysis of the quali-
tative properties of the system as a whole requires information relating not only to
the stationary points but also, for example, to the stability or instability of the as-
sociated invariant manifolds of these points. As a further step one can consider the
global attractor for the problem (Ladyzhenskaya [22], Hale [19], Temam [32]); this
is rapidly becoming one of the main concepts in the theory of infinite-dimensional
dynamical systems. Recently, Crauel and Flandoli [9] (see also Schmalfuß [30])
have generalized the theory of deterministic attractors to the stochastic case. This
theory of random attractors is turning out to be very fruitful in the study of the
long-time dynamics of stochastic ordinary and partial differential equations.

In this paper we study a reaction-diffusion equation perturbed by a multiplicative
white noise term, first considering this in the Itô sense,

dx(t) = ∆x(t) dt + (ax(t)− x(t)3) dt + σx(t) dWt.
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We briefly revise some properties of the deterministic equation (σ = 0) in section
2. (We choose this particular form of equation for simplicity, but a very similar
analysis should give similar results for more general equations, cf. Marion [25].)

There are many results on stability of solutions in the stochastic case, but most
treat only ordinary differential equations, and those generalizations which do treat
the infinite-dimensional case usually assume a global Lipschitz property for the
nonlinear terms of the non-random equation. In our case the nonlinear term is
only locally Lipschitz, so that these stochastic stability results cannot be applied
directly to our problem. In section 3 we study the stabilizing effect of the stochastic
perturbation on the solution x = 0, and show that the interval of stability increases
as σ is increased, so that large levels of noise simplify the long-time behaviour.

We can write the Itô equation in the alternative Stratonovich form (Stratonovich
[28]),

dx(t) = ∆x(t) dt + ((a− 1
2σ2)x(t)− x(t)3) dt + σx(t) ◦ dWt,

which makes the stabilization effect of the noise term explicit, and in the remainder
of the paper we treat the equation

dx(t) = ∆x(t) dt + (βx(t)− x(t)3) dt + σx(t) ◦ dWt,

investigating its behaviour as β is varied.
As we have noted above, a general study of the deterministic reaction-diffusion

equation includes an understanding of its global attractor. In this relatively simple
case, this attractor consists of the stationary solutions, which are joined by the
stable and unstable manifolds associated with them (see Hale [19] or Henry [21] for
example). If we wish to continue our investigation of the stochastic version of this
PDE, by analogy it seems sensible to investigate whether or not it has a random
attractor. We introduce the relevant theory in section 4, and then in section 5 prove
the existence of such a random attractor.

The computations here once again demonstrate the stabilization effect (now seen
easily in terms of the parameter β). In particular, if β < λ1 the random attractor
is in fact the deterministic point {0}, whereas if β ≥ λ1 the attractor could be a
much more general (random) set.

One of the most interesting properties of certain attractors of deterministic
infinite-dimensional dynamical systems is that they are finite-dimensional subsets
of the infinite-dimensional phase space (see Temam [32], for example).To try to get
a little more information about the possible complexities of our random attractor
when β ≥ λ1, we use the method developed by Debussche in [13] to obtain a bound
on its Hausdorff dimension in section 6. (Some tedious computations necessary for
the application of Debussche’s result are relegated to an appendix.) In particular,
we show that if

β <
1
d

d∑
j=1

λj ,

where λj are the eigenvalues of the Laplacian arranged in increasing order, then
the Hausdorff dimension of the random attractor is bounded by d, P-almost surely.
Once again, a little further argument recovers the result that if β < λ1 then the
attractor consists of just one point; but now we can see that increasing β at least
allows (within the bound above) for more complexity of the attractor.

To conclude we discuss a possible bifurcation picture near the origin as β passes
through λ1.
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2. Formulation of the problem. Let D ⊂ Rn be an open bounded set with reg-
ular boundary. We consider the following partial differential equation of reaction-
diffusion type in D perturbed by a linear multiplicative white noise dx(t) = ∆x(t)dt + (ax(t)− x3(t))dt + σx(t)dWt in D

x(t) = 0 on ∂D
x(0) = x0,

(2.1)

where Wt : Ω → R, t ∈ R, is a one dimensional Wiener process.
To pose this problem into a variational form we introduce the following spaces:

H = L2(D) (with (., .), |.| its scalar product and norm respectively), V = H1
0 (D)

(((., .)), ‖.‖). Thus, we can write (2.1) as the following differential equation in H:

dx = −Axdt + (ax− x3)dt + σxdWt in H
x(0) = x0 ∈ H

(2.2)

where A : D(A) ⊂ H → H, Ax = −∆x. The operator A is positive, linear, self-
adjoint and with compact inverse A−1. Under these conditions there exist 0 < λ1 ≤
λ2 ≤ · · · → +∞, the sequence of eigenvalues of A, and w1, w2, . . . the associated
sequence of eigenfunctions Awi = λiwi, which forms an orthonormal basis in H
([32]).

It is known (Pardoux [26]) that for each x0 ∈ H and T > 0, there exists a unique
strong solution

x(t;x0) ∈ L2(Ω× (0, T );H1
0 (D)) ∩ L4(Ω× (0, T )×D) ∩ L2(Ω;C(0, T ;L2(D)).

The global attractor (Hale [19], Temam [32], Vishik [33]) is at present one of the
main tools in the study of the asymptotic behaviour of infinite-dimensional dynami-
cal systems. A global attractor is a compact set in the phase space, invariant for the
semigroup associated to the system and attracting every trajectory as t → +∞,
uniformly on bounded sets. For our particular problem (2.1), the existence of a
global attractor A for the unperturbed system is well known (see, for instance,
Marion [25]).

However, when a < λ1, notice that the unique solution of the associated elliptic
equation is just x ≡ 0. Since (2.1), when σ = 0, is a gradient system (Hale [19]), the
global attractor consists of all the stationary points and the stable and unstable
manifolds joining them (see also Henry [21]). Thus, if there exists just one sta-
tionary solution of the elliptic equation we conclude that this is exactly the global
attractor. We now prove the existence of one stationary solution if a < λ1: for two
solutions of (i = 1, 2) ∆xi(t) + axi(t)− x3

i (t) = 0 in D
xi(t) = 0 on ∂D
xi(0) = x0

i

(2.3)

we have, by denoting y(t) = x1(t)− x2(t),

∆y(t) + ay(t)− (x3
1(t)− x3

2(t)) = 0.

Multiplying by y(t) in H we obtain

−‖y(t)‖2 + a|y(t)|2 + (x3
2(t)− x3

1(t), x1(t)− x2(t)) = 0

from where, taking into account that ‖x‖2 ≥ λ1|x|2, for all x ∈ V ,

−λ1|y(t)|2 + a|y(t)|2 + (x3
2(t)− x3

1(t), x1(t)− x2(t)) ≥ 0.
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Now note that (f(u) − f(v))(u − v) ≤ 0 for u, v ∈ R and f(u) = −u3 and so
(x3

2(t)− x3
1(t), x1(t)− x2(t)) ≤ 0. Thus,

−λ1|y(t)|2 + a|y(t)|2 ≥ 0.

On the other hand, as a < λ1,

(a− λ1)|y(t)|2 ≤ 0,

so that we conclude that
y(t) = 0 a.e. in D.

This proves that {0} is the global attractor for the deterministic system in this case
and, consequently, the stationary solution x ≡ 0 is asymptotically stable.

3. Stabilization effect of the multiplicative white noise. In this section we
will prove the effect of stabilization on x ≡ 0 produced when we add a multiplicative
noise (in the Itô sense) to the deterministic equation.

Before doing this, it is worth noticing that by applying theorem 2.2 in Caraballo
and Real [6] one can obtain pathwise exponential stability of the trivial solution of
problem (2.1) provided that σ2 < 2(λ1 − a). Indeed, in order to apply this result
we need to check a coercivity condition:

2(∆u + au− u3, u) + |σu|2 ≤ −α‖u‖2 + λ|u|2 (3.4)

and if λ − αβ−2 < 0 (with β = λ
−1/2
1 ), then the pathwise exponential stability of

the trivial solution holds.
As

2(∆u + au− u3, u) + |σu|2 = −2‖u‖2 + 2a|u|2 − 2|u|4L4 + σ2|u|2,

(3.4) is fulfilled by setting α = 2 and λ = 2a + σ2. Thus, the pathwise stability
follows provided

2a + σ2 − 2λ1 < 0 ⇔ σ2 < 2(λ1 − a). (3.5)

Now, if λ1−a > 0, that is, if A = {0} is exponentially stable for the (deterministic)
unperturbed problem, we can assure that if the perturbation is small enough, the
trivial solution of the stochastic system remains exponentially stable with prob-
ability one. On the other hand, if λ1 − a < 0, that is, {0} is unstable for the
unperturbed equation, this result does not guarantee stability for the stochastic
problem as (3.5) does not hold. However, as we shall prove, in the first case one
can show not only for small values of σ but for all σ ∈ R that the null solution of the
stochastic equation is pathwise exponentially stable. In the second one (λ1−a < 0),
we shall prove that for σ large enough, the trivial solution becomes asymptotically
exponentially stable with probability one. This means that the multiplicative noise
stabilizes the solution, as we can see in the following result:

Theorem 3.1. Assume −γ = a−λ1− 1
2σ2 < 0. Then there exists N ⊂ Ω, P (N) = 0,

such that for ω /∈ N there exists T (ω) > 0 such that for each x0 ∈ H,x0 6= 0,

|x(t, ω;x0)|2 ≤ |x0|2e−γt, ∀ t ≥ T (ω)

Proof. Firstly, observe that uniqueness and continuity of solutions of (2.1) imme-
diately implies that for x0 6= 0, the solution x(t) = x(t;x0) satisfies x(t;x0) 6= 0 for
all t ≥ 0, P − a.s.
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Now, Itô’s formula for |x(t)|2 yields that

|x(t)|2 = |x0|2 +
∫ t

0

(2x(s),∆x(s) + ax(s)− x3(s))ds

+
∫ t

0

2σ|x(s)|2dWs +
∫ t

0

σ2|x(s)|2ds

= |x0|2 +
∫ t

0

(−2‖x(s)‖2 + 2a|x(s)|2 − 2|x(s)|4L4 + σ2|x(s)|2) ds

+
∫ t

0

2σ|x(s)|2dWs.

Denoting u(t) = |x(t)|2 and applying once again Itô’s formula to log u(t) we obtain

log |x(t)|2 = log |x0|2 +
∫ t

0

1
|x(s)|2

(−2‖x(s)‖2 + 2a|x(s)|2 − 2|x(s)|4L4

+σ2|x(s)|2) ds +
∫ t

0

2σdWs −
1
2

∫ t

0

4σ2|x(s)|4

|x(s)|4
ds

≤ log |x0|2 +
∫ t

0

(2a + σ2 − 2λ1)ds + 2σWt − 2σ2t

≤ log |x0|2 + (2a− σ2 − 2λ1)t + 2σWt.

As limt→∞
Wt

t
= 0 : P − a.s., there exists N ⊂ Ω, P (N) = 0, such that for ω /∈ N

there exists T (ω) such that for all t ≥ T (ω)
2σWt

t
≤ 1

2
(−2a + 2λ1 + σ2)

so that
log |x(t)|2 ≤ log |x0|2 +

1
2
(2a− 2λ2 − σ2)t ∀t ≥ T (ω).

As 2a− 2λ2 − σ2 < 0, the proof is complete by taking γ =
σ2

2
+ λ1 − a.

Note that, in the deterministic case, {0} is unstable for a > λ1. Thus, the
multiplicative noise stabilizes the stationary point {0} for a in the interval [λ1,

1
2σ2+

λ1]. The larger the parameter σ, the longer the stability interval for the zero point.
On the other hand, given a > 0 we can always choose a value of σ such that the
zero point is asymptotically stable for equation (2.1).

If we had considered equation (2.1) with the white noise in the sense of Stra-
tonovich, then we would not have obtained any stabilization effect for the trivial
solution, since we would need the condition a > λ1 for the stability of both the
deterministic and the stochastic equation. This is due to the extra term when
applying Itô’s formula which does not appear in the Stratonovich case. Thus, it is
in fact more sensible to analyse Stratonovich equations in the multiplicative case,
highlighting the importance which should be attached to the choice of the sense of
the stochastic integrals in such an equation (see Caraballo and Langa [4] for more
details on this fact). In particular, in what follows we will consider the Stratonovich
equation,

dx(t) = ∆x(t) dt + (βx(t)− x3(t)) dt + σx(t) ◦ dWt, (3.6)
where the new parameter β corresponds to a− 1

2σ2 in our previous (Itô) formulation
(Stratonovich [28]).

Since the above argument does not give us any information for values of a greater
than 1

2σ2 + λ1, i.e. for values of β > λ1, we need a different approach to study the
asymptotic behaviour of our problem any further for such values of β. We therefore
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introduce the theory of random attractors in the next section, and then apply this
theory to equation (3.6).

4. Random attractors. Recently, Crauel and Flandoli [9] (see also Schmalfuß
[30]) have introduced the concept of an attractor for some stochastic partial dif-
ferential equations, and this has been successfully used in the study of qualitative
properties for these equations (see, among others, Schmalfuß [31], Crauel et al. [8],
Schenk-Hoppé [29]). This concept has been developed within the framework of the
theory of random dynamical systems (Arnold [1]). In this section, we will introduce
the concepts of random dynamical system and random attractors and then apply
this theory to our particular problem in the remainder of the paper.

Let (Ω,F , P ) be a probability space and {θt : Ω → Ω, t ∈ R} a family of mea-
sure preserving transformations such that (t, ω) 7→ θtω is measurable, θ0 = id,
θt+s = θtθs, for all s, t ∈ R. The flow θt together with the probability space
(Ω,F , P, (θt)t∈R) is called a (measurable) dynamical system. Furthermore, we sup-
pose that the shift θt is ergodic.

A random dynamical system (RDS) on a Polish space (X, d) with Borel σ-algebra
B over θ on (Ω,F , P ) is a measurable map

ϕ : R+ × Ω×X → X
(t, ω, x) 7→ ϕ(t, ω)x

such that P − a.s.

i) ϕ(0, ω) = id (on X)
ii) ϕ(t + s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω), ∀ t, s ∈ R+ (cocycle property).
A RDS is continuous or differentiable if ϕ(t, ω) : X → X is continuous or differ-

entiable.
A random set K(ω) is said to absorb the set B ⊂ X if P −a.s. there exists tB(ω)

such that for all t ≥ tB(ω)

ϕ(t, θ−tω)B ⊂ K(ω).

Finally, a random set A(ω) is said to be a random attractor associated to the RDS
ϕ if P − a.s.

i) A(ω) is a random compact set, that is, P − a.s. ω ∈ Ω, A(ω) is compact and
for all x ∈ X and P − a.s. the map x 7→ dis(x,A(ω)) is measurable.

ii) ϕ(t, ω)A(ω) = A(θtω), : ∀t ≥ 0 (invariance) and
iii) for all B ⊂ X bounded (and non-random)

lim
t→∞

dist(ϕ(t, θ−tω)B,A(ω)) = 0,

where dist( . , . ) denotes the Hausdorff semidistance

dist(A,B) = sup
a∈A

inf
b∈B

d(a,b), A,B ⊂ X.

Note that ϕ(t, θ−tω)x can be interpreted as the position at t = 0 of the trajectory
which was in x at time −t. Thus, the attraction property holds from t = −∞.

In this situation, we have the following theorem about existence of random at-
tractors due to Crauel and Flandoli ([9], theorem 3.11):

Theorem 4.1. Suppose there exists a compact set D(ω) absorbing every bounded
non-random set B ⊂ X. Then, the set

A(ω) =
⋃

B⊂X

ΛB(ω)
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is a random attractor for ϕ, where the union is taken over all B ⊂ X bounded, and
ΛB(ω) is the omega-limit set of B given by

ΛB(ω) =
⋂
n≥0

⋃
t≥n

ϕ(t, θ−tω)B.

Moreover, Crauel proved in [10] that random attractors are unique and, under
the ergodicity assumption on θt, there exists a compact set K ⊂ X such that
P − a.s. the random attractor is the omega-limit set of K, that is,

A(ω) =
⋂
n≥0

⋃
t≥n

ϕ(t, θ−tω)K.

5. Existence of random attractors. In this section we will prove that the hy-
potheses in theorem 4.1 hold, so that there exists a random attractorAβ,σ(ω). From
now on, we suppose that Wt is a two-sided Wiener process (Arnold [1]). Firstly, we
consider equation (2.1) in Stratonovich’s sense, that is, for β, σ ∈ R, we consider

dx(t) = ∆x(t)dt + (βx(t)− x3(t))dt + σx(t) ◦ dWt. (5.7)

By means of the change of variable

u(t) = α(t)x(t), with α(t) = e−σWt

it is easy to check that, formally, u(t) satisfies

du(t) = (∆u(t) + βu(t)− α−2(t)u3(t))dt, (5.8)

and so this equation can be studied ω by ω, as if it were a non-autonomous deter-
ministic system.

In fact, by a proof similar to that in Temam [32], Chap. III, theorem 1.1, one
can show that P − a.s. the following holds:

i) for all t0 < T and all u0 ∈ H there exists a unique solution of equation (5.8)

u ∈ C([t0, T ]);H) ∩ L2(t0, T ;V ) ∩ L4([t0, T ];L4(D))

with u(t0) = u0,
ii) if u0 ∈ V, the solution belongs to C([t0,+∞));V ) ∩ L2

loc(t0,+∞;D(A)),
iii) hence, for all u0 ∈ H, u ∈ C([t0 + ε,+∞));V ) ∩ L2

loc(t0 + ε,+∞;D(A)) for
every ε > 0.

iv) Denoting such a solution by u(t, ω; t0, u0), the mapping u0 7→ u(t, ω; t0, u0) is
continuous for all t ≥ t0.

The corresponding random dynamical system associated to problem (5.7) is thus
defined by

ϕ(t, ω)x0 = α(t, ω)−1u(t, ω; t0, x0).

Theorem 5.1. Under the preceding assumptions, there exists a random attractor
Aβ,σ(ω) for the dynamical system ϕ(t, ω) associated to equation (2.1). Moreover,
if β − λ1 < 0, the random attractor becomes {0} P − a.s.

We present all the computations below, since not only do they reproduce the
stabilization result of section 3, but they also give rise to certain estimates which
we will need in the appendix.
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Proof. Firstly, we multiply (5.8) by u(t) in H and obtain that P − a.s.

1
2

d

dt
|u(t)|2 = −‖u(t)‖2 + β|u(t)|2 − α−2(t)|u(t)|4L4

≤ −λ1|u(t)|2 + β|u(t)|2 − α−2(t)|u(t)|4L4 .
(5.9)

Thus, and taking into account that |u| ≤ c|u|L4 (with c = |D|1/4, where | · | also
denotes Lebesgue measure),

d

dt
|u(t)|2 + ‖u(t)‖2 ≤ −λ1|u(t)|2 + 2α−1(t)α(t)β|u(t)|2 − 2α−2(t)|u(t)|4L4

d

dt
|u(t)|2 + ‖u(t)‖2 ≤ −λ1|u(t)|2 + c4α2(t)β2

+c−4α−2(t)|u(t)|4 − 2c−4α−2(t)|u(t)|4
≤ −λ1|u(t)|2 + c4α2(t)β2.

(5.10)
Integrating in [t0,−1], with t0 ≤ −1 we obtain

|u(−1)|2 ≤ e−λ1(−1−t0)|α(t0)x0|2 +
∫ −1

t0

e−λ1(−1−s)c4α2(s)β2 ds

≤ eλ1(eλ1t0 |α(t0)x0|2 + c4β2

∫ −1

t0

eλ1sα2(s)ds).
(5.11)

Consequently, given B(0, ρ) ⊂ H, P − a.s. there exists t(ω, ρ) ≤ −1 such that for
all t0 ≤ t(ω, ρ) and for all x0 ∈ B(0, ρ)

|u(−1, ω; t0, α(t0)x0)|2 ≤ r2
1(ω),

with

r2
1(ω) = eλ1

(
1 + c4β2

∫ −1

−∞
eλ1sα2(s) ds

)
. (5.12)

Indeed, it is enough to choose t(ω, ρ) such that

eλ1t0α2(t0)ρ2 ≤ 1

and take into account (5.11) and the fact that P −a.s. eλ1sα2(s) = eλ1se−2σWs → 0
as s → −∞.

If we now return to (5.9), note that if β < λ1 we have that

1
2

d

dt
|u(t)|2 ≤ −λ1|u(t)|2 + β|u(t)|2

= (β − λ1)|u(t)|2 ∀t ≥ 0,
(5.13)

and so
|u(t)|2 ≤ |u(0)|2e2(β−λ1)t,

from which
|x(t, ω; 0, x0)|2 ≤ |x0|2e2(β−λ1)tα−2(t)

= |x0|2e2(β−λ1+σ
Wt

t )t.

Since P − a.s.

lim
t→+∞

Wt

t
= 0, (5.14)

we conclude that P − a.s. there exists t(ω) such that for all t ≥ t(ω)

(β − λ1 + σ
Wt

t
) < 0,

that is, we get the exponential asymptotic stability of x ≡ 0.
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Observe that we also have attraction from −∞, since by integration in (5.13)
between t0 and 0 we obtain

|x(0)|2 ≤ α2(t0)|x0|2e−2(β−λ1)t0 ,

which tends to zero as t0 → −∞, so that B(0, ε) ⊂ H, for all ε ∈ (0, 1], is absorbing
for equation (5.7), so that the random attractor in this case is the (deterministic)
stationary point x ≡ 0.

We now make some other estimates before concluding that there exists a compact
absorbing set for the trajectories, so that theorem 4.1 can be applied. From now
on we suppose that β > λ1.

¿From (5.10) and for t ∈ [−1, 0] we have

|u(t)|2 ≤ e−λ1(t+1)|u(−1)|2 + c4β2

∫ t

−1

e−λ1(t−s)α2(s) ds

and ∫ 0

−1

‖u(s)‖2 ds ≤ |u(−1)|2 + c4β2

∫ 0

−1

α2(s) ds.

Thus, we can conclude that given B(0, ρ) ⊂ H and P−a.s. there exists t(ω, ρ) ≤ −1
such that for all t0 ≤ t(ω, ρ) and all u0 ∈ B(0, ρ)

|u(t, ω; t0, u0)|2 ≤ e−λ1(1+t)r2
1(ω) + c4β2

∫ t

−1

e−λ1(t−s)α2(s) ds (5.15)∫ 0

−1

‖u(s, ω; t0, u0)‖2 ds ≤ r2
1(ω) + c4β2

∫ 0

−1

α2(s) ds. (5.16)

To get a bound in V we multiply (5.8) by −∆u(t) and obtain
1
2

d

dt
‖u(t)‖2 = −|∆u|2 + β‖u(t)‖2 + (α−2(t)u3(t),∆u(t))

≤ −λ1‖u(t)‖2 + β‖u(t)‖2 −
∫

D

α−2(t)3u2(t)|∇u(t)|2 dx

and note that the last term on the right is non-positive, so if we integrate in [s, 0],
s ∈ [−1, 0],

‖u(0)‖2 ≤ ‖u(s)‖2 + 2(β − λ1)
∫ 0

s

‖u(σ)‖2 dσ.

Integrating again in [0, 1]

‖u(0)‖2 ≤
∫ 0

−1

‖u(s)‖2 ds + 2(β − λ1)
∫ 0

−1

‖u(σ)‖2 dσ.

It is now straightforward from (5.16) that

‖u(0)‖2 = ‖x(0)‖2 ≤ 2(β +
1
2
− λ1)(r2

1(ω) + c4β2

∫ 0

−1

α2(s) ds).

Consequently, P − a.s. there exists r2(ω) such that given ρ > 0 there exists t̂(ω) ≤
−1 such that for all t0 ≤ t̂(ω) and x0 ∈ H with |x0| ≤ ρ

‖x(0, ω; t0, x0)‖2 ≤ r2
2(ω),

where

r2
2(ω) = 2(β +

1
2
− λ1)(eλ1 + c4β2 + 1)(

∫ 0

−∞
eλ1sα2(s) ds +

∫ 0

−1

α2(s) ds)).

Thus, we conclude from theorem 4.1 that there exists a random attractor Aβ,σ(ω)
for equation (2.1).
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Note that since the new parameter β corresponds to a − 1
2σ2 from our original

equation (2.2), we once again obtain the stabilization result in theorem 1, since for
β < λ1 we have proved the exponential asymptotic stability of x ≡ 0.

Before we continue our study of the asymptotic behaviour of (2.1) by estimating
the dimension of the random attractor, there are two points which need to be
clarified.

First, the attraction property for the random attractor is from t = −∞, while the
stabilization result in section 2 treats the behaviour of the solutions as t → +∞.
However, it is not difficult to see (Crauel and Flandoli [9]) that the attraction
property to the random attractor implies attraction in probability as t → +∞,
that is, for all ε > 0

lim
t→+∞

P (dist(ϕ(t, ω)B,A(θtω)) < ε) = 1. (5.17)

In our case, we have shown a little more, as we proved that x ≡ 0 is the random
attractor for a < 1

2σ2 + λ1, and the attraction as t → +∞ holds P − a.s. and not
only in probability.

The union in ω of Aβ,σ(ω) is not uniformly bounded in general, so that the union
of this family of sets which form the “random attractor” is certainly not a compact
set, and can in fact be dense in the phase space. Thus the relationship between
such a random attractor and the corresponding deterministic attractor when σ = 0
is not immediately clear. However, it is not difficult to check that the hypotheses of
theorem 2 in Caraballo et al. [3] hold, and this guarantees the upper-semicontinuity
of random attractors to the (deterministic) global attractor as σ → 0, that is,

lim
σ→0

dist(Aβ,σ(ω),A) = 0 with probability one.

Indeed, the main hypothesis in [3] is the existence of a compact set K ⊂ H such
that, for fixed β and P − a.s.

lim
σ→0

dist(Aβ,σ(ω),K) = 0,

which can be proved for our problem by taking the limit in r2(ω), i.e. P − a.s.

lim
σ→0

r2
2(ω) = 2(β +

1
2
− λ1)(eλ1 + β2 + 1)(λ−1 + 1).

Clearly, this relates the random and deterministic attractors in a more satisfactory
way.

In the next section, we obtain a bound on the Hausdorff dimension of Aβ,σ(ω) in
terms of β (our bound is independent of σ). In particular, this limits the complexity
of the attractor as a function of β, and gives us some clues as to its possible
behaviour as β increases through the value λ1.

6. Bounds on the Hausdorff dimension of the random attractor. One of
the most surprising properties of global attractors for certain infinite-dimensional
dynamical systems (including many important cases) is that these compact sets are
in fact finite-dimensional subsets of the original phase space (Temam [32]). This
result leads to the fact that the asymptotic behaviour of these systems can be
described using a finite number of degrees of freedom (a statement to which one
can attach various senses, see, for example Foias and Prodi [18], Foias and Olson
[17], Eden et al. [14], Robinson [27]).

Various generalisations of deterministic methods (see e.g. Constantin et al. [7])
necessary to perform a similar analysis in the stochastic case can be found in Crauel
and Flandoli [11] or Debussche [12], [13] among others. Of these, the most powerful
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is due to Debussche [13], and gives results which in general agree with the best
known deterministic bounds as the level of noise is reduce to zero. We make use of
this method below.

Note that although the finite-dimensionality of each of the compact sets Aβ,σ(ω)
indicates that the asymptotic behaviour of the system should be “effectively finite-
dimensional”, we only have convergence to the (t, ω)-dependent family Aβ,σ(θtω)
in probability as t → +∞, and it is not clear exactly how to make such a statement
rigorous in the stochastic case (although see Flandoli and Langa [16] and Berselli
and Flandoli [2] for approaches which emulate the “determining modes” of Foias and
Prodi [18]). (Despite the references above for the deterministic case, the problem
is still not completely resolved even there, see Robinson [27] for a more lengthy
discussion.)

To bound the attractor dimension we use the following result from Debussche
[13]. He treats the case of a random attractor A(ω) which is invariant under a ran-
dom map S(ω): for some measure-preserving ergodic transformation θ on (Ω,F , P )
we have

S(ω)A(ω) = A(θω).

We need to make the following assumptions about the map S(ω). Firstly, we need
S(ω) to be almost surely uniformly differentiable on A(ω), which means that P -
almost surely, for every u ∈ A(ω), there exists a bounded linear operator DS(ω, u)
from H into H, such that if u + h ∈ A(ω) also, we have

|S(ω)(u + h)− S(ω)u−DS(ω, u)h| ≤ K(ω)|h|1+α, (6.18)

where α > 0 and K(ω) is a random variable with K(ω) ≥ 1 and

E(lnK) < ∞. (6.19)

The result shows (essentially) that if infinitesimal d-volumes are contracted under
S(ω) then the dimension of A(ω) is almost surely less than d. This infinitesimal
expansion is measured by the quantity εd(S(ω)), where

εd(L) = α1(L) . . . αd(L),

with
αj(L) = sup

P
inf

{u∈PH: |u|=1}
|Lu|,

where the supremum is taken over all rank d orthogonal projections P . Alterna-
tively, the {αj} are the eigenvalues of L∗L arranged in decreasing order.

To bound the Hausdorff dimension by d, it is sufficient to assume that

εd(DS(ω, u)) ≤ ε̄(ω),

where ε̄(ω) is a random variable such that

E(ln ε̄) < 0,

and the additional (relatively easy) condition that, for some random variable ᾱ ≥ 1,
we have

α1(DS(ω, u)) ≤ ᾱ(ω) with E(ln ᾱ) < ∞. (6.20)

Under the above assumptions, we have dH(A(ω)) < d almost surely.
The main difficulty in applying this result is in checking the differentiability

property (6.18). We do this in the appendix, where we work solely with the equation
for u = eσWtx,

du/dt = ∆u + βu− e2σWtu3. (6.21)
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We prove there the following result, where

T (ω)u0 = u(1, ω; 0, u0).

Proposition 6.1. T (ω) is almost surely differentiable on A(ω): P -almost surely,
for every u ∈ A(ω), there exists a bounded linear operator DT (ω, u) such that if
u, u + h ∈ A(ω) then

|T (ω)(u + h)− T (ω)u−DT (ω, u)h| ≤ K(ω)|h|1+α,

where α > 0 and K(ω) satisfies

E(lnK) < ∞. (6.22)

Furthermore, DT (ω, u)h = U(1), where U(t) is the solution of the equation
dU

dt
= ∆U + βU − 3u2(t)e2σWtU U(0) = h, (6.23)

and u(t) solves (6.21) with u(0) = u.

Note that in fact we want to verify the differentiability properties for the cocycle
generated by the equation for x, not u. We set θ = θ1, and consider the random
function S(ω), where

S(ω)x0 = S(1, ω; 0, x0),
so that

S(ω) = e2σW1T (ω).
Since

E(2σW1) = 0,

(6.19) holds once more, and it follows that S is P -almost surely uniformly differen-
tiable on the attractor, with derivative

DS(ω, x) = e2σW1DT (ω, x).

Theorem 6.2. If

β <
1
d

d∑
j=1

λj ≤ Cdn/2 (6.24)

then P -almost surely dH(A(ω)) < d. In particular, if β < λ1 then A(ω) consists of
just one point.

Proof. We apply Debussche’s result. First, to check that α1(DS(ω, x)) ≤ ᾱ(ω) as
in (6.20), observe that it follows easily from (6.23) that ‖DT (1, ω;u)‖ ≤ eβ , and
hence that

α1(DS(ω, x)) ≤ ᾱ(ω) = e2σW1+β .

Clearly, E(ln ᾱ) = β < ∞.
To find a d such that εd(DS) < 1, we use the trace formula due to Constantin

et al. [7] (see also Temam [32], Chapter V). This allows us to write εd in another
way more dependent on the dynamics. Since DT (ω, u)h is the solution of the linear
equation

dU/dt = L(t, u(t))U, U(0) = h

where
L(t, u(t)) = ∆ + (β − 3u(t)2e2σWt)I,

and u(t) is the solution of (6.21) with u(0) = u, we can write

DT (ω, u) = exp
(∫ 1

0

L(s, u(s)) ds

)
.
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It follows that

DS(ω, x) = exp
(

2σW1 +
∫ 1

0

L(s;x(s)) ds

)
,

where x(s) is the solution of (6) with x(0) = x. We therefore have

εd(DS(ω, x)) = sup
P (0)

exp
(

2σW1 + Tr
∫ 1

0

L(s;x(s))P (s) ds

)
.

Here, P (0) is an orthogonal projector of rank d, onto the space spanned by {φj}d
j=1,

and P (t) the projector onto the space spanned by the images of the vectors φj under
the linearised flow DS(t, ω;x) (the same space as that spanned by their images
under the flow DT (t, ω;x)). We look for the smallest d for which we can guarantee
that

2σW1 + sup
P (0)

Tr
∫ 1

0

L(s;x(s))P (s) ds < 0.

We concentrate on the second term. For a fixed rank d orthogonal projection P ,
with range spanned by a set of orthonormal elements in H, {φj}d

j=1, we have

Tr(L(t)P ) =
d∑

j=1

(∆φj , φj) + β
d∑

j=1

|φj |2 − 3e2σWt

∫
D

u2φ2
j dy.

Since
d∑

j=1

(−∆φj , φj) ≥
d∑

j=1

λj ,

where {λj} are the eigenvalues of the Laplacian arranged in increasing order (see
Temam [32], chapter VI, section 2.1), we obtain

Tr(L(t)P ) ≤ −
d∑

j=1

λj + βd.

Thus we can take ε̄(ω) to be the random variable

exp
(

2σW1 −
d∑

j=1

λj + βd

)
,

and since E(W1) = 0, it follows that E(ln ε̄) < 0 if we take

β <
1
d

d∑
j=1

λj .

The second part of (vii) follows from the estimate
d∑

j=1

λj ≤ cd(n+2)/n,

see Temam [32](chapter VI, section 2.1, again).
In the case d = 1 (6.24) reduces to β < λ1, and all that remains is to show that

A(ω) is in fact just one point. For this we make use of Remark 2.6 in Debussche
[13], namely that a similar also provides a bound on the fractal dimension of the
attractor. For our purposes the exact bound on the fractal dimension is irrelevant.
Provided that it is finite, there then exists an orthogonal projection P of finite
rank (k, say) such that the map between A(ω) and PA(ω) is 1− 1 (see Foias and
Olson [17], for example). In this way we can identify A(ω) with a subset of the
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Euclidean space Rk. Since P is Lipschitz, it follows that dH(PA(ω)) < 1, and since
A(ω) is connected so is PA(ω). It now follows from lemma 3.12 in Falconer [15] [a
connected subset of Rk with finite one-dimensional Hausdorff measure is arcwise
connected] that in fact PA(ω), and so A(ω), consists of just one point.

For β < λ1 we recover something akin to our stabilization result, namely that
the attractor A(ω) consists of a single point. However, this could be a random
point a(ω), and it is only the analysis in section 3 (or section 5) which guarantees
that in fact a(ω) = 0 P -almost surely.

For β > λ1, the result as it stands does not guarantee that the attractor is
any more complicated than {0}, but rather limits the possible complexity of the
attractor “from above”.

Finally, note that the behaviour of the attractor dimension is limited by the
parameter β, but that σ plays no rôle. In particular, it is possible to have an
arbitrarily large level of noise (in the Itô sense) and still have an attractor whose
dimension is well controlled.

7. Conclusions. In the first part of the paper we investigated the effect of adding
a multiplicative Itô white noise term to a well-known deterministic PDE, and saw
that this term produced a stabilization of the trivial fixed point x ≡ 0. Transform-
ing the equation into its Stratonovich form we saw no corresponding stabilization
effect from the noisy term, highlighting the importance of the interpretation of the
stochastic integral in such equations. Moreover, this strongly suggests that in the
case of a multiplicative noise it is more sensible to consider the equation in the
Stratonovich sense.

To investigate the problem further we have proved the existence of a random
attractor Aβ,σ(ω), and shown that this is a finite-dimensional set P -almost surely.
In particular, our dimension estimate changes qualitatively when β passes through
λ1.

To conclude, we conjecture that as β is increased through the value λ1, the fixed
point x ≡ 0 undergoes a stochastic form of pitchfork bifurcation, giving rise to an
attractor which is essentially a 1-dimensional manifold while β < 1

2 (λ1 + λ2). We
plan to investigate this further in a future paper.

Appendix. In this appendix we give a proof of Proposition 1. First we need to
prove two auxiliary results which give various estimates on the solutions of equation
(5.7).

Proposition 7.1. (Lipschitz property for the solutions)
Let xi(t) = xi(t, ω; 0, x0

i ), i = 1, 2, be two solutions of problem (5.7) for x0
i ∈ H.

Then, P − a.s.

|x1(t)− x2(t)|2 ≤ e2(β−λ1)t+2σWt |x0
1 − x0

2|2 ∀t ≥ 0.

In particular, for t = 1,

|x1(1, ω; 0, x0
1)− x2(1, ω; 0, x0

2)| ≤ e(β−λ1)t+2σW1 |x0
1 − x0

2| ∀t ≥ 0.

Proof. As xi(t), i = 1, 2, satisfies

dxi(t) = (∆xi(t) + βxi(t)− x3
i (t))dt + σxi(t) ◦ dWt,

then, for w(t) = x1(t)− x2(t) it follows

dw(t) = (∆w(t) + βw(t)− (x3
1(t)− x3

2(t)))dt + σw(t) ◦ dWt.
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By the change of variable

v(t) = α(t)w(t), α(t) = e−σWt

we have
dv(t) = (∆v(t) + βv(t)− α(t)(x3

1(t)− x3
2(t)))dt.

Multiplying by v(t) in H we get
1
2

d

dt
|v(t)|2 = −‖v(t)‖2 + β|v(t)|2 − α2(t)

∫
D

(x3
1(t)− x3

2(t), x1(t)− x2(t)) dy

= −‖v(t)‖2 + β|v(t)|2 + α2(t)
∫

D

(x3
2(t)− x3

1(t), x1(t)− x2(t)) dy

and note that this last integral is less or equal to zero, so that
d

dt
|v(t)|2 ≤ 2(−λ1 + β)|v(t)|2.

Therefore
|x1(t)− x2(t)|2 ≤ e2(β−λ1)t+2σWt |x0

1 − x0
2|2 ∀t ≥ 0, (7.25)

thus, for t = 1,

|x1(1, ω; 0, x0
1)− x2(1, ω; 0, x0

2)| ≤ e(β−λ1)+σW1 |x0
1 − x0

2| (7.26)

and the proof is complete.

Proposition 7.2. If u(t) is the solution of

du/dt = ∆u + βu− e2σWtu3, u(0) ∈ A(ω) (7.27)

then for each p ∈ Z+ there exist random variables I2p(ω) such that∫ 1

0

|u(s)|2p
L2p dx ≤ I2p(ω), (7.28)

where, for all p ∈ Z+ and all k ≥ 0,

E
(
Ik
2p

)
< ∞. (7.29)

Proof. Since u(0) ∈ A(ω), it follows, using the invariance of the random attractor,
that there exists a trajectory u(t) of (7.27) which is defined for all t ∈ < and has
u(t) ∈ A(θtω) for every t ∈R. To prove the bound in (7.28), we show first that∫ t

t−r

|u(s)|2p+2
L2p+2 ds ≤ Cp

(
sup

t−r≤s≤t
e−2σWs

) ∫ t

t−(r+1)

|u(s)|2p
L2p ds.

We prove this by induction, using two inequalities derived from (7).
We first convert (7) into a differential inequality involving the norms in various

Lebesgue spaces. If we multiply (7) by u2k−1 and integrate over D we have∫
D

u2k−1 ∂u

∂t
dy =

1
2k

d

dt

∫
D

u2k dy,

and ∫
D

u2k−1∆u dy =
∫

D

n∑
j=1

u2k−1∂2
j u dy

= −
∫

D

n∑
j=1

(2k − 1)u2k−2(∂ju)2 dy

= −(2k − 1)
∫

D

n∑
j=1

(
uk−1∂ju

)2
dy ≤ 0,
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so we have
1
2k

d

dt
|u|2k

L2k + e2σWt |u|2k+2
L2k+2 ≤ β|u|2k

L2k . (7.30)

First we integrate this equation between s and t (t− 1 ≤ s < t) to give

1
2k
|u(t)|2k

L2k ≤ β

∫ t

s

|u(s)|2k
L2k ds +

1
2k
|u(s)|2kp

L2k ,

and then integrate again with respect to s between t− 1 and t to obtain

|u(t)|2k
L2k ≤ (1 + 2kβ)

∫ t

t−1

|u(s)|2k
L2k ds. (7.31)

Returning to (7.30) and integrating between t− r and t gives∫ t

t−r

e2σWs |u(s)|2k+2
L2k+2 ds ≤ 1

2k
|u(t− r)|2k

L2k

+β

∫ t

t−r

|u(s)|2k
L2k ds.

Now, using the result in (7.31) we have∫ t

t−r

e−2σWs |u(s)|2k+2
L2k+2 ds ≤ 1

2k
(1 + 2kβ)

∫ t−r

t−(r+1)

|u(s)|2k
L2k ds

+β

∫ t

t−r

|u(s)|2k
L2k ds

≤ (1 + β)
∫ t

t−(r+1)

|u(s)|2k
L2k ds.

Finally, we deduce that∫ t

t−r

|u(s)|2k+2
L2k+2 ds ≤ (1 + β)

(
sup

t−r≤s≤t
e−2σWs

) ∫ t

t−(r+1)

|u(s)|2k
L2k ds.

To obtain the bound in the statement of the proposition, we apply this estimate
repeatedly, writing

Sj =
(

sup
1−j≤s≤1

e−2σWs

)
.

We have ∫ 1

0
|u(s)|2k+2

L2k+2 ds ≤ (1 + β)S1

∫ 1

−1
|u(s)|2(k−1)+2

L2(k−1)+2 ds

≤ (1 + β)2S1S2

∫ 1

−2
|u(s)|2(k−2)+2

L2(k−2)+2 ds

≤ (1 + β)kS1 . . . Sk

∫ 1

−k
|u(s)|2 ds.

Now, since u(−k) ∈ A(θ−kω), we have

|u(−k)| ≤ r1(θ−kω).

Now we can use what is essentially (11) once more,

|u(s)|2 ≤ e−λ1s

(
e−λ1k|u(−k)|2 + c4β2

∫ s

−k

eλ1se−2σWs ds

)
,

to deduce (7.28) and (7.29).

We now let T (t, s;ω) be the random dynamical system generated by the solutions
of the transformed equation (7), and show that T (ω) = T (1, 0;ω) is “almost surely
differentiable on A(ω)” (Proposition 1) as required to apply the result of Debussche.
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Proof. (Proposition 1) Thanks to the previous two propositions, the calculations
in Debussche [13] can be followed almost exactly, excepting the addition of a term
involved an exponentiated white noise. We obtain the equation (cf. p. 987 in [13]),

d

dt
|r|2 ≤ c1|r|2 + c2e

4σWt(|u1|Lq1 + |u2|Lq1 )c3 |u1 − u2|2+2δ.

This yields

|r(1)|2 ≤
(

c

∫ 1

0

e4σWs(|u1|Lq1 + |u2|Lq1 )c3 ds

)
|h|2+2δ.

Setting

K(ω) =
(

sup
t∈[0,1]

e4σWt

)
max(cκ(2r1, q1), 1),

we have the required differentiability property, using (7.29) to ensure (6.22), since,
choosing p so that 2p > max(r, q), we have∫ 1

0

|u(s)|rLq ds ≤ CIr/2p
p (ω).
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