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Abstract

In this paper we study the existence of pullback global attractors for multivalued processes gen-
erated by differential inclusions. First, we define multivalued dynamical processes, prove abstract
results on the existence of ω-limit sets and global attractors and study their topological properties
(compactness, conectedness). Further, we apply the abstract results to nonautonomous differential
inclusions of the reaction-diffusion type in which the forcing term can grow polynomially in time, and
to stochastic differential inclusions as well.
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1 Introduction

In this paper we study the existence of pullback global attractors for multivalued processes generated by
differential inclusions. The theory of pullback attractors has been developed for stochastic and nonau-
tonomous systems in which the trajectories can be unbounded when times rises to infinite. In such
systems the classical theory of global attractors is not applicable. Hence, a different approach has been
considered (see [8, 9] for the stochastic case and [9, 14, 18] for the nonautonomous case). The global
attractor is defined as a parameterized family of sets A (σ), which attracts the solutions of the system
“from −∞”. This means that the initial moment of time goes to −∞ and the final time remains fixed.

A new difficulty appears if the solution corresponding to each initial state can be non-unique. The
classical results on attractors in the autonomous and nonautonomous cases are generalized to the multi-
valued case in [16] and [17], respectively, with applications to evolution inclusions.

In [4, 5, 6] the study of multivalued dynamical systems is extended to the stochastic case, generalizing
in this way the results of [8, 9].

In this paper we are mainly concerned with nonautonomous multivalued dynamical systems in which
the trajectories can be unbounded in time and also with nonautonomous stochastic multivalued dynamical
systems.

In the second section we define multivalued dynamical processes, prove abstract results on the exis-
tence of ω-limit sets and global attractors and study their topological properties (compactness, conect-
edness). In the third section we apply the abstract results to nonautonomous differential inclusions of
the reaction-diffusion type in which the forcing term can grow polynomially in time. It is worth pointing
out that the multivalued dynamical process is defined as a two-parameter family of multivalued maps.
The attraction of any bounded set of the phase space to the global attractor is uniform with respect to
the first one, whereas the rate of attraction and the attractor itself can depend on the second one. In the
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applications the nonlinear and forcing terms are split in the sum of two functions. The first one satisfies
some good properties which allow to obtain a compact global attractor (in the classical sense) if the
second function vanishes (see [17]). However, the second one can growth unboundedly when time goes to
infinity. The uniform attraction with respect to the first parameter means that, if we take translations in
time of the first function, the rate of attraction and the global attractor itself do not change. However,
they can depend on the translations in time with respect to the second function. Finally, in Section 4, we
extend the previous theory to cover the cases in which some stochastic terms may appear in the model.

2 Attractors for multivalued processes

In this section we shall define multivalued dynamical processes in metric spaces. Maps of this kind
appear in differential equations for which, although we are able to prove the existence of at least one
global solution for each inital condition in some phase space, we do not know if it is unique or not. Hence,
multivalued processes generalize the concept of processes, for which the uniqueness property holds [7].

In this way we prove the existence of the so called “pullback” attractors [9, 14, 18], generalizing similar
results for processes.

2.1 Multivalued dynamical processes in infinite-dimensional spaces

Let X be a complete metric space with the metric ρ and let P (X) be the set of all non-empty subsets of
X. Denote

B (X) = {A ∈ P (X) : A is bounded} ,

C (X) = {A ∈ P (X) : A is closed} ,

Cv(X) = {A ∈ P (X) : A is bounded, closed and convex}
K (X) = {A ∈ P (X) : A is compact} ,

Rd =
{
(t, s) ∈ R2 : t ≥ s

}
,

R (τ) = {t ∈ R : t ≥ τ} ,

dist (A,B) = sup
x∈A

inf
y∈B

ρ (x, y) , for A,B ⊂ X

dist H(A,B) = max{dist(A,B), dist(B, A)}, for A,B ⊂ X.

Definition 1 The map U : Rd ×X → P (X) is called a multivalued dynamical process (MDP) on X if:

1. U (t, t, ·) = Id is the identity map;

2. U (t, s, x) ⊂ U (t, τ , U (τ , s, x)), for all x ∈ X, s ≤ τ ≤ t.

The MDP U is called strict if:

U (t, s, x) = U (t, τ , U (τ , s, x)) , for all x ∈ X, s ≤ τ ≤ t.

Consider a parameter set Σ. The following proposition is straightforward to prove.

Proposition 2 Let {Uσ : σ ∈ Σ} be an arbitrary family of MDP. Then the map UΣ : Rd ×X → P (X)
defined by

UΣ (t, s, x) =
⋃

σ∈Σ

Uσ (t, s, x)

is a MDP.

Let Σ = Σ1 × Σ2. For any σ2 ∈ Σ2 consider the MDP UΣ1,σ2 : Rd ×X → P (X), where

UΣ1,σ2 (t, s, x) =
⋃

σ1∈Σ1

Uσ1,σ2 (t, s, x) .
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Definition 3 Let t ∈ R, σ2 ∈ Σ2. The set D (t, σ2) ⊂ X attracts the set B ∈ B (X) uniformly with respect
to Σ1 at time t if:

lim
s→−∞

dist (UΣ1,σ2 (t, s, B) , D (t, σ2)) = 0. (1)

Definition 4 Let t ∈ R, σ2 ∈ Σ2. The set D (t, σ2) is said to be Σ1-uniformly attracting at time t if (1)
is satisfied for any B ∈ B (X) .

For B ∈ B (X) , σ2 ∈ Σ2 and t ∈ R put

γs
Σ1

(t, σ2, B) =
⋃

τ≤s

UΣ1,σ2 (t, τ , B) ,

ωΣ1 (t, σ2, B) =
⋂

s≤t

γs
Σ1

(t, σ2, B).

The set ωΣ1 (t, σ2, B) is called the ω−limit set of B for σ2 at time t (with respect to Σ1).

Lemma 5 The following properties are equivalent:

1. y ∈ ωΣ1 (t, σ2, B) ;

2. There exists a sequence (τn, ξn) such that ξn ∈ UΣ1,σ2 (t, τn, B) , ξn → y in X and τn → −∞.

Proof. In the space X consider the sequence of sets
{
γsn

Σ1
(t, σ2, B)

}
for sn → −∞. Then y belongs

to the lower topological limit of Kuratowski

Limsn→−∞γsn

Σ1
(t, σ2, B)

if for any ε > 0 there exists sn0 such that Oε (y) ∩ γsn

Σ1
(t, σ2, B) 6= ∅, for all sn < sn0 , where Oε (y) is an

ε-neighborhood of y. On the other hand, y belongs to the upper topological limit of Kuratowski

Limsn→−∞γsn

Σ1
(t, σ2, B)

if for any ε > 0 there exists a subsequence {snk
} and sn0 such that Oε (y) ∩ γsn

Σ1
(t, σ2, B) 6= ∅, for all

snk
< sn0 . Since γs1

Σ1
(t, σ2, B) ⊂ γs2

Σ1
(t, σ2, B) if s1 ≤ s2, we have

Limsn→−∞γsn

Σ1
(t, σ2, B) = Limsn→−∞γsn

Σ1
(t, σ2, B)

= Limsn→−∞γsn

Σ1
(t, σ2, B) =

⋂

s≤t

γs
Σ1

(t, σ2, B) = ωΣ1 (t, σ2, B) . (2)

Let now y ∈ ωΣ1 (t, σ2, B). Then (2) implies that for εn → 0 we can find a sequence (sn, ξn) such
that ξn ∈ Oεn (y) ∩ γsn

Σ1
(t, σ2, B) , sn → −∞. It follows that ξn ∈ UΣ1,σ2 (t, τn, B), for some τn ≤ sn,

and ξn → y, as n →∞. We have proved in this way the implication 1 =⇒ 2.
Conversely, let the sequence {ξn} satisfy the second condition. Then ξn ∈ γsn

Σ1
(t, σ2, B) for some

sn → −∞. The convergence ξn → y implies that for any ε−neighborhood Oε (y) of y there exists sn0 for
which Oε (y) ∩ γsn

Σ1
(t, σ2, B) 6= ∅, for all sn < sn0 , so that in view of (2), y ∈ ωΣ1 (t, σ2, B) .

Theorem 6 Suppose that for t ∈ R, σ2 ∈ Σ2 and B ∈ B (X) there exists D (t, σ2, B) ∈ K (X) such that

lim
s→−∞

dist (UΣ1,σ2 (t, s, B) , D (t, σ2, B)) = 0. (3)

Then ωΣ1 (t, σ2, B) is non-empty, compact and the minimal closed set Σ1-uniformly attracting B at
time t.
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Proof. First we shall show that ωΣ1 (t, σ2, B) is non-empty. If it is empty, then in view of Lemma 5,
the sequence ξn ∈ UΣ1,σ2 (t, sn, B), where sn → −∞, has not converging subsequences. But from (3) we
get

dist (ξn, D (t, σ2, B)) → 0, as sn →∞. (4)

Hence, there exist αn → 0 and ζn ∈ D (t, σ2, B) such that ρ
(
ξn,ζn

)
< αn, for all n. It follows from the

compactness of the set D (t, σ2, B) that {ξn} has a converging subsequence ξnk
, which is a contradiction.

¿From (4) it follows that if y = limsn→−∞ ξn, where ξn ∈ UΣ1,σ2 (t, sn, B), then y ∈ D (t, σ2, B).
Hence, using again Lemma 5 we obtain ωΣ1 (t, σ2, B) ⊂ D (t, σ2, B) , so that ωΣ1 (t, σ2, B) is compact.

Suppose now that ωΣ1 (t, σ2, B) does not attract B at time t uniformly with respect to Σ1. Then we can
find ε > 0 and a sequence ξn ∈ UΣ1,σ2 (t, sn, B) , where sn → −∞, such that dist (ξn, ωΣ1 (t, σ2, B)) > ε,
for all n. But condition (3) implies, arguing as before, that {ξn} has a converging subsequence

{
ξnk

}
.

Finally, thanks to Lemma 5 we have ξnk
→ y ∈ ωΣ1 (t, σ2, B), which gives us a contradiction.

Further, let us consider a closed set Y satisfying

lim
s→−∞

dist (UΣ1,σ2 (t, s, B) , Y ) = 0. (5)

We have to prove that ωΣ1 (t, σ2, B) ⊂ Y . By Lemma 5 for any y ∈ ωΣ1 (t, σ2, B) we can obtain a
sequence ξn ∈ UΣ1,σ2 (t, sn, B) converging to y as sn → −∞. Take an arbitrary ε > 0. In view of (5)
there exists n0 such that dist (ξn, Y ) < ε

2 and ρ (y, ξn) < ε
2 , for all n > n0. Therefore,

dist (y, Y ) ≤ ρ (y, ξn) + dist (ξn, Y ) < ε.

Since Y is closed, we finally obtain that y ∈ Y.

Definition 7 The family of MDP {Uσ} is called Σ1-uniformly asymptotically upper semicompact if for
any t ∈ R, σ2 ∈ Σ2 and B ∈ B (X) there exists t0 = t0 (t, σ2, B) such that γt0

Σ1
(t, σ2, B) ∈ B (X) and any

sequence ξn ∈ UΣ1,σ2 (t, sn, B) , where sn → −∞, is precompact.

Lemma 8 The family of MDP {Uσ} is Σ1-uniformly asymptotically upper semicompact if and only if
for any t ∈ R, σ2 ∈ Σ2 and B ∈ B (X) there exists D (t, σ2, B) ∈ K (X) satisfying (3).

Proof. Let the family {Uσ} be Σ1-uniformly asymptotically upper semicompact. Then, in view of
Lemma 5, the ω-limit set ωΣ1 (t, σ2, B) is non-empty. We shall first prove that it is compact. Indeed,
for any sequence {ξn} ⊂ ωΣ1 (t, σ2, B) we have {ξn} ⊂ γs

Σ1
(t, σ2, B), for all s ≤ t, and then there exist

ζn ∈ UΣ1,σ2 (t, sn, B), sn → −∞, such that ρ (ξn, ζn) < 1
n . Since Uσ is Σ1-uniformly asymptotically

upper semicompact, it is possible to extract a subsequence
{
ζnk

}
converging to some y ∈ X. By Lemma

5, y ∈ ωΣ1 (t, σ2, B), so that the compactness follows.
Further, we have to check that ωΣ1 (t, σ2, B) is Σ1-uniformly attracting. Suppose the opposite. Then

we can find ε > 0 and a sequence ξn ∈ UΣ1,σ2 (t, sn, B) , where sn → −∞, such that dist (ξn, ωΣ1 (t, σ2, B)) >
ε, for all n. Since Uσ is Σ1-uniformly asymptotically upper semicompact, {ξn} has a converging subse-
quence

{
ξnk

}
. Thanks to Lemma 5 we have ξnk

→ y ∈ ωΣ1 (t, σ2, B), which gives us a contradiction.
Now we can see that the set D (t, σ2, B) = ωΣ1 (t, σ2, B) ∈ K (X) satisfies (3).
Conversely, let for any t ∈ R, σ2 ∈ Σ2 and B ∈ B (X) there exist D (t, σ2, B) ∈ K (X) satisfying

(3). We note that for ε > 0 there exists s0 for which UΣ1,σ2 (t, s, B) ⊂ Oε (D (t, σ2, B)), for all s ≤ s0,
where Oε (A) = {z ∈ X : dist (z,A) < ε} is an ε-neighborhood. Since Oε (D (t, σ2, B)) is a bounded set,
we have γs0

Σ1
(t, σ2, B) ∈ B (X).

Finally, let us take an arbitrary sequence ξn ∈ UΣ1,σ2 (t, sn, B), where sn → −∞. From (3) we get

dist (ξn, D (t, σ2, B)) → 0, as sn → −∞.

Hence, there exist αn → 0 and ζn ∈ D (t, σ2, B) such that ρ
(
ξn,ζn

)
< αn, for all n. It follows from the

compacity of the set D (t, σ2, B) that {ξn} has a converging subsequence ξnk
, so that Uσ is Σ1-uniformly

asymptotically upper semicompact.
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2.2 Global attractors of multivalued dynamical processes

In this section we define the concept of global attractor of a family of MDP, prove its existence and study
its topological properties.

Definition 9 The family of sets {ΘΣ1 (t, σ2)}t∈R is called a Σ1-uniform global attractor of the MDP
{Uσ} for σ2 ∈ Σ2 if:

1. ΘΣ1 (t, σ2) is Σ1-uniformly attracting at time t for all t ∈ R;

2. It is semi-invariant, that is,

ΘΣ1 (t, σ2) ⊂ UΣ1,σ2 (t, s, ΘΣ1 (s, σ2)) , for any (t, s) ∈ Rd;

3. It is minimal, that is, for any closed Σ1-uniformly attracting set Y at time t, we have

ΘΣ1 (t, σ2) ⊂ Y.

Definition 10 Let X, Y be metric spaces. The multivalued map F : X → P (Y ) is said to be upper
semicontinuous if for all x ∈ X and any neighbourhood of F (x), O(F (x)), there exists δ > 0 such that
if ρ(x, z) < δ, then

F (z) ⊂ O(F (x)).

On the other hand, F is called lower semicontinuous if for all x ∈ X, xn → x and y ∈ F (x) , there exists
a sequence {yn} such that yn ∈ F (xn) and yn → y.

It is said to be continuous if it is upper and lower semicontinuous.

Theorem 11 Let X be a complete metric space in which every compact set is nowhere dense and let the
family of MDP {Uσ} be Σ1-uniformly asymptotically upper semicompact. Then the following statements
hold:

1. If for all (t, s) ∈ Rd and σ2 ∈ Σ2 the graph of the map x 7→ UΣ1,σ2 (t, τ , x) ∈ P (X) is closed, then
there exists the Σ1-uniform global attractor {ΘΣ1 (t, σ2)}. Moreover,

ΘΣ1 (t, σ2) =
⋃

B∈B(X)

ωΣ1 (t, σ2, B) 6= X,

and for each t ∈ R, σ2 ∈ Σ2, ΘΣ1 (t, σ2) is a Lindelöf, normal space. It is locally compact in some
topology τ⊕, which is stronger than the topology induced by X in ΘΣ1 (t, σ2).

2. If, in addition, Σ1 is a compact metric space, the map

Σ1 ×X 3 (σ1, x) 7−→ Uσ1,σ2 (t, τ , x) ∈ P (X)

is upper semicontinuous for any (t, τ) ∈ Rd, σ2 ∈ Σ2, Uσ has connected values for any σ ∈ Σ,
(t, τ) ∈ Rd, x ∈ X, Σ1 is a connected space and

ΘΣ1 (t, σ2) ⊂ B1 (t, σ2) ,

where B1 (t, σ2) is a connected set for any t ∈ R, σ2 ∈ Σ2 and ∪s≤tB1 (s, σ2) ∈ B (X) , then the set
ΘΣ1 (t, σ2) is connected for any t ∈ R, σ2 ∈ Σ2.

Remark 12 We note that the condition of being X a space in which every compact set is nowhere dense
is only used to prove that ΘΣ1 (t, σ2) does not coincide with the whole space.

To prove this theorem we shall need the following result.

5



Proposition 13 Let Σ1 be a compact metric space with metric ρΣ1
and let the map

Σ1 ×X 3 (σ1, x) 7−→ Uσ1,σ2 (t, τ , x) ∈ P (X)

be upper semicontinuous for any (t, τ) ∈ R2, σ2 ∈ Σ2. Then the map

X 3 x 7−→ UΣ1,σ2 (t, τ , x) ∈ P (X)

is also upper semicontinuous.

Proof. Let x ∈ X be fixed. Take an arbitrary neighborhood U of UΣ1,σ2 (t, τ , x). It is obviously
a neighborhood of each Uσ1,σ2 (t, τ , x). For any σ1 ∈ Σ1, ε > 0 we can find δ (ε, σ1) > 0 such that
if ρ (y, x) < δ, ρΣ1

(σ1, σ
∗
1) < δ, then Uσ∗1 ,σ2 (t, τ , y) ⊂ U . From the open cover of Σ1 defined by

{
Oδ(ε,σ1) (σ1)

}
σ1∈Σ1

we can extract a finite subcover
{

Oδi(ε,σi
1)

(
σi

1

)}n

i=1
. Hence, for δ (ε) = min δi we

have that if ρ (y, x) < δ, then Uσ1,σ2 (t, τ , x) ⊂ U , for all σ1 ∈ Σ1. Therefore, UΣ1,σ2 (t, τ , x) ⊂ U .

Now we shall prove Theorem 11.

Proof of Theorem 11. By Theorem 6 and Lemma 8, for any B ∈ B (X) , σ2 ∈ Σ2, t ∈ R we
obtain that the omega-limit set ωΣ1 (t, σ2, B) is non-empty, compact and attracts B at time t uniformly
with respect to Σ1. Hence, ΘΣ1 (t, σ2) is non-empty and a Σ1-uniformly attracting set at time t. The
minimality property is an easy consequence of Theorem 6.

Let us show further that the omega-limit set ωΣ1 (t, σ2, B) and ΘΣ1 (t, σ2) are semi-invariant. Lemma
5 implies that for an arbitrary y ∈ ωΣ1 (t, σ2, B) we can find a sequence ξn ∈ UΣ1,σ2 (t, sn, B) converging
to y as sn → −∞. For any sn ≤ τ ≤ t we have

UΣ1,σ2 (t, sn, B) ⊂ UΣ1,σ2 (t, τ , UΣ1,σ2 (τ , sn, B)) ,

so that ξn ∈ UΣ1,σ2 (t, τ , ζn), where ζn ∈ UΣ1,σ2 (τ , sn, B). Since Uσ is Σ1-uniformly asymptotically upper
semicompact, we can assume (taking a subsequence if necessary) that ζn → ζ ∈ ωΣ1 (τ , σ2, B). Since the
graph of x 7→ UΣ1,σ2 (t, τ , x) is closed, we get y ∈ UΣ1,σ2 (t, τ , ζ) ⊂ UΣ1,σ2 (t, τ , ωΣ1 (τ , σ2, B)). It follows

ωΣ1 (t, σ2, B) ⊂ UΣ1,σ2 (t, τ , ωΣ1 (τ , σ2, B)) ⊂ UΣ1,σ2 (t, τ , ΘΣ1 (τ , σ2)) ,

for any B ∈ B (X) , and then ωΣ1 (t, σ2, B) and ΘΣ1 (t, σ2) are semi-invariant.
We have proved that ΘΣ1 (t, σ2) is a Σ1-uniform global attractor. Let us prove now that the global

does not coincide with the whole space and its topological properties, as well. Consider in the space X
the sequence of balls

Bi = {y ∈ X : ρ (y, a) < i} ,

with the fixed center a. It is clear that for any B ∈ B (X) there exists Bi such that B ⊂ Bi. Since in
such case ωΣ1 (t, σ2, B) ⊂ ωΣ1 (t, σ2, Bi), we have

ΘΣ1 (t, σ2) ⊂
∞⋃

i=1

ωΣ1 (t, σ2, Bi) .

On the other hand, the sets Bi are bounded, so that the converse inclusion follows. Hence,

ΘΣ1 (t, σ2) =
∞⋃

i=1

ωΣ1 (t, σ2, Bi) .

Since ΘΣ1 (t, σ2) is a countable union of compact sets, Baire’s theorem implies that ΘΣ1 (t, σ2) 6= ∅.
It follows also immediately that ΘΣ1 (t, σ2) is a Lindelöf space. Hence, since a metric space is regular,
ΘΣ1 (t, σ2) is normal.

Put Si = Si
Σ1

(t, σ2) = ωΣ1 (t, σ2, Bi)×{i}. It is clear that Si ∩Sj = ∅, for all i 6= j. It is evident that
for any i there exists a homeomorphism hi between Si and ωΣ1 (t, σ2, Bi) . The set Si is a topological
space with the topology induced by the metric of X, which will be denoted by τ i.
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Accurate to the homeomorphism Ii we can write that Si = ωΣ1 (t, σ2, Bi). In the set ΘΣ1 (t, σ2) (Θ
for short) we consider the family of subsets

β⊕ = {V ⊂ Θ : V ∩ Si ∈ τ i for some i} . (6)

This family define on Θ a subbase of the topology τ⊕. In this topology each ωΣ1 (t, σ2, Bi) is open and
closed. On the set Θ we have also the topology τ induced by the metric ρ if X, obtaining in this way two
topological spaces (Θ, τ) , (Θ, τ⊕). The topology τ⊕ is stronger than τ (τ⊕ ≤ τ).

We hall check now that the each space (Si, τ i) is compact. Using the homeomorphism hi we identify
the sets Si and ωΣ1 (t, σ2, Bi) . Let {Wα} be an arbitrary open cover of Si, where Wα = Si ∩ Vα and Vα

is open in X. Since Si is a compact set in X, we can extract a finite subset
{
Vsj

}n

j=1
defining the finite

subcover Wsj
= Si ∩ Vsj

. It follows that Si is compact in the topology τ⊕, since τ⊕ is the strongest
topology in Θ for which the canonical embedding Ii : Si → Θ is continuous.

Let now take an arbitrary x ∈ Θ. Then x ∈ Si for some i and Si is a neighborhood of x. Since a
compact set is regular, there exists a neighborhood O (x) ∈ τ i such that O (x) ⊂ Si, i.e. O (x) is compact
in (Si, τ i) and also in the topology τ⊕. Therefore, the space (Θ, τ⊕) is locally compact.

It is obvious that the space (Θ, τ⊕) is Lindelöf. The proof of the first statement is now complete.
For the second statement, suppose that ΘΣ1 (t, σ2) is not connected. Then there exist two open sets

U1, U2 satisfying ΘΣ1 (t, σ2) ∩ Ui 6= ∅, for i = 1, 2, ΘΣ1 (t, σ2) ⊂ U1 ∪ U2 and U1 ∩ U2 = ∅. It is well
known (see [3], [10]) that an upper semicontinuous map with connected values maps any connected set
into a connected one. Since the set B1 (τ , σ2) is connected, Proposition 13 implies then that the set
UΣ1,σ2 (t, τ , B1 (τ , σ2)) is connected. The semi-invariance property gives

ΘΣ1 (t, σ2) ⊂ UΣ1,σ2 (t, τ , ΘΣ1 (τ , σ2)) ⊂ UΣ1,σ2 (t, τ , B1 (τ , σ2)) .

Hence, UΣ1,σ2 (t, τ , B1 (τ , σ2)) ∩ Ui 6= ∅, for i = 1, 2, and by the connectedness of UΣ1,σ2 (t, τ , B1 (τ , σ2))
we obtain that U1∪U2 does not contain UΣ1,σ2 (t, τ , B1 (τ , σ2)) . Hence, UΣ1,σ2 (t, τ , B1 (σ2))∩Ui 6= ∅ and
U1 ∪ U2 does not contain UΣ1,σ2 (t, τ , B1 (σ2)), where B1 (σ2) = ∪τ≤tB1 (τ , σ2). There exists a sequence
ξn ∈ UΣ1,σ2 (t, τn, B1 (σ2)), where τn → −∞, and ξn /∈ U1 ∪ U2. Then since B1 (σ2) ∈ B (X) and the
family {Uσ} is Σ1-uniform upper asymptotically semicompact, we can extract a converging subsequence
ξm → y ∈ ωΣ1 (t, σ2, B1 (σ2)) ⊂ ΘΣ1 (t, σ2) ⊂ U1 ∪ U2. But in such a case there exists m0 for which
ξm ∈ U1 ∪ U2, for all m > m0, which is a contradiction.

Remark 14 We note that under the conditions of point 1 the set ΘΣ1 (t, σ2) can not be locally compact
in the topology of the space X as shown in [21] with an example for an autonomous system.

Remark 15 We note that in [16, p.89] and [17, p.382] there is a mistake in the definition of the subsets
β⊕ (see (6)), where it is written “for any i” instead of “for some i”.

The following proposition is useful in applications.

Proposition 16 Let Σ1 be a compact metric space and let the map

Σ1 ×X 3 (σ1, x) 7−→ Uσ1,σ2 (t, τ , x) ∈ P (X)

be closed for any (t, τ) ∈ R2, σ2 ∈ Σ2. Then the map

X 3 x 7−→ UΣ1,σ2 (t, τ , x) ∈ P (X)

is also closed.

Proof. For fixed (t, τ) ∈ R2 and σ2 ∈ Σ2 consider the sequences xn → x, yn → y, where yn ∈
UΣ1,σ2 (t, τ , xn). Then there exist σ1n ∈ Σ1 for which yn ∈ Uσ1n,σ2 (t, τ , xn), for each n, and, in view of
the compactness of Σ1, we can extract a converging subsequence σ1m → σ0. Therefore, since the map
(σ1, x) 7−→ Uσ1,σ2 (t, τ , x) is closed, we have

y ∈ Uσ0,σ2 (t, τ , x) ⊂ UΣ1,σ2 (t, τ , x) .

In the previous theorem we have proved the existence of a global attractor for Uσ. However, although
it satisfies some good topological properties, it can be an unbounded set of the space X. In applications
it is desirable to obtain a more regular attractor. Namely, by adding a stronger dissipative condition we
are able to prove the existence of a compact global attractor.
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Theorem 17 Let us suppose that for all (t, s) ∈ Rd and σ2 ∈ Σ2 the graph of the map x 7→ UΣ1,σ2 (t, τ , x) ∈
P (X) is closed. If, moreover, for any t ∈ R, σ2 ∈ Σ2 there exists a set D (t, σ2) ∈ K (X) , which is Σ1-
uniformly attracting, then the set

ΘΣ1 (t, σ2) =
⋃

B∈B(X)

ωΣ1 (t, σ2, B)

is the Σ1-uniform global attractor of Uσ. Moreover, the sets ΘΣ1 (t, σ2) are compact and, if the conditions
of the second statement in Theorem 11 hold, then they are connected.

Proof. It is easy to see that ωΣ1 (t, σ2, B) ⊂ D (t, σ2), for all B ∈ B (X). Indeed, since D (t, σ2)
attracts any B ∈ B (X), the limit of any sequence ξn ∈ UΣ1,σ2 (t, τn, B) , τn → −∞, belongs to D (t, σ2).
Lemma 5 gives then the required inclusion. Hence, the set ΘΣ1 (t, σ2), as a closed subset of a compact
one, is compact.

The Σ1-uniformly attracting and minimality properties follow from the first statement of Theorem 11.
It remains to show that ΘΣ1 (t, σ2) is semi-invariant. Let y ∈ ΘΣ1 (t, σ2) be arbitrary. Then there exists
a sequence yn ∈ ωΣ1 (t, σ2, Bn), Bn ∈ B (X), converging to y. Since omega-limit sets are semi-invariant
(see the proof of Theorem 11), for any τ < t we can obtain a sequence ζn ∈ ωΣ1 (τ , σ2, Bn) such that
yn ∈ UΣ1,σ2 (t, τ , ζn). By the compactness of D (τ , σ2) we can assume that ζn → ζ ∈ ΘΣ1 (t, σ2). Finally,
using the fact that the map X 3 x 7−→ UΣ1,σ2 (t, τ , x) is closed (this follows from Proposition 16), we
have y ∈ UΣ1,σ2 (t, τ , ζ) ⊂ UΣ1,σ2 (t, τ , ΘΣ1 (t, σ2)). Hence, ΘΣ1 (t, σ2) ⊂ UΣ1,σ2 (t, τ , ΘΣ1 (t, σ2)) .

Finally, suppose that the conditions of the second statement in Theorem 6 hold. Since in view of
Theorem 6 the set ∪B∈B(X)ωΣ1 (t, σ2, B) is connected, we obtain that ΘΣ1 (t, σ2) is connected.

It is also interesting to consider the situation where the sets ΘΣ1 (t, σ2) defined above are strictly
invariant.

Proposition 18 Let the MDP Uσ be strict, Σ1 be a compact metric space and let the map

Σ1 ×X 3 (σ1, x) 7−→ Uσ1,σ2 (t, τ , x) ∈ P (X)

be lower semicontinuous. Then, the global attractors obtained in Theorems 11 and 17 are invariant, that
is, ΘΣ1 (t, σ2) = UΣ1,σ2 (t, τ , ΘΣ1 (τ , σ2)), for all τ ≤ t, σ2 ∈ Σ2.

Proof. We have to prove the inclusion UΣ1,σ2 (t, τ , ΘΣ1 (τ , σ2)) ⊂ ΘΣ1 (t, σ2) . Consider first the global
attractor defined in Theorem 11. Let y ∈ UΣ1,σ2 (t, τ , ωΣ1 (τ , σ2, B)) , B ∈ B (X) be arbitrary. Then
Lemma 5 implies the existence of a sequence ξn ∈ UΣ1,σ2 (τ , sn, B) converging to ξ ∈ ωΣ1 (τ , σ2, B) ,
as sn → −∞, and y ∈ UΣ1,σ2 (t, τ , ξ). We claim that there exists a sequence {yn} such that yn ∈
UΣ1,σ2 (t, τ , ξn) and yn → y. Indeed, take a sequence σ1n → σ1 ∈ Σ1, where y ∈ Uσ1,σ2 (t, τ , ξ). Now the
lower semicontinuity of the map (σ1, x) 7−→ Uσ1,σ2 (t, τ , x) provides us a sequence yn ∈ Uσ1n,σ2 (t, τ , ξn)
such that yn → y. Since Uσ is strict, we get

yn ∈ Uσ1n,σ2 (t, τ , ξn) ⊂ UΣ1,σ2 (t, τ , ξn) ⊂ UΣ1,σ2 (t, τ , UΣ1,σ2 (τ , sn, B))

⊂ UΣ1,σ2 (t, sn, B) ,

so that we have y ∈ ωΣ1 (t, σ2, B) ⊂ ΘΣ1 (t, σ2). Hence, UΣ1,σ2 (t, τ , ΘΣ1 (τ , σ2)) ⊂ ΘΣ1 (t, σ2).
Further, let now ΘΣ1 (t, σ2) be the global attractor defined in Theorem 17. Denote by F (t, σ2) the

union ∪B∈B(X)ωΣ1 (t, σ2, B) . We have already proved that F (t, σ2) = UΣ1,σ2 (t, τ , F (τ , σ2)). For an
arbitrary

y ∈ Uσ1,σ2 (t, τ , ξ) ⊂ UΣ1,σ2 (t, τ , ΘΣ1 (τ , σ2))

we take sequences σ1n ∈ Σ1, ξn ∈ F (τ , σ2) converging to σ1 and ξ, respectively. Using again the lower
semicontinuity of (σ1, x) 7−→ Uσ1,σ2 (t, τ , x) we obtain the existence of a sequence

yn ∈ Uσ1n,σ2 (t, τ , ξn) ⊂ UΣ1,σ2 (t, τ , F (τ , σ2)) ⊂ F (t, σ2)

converging to y. Hence, y ∈ ΘΣ1 (t, σ2) .
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2.3 Shift on Σ

Suppose that we are given a one-parameter group T (h) : Σ → Σ, where Σ = Σ1 × Σ2, h ∈ R and
T (h) = (T1 (h) , T2 (h)) , Ti (h) : Σi → Σi, i = 1, 2. This is called the shift operator.

The problem we are now going to study was considered in [17] in the case where the maps Uσ, T are
defined only for positive moments of time (in such case the family Uσ is called a semiprocess instead of
process). There are some subtle differences between the two approaches which will be pointed out. So,
we generalize in this way the results of [17] on Σ-uniform attractors. Further we study again Σ1-uniform
attractors (but now using the shift operator T2 on Σ2) and prove that, when a Σ-uniform attractor exists,
it coincides with the Σ1-uniform attractor.

2.3.1 Σ-uniform attractors of the family {Uσ : σ ∈ Σ}
In the sequel we shall assume:

(T1) For any (t, s) ∈ Rd, x ∈ X, σ ∈ Σ, h ∈ R the following inclusion holds:

Uσ1,σ2 (t, s, x) ⊂ UT1(h)σ1,T2(h)σ2 (t− h, s− h, x) .

Lemma 19 Condition (T1) implies

Uσ1,σ2 (t, s, x) = UT1(h)σ1,T2(h)σ2 (t− h, s− h, x) .

Proof. Denoting σ̃i = T1 (h)σi, i = 1, 2, and using (T1) we have

Ueσ1,eσ2 (t− h, s− h, x) ⊂ UT1(−h)T1(h)σ1T2(−h),T2(h)σ2 (t− h + h, s− h + h, x)

= Uσ1,σ2 (t, s, x) .

Lemma 20 T (h)Σ = Σ, for all h ∈ R.

Proof. It is obvious that T (h)Σ ⊂ Σ. Conversely, if σ ∈ Σ then for σ̃ = T (−h) σ ∈ Σ we have
T (h) σ̃ = T (h)T (−h) σ = σ, so that Σ ⊂ T (h)Σ.

Remark 21 These results are not true in the case considered in [17]. In particular, we have to write
T (h)Σ ⊂ Σ, where the inclusion can be strict.

For a fixed τ ∈ R we define the map Gτ : R+ × Σ×X → P (X) by

Gτ (t, σ, x) = Uσ (t + τ , τ , x) .

Proposition 22 If (T1) holds, then the map Gτ : R+ × Σ×X → P (X) satifies:

1. Gτ (0, σ, x) = x, for all x ∈ X,σ ∈ Σ;

2. Gτ (t1 + t2, σ, x) ⊂ Gτ (t1, T (t2)σ,Gτ (t2, σ, x)), for all t1, t2 ∈ R+, σ ∈ Σ, x ∈ X;

3. Gτ (t, σ, x) = G0 (t, T (τ) σ, x) .

Proof. The first property is evident. Further, for any t1, t2 ∈ R+ it follows from (T1) and the
properties of the map Uσ that

Gτ (t1 + t2, σ, x) = Uσ (t1 + t2 + τ , τ , x) ⊂ UT (t2)σ (t1 + τ , τ − t2, x)

⊂ UT (t2)σ

(
t1 + τ , τ , UT (t2)σ (τ , τ − t2, x)

)
= UT (t2)σ (t1 + τ , τ , Uσ (τ + t2, τ , x))
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= Gτ (t1, T (t2)σ, Gτ (t2, σ, x)) .

Finally, using Lemma 19 we have

Gτ (t, σ, x) = Uσ (t + τ , τ , x) = UT (τ)σ (t, 0, x) = G0 (t, T (τ) σ, x) .

Let us define the map UΣ : Rd ×X → P (X) by

UΣ (t, τ , x) =
⋃

σ∈Σ

Uσ (t, τ , x) , for all (t, τ) ∈ Rd, x ∈ X.

Proposition 23 If (T1) holds, then the map UΣ : Rd ×X → P (X) is a MDP for which the following
formula holds:

UΣ (t + h, τ + h, x) = UΣ (t, τ , x) , for all (t, τ) ∈ Rd, x ∈ X,h ∈ R. (7)

Proof. It is an easy consequence of Lemma 19. Indeed,

Uσ (t + h, τ + h, x) = UT (h)σ (t, τ , x) ⊂ UΣ (t, τ , x) , for all σ ∈ Σ, x ∈ X, (t, τ) ∈ Rd.

The converse inequality follows changing h by −h.

In a similar way as before for B ∈ B (X) and t ∈ R we set

γs
Σ (t, B) =

⋃

τ≤s

UΣ (t, τ , B) , t ≥ s,

ωΣ (t, B) =
⋂

s≤t

γs
Σ (t, B).

Definition 24 The family of MDP Uσ is called point dissipative if for any t ∈ R there exists B0 (t) ∈
B (X) such that

dist (UΣ (t, τ , x) , B0 (t)) → 0, as τ → −∞, for all x ∈ X.

Proposition 25 If (T1) holds, then the following statements are equivalent:

1. Uσ is point dissipative;

2. There exists B0 ∈ B (X) such that

dist (UΣ (0, τ , x) , B0) → 0, as τ → −∞, for all x ∈ X.

3. There exists B0 ∈ B (X) such that

dist (UΣ (t, τ , x) , B0) → 0, as t → +∞, for all x ∈ X, τ ∈ R.

Proof. The implication {1 =⇒ 2} is obvious. For {2 =⇒ 3} it is sufficient to apply Proposition 23 to
have

dist (UΣ (t, τ , x) , B0) = dist (UΣ (0, τ − t, x) , B0) → 0, as t → +∞.

Finally, {3 =⇒ 1} is proved as follows

dist (UΣ (t, τ , x) , B0) = dist (UΣ (t− τ , 0, x) , B0) → 0, as τ → −∞.

Note that as a consequence the set B0 (t) in Definition 24 does not depend on t.
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Definition 26 The family of MDP {Uσ} is called Σ-uniformly asymptotically upper semicompact if for
any t ∈ R and B ∈ B (X) there exists t0 = t0 (t, B) such that γt0

Σ (t, B) ∈ B (X) and any sequence
ξn ∈ UΣ (t, sn, B) , where sn → −∞, is precompact.

Proposition 27 Let (T1) hold. Then the following statements are equivalent:

1. The MDP Uσ is Σ-uniformly asymptotically upper semicompact;

2. For any t ∈ R, B ∈ B (X) there exists D (t, B) ∈ K (X) such that

dist (UΣ (t, τ , B) , D (t, B)) → 0, as τ → −∞.

3. For any B ∈ B (X) there exists D (B) ∈ K (X) such that

dist (UΣ (0, τ , B) , D (B)) → 0, as τ → −∞.

4. For any B ∈ B (X) there exists D (B) ∈ K (X) such that

dist (UΣ (t, τ , B) , D (B)) → 0, as t → +∞, for all τ ∈ R.

Proof. For {1 =⇒ 2} in the same way as in Lemma 8 for any t ∈ R, B ∈ B (X) we can prove the
existence of D (t, B) ∈ K (X) such that

dist (UΣ (t, τ , B) , D (t, B)) → 0, as τ → −∞.

The implication {2 =⇒ 3} is evident.
For {3 =⇒ 4} using (7) we have that

dist (UΣ (t, τ , B) , D (B)) = dist (UΣ (0, τ − t, B) , D (B)) → 0, as t → +∞.

Finally, let us prove {4 =⇒ 1}. We note that for any ε > 0, l ∈ R there exists s0 for which UΣ (s, l, B) ⊂
Oε (D (B)), for all s ≥ s0. Since Oε (D (B)) is a bounded set and in view of (7),

UΣ (t, τ , B) = UΣ (t− τ , 0, B) ⊂ Oε (D (B)) , for all τ ≤ t− s0 = t0,

we have γt0
Σ (t, B) ∈ B (X).

Finally, let us take an arbitrary sequence ξn ∈ UΣ (t, sn, B), where sn → −∞. Using (7) again we get

dist (ξn, D (B)) ≤ dist (UΣ (t, sn, B) , D (B)) = dist (UΣ (t− sn, 0, B) , D (B)) → 0, as sn → −∞.

Hence, there exist αn → 0 and ζn ∈ D (B) such that ρ
(
ξn,ζn

)
< αn, for all n. It follows from the

compacity of the set D (B) that {ξn} has a converging subsequence ξnk
, so that Uσ is Σ-uniformly

asymptotically upper semicompact.

Definition 28 The set ΘΣ is called a Σ-uniform global attractor of the MDP {Uσ} if

1. ΘΣ is Σ-uniformly attracting at time 0, that is,

dist (UΣ (0, s, B) , ΘΣ) → 0, as s → −∞, for all B ∈ B (X) .

2. It is semi-invariant, that is,

ΘΣ ⊂ UΣ (t, s, ΘΣ) , for any (t, s) ∈ Rd.

3. It is minimal, that is, for any closed Σ-uniformly attracting set Y at time 0, we have

ΘΣ ⊂ Y.
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As a consequence of Proposition 23 we can prove, in the same way as in the previous propositions,
the following proposition.

Proposition 29 If (T1) holds, the following statements are equivalent:

1. ΘΣ is Σ-uniformly attracting at time 0, that is,

dist (UΣ (0, s, B) , ΘΣ) → 0, as s → −∞, for all B ∈ B (X) .

2. ΘΣ is Σ-uniformly attracting at time t, for any t ∈ R, that is,

dist (UΣ (t, s, B) , ΘΣ) → 0, as s → −∞, for all B ∈ B (X) ,∀t ∈ R.

3. ΘΣ is Σ-uniformly attracting, that is,

dist (UΣ (t, s, B) , ΘΣ) → 0, as t → +∞, for all B ∈ B (X) ,∀s ∈ R.

Definition 30 Let X,Y be metric spaces. The multivalued map F : X → P (Y ) is called w-upper
semicontinuous if for any x0 ∈ X and ε > 0 there exists δ > 0 such that F (x) ⊂ Oε (F (x0)), for all
x ∈ Oδ (x0) .

Theorem 31 Let X be a complete metric space in which every compact set is nowhere dense and let the
family of MDP {Uσ} be Σ-uniformly asymptotically upper semicompact. Then the following statements
hold:

1. If for all s ≤ 0 the graph of the map x 7→ UΣ (0, s, x) ∈ P (X) is closed, then there exists the
Σ-uniform global attractor ΘΣ. Moreover,

ΘΣ =
⋃

B∈B(X)

ωΣ (0, D (B)) =
⋃

B∈B(X)

ωΣ (0, B) =
⋃

B∈B(X)

ωΣ (t, B) 6= X, for all t ∈ R,

where D (B) is the set defined in Proposition 27, and ΘΣ is a Lindelöf, normal space. It is locally
compact in some topology τ⊕, which is stronger than the topology induced by X in ΘΣ.

2. If for all s ≤ 0 the map x 7→ UΣ (0, s, x) ∈ P (X) is closed and there exists a set D ∈ K (X) , which
is Σ-uniformly attracting, then the set ΘΣ is compact.

3. If the family Uσ is point dissipative and for all s ≤ 0 the map x 7→ UΣ (0, s, x) ∈ P (X) has closed
graph and is w-upper semicontinuous, then ΘΣ is compact.

4. If, in addition, Σ is a compact metric space, the map

Σ×X 3 (σ, x) 7−→ Uσ (0, s, x) ∈ P (X)

is upper semicontinuous for any s ≤ 0, Uσ has connected values for any σ ∈ Σ, (t, τ) ∈ Rd, x ∈ X,
Σ is a connected space and ΘΣ ⊂ B1 ∈ B (X), where B1 is connected, then the set ΘΣ is connected.

Proof. It follows from Theorem 11 (replacing Σ1 by Σ) that the set ΘΣ = ∪B∈B(X)ωΣ (0, B) is the
Σ-uniform global attractor of Uσ and the topological properties, as well. Note that

ωΣ (t, B) =
⋂

s≤t

⋃

τ≤s

UΣ (t, τ , B) =
⋂

s−t≤0

⋃

τ−t≤s−t

UΣ (0, τ − t, B) = ωΣ (0, B) .

Hence, ΘΣ = ∪B∈B(X)ωΣ (t, B), for all t ∈ R. Further, it follows from Proposition 27 that D (B) is
Σ-attracting at time 0. The omega-limit set ωΣ (0, B) belongs to D (B) and is semi-invariant (these facts
are proved exactly in the same way as in Theorems 11, 17 replacing Σ1 by Σ and taking into account the
equality ωΣ (0, B) = ωΣ (t, B)). Therefore,

ωΣ (0, B) ⊂ UΣ (t, τ , ωΣ (0, B)) ⊂ UΣ (t, τ ,D (B)) , for all (t, τ) ∈ Rd,
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so that ωΣ (0, B) ⊂ ωΣ (0, D (B)) and then ΘΣ ⊂ ∪B∈B(X)ωΣ (0, D (B)). Since D (B) ∈ B (X) the
converse inclusion is obvious. The proof of the first statement is complete.

For the second statement note that we have proved ωΣ (0, B) ⊂ ωΣ (0, D (B)). Since D (B) = D, we
have ΘΣ = ωΣ (0, D) . Hence, ΘΣ is compact.

Let us prove now the third statement. In view of Proposition 25 there exists B0 ∈ B (X) such that

dist (UΣ (t, τ , x) , B0) → 0, as t → +∞, for all x ∈ X, τ ∈ R.

Set B1 = Oε1 (B0) for some fixed ε1 > 0. We shall show that ΘΣ = ωΣ (0, B1). Take an arbitrary
B ∈ B (X). Fix τ ∈ R.

For any x ∈ ω (0, B) there exists T1 (x) such that UΣ (T1 (x) , τ , x) ⊂ B1. Note that since the map
x 7→ UΣ (0, τ − T1 (x) , x) is w-upper semicontinuous and UΣ (0, τ − T1 (x) , x) = UΣ (T1 (x) , τ , x) (see
again Proposition 23), the map x 7→ UΣ (T1 (x) , τ , x) is w-upper semicontinuous. Then we can find a
neighborhood Oδ(x) (x) for which UΣ

(
T1 (x) , τ , Oδ(x) (x)

) ⊂ B1.
The set

{
Oδ(x) (x) : x ∈ ωΣ (0, B)

}
is an open cover of the compact set ωΣ (0, B) . Let

{
Oδ(xi) (xi)

}n

i=1
be a finite subcover. Then O (ωΣ (0, B)) = ∪n

i=1Oδ(xi) (xi) is a neighborhood of ωΣ (0, B). Fix ε2 > 0.
Since ωΣ (0, B1) is Σ-uniformly attracting B1 at time 0 (this fact can be proved exactly in the same way
as in Theorem 6 replacing Σ1 by Σ), for any xi there exists T2 (xi) such that

UΣ (t, T1 (xi) , B1) = UΣ (0, T1 (xi)− t, B1) ⊂ Oε2 (ωΣ (0, B1)) , for all t ≥ T2 (xi) .

Then for T2 = T2 (ε2, ε1, B) = max {T2 (xi)} we have

UΣ

(
t, τ , Oδ(xi) (xi)

) ⊂ UΣ

(
t, T1 (xi) , UΣ

(
T1 (xi) , τ , Oδ(xi) (xi)

))

⊂ UΣ (t, T1 (xi) , B1) ⊂ Oε2 (ωΣ (0, B1)) , for all t ≥ T2, i = 1, ..., n.

Hence,

UΣ (t, τ , ωΣ (0, B)) ⊂ UΣ (t, τ , O (ωΣ (0, B)))

⊂ Oε2 (ωΣ (0, B1)) , for all t ≥ T2.

Therefore, the semi-invariance of ωΣ (0, B) implies

ωΣ (0, B) ⊂ UΣ (t, τ , ωΣ (0, B)) ⊂ Oε2 (ωΣ (0, B1)) , for all t ≥ T2,

so that ωΣ (0, B) ⊂ ωΣ (0, B1). It follows the desired equality ωΣ (0, B1) = ΘΣ.
The last statement is a consequence of Theorems 11, 17 replacing again Σ1 by Σ. Note that in our

case B1 (t) = B1 ∈ B (X) , so that condition ∪s≤tB1 (s) ∈ B (X) holds.

Remark 32 We note that the condition of being X a space in which every compact is nowhere dense is
only use to prove that ΘΣ does not coincide with the whole space.

Proposition 33 If the family of MDP Uσ is strict, then the global attractor obtained in Theorem 31 is
invariant, that is,

ΘΣ = UΣ (t, τ , ΘΣ) , for all (t, τ) ∈ Rd.

Proof. We have to prove the inclusion UΣ (t, τ , ΘΣ) ⊂ ΘΣ, for all (t, τ) ∈ Rd. Since ωΣ (0, B) ⊂
UΣ (τ , s, ωΣ (0, B)) for any B ∈ B (X) , (τ , s) ∈ Rd (see the proof of Theorem 31), we have, using Propo-
sition 23, that

UΣ (t, τ , ωΣ (0, B)) ⊂ UΣ (t, τ , UΣ (τ , s, ωΣ (0, B))) = UΣ (t, s, ωΣ (0, B))

= UΣ (0, s− t, ωΣ (0, B)) , for all s ≤ τ .

Hence,

UΣ (t, τ , ωΣ (0, B)) ⊂
⋃

s≤l

UΣ (0, s− t, ωΣ (0, B)) , for all l ≤ τ ,

so that UΣ (t, τ , ωΣ (0, B)) ⊂ ωΣ (0, ωΣ (0, B)). Since ωΣ (0, B) is bounded, UΣ (t, τ , ωΣ (0, B)) ⊂ ΘΣ. It
follows then that UΣ (t, τ , ΘΣ) ⊂ ΘΣ.
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2.3.2 Σ1-uniform attractors of the family {Uσ : σ ∈ Σ}
We shall consider again the existence of a global Σ1-uniform attractor, but having now the shift operator
T satisfying condition (T1). The main difference with the previous results consists in the existence of
an equivalence between the parameter σ2 and the final moment of time t, so that it is only necessary to
keep one of them.

Proposition 34 Let (T1) hold and let for any B ∈ B (X), σ2 ∈ Σ2 there exist a compact set D (σ2, B) ⊂
X such that

lim
s→−∞

dist (UΣ1,σ2 (0, s, B) , D (σ2, B)) = 0. (8)

Then the family of MDP Uσ is Σ1-uniformly asymptotically upper semicompact.

Proof. For B ∈ B (X) , σ2 ∈ Σ2 and t ∈ R consider a sequence ξn ∈ Uσ1n,σ2 (t, sn, B), where
σ1n ∈ Σ1, sn → −∞. Then condition (T1) implies

ξn ∈ UT1(t)σ1n,T2(t)σ2 (0, sn − t, 0, B) ⊂ UΣ1,T2(t)σ2 (0, sn − t, 0, B)

and then it follows from (8) (in a similar way as in the proof of Lemma 8) that the sequence {ξn} is
precompact.

Further, note that

γt0
Σ1

(t, σ2, B) = ∪τ≤t0UΣ1,σ2 (t, τ , B) ⊂ ∪τ−t≤t0−tUΣ1,T2(t)σ2 (0, τ − t, B) .

Then in view of (8) there exists t0 for which γt0
Σ1

(t, σ2, B) is bounded.

Let us now study in detail the relationship between the parameter σ2 and the final moment of time t.

Proposition 35 Let (T1) hold. Then

ωΣ1 (t, σ2, B) = ωΣ1 (0, T2 (t) σ2, B) , for all t ∈ R.

Proof. Using Lemma 19 we have

ωΣ1 (t, σ2, B) =
⋂

s≤t

⋃

τ≤s

UΣ1,σ2 (t, τ , B) =
⋂

s≤t

⋃

τ≤s

UΣ1,T2(t)σ2 (0, τ − t, B)

=
⋂

s−t≤0

⋃

τ−t≤s−t

UΣ1,T2(t)σ2 (0, τ − t, B) = ωΣ1 (0, T2 (t)σ2, B) .

Definition 36 Let (T1) hold. Then the family of sets {ΘΣ1 (σ2)}σ2∈Σ2
is called a Σ1-uniform global

attractor of the MDP {Uσ} if:

1. ΘΣ1 (σ2) is Σ1-uniformly attracting at time 0 for any σ2 ∈ Σ2;

2. It is semi-invariant, that is,

ΘΣ1 (T2 (t) σ2) ⊂ UΣ1,σ2 (t, s, ΘΣ1 (T2 (s)σ2)) , for any (t, s) ∈ Rd, σ2 ∈ Σ2;

3. It is minimal, that is, for any σ2 ∈ Σ2 and any closed Σ1-uniformly attracting set Y (σ2) at time
0, we have

ΘΣ1 (σ2) ⊂ Y.

This definition is justified by the following propositions.
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Proposition 37 Let (T1) hold and let the family of sets {ΘΣ1 (t, σ2)}t∈R,σ2∈Σ2
be a Σ1-uniform global

attractor of the MDP {Uσ} for each fixed σ2 ∈ Σ2 in the sense of Definition 9. Then ΘΣ1 (t, σ2) =
ΘΣ1 (0, T2 (t)σ2), for any t ∈ R, σ2 ∈ Σ2.

Proof. Using Lemma 19 for any B ∈ B (X) we have

dist (UΣ1,σ2 (t, τ , B) , ΘΣ1 (0, T2 (t)σ2))

= dist
(
UΣ1,T2(t)σ2 (0, τ − t, B) , ΘΣ1 (0, T2 (t) σ2)

) → 0, as τ → −∞,

so that ΘΣ1 (0, T2 (t)σ2) is Σ1-uniformly attracting at time t for σ2. The minimality property of ΘΣ1 (t, σ2)
implies then that ΘΣ1 (t, σ2) ⊂ ΘΣ1 (0, T2 (t)σ2).

In a similar way we get

dist
(
UΣ1,T2(t)σ2 (0, τ , B) , ΘΣ1 (t, σ2)

)

= dist (UΣ1,σ2 (t, τ + t, B) , ΘΣ1 (t, σ2)) → 0, as τ → −∞,

so that ΘΣ1 (0, T2 (t)σ2) ⊂ ΘΣ1 (t, σ2).

Proposition 38 Let (T1) hold.

1. If the family of sets {ΘΣ1 (σ2)}σ2∈Σ2
is a Σ1-uniform global attractor of the MDP {Uσ} in the sense

of Definition 36, then the family of sets {ΘΣ1 (t, σ2)}t∈R defined by ΘΣ1 (t, σ2) = ΘΣ1 (T2 (t)σ2) is
a Σ1-uniform global attractor of the MDP {Uσ} for each fixed σ2 ∈ Σ2 in the sense of Definition 9.

2. Conversely, if the family of sets {ΘΣ1 (t, σ2)}t∈R is a Σ1-uniform global attractor of the MDP {Uσ}
for each fixed σ2 ∈ Σ2 (in the sense of Definition 9) such that ΘΣ1 (t, σ2) = ΘΣ1 (0, T2 (t)σ2), for
all t ∈ R , then the family of sets {ΘΣ1 (0, σ2)}σ2∈Σ2

is a Σ1-uniform global attractor of the MDP
{Uσ} in the sense of Definition 36.

3. If the families {ΘΣ1 (t, σ2)}t∈R,σ2∈Σ2
, {ΘΣ1 (σ2)}σ2∈Σ2

are Σ1-uniform global attractors in the sense
of Definitions 9 and 36, respectively, then

ΘΣ1 (t, σ2) = ΘΣ1 (T2 (t)σ2), for any t ∈ R, σ2 ∈ Σ2.

Proof. Let the family of sets {ΘΣ1 (σ2)}σ2∈Σ2
be a Σ1-uniform global attractor of the MDP {Uσ}

in the sense of Definition 36. Define the family {ΘΣ1 (t, σ2)}t∈R,σ2∈Σ2
by ΘΣ1 (t, σ2) = ΘΣ1 (T2 (t) σ2).

Using Lemma 19 and the fact that the family {ΘΣ1 (σ2)}σ2∈Σ2
is Σ1-uniformly attracting at time 0, for

any B ∈ B (X) we have

dist (UΣ1,σ2 (t, τ , B) ,ΘΣ1 (t, σ2)) = dist (UΣ1,σ2 (t, τ , B) ,ΘΣ1 (T2 (t)σ2))

= dist
(
UΣ1,T2(t)σ2 (0, τ − t, B) , ΘΣ1 (T2 (t)σ2)

) → 0, as τ → −∞, (9)

so that ΘΣ1 (T2 (t) σ2) is Σ1-uniformly attracting at time t for σ2.
For the semi-invariance property note that

ΘΣ1 (t, σ2) = ΘΣ1 (T2 (t) σ2) ⊂ UΣ1,σ2 (t, s, ΘΣ1 (T2 (s)σ2)) = UΣ1,σ2 (t, s,ΘΣ1 (s, σ2)) .

Finally, let Y be a closed Σ1-uniformly attracting set at time t for σ2. Since

dist (UΣ1,σ2 (t, τ , B) , Y ) = dist
(
UΣ1,T2(t)σ2 (0, τ − t, B) , Y

) → 0, as τ → −∞, (10)

the minimality property of ΘΣ1 (T2 (t)σ2) implies ΘΣ1 (t, σ2) ⊂ Y .
Conversely, let the family of sets {ΘΣ1 (t, σ2)}t∈R be a Σ1-uniform global attractor of the MDP {Uσ}

for each fixed σ2 ∈ Σ2 in the sense of Definition 9. It is obvious that the family of sets {ΘΣ1 (σ2)}σ2∈Σ2
=
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{ΘΣ1 (0, σ2)}σ2∈Σ2
is Σ1-uniformly attracting and satisfies the minimality property. For the semi-

invariance property we have

ΘΣ1 (T2 (t)σ2) = ΘΣ1 (0, T2 (t)σ2) = ΘΣ1 (t, σ2) ⊂ UΣ1,σ2 (t, τ , ΘΣ1 (τ , σ2))

= UΣ1,σ2 (t, τ ,ΘΣ1 (0, T2 (τ) σ2)) = UΣ1,σ2 (t, τ ,ΘΣ1 (T2 (τ)σ2)) .

It remains to prove the equality ΘΣ1 (t, σ2) = ΘΣ1 (T2 (t)σ2), for any t ∈ R, σ2 ∈ Σ2. Since ΘΣ1 (t, σ2)
is minimal and, in view of (9), ΘΣ1 (T2 (t) σ2) is Σ1-uniformly attracting at time t for σ2, we get
ΘΣ1 (t, σ2) ⊂ ΘΣ1 (T2 (t) σ2). The converse inclusion ΘΣ1 (T2 (t)σ2) ⊂ ΘΣ1 (t, σ2) follows from (10)
and the minimality property of ΘΣ1 (T2 (t)σ2).

Remark 39 We note that if the sets ΘΣ1 (t, σ2) are closed in the second statement, then Proposition
37 implies that the condition ΘΣ1 (t, σ2) = ΘΣ1 (0, T2 (t)σ2) is satisfied. This is the case where the sets
ΘΣ1 (t, σ2) are compact.

Theorem 40 Let X be a complete metric space in which every compact set is nowhere dense, (T1) hold
and let (8) be satisfied. Then the following statements hold:

1. If for all τ ≤ 0 and σ2 ∈ Σ2 the graph of the map x 7→ UΣ1,σ2 (0, τ , x) ∈ P (X) is closed, then there
exists the Σ1-uniform global attractor {ΘΣ1 (σ2)}. Moreover,

ΘΣ1 (σ2) =
⋃

B∈B(X)

ωΣ1 (0, σ2, B) 6= X,

and for each t ∈ R, σ2 ∈ Σ2, ΘΣ1 (σ2) is a Lindelöf, normal space. It is locally compact in some
topology τ⊕, which is stronger than the topology induced by X in ΘΣ1 (σ2).

2. If, in addition, Σ1 is a compact metric space, the map

Σ1 ×X 3 (σ1, x) 7−→ Uσ1,σ2 (0, τ , x) ∈ P (X)

is upper semicontinuous for any τ ≤ 0, σ2 ∈ Σ2, Uσ has connected values for any σ ∈ Σ, (0, τ) ∈ Rd,
x ∈ X, Σ1 is a connected space and

ΘΣ1 (T2 (τ)σ2) ⊂ B1 (σ2) , for all τ ≤ 0,

where B1 (σ2) is a bounded connected set for any σ2 ∈ Σ2, then the set ΘΣ1 (σ2) is connected for
any σ2 ∈ Σ2.

Proof. In view of Proposition 34 Lemma 19 the conditions of the first statement are equivalent to
those of Theorem 11. Then the family

ΘΣ1 (t, σ2) =
⋃

B∈B(X)

ωΣ1 (t, σ2, B)

is a Σ1-global attractor in the sense of Definition 9. It follows from Proposition 35 the equality

ΘΣ1 (t, σ2) =
⋃

B∈B(X)

ωΣ1 (t, σ2, B) =
⋃

B∈B(X)

ωΣ1 (0, T2 (t)σ2, B) = ΘΣ1 (0, T2 (t)σ2) . (11)

The first statement is then a consequence of the first statement in Proposition 38.
For the second statement we note that using

ΘΣ1 (t + τ , σ2) = ΘΣ1 (0, T2 (t + τ) σ2) = ΘΣ1 (T2 (t + τ)σ2)

= ΘΣ1 (T2 (τ)T2 (t)σ2) ⊂ B1 (T2 (t)σ2) , for all τ ≤ 0,

and Lemma 19 we obtain that the conditions of the second statement of Theorem 11 are also satisfied.
It follows that the sets ΘΣ1 (σ2) are connected.

Similarly, we can obtain the following consequence of Theorem 17.
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Theorem 41 Let us suppose that for all (0, s) ∈ Rd and σ2 ∈ Σ2 the graph of the map x 7→ UΣ1,σ2 (0, s, x) ∈
P (X) is closed. If, moreover, for any σ2 ∈ Σ2 there exists a set D (σ2) ∈ K (X) , which is Σ1-uniformly
attracting, then the set

ΘΣ1 (σ2) =
⋃

B∈B(X)

ωΣ1 (0, σ2, B)

is the Σ1-uniform global attractor of Uσ. Moreover, the sets ΘΣ1 (σ2) are compact and, if the conditions
of the second statement in Theorem 11 hold, then they are connected.

Finally, we have:

Proposition 42 Let the MDP Uσ be strict, Σ1 be a compact metric space and let the map

Σ1 ×X 3 (σ1, x) 7−→ Uσ1,σ2 (0, τ , x) ∈ P (X)

be lower semicontinuous. Then the global attractors obtained in Theorems 40 and 41 are invariant, that
is, ΘΣ1 (T2 (t)σ2) = UΣ1,σ2 (t, τ , ΘΣ1 (T2 (τ)σ2)), for all τ ≤ t, σ2 ∈ Σ2.

Proof. By using the equality ΘΣ1 (t, σ2) = ΘΣ1 (0, T2 (t)σ2) (proved in (11)) and Proposition 18 we
obtain

ΘΣ1 (T2 (t)σ2) = ΘΣ1 (0, T2 (t)σ2) = ΘΣ1 (t, σ2) = UΣ1,σ2 (t, τ , ΘΣ1 (τ , σ2))

= UΣ1,σ2 (t, τ ,ΘΣ1 (0, T2 (τ) σ2)) = UΣ1,σ2 (t, τ ,ΘΣ1 (T2 (τ)σ2)) .

3 Applications to nonautonomous evolution inclusions

Let Ω ⊂ Rn be a bounded open subset with smooth boundary ∂Ω. Consider the parabolic inclusion




∂u

∂t
−∑n

i=1
∂

∂xi

(∣∣∣ ∂u
∂xi

∣∣∣
p−2

∂u
∂xi

)
∈ f1 (t, u) + f2 (t, u) + g1 (t) + g2 (t) , in Ω× (τ , T ) ,

u |∂Ω= 0,
u |t=τ= uτ ,

(12)

where τ ∈ R, p ≥ 2, fi : R × R → Cv (R), i = 1, 2, g1 ∈ L∞ (R, L2 (Ω)) , g2 ∈ Lloc
2 (R, L2 (Ω)) and the

following conditions hold:

(F1) There exists C ≥ 0 such that

dist H (f1 (t, u) , f1 (t, v)) ≤ C |u− v| , for all t ∈ R, u, v ∈ R.

(F2) For any t, s ∈ R and u ∈ R, it holds

dist H (f1 (t, u) , f1 (s, u)) ≤ l (|u|)α (|t− s|) ,

where α is a continuous function such that α (t) → 0, as t → 0+, and l is a continuous nondecreasing
function. Moreover, there exist K1,K2 ≥ 0 such that

|l (u)| ≤ K1 + K2 |u| , for all u ∈ R.

(F3) There exist D ∈ R+, v0 ∈ R for which

|f1 (t, v0)|+ ≤ D, for all t ∈ R,

where |f1 (t, v0)|+ = sup
ζ∈f1(t,v0)

|ξ|.
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(F4) There exist α1 (t) , α2 (t) ≥ 0, α1 (·) , α2 (·) ∈ Lloc
2 (−∞,∞) , such that

sup
y∈f2(t,u)

|y| ≤ α1 (t) + α2 (t) |u|, for all u, t ∈ R.

(F5) For each t ∈ R, the map f2 (t, ·) is upper semicontinuous.

(F6) For each s ∈ R, the map f2 (·, s) is measurable.

(F7) If p = 2, there exist ε > 0 and M ≥ 0 such that

yu ≤ (λ1 − ε)u2 + M, for all u ∈ R, t ∈ R, y ∈ f1 (t, u) + f2 (t, u) ,

where λ1 is the first eigenvalue of −∆ in H1
0 (Ω).

(F8) There exist R1, R2, R3 > 0 such that

‖g2 (t)‖L2(Ω) ≤ R1 + R2 |t|R3 , for a.a. t ∈ R.

(F9) If p > 2, there exist R4, R4, R6 > 0 such that

|αi (t)| ≤ R4 + R5 |t|R6 , for a.a. t ∈ R, i = 1, 2.

Our aim is to apply the abstract results of the previous section to inclusion (12).

3.1 Abstract setting: construction of the family of multivalued processes

First let us construct the sets Σ1,Σ2. The set Σ1 will be defined exactly in the same way as in [17]. We
shall briefly recall how Σ1 is defined.

Let W be the space Cv (R) endowed with the Hausdorff metric ρ (x, y) = dist H (x, y). The space
W ⊂ K (R) is complete.

For any ψ ∈ W let |ψ|+ = max
y∈ψ

|y| . Define also the space

M =
{
ψ ∈ C (R, W ) : |ψ (v)|+ ≤ D1 + D2 |v|

}
,

where the constants D1, D2 are such that

|y| ≤ D1 + D2 |u| , for all u ∈ R, t ∈ R, y ∈ f1 (t, u) ,

(see [17, Lemma 12].)
If we take Ki = [−Ri, Ri], where 0 < N1 < N2 < ... < Nn →∞, we have ψm → ψ if and only if

max
|v|≤Ni

distH (ψm (v) , ψ (v)) → 0, as m →∞, for all Ni.

The space M⊂ C (R,K (R)) is complete. Let Φ ⊂M be the set

Φ = {ψ ∈M : distH (ψ (u) , ψ (v)) ≤ C |u− v| , for all u, v ∈ R} ,

where C is defined in (F1). This set is compact.

Recall that the hull of f ∈ C (R,M) is defined by

H (f) = clC(R,M) {f (·+ h) : h ∈ R} .

Definition 43 The function f ∈ C (R,M) is said to be translation-compact if its hull H (f) is compact
in C (R,M).

Lemma 44 The function f1 is translation-compact.
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Proof. It follows the same lines as in [17, Lemma 15] but changing R+ by R.

Since g1 ∈ L∞ (R, L2 (Ω)) , in the same way as in [17] we obtain that the symbol σ10 (t) = (f1 (t, ·) , g1 (t))
is translation-compact in the space C (R,M) × Lloc

2,w (R, L2 (Ω)), where Lloc
2,w (R, L2 (Ω)) is the space

Lloc
2 (R, L2 (Ω)) endowed with the weak topology. The hull of this symbol will be denoted by Σ1 =
H (f1) × H (g1), where H (g1) = clLloc

2,w(R,L2(Ω)) {g1 (·+ h) : h ∈ R} . On the other hand, for any gσ1 ∈
H (g1) we have that

‖gσ1‖L∞(R,L2(Ω)) ≤ C0 = ‖g1‖L∞(R,L2(Ω)) . (13)

(See [17, Lemma 12].) It is straightforward to check that for any fσ1 ∈ H (f1) conditions (F1) − (F3)
hold. We note that all the constants and functions in (F1)− (F3) do not depend on σ1 ∈ Σ1.

The set Σ1 is then a compact metric space and in the same way as in [17, Lemma 11] we can prove
that T1 (h)Σ1 ⊂ Σ1, for all h ∈ R, where T1 (h) is the shift operator, that is, T1 (h) σ1 (t) = σ1 (t + h) .

For the set Σ2 we put

Σ2 =
⋃

h∈R
(f2 (·+ h) , g2 (·+ h)) .

It is clear that T2 (h)Σ2 ⊂ Σ2, for all h ∈ R, and also that if σ2 = (fσ2 , gσ2) ∈ Σ2, then fσ2 satisfies
(F4) − (F6) and (F9) , whereas gσ2 ∈ Lloc

2 (R, L2 (Ω)) satisfies (F8) . We note that in this case the
functions α1, α2 and the constants Ri can depend on σ2.

Finally, we note that for any σ ∈ Σ = Σ1 ×Σ2 condition (F7) holds (with the same constants, which
do not depend on σ).

Now let X = L2 (Ω) with the norm ‖·‖X and the scalar product (·, ·). Consider the abstract evolution
inclusion

{
du (t)

dt
∈ A (u (t)) + Fσ (t, u (t)) , t ∈ [τ ,∞) ,

u (τ) = uτ ,
(14)

where σ = (σ1, σ2) ∈ Σ and A : D (A) ⊂ X → 2X , Fσ : R ×X → 2X , are multivalued maps defined as
follows:

A (u) =
n∑

i=1

∂

∂xi

(∣∣∣∣
∂u

∂xi

∣∣∣∣
p−2

∂u

∂xi

)
,

D (A) =
{

u ∈ W 1,p
0 (Ω) : A (u) ∈ L2 (Ω)

}
,

Fσ1 (t, u) = {y ∈ X : y (x) ∈ fσ1 (t, u (x)) + gσ1 (t) , a.e. on Ω} ,

Fσ2 (t, u) = {y ∈ X : y (x) ∈ fσ2 (t, u (x)) + gσ2 (t) , a.e. on Ω}

Fσ (t, u) = Fσ1 (t, u) + Fσ2 (t, u) .

It is understood that the map Fσ is defined for a.a. t ∈ R.
The operator A satisfies the following properties (see [16, Section 3.2]):

(A1) The operator A is m-dissipative, i.e. for any y1, y2 ∈ D(A), ξi ∈ A(yi), i = 1, 2, there exists
j (yi, ξi) ∈ J (y1 − y2) such that

< ξ1 − ξ2, j >≤ 0 ,

and Im(A− λI) = X, for all λ > 0, where J : X → 2X∗
is the duality map defined by

J(y) = {ξ ∈ X∗ |< y, ξ >= ‖y‖2X = ‖ξ‖2X∗}, for any y ∈ X.
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(A2) D (A) = L2 (Ω) .

(A3) A generates a compact semigroup S.

For Fσ1 it holds (see [17, p.395 and Lemma 18]):

(G1) Fσ1 : R × X → Cv (X), for all σ1 ∈ Σ1 (recall that Cv (X) is the set of all nonempty, closed,
bounded, convex subsets of X).

(G2) For any (T, τ) ∈ Rd, x ∈ X, σ1 ∈ Σ the map t 7→ Fσ1 (t, x) is measurable and

distH (Fσ1 (t, x1) , Fσ1 (t, x2)) ≤ C ‖x1 − x2‖X , for all x1, x2 ∈ X, t ∈ R, σ1 ∈ Σ1.

(G3) For any x ∈ X there exist γ1, γ2 ≥ 0 such that

‖Fσ1 (t, x)‖+ ≤ γ1 + γ2 ‖x‖X + C0, a.e. t ∈ R, for all σ ∈ Σ1,

where ‖K‖+ = supy∈K ‖y‖X and C0 is taken from (13).

Define the map F̃σ2 by

F̃σ2 (t, u) = {y ∈ X : y (x) ∈ fσ2 (t, u (x)) , a.e. on Ω} .

We know from [12, Proposition 2.5] that, for any fixed t ∈ R, the map u 7−→ F̃σ2 (t, u) ∈ Cv (X) is
w-upper semicontinuous. On the other hand, in view of (F4) we get

‖y‖2X ≤
∫

Ω

(α1 (t) + α2 (t) |u|)2 dx ≤ 2
(
α2

1 (t)µ (Ω) + α2
2 (t) ‖u‖2X

)

≤ 2
(
α1 (t) (µ (Ω))

1
2 + α2 (t) ‖u‖X

)2

, for all y ∈ F̃σ2 (t, u) and a.a. t ∈ R,

so that there exist α̃1 (t) , α̃2 (t) ≥ 0, α̃1 (·) , α̃2 (·) ∈ Lloc
2 (−∞,∞) , such that

∥∥∥F̃σ2(t, u)
∥∥∥

+
≤ α̃1 (t) + α̃2 (t) ‖u‖X , for all u ∈ X and a.a. t ∈ R. (15)

Hence, for Fσ2 we have:

(G4) Fσ2 : R×X → Cv (X), for all σ2 ∈ Σ2.

(G5) For any fixed t ∈ R and σ2 the map u 7−→ Fσ2 (t, u) is w-upper semicontinuous.

(G6) For any σ2 ∈ Σ2 we have

‖Fσ2(t, u)‖+ ≤ α̃1 (t) + α̃2 (t) ‖u‖X + ‖gσ2 (t)‖X , for all u ∈ X and a.a. t ∈ R.

Let us now study the properties of the map Fσ.

Lemma 45 The map Fσ satisfies:

(S1) Fσ : R×X → Cv (X), for all σ ∈ Σ.

(S2) For any fixed t ∈ R and σ ∈ Σ the map u 7−→ Fσ (t, u) is w-upper semicontinuous.

(S3) For any σ ∈ Σ there exist β1,β2 ≥ 0, β1, β2 ∈ Lloc
2 (−∞,∞) (depending on σ2 but not on σ1), such

that

‖Fσ(t, u)‖+ ≤ β1 (t) + β2 (t) ‖u‖X , for all u ∈ Xand a.a. t ∈ R.

(S4) For any (T, τ) ∈ Rd, x ∈ X, σ ∈ Σ, the map t 7→ Fσ (t, x) has a measurable selection.
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Proof. For (S1) note that it follows immediately from (G1) and (G4) that Fσ has non-empty,
bounded, convex values. Finally, for the closedness take a sequence yn ∈ Fσ (t, u) such that yn → y.
Note that yn = xn + zn, where xn ∈ Fσ1 (t, u) , zn ∈ Fσ2 (t, u) . Passing to a subsequence, if necessary, we
obtain that xn → x, zn → z weakly in L2 (Ω). Since Fσ1 (t, u) , Fσ2 (t, u) are closed and convex, they are
weakly closed, so that x ∈ Fσ1 (t, u) , z ∈ Fσ2 (t, u) . Hence, y = x + z ∈ Fσ (t, u) .

For (S2) note that in view of (G2) and (G5) for any ε > 0 and v ∈ X we have

dist (Fσ (t, u) , Fσ (t, v)) = dist (Fσ1 (t, u) + Fσ2 (t, u) , Fσ1 (t, v) + Fσ2 (t, v))

≤ dist (Fσ1 (t, u) , Fσ1 (t, v)) + dist (Fσ2 (t, u) , Fσ2 (t, v)) ≤ ε,

provided that ‖u− v‖ ≤ δ (ε, v) .
Further, by (G3) and (G6) we get

‖Fσ(t, u)‖+ ≤ γ1 + γ2 ‖u‖X + C0 + α̃1 (t) + α̃2 (t) ‖u‖X + ‖gσ2 (t)‖X ,

so that (S3) holds.
Consider now (S4). First let us prove that the map F̃σ2 (·, u) has a measurable selection for all

σ2 ∈ Σ2, u ∈ X. Take first a constant function u (x) ≡ u ∈ R. The map t 7→ f2 (t, u) is measurable by
assumption (F6), so that it has a measurable selection g (t) (see [1, Theorem 8.3.1]). Define the map
G : R → L2 (Ω) by G (t, x) = g (t), for all x ∈ Ω. We claim that G (t) is a measurable selection of
F̃σ2 (·, u). Indeed, for any v ∈ L2 (Ω) we have

(G (t) , v) =
∫

Ω

g (t) v (x) dx = g (t)
∫

Ω

v (x) dx = g (t) v0.

Since the last map is measurable and the space L2 (Ω) is separable, G (t) is a measurable map (see [22]).
The inclusion G (t) ∈ F̃σ2 (t, u) is obvious. Further, let u be a step function, that is,

u (x) =





u1, if x ∈ Ω1,
...

um, if x ∈ Ωm.

For each ui we can take a measurable selection gi (t) of the map f2 (t, ui). Define the map G : R→ L2 (Ω)
by

G (t, x) =





g1 (t) , if x ∈ Ω1,
...

gm (t) , if x ∈ Ωm.

.

We claim that G (t) is a measurable selection of F̃σ2 (·, u). Indeed, for any v ∈ L2 (Ω) we have

(G (t) , v) =
m∑

i=1

∫

Ωi

gi (t) v (x) dx =
m∑

i=1

gi (t) vi,

so that G (t) is measurable and again the inclusion G (t) ∈ F̃σ2 (t, u) is obvious.
Further, take a sequence of step functions un converging to u in L2 (Ω). In view of (15) the sequence

of selections Gn (t) ∈ F̃σ2 (t, un) satisfies the inequality

‖Gn (t)‖X ≤
∥∥∥F̃σ2 (t, un)

∥∥∥
X
≤ α̃1 (t) + α̃2 (t) ‖un‖X ≤ α̃1 (t) + α̃2 (t)C.

Hence, choosing a subsequence if necessary we can assume that Gn → G weakly in L2 (τ , T ;L2 (Ω)) .

We have to prove further that G (t) ∈ F̃σ2 (t, u) , a.e. on (τ , T ). In view of [19, Proposition 1.1] we
have

G (t) ∈ ∩∞m=1co ∪n≥m Gn (t) , for a.a. t ∈ (τ , T ) .
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Fix t ∈ (τ , T ). Since the map u 7→ F̃σ2 (t, u) is w-upper semicontinuous (see (G5)), we have

dist
(
Gn (t) , F̃σ2 (t, u)

)
→ 0, as n →∞.

Hence, the convexity of the set F̃σ2 (t, u) implies that for any δ > 0 there exists n0 such that

dist
(
co ∪n≥n0 Gn (t) , F̃σ2 (t, u)

)
< δ, if n ≥ n0.

Therefore, the closedness of F̃σ2 (t, u) gives G (t) ∈ F̃σ2 (t, u), a.e. on (τ , T ) , as required.
By (G2) the map t 7→ Fσ1 (t, u) is measurable, so that it has a measurable selection K (t) (see [1,

Theorem 8.3.1]). Hence, the map

η (t) = K (t) + G (t) + gσ2 (t)

is a measurable selection of Fσ (t, u) .

Now we can construct the multivalued process corresponding to (12).

Definition 46 The continuous function uσ (·) ∈ C ([τ , T ] , X) is called an integral solution of (14) if
uσ (τ) = uτ and there exists l (·) ∈ L1 ([τ , T ] , X) such that l (t) ∈ Fσ (t, uσ (t)), a.e. on (τ , T ), and for
any ξ ∈ D(A), v ∈ A(ξ) one has

‖uσ(t)− ξ‖2X ≤ ‖uσ(s)− ξ‖2X + 2
∫ t

s

(l(r) + v, uσ(r)− ξ) dr, t ≥ s. (16)

It follows from (A1) − (A2) , (S1) − (S4) that for any uτ ∈ L2 (Ω) there exists at least one integral
solution uσ to (14) for any T > τ (such that uσ (t) ∈ D (A) for a.a. t ∈ (τ , T )) [20, Theorem 2.1]. We
shall denote any integral solution by uσ (·) = I (uτ ) l (·). For a fixed σ ∈ Σ let Dσ,τ (x) be the set of all
integral solutions corresponding to the initial condition u (τ) = x.

For any integral solutions uσ (·) = I (uτ ) l1 (·), vσ (·) = I (vτ ) l2 (·), the following inequality holds

‖uσ(t)− vσ (t)‖X ≤ ‖uσ(s)− vσ (s)‖X +
∫ t

s

‖l1(r)− l2 (r)‖X dr, t ≥ s. (17)

In the sequel we shall write u instead of uσ for simplicity of notation if no confussion is possible. We
shall define the map Uσ : Rd ×X → P (X) by

Uσ (t, τ , x) = {z : there exists u (·) ∈ Dσ,τ (x) such that u (t) = z} .

Proposition 47 For each σ ∈ Σ, h ∈ R, τ ≤ s ≤ t, x ∈ X we have

Uσ (t, s, Uσ (s, τ , x)) = Uσ (t, τ , x) ,

UT (h)σ (t, τ , x) = Uσ (t + h, τ + h, x) .

Hence, Uσ is a multivalued process for each σ ∈ Σ and condition (T1) holds.

Proof. It follows the same lines of [17, Proposition 4].

3.2 Existence of the global Σ1-uniform attractor

We shall check further that the conditions of Theorem 41 are satisfied.
First we shall prove that the graph of the map U is closed.

Proposition 48 For all (0, τ) ∈ Rd and σ2 ∈ Σ2 the graph of the map x 7→ UΣ1,σ2 (0, τ , x) ∈ P (X) is
closed.
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Proof. In view of Proposition 16 it is sufficient to prove that the map

Σ1 ×X 3 (σ1, x) 7−→ Uσ1,σ2 (0, τ , x) ∈ P (X)

is closed for any (0, τ) ∈ Rd, σ2 ∈ Σ2.
Let yn ∈ Uσ1n,σ2 (0, τ , un

τ ) be such that

yn → y in L2 (Ω) ,

un
τ → uτ in L2 (Ω) ,

σ1n = (fσ1n
, gσ1n

) → σ1 = (fσ1 , gσ1) in C (R,M)× Lloc
2,w (R, L2 (Ω)) .

We have to prove that y ∈ Uσ1,σ2 (0, τ , u0).
There exist sequences un (·) = I (un

τ ) ln (·), ln (s) ∈ Fσ1n,σ2 (s, un (s)), a.e. in (τ , 0), such that yn =
un (0).

In view of (S3) we get

‖ln (s)‖X ≤ ‖Fσ1n,σ2 (s, un (s))‖+ ≤ β1 (s) + β2 (s) ‖un (s)‖X , a.e. on (τ , 0) , (18)

where the functions β1, β2 may depend on σ2, but not on σ1n.
We shall show first the existence of a function m (·) ∈ L2 (τ , 0), m (s) ≥ 0, such that ‖ln (s)‖X ≤ m (s) ,

a.e. in (τ , 0) . Let us introduce the sequence vn (·) = I (uτ ) ln (·) and let z (·) be the unique solution to

{
dz (t)

dt
= A (z (t)) , on (0, T ) ,

z (0) = u0.

Let r0 = max {‖z (s)‖X : s ∈ [0, T ]} and r2 = r1 + r0, where ‖uτ − un
τ ‖L2

≤ r1, for all n. From (17) we
have

‖un (s)− z (s)‖X ≤ ‖u0 − un
0‖X +

∫ s

τ

‖ln (r)‖L2
dr

and then by (18),

‖un (s)‖L2
≤ ‖z (s)‖L2

+ r1 +
∫ s

τ

(β1 (r) + β2 (r) ‖un (r)‖X) dr

≤ r2 + K1 (τ , β1) +
∫ s

τ

β2 (r) ‖un (s)‖L2
dr.

Hence, by Gronwall lemma we have

‖un (s)‖X ≤ (r2 + K1 (τ , β1)) exp
(∫ s

τ

β2 (r) dr

)
= r (s) , for all s ∈ [τ , 0] . (19)

Therefore using (18) again we obtain

‖ln (s)‖X ≤ β1 (s) + β2 (s) r (s) = m (s) , a.e. in (τ , 0) . (20)

The sequence {ln} is then precompact in the space L2 (τ , 0; L2 (Ω)) endowed with the weak topology.
Hence, it is precompact in the space L1 (τ , 0;L2 (Ω)) endowed with the weak topology and, since the semi-
group generated by A is compact, this implies that the sequence {vn} is precompact in C ([τ , 0] , L2 (Ω))
(see [11, Theorem 2.3]). We obtain that there exist subsequences such that

vn → v in C ([τ , 0] , L2 (Ω)) ,
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ln → l weakly in L2 (τ , 0; L2 (Ω)) .

Since ln → l weakly in L1 (τ , 0; L2 (Ω)), Lemma 1.3 from [19] implies v (·) = I (uτ ) l (·). Using again (17)
we have ‖un (s)− vn (s)‖X ≤ ‖un

0 (s)− u0 (s)‖X , for all s ∈ [τ , 0], so that un → v in C ([τ , 0] , L2 (Ω))
and y = v (t). To conclude the proof we have to check that l (s) ∈ Fσ (s, v (s)), a.e. on (τ , 0).

Since ln → l, gσ1n
→ gσ1 , weakly in L2 (τ , 0; L2 (Ω)), we have ln−gσ1n

−gσ2 = dn (·) → l−gσ1−gσ2 =
dσ (·), weakly in L2 (τ , 0; L2 (Ω)) . Then we need to obtain dσ (s) ∈ F̃σ (s, v (s)) = Fσ (s, v (s))− gσ1 (s)−
gσ2 (s), a.e. on (τ , 0).

Fix s ∈ (τ , 0) and denote F̃σi
(s, v (s)) = Fσi

(s, v (s)) − gσi
(s) , i = 1, 2, dn (s) = d1n (s) + d2n (s),

where din (s) ∈ L2 (Ω), i = 1, 2, are such that

din (s) ∈ F̃σi
(s, un (s)) .

Note that since un (s) → v (s) in L2 (Ω), passing to a subsequence if necessary un (s, x) → v (s, x) for a.a.
x ∈ Ω. Hence by (F1) and (F5) we have

dist (fσ1 (s, un (s, x)) , fσ1 (s, v (s, x))) ≤ C |un (s, x)− v (s, x)| → 0,

dist (fσ2 (s, un (s, x)) , fσ2 (s, v (s, x))) → 0, as n → +∞,

for a.a. x ∈ Ω. On the other hand, since {un (s, x)} is bounded, that is |un (s, x)| ≤ C (x), for all n, and
fσ1n converges to fσ1 in C (R,M), we get

dist (fσ1n (s, un (s, x)) , fσ1 (s, un (s, x))) → 0, as n → +∞,

for a.a. x ∈ Ω. Then

dist (d1n (s, x) , fσ1 (s, v (s, x)))

≤ dist (fσ1 (s, un (s, x)) , fσ1 (s, v (s, x))) + dist (fσ1n (s, un (s, x)) , fσ1 (s, un (s, x))) → 0,

dist (d2n (s, x) , fσ2 (s, v (s, x))) ≤ dist (fσ2 (s, un (s, x)) , fσ2 (s, v (s, x))) → 0, (21)

for a.a. x ∈ Ω.
In view of [19, Proposition 1.1] for a.a. s ∈ (τ , 0) we have

d (s) ∈ ∞∩
n=1

co
∞∪

k≥n
dk (s) = A (s) .

Fix s. Denote An (s) = co
∞∪

k≥n
dk (s) . It is easy to see that z ∈ A (s) if and only if there exist zn ∈ An (s)

such that zn → z, as n → ∞, in L2 (Ω). Taking a subsequence we have zn (x) → z (x), a.e. in Ω. Since
zn ∈ An (s), we get

zn (s) =
N(n)∑

i=1

λidki (s) ,

where λi ∈ [0, 1],
∑N

i=1 λi = 1 and ki ≥ n, for all i.
Now (21) implies that for any ε > 0 and a.a. x ∈ Ω there exists n (x, ε) such that

dk (s, x) ⊂ [a (s, x)− ε, b (s, x) + ε] , for all k ≥ n,

where [a (s, x) , b (s, x)] = fσ (s, v (s, x)) = fσ1 (s, v (s, x)) + fσ2 (s, v (s, x)) (note that the map fσ has
convex closed values). Hence,

zn (s, x) ⊂ [a (s, x)− ε, b (s, x) + ε] ,
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as well. Passing to the limit we obtain

z (s, x) ∈ [a (s, x) , b (s, x)] = fσ (s, v (s, x)) , a.e. on Ω.

Further, note that

zn (s) =
N(n)∑

i=1

λid1ki (s) +
N(n)∑

i=1

λid2ki (s) = z1n (s) + z2n (s) ,

and in view of (G3) , the inclusion d1ki (s) ∈ F̃σ1 (s, uki (s)) , (13) and (19) we get

‖z1n (s)‖X ≤
N(n)∑

i=1

λi ‖d1ki
(s)‖X ≤

N(n)∑

i=1

λi

∥∥∥F̃σ1 (s, uki
(s))

∥∥∥
+

≤ γ1 + γ2 ‖uki (s)‖X + C0 + ‖gσ1 (s)‖ ≤ γ1 + γ2r (s) + 2C0.

Hence, passing to a subsequence if necessary we have z1n (s) → z1 (s), weakly in L2 (Ω). Mazur’s theorem
implies that

z1 (s) ∈ ∞∩
m=1

co
∞∪

n≥m
z1n (s) .

Denote now Zm (s) = co
∞∪

n≥m
z1n (s) . As before, there exist xm ∈ Zm (s) such that xm → z1 (s), as

m → ∞, in L2 (Ω). Taking a subsequence we have xm (x) → z1 (x, s), a.e. in Ω. Since xm ∈ Zm (s), we
get

xm (s) =
N1(m)∑

i=1

λiz1ni (s) ,

where λi ∈ [0, 1],
∑N1

i=1 λi = 1 and ni ≥ m, for all i.
Now (21) implies that for any ε > 0 and a.a. x ∈ Ω there exists m (x, ε) such that

d1k (s, x) ⊂ [a1 (s, x)− ε, b1 (s, x) + ε] , for all k ≥ m,

where [a1 (s, x) , b1 (s, x)] = fσ1 (s, v (s, x)) . Hence,

z1ni (x) =
N(ni)∑

j=1

γjdkj (s) ⊂ [a1 (x)− ε, b1 (x) + ε] ,

where
∑N(ni)

j=1 γj = 1, kj ≥ ni ≥ m, and then

xm (s, x) ⊂ [a1 (s, x)− ε, b1 (s, x) + ε] ,

as well. Passing to the limit we obtain that

z1 (s, x) ∈ [a1 (s, x) , b1 (s, x)] = fσ1 (s, v (s, x)) , a.e. on Ω.

Therefore, we get z (s) = z1 (s) + z2 (s) , where zi (s) ∈ F̃σi (s, v (s)), i = 1, 2. Hence, d (s) ∈ A (s) ⊂
F̃σ (s, v (s)), a.e. on (τ , 0). It follows that l (s) ∈ Fσ (s, v (s)), a.e. on (τ , 0), as required.

Therefore, y = v (0) ∈ Uσ (0, τ , x) .

Corollary 49 For all (0, τ) ∈ Rd and σ2 ∈ Σ2 the map x 7→ UΣ1,σ2 (0, τ , x) has closed values.
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Further, we shall check the existence of a compact Σ1-uniformly attracting set at time 0. For this aim
we shall use that integral solutions are in fact strong ones.

Indeed, consider the equation
{

du (t)
dt

= A (u (t)) + l (t) ,

u |t=τ= uτ ,
(22)

where l ∈ L2 ([τ , T ] , X). The operator−A is the subdifferential of the proper convex lower semicontinuous
function

ϕ (u) =

{
1
p

∑n
i=1

∫
Ω

∣∣∣ ∂u
∂xi

∣∣∣
p

dx, if u ∈ W 1,p
0 (Ω) ,

+∞, otherwise.

It is well known that if l (·) ∈ L2 ([τ , T ] , X) , then the integral solution u (·) to the problem (22),
which is unique, is in fact a strong one, that is, u (·) is absolutely continuous on compact sets of (τ , T ),
a.e. differentiable on (τ , T ) and satisfies (22) a.e. in (τ , T ) (see [16, Section 3.2]).

Therefore, if we take an arbitrary integral solution to (14), say u (·) = I (uτ ) l (·) , then (S3) implies
that l ∈ L2 ([τ , T ] , X), so that u is a strong solution to (22).

Lemma 50 For any σ2 ∈ Σ2 there exists a set B1 (σ2) , bounded in X, such that for any B ∈ B (X)
there exists T = T (B) < −1 for which

UΣ1,σ2 (−1, τ , B) ⊂ B1, for all τ ≤ T. (23)

Proof. Fix σ2 = (fσ2 , gσ2) ∈ Σ2. First let p = 2. Take an arbitrary solution u (·) = I (uτ ) l (·) defined
on [τ ,−1] , where l (t) ∈ Fσ1 (t, u (t)) + Fσ2 (t, u (t)), σ1 ∈ Σ1 and uτ ∈ B ∈ B (X) . Multiplying (22) by
u (s) and using (F7) , (F8) and (13) we have

1
2

d

ds
‖u‖2X + λ1 ‖u‖2X ≤ 1

2
d

ds
‖u‖2X + ‖∇u‖2X

≤ (λ1 − ε) ‖u‖2X + Mµ (Ω) + ‖u‖X ‖gσ1(s)‖X + ‖u‖X ‖gσ2(s)‖X

≤ (λ1 − ε) ‖u‖2X + Mµ (Ω) +
(
C0 + R1 + R2 |s|R3

)
‖u‖X

≤
(
λ1 − ε

2

)
‖u‖2X + Mµ (Ω) +

(
C0 + R1 + R2 |s|R3

)2

2ε
,

where µ (Ω) is the Lebesgue measure of Ω in Rn. Therefore,

d

ds
‖u‖2X + ε ‖u‖2X ≤ 2Mµ (Ω) +

(
C0 + R1 + R2 |s|R3

)2

ε
. (24)

By the Gronwall lemma

‖u (−1)‖2X ≤ exp (ε (1 + τ)) ||uτ ||2X
+

∫ −1

τ

exp (ε (1 + s))
(

2Mµ (Ω) +
1
ε

(
C0 + R1 + R2 |s|R3

)2
)

ds,

so that the ball

B1 (σ2) =
{

y ∈ X : ‖y‖ ≤
√

K (σ2) + α
}

,

26



with α > 0, K (σ2) =
∫ −1

−∞ exp (ε (1 + s))
(

2Mµ (Ω) + 1
ε

(
C0 + R1 + R2 |s|R3

)2
)

ds, satisfies (23). In-

deed, we can find T (B) < −1 such that exp (ε (1 + τ)) ||uτ ||2X ≤ α, for all τ ≤ T (B) , uτ ∈ B.
Now let p > 2. Note that the operator A satisfies Poincaré’s inequality (−A (u) , u) ≥ γ ‖u‖p

Lp
≥

D ‖u‖p
L2

, where γ,D > 0. Multiplying (22) by u (s) and using (G3) , (15), (F8) , (F9) and (13) we have

1
2

d

ds
‖u‖2X + D ‖u‖p

X ≤ 1
2

d

ds
‖u‖2X + γ ‖u‖p

Lp
≤ ‖Fσ (s, u (s))‖+ ‖u‖X

≤
√

2
(
α1 (s) (µ (Ω))

1
2 + α2 (s) ‖u‖X

)
‖u‖X + (γ1 + γ2 ‖u‖X) ‖u‖X

+ ‖u‖X ‖gσ1(s)‖X + ‖u‖X ‖gσ2(s)‖X

≤
(√

2
(
α1 (s) (µ (Ω))

1
2 + α2 (s) ‖u‖X

)
+ γ1 + γ2 ‖u‖X + C0 + ‖gσ2(s)‖X

)
‖u‖X

≤ η1 (s) + η2 (s) ‖u‖2X ,

where ηi (t) ≥ 0 are locally integrable functions with polynomial growth at most.
Using Young inequality and (F8)− (F9) we obtain

1
2

d

ds
‖u‖2X +

D̃

2
‖u‖2X −K ≤ 1

2
d

ds
‖u‖2X +

D

2
‖u‖p

X ≤ η3 (s) ,

where D̃, K > 0 and η3 (t) ≥ 0 is a locally integrable function such that

|η3 (t)| ≤ δ1 + δ2 |t|δ3 , for a.a. t ∈ R, i = 1, 2,

for some δj > 0, j = 1, 2, 3.
The final part of the proof repeats the same steps of the case p = 2.

Remark 51 We note that T (B) does not depend upon σ2, so that the rate of attraction is in this case
uniform with respect to this paramenter.

For any bounded set B, σ2 ∈ Σ2 and τ , t ∈ R, τ ≤ t, let us introduce the set

M (B, σ2, τ , t)
= {l ∈ L1 (τ , t; L2 (Ω)) : uσ (·) = I (uτ ) l (·) , uσ ∈ Dσ,τ (uτ ) , uτ ∈ B, σ = (σ1, σ2) , σ1 ∈ Σ} .

Lemma 52 For any R0 > 0, σ2 ∈ Σ and (t, τ) ∈ Rd, there exists R ≥ R0 such that

‖UΣ1,σ2 (s, τ , u)‖+ ≤ R,

for all τ ≤ s ≤ t and u ∈ X such that ‖u‖X ≤ R0.

Proof. Fix σ2 = (fσ2 , gσ2) ∈ Σ2. First let p = 2. Take an arbitrary solution u (·) = I (uτ ) l (·) defined
on [τ , t] , where l (r) ∈ Fσ1 (r, u (r)) + Fσ2 (r, u (r)), σ1 ∈ Σ1 and uτ satisfies ‖uτ‖X ≤ R0. Arguing as in
Lemma 50 we have

‖u (s)‖2X ≤ exp (ε (−s + τ)) ||uτ ||2X
+

∫ s

τ

exp (ε (−s + r))
(

2Mµ (Ω) +
1
ε

(
C0 + R1 + R2 |r|R3

)2
)

dr

≤ R2
0 +

∫ t

τ

exp (ε (−τ + r))
(

2Mµ (Ω) +
1
ε

(
C0 + R1 + R2 |s|R3

)2
)

ds = R2,

for all τ ≤ s ≤ t.
For p > 2 the proof is similar.
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Lemma 53 For any bounded set B, σ2 ∈ Σ2 and τ , t ∈ R, τ ≤ t, the set M (B, σ2, τ , t) is bounded in the
space L2 (τ , t; L2 (Ω)) .

Proof. Let R0 > 0 be such that ‖u‖X ≤ R0, for any u ∈ B. As shown before in Lemma 45 for any
σ = (σ1, σ2) ∈ Σ there exist β1,β2 ≥ 0, β1, β2 ∈ Lloc

2 (−∞,∞) (depending on σ2 but not on σ1) such
that

‖Fσ(s, uσ)‖+ ≤ β1 (s) + β2 (s) ‖uσ‖X , for all u ∈ X and a.a. s ∈ R.

Hence, for any l ∈ M (B, σ2, τ , t) one has

‖l (s)‖X ≤ β1 (s) + β2 (s) ‖uσ (s)‖X , for a.a. s ∈ (τ , t) ,

where uσ (·) = I (uτ ) l (·) . But Lemma 52 implies the existence of R ≥ R0 such that ‖uσ (s)‖X ≤ R, for
any σ1 ∈ Σ1, τ ≤ s ≤ t, uσ (s) ∈ Uσ (s, τ , B) , so that the statement follows.

Proposition 54 For any σ2 ∈ Σ2 there exists a compact set D (σ2) such that for any B ∈ B (X) there
exists T (B) ≤ 0 for which

UΣ1,σ2 (0, τ , B) ⊂ D (σ2) , if τ ≤ T .

Proof. We take D (σ2) = UΣ1,σ2 (0,−1, B1 (σ2)), where B1 (σ2) is the set defined in Lemma 50, and
claim that it is the desired set. First let us prove that it is compact. Let y ∈ UΣ1,σ2 (0,−1, B1 (σ2))
be arbitrary. Then there exists uσ (·) = I (u0) l (·), with σ2 ∈ Σ2, u0 ∈ B1 (σ2) , such that y = uσ (0) ,
uσ (−1) = u0. Multiplying the equation

duσ

dt
−A (uσ) = l (25)

by uσ and using the inequality (−A (u) , u) ≥ γ ‖u‖p
W 1,p , for all u ∈ D (A), where γ > 0, we have

1
2

d

dt
‖uσ (s)‖2L2

+ γ ‖uσ (s)‖p
W 1,p ≤ ‖l (s)‖L2

‖uσ (s)‖L2
≤ 1

2D
‖l (s)‖2L2

+
1
2
D ‖uσ (s)‖2L2

,

for any D > 0.
The continuous injections W 1,p

0 (Ω) ⊂ Lp (Ω) ⊂ L2 (Ω) allows us to choose D > 0 such that D ‖uσ (s)‖p
L2
≤

γ ‖uσ (s)‖p
W 1,p . Hence, integrating over (−1, 0) and using Lemma 53 and Young inequality we obtain

‖uσ (0)‖2L2
+ 2γ

∫ 0

−1

‖uσ (s)‖p
W 1,p ds ≤ C + γ

∫ 0

−1

‖uσ (s)‖p
W 1,p ds + ‖u0‖2L2

, (26)

where C is some positive constant.
Recall that ϕ (u) = 1

p

∑n
i=1

∥∥∥ ∂
∂xi

u
∥∥∥

p

Lp

, if u ∈ W 1,p
0 (Ω). Consider first the case where u0 ∈ D (ϕ) =

W 1,p
0 (Ω). In this case since l (·) ∈ L2 (−1, 0;L2 (Ω)) , it is known (see [2, p.189]) that ϕ (u (t)) is absolutely

continuous in [−1, 0] and d
dsϕ (u (s)) =

(
∂ϕ (u (s)) , du(s)

ds

)
, a.e. on (−1, 0). Further, multiplying (25) by

(1 + s) duσ

ds we have

(1 + s)
∥∥∥∥

d

dt
uσ (s)

∥∥∥∥
2

L2

+ (1 + s)
d

ds
ϕ (u (s)) ≤ (1 + s) ‖l (s)‖L2

∥∥∥∥
d

ds
uσ (s)

∥∥∥∥
L2

.

≤ 1
2

(1 + s) ‖l (s)‖2L2
+

1
2

(1 + s)
∥∥∥∥

d

dt
uσ (s)

∥∥∥∥
2

L2

Integrating by parts over (−1, 0) and using Lemma 53 we get

∫ 0

−1

1
2

(1 + s)
∥∥∥∥

d

dt
uσ (s)

∥∥∥∥
2

L2

ds + ϕ (uσ (0)) ≤
∫ 0

−1

ϕ (u (s)) ds + K,
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where K > 0. Using the fact that the norms ‖u‖W 1,p and
(∑n

i=1

∥∥∥ ∂
∂xi

u
∥∥∥

p

Lp

) 1
p

are equivalent in W 1,p
0 (Ω)

and (26) we have

ϕ (uσ (0)) ≤ α
(
C + ‖u0‖2L2

)
+ K, (27)

for some α > 0.
Let now consider the general case u0 ∈ L2 (Ω). We take un

0 → u0 with un
0 ∈ D (ϕ) , un

0 ∈ B1 (σ2). From
[19, Theorem 3.1] we obtain the existence of a sequence un (·) = I (un

0 ) ln (·), ln (s) ∈ Fσ(s) (s, un (s)),
such that un → uσ in C ([−1, 0] , L2 (Ω)). Hence by (27) and using the lower semicontinuity of ϕ we
obtain

ϕ (uσ (0)) ≤ lim inf ϕ (un (0)) ≤ α
(
C + ‖u0‖2L2

)
+ K.

This implies that the set UΣ1,σ2 (0,−1, B1 (σ2)) is bounded in the space W 1,p (Ω). Since the injection
W 1,p (Ω) ⊂ L2 (Ω) is compact, the set D (σ2) is compact.

Further, let B ∈ B (X) be arbitrary. Lemma 50 implies the existence of some T (τ , B) < −1 for which
UΣ1,σ2 (−1, τ , B) ⊂ B1 (σ2), if τ ≤ T. Then by Proposition 47 we have

UΣ1,σ2 (0, τ , B) = UΣ1,σ2 (0,−1, UΣ1,σ2 (−1, τ , B)) ⊂ D (σ2) .

We have proved that the family of semiprocesses generated by (12) satisfies all conditions of Theorem
41. We can then state the main result of this paper.

Theorem 55 If (F1)− (F9) hold and g1 ∈ L∞ (R, L2 (Ω)) , then the family of semiprocesses Uσ has the
Σ1−uniform global compact attractor ΘΣ1 (σ2).

Let us consider now the connectivity of the global attractor.

Theorem 56 In the conditions of Theorem 55, let f2 ≡ 0 and let there exist a non-decreasing map C (t)
such that ‖g2 (t)‖X ≤ C (t), for a.a. t ∈ R. Then the set ΘΣ1 (σ2) is connected in X for each σ2 ∈ Σ2.

Proof. We have to check the conditions of point 2 in Theorem 40.
We have already seen that the set Σ1 is compact. Let us prove that for each T ≥ τ , Uσ (T, τ , ·) has

connected values. It follows from the condition f2 ≡ 0 that Fσ satisfies (G1) − (G2) . These properties
and (S3) imply that the set

M (uτ , σ, τ , T )
= {l ∈ L1 (τ , T ; L2 (Ω)) : uσ (·) = I (uτ ) l (·) , uσ ∈ Dσ,τ (uτ )}

is connected in the space L1 (τ , T ; L2 (Ω)) (see [20, p.169]). Thanks to inequality (17) we have

‖u1 (T )− u2 (T )‖X ≤
∫ T

τ

‖l1 (t)− l2 (t)‖X dt, for all l1, l2 ∈ M (uτ , σ2, τ , T ) ,

where ui = I (uτ ) li, i = 1, 2. Hence, the map L : L1 (τ , T ; L2 (Ω)) → L2 (Ω) defined by L (l) = u (T ) is
continuous. Since L (M (uτ , σ, τ , T )) = Uσ (T, τ , uτ ) , Uσ (T, τ , ·) has connected values.

The space Σ1 is connected. Indeed, first note that in view of (F2) the map h 7→ T1 (h) f1 ∈ C (R,M)
is continuous. Consider further the continuity of the map h 7→ T1 (h) g1 ∈ Lloc

2,w (R, X) . If, for example,
this function is not continuous at h = 0, then there exists a neighborhood U of g1 in Lloc

2,w (R, X) and
hn → 0 such that gn (t) = g1 (t + hn) /∈ U , for all n (for the general case hn → h the proof is similar).
Take an arbitrary interval I = [τ , T ] ⊂ R and ϕ ∈ L∞ (τ , T ; L2 (Ω)). Since the scalar product (g (t) , ϕ (t))
(in X) is measurable on any interval of R, Luzin’s theorem implies

(gn (t) , ϕ (t)) → (g (t) , ϕ (t)) in measure.
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Therefore, choosing a subsequence if necessary, we get

(gn (t) , ϕ (t)) → (g (t) , ϕ (t)) a.e. on (τ , T ) .

By the inequality
∫ T

τ
|(gn (t) , ϕ (t))|2 dt ≤ C and [15, Chapter 1, Lemma 1.3] we have

∫ T

τ

(gn (t) , ϕ (t)) dt →
∫ T

τ

(g (t) , ϕ (t)) dt.

Note that the compactness of H (g1) allow us to assume without loss of generality that gn → l weakly
in Lloc

2,w (R, X). It follows that l = g1, which is a contradiction. Then the map h 7−→ T (h)σ1 ∈
C (R,M) × Lloc

2,w (R, X) is continuous on R, so that the set ∪h∈Rσ1 (·+ h) is connected. Hence, Σ1, as
the closure of a connected set, is connected.

Further, let us prove for any σ2 ∈ Σ2 the existence of a ball containing the sets ΘΣ1 (T2 (h) σ2) , for
h ≤ 0. It is clear that for any σ2 = (fσ2 , gσ2) there exists a non-decreasing function C̃ (t) such that
‖gσ2 (t)‖X ≤ C̃ (t), for a.a. t ∈ R, and also that

∥∥gT2(h)σ2 (t)
∥∥

X
≤ C̃ (t), for all h ≤ 0 and a.a. t ∈ R. For

p = 2, arguing as in Lemma 50, we obtain

d

ds
‖u‖2X + ε ‖u‖2X ≤ 2Mµ (Ω) +

(
C0 + C̃ (0)

)2

ε
,

for any u (·) = I (uτ ) l (·) defined on [τ , 0] , where l (t) ∈ Fσ1 (t, u (t)) + Fσ2 (t, u (t)), and any σ1 ∈ Σ1,
σ̃2 = T2 (h) σ2, h ≤ 0, and uτ ∈ B ∈ B (X). It follows that the closed set

B1 =
{

y ∈ X : ‖y‖X ≤
√

K + α
}

,

with α > 0, K =
2Mµ(Ω)+ 1

ε (C0+ eC(0))2

ε , is attracting at 0 for any σ̃2 = T2 (h) σ2, h ≤ 0. The minimality
property of the global attractor implies then that ΘΣ1 (T2 (h)σ2) ⊂ B1, for h ≤ 0. For p > 2 the proof is
similar.

Finally, let us prove that (σ1, x) 7→ Uσ1,σ2 (t, τ , x) is upper semicontinuous. Suppose that for some
(σ1, x) the map is not upper semicontinuous. Then there exists a neighborhood O of Uσ1,σ2 (t, τ , x) and
sequences zn ∈ Uσ1n,σ2 (t, τ , xn), σ1n → σ1 in C (R+,M)×Lloc

2,w (R+, L2 (Ω)), xn → x in L2 (Ω), such that
zn /∈ O. Repeating the same lines of the proof of Proposition 48 we can prove that for some subsequence
znk

→ z ∈ Uσ1,σ2 (t, τ , x), which is a contradiction.
Hence, it follows from the second statement in Theorem 40 that the sets ΘΣ1 (σ2) are connected.

4 Stochastic non-autonomous evolution inclusions

4.1 Additive white noise case

Consider the following non-autonomous differential inclusion perturbed by an additive white noise





∂u

∂t
−∆u ∈ f (t, u) + g1 (t) + g2 (t) +

∑m
i=1 φi

dwi(t)
dt , on D × (τ , T ) ,

u |∂D= 0,
u |t=τ= uτ ,

(28)

where τ ∈ R, D ⊂ Rn is an open bounded set with smooth boundary ∂D, φi ∈ D(A) (where A (u) =
∆u, D (A) = H1

0 (Ω) ∩ H2 (Ω)), i = 1, ..., m, f : R × R → Cv (R), i = 1, 2, g1 ∈ L∞ (R, L2 (D)) ,
g2 ∈ Lloc

2 (R, L2 (D)) . We write ζ (t) =
∑m

i=1 φiwi (t). Consider the Wiener probability space (Ω,F ,P)
defined by

Ω = {ω = (w1 (·) , ..., wm (·)) ∈ C (R,Rm) | ω (0) = 0} ,

equipped with the Borel σ−algebra F and the Wiener measure P. Each ω ∈ Ω generates a map ζ (·) =∑m
i=1 φiwi (·) ∈ C (R, L2 (D)) such that ζ (0) = 0.
Suppose that f satisfies (F1)− (F3), (F7), whereas g2 satisfies (F8).
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4.1.1 Construction of the family of multivalued processes

Firstly, let us construct the sets Σ1,Σ2. The set Σ1 will be defined in the same way as in the previous
section, that is, Σ1 = H (f) × H (g1), where H (g1) = clLloc

2,w(R,L2(D)) {g1 (t + h) : h ∈ R} and H (f) =
clC(R,M) {f (·+ h) : h ∈ R} .

Then T1 (h) Σ1 = Σ1, for all h ∈ R, where T1 (h) is the shift operator, that is, T1 (h) σ1 (t) = σ1 (t + h) .
For the set Σ2 we write

Σ2 = Σ̃2 × Ω,

with

Σ̃2 = ∪
h∈R

g2 (·+ h) .

We define the map θs : Ω → Ω as follows

θsω = (w1 (s + ·)− w1 (s) , ..., wm (s + ·)− wm (s)) ∈ Ω.

Then the function ζ̃ corresponding to θsω is defined by ζ̃ (τ) = ζ (s + τ)−ζ (s) =
∑m

i=1 φi (wi (s + τ)− wi (s)) .
The operator T1 is defined as before. We define the shift operator T2 : Σ2 → Σ2 as

T2(h)σ2 = T2(h)(σ̃2, ω) = (σ̃2(·+ h), θhω), for all σ̃2 ∈ Σ̃2, ω ∈ Ω.

Thus, T2 (h)Σ2 = Σ2, for all h ∈ R, and if σ1 = (fσ1 , gσ1) ∈ Σ1, gσ2 ∈ Σ̃2, then fσ1 satisfies (F1)− (F3),
(F7) and gσ2 ∈ Lloc

2 (R, L2 (Ω)) satisfies (F8) .
To study (28), we make the change of variable v (t) = u (t)− ζ (t). Then inclusion (28) turns, for each

ω ∈ Ω fixed, into
{

dv

dt
∈ ∆v (t) + f (t, v (t) + ζ (t)) + g1 (t) + g2 (t) +

∑m
i=1 ∆φiwi (t) ,

v |∂D= 0, v (τ) = vτ = uτ − ζ (τ) .
(29)

Now let X = L2 (Ω). Consider the abstract evolution inclusion
{

dv (t)
dt

∈ A (v (t)) + Fσ (t, v (t)) , t ∈ [τ ,∞) ,

v (τ) = vτ = uτ − ζ (τ) ,
(30)

where σ = (σ1, σ2) ∈ Σ and A : D (A) ⊂ X → X, Fσ : R×X → 2X , are maps defined as follows:

A (u) = ∆u, D (A) = H1
0 (Ω) ∩H2 (Ω) ,

Fσ (t, ω, u) = gσ2(t) + F̂σ1 (t, ω, u) ,

with

F̂σ1 (t, ω, u) = Fσ1 (t, u + ζ (t)) + Aζ (t) ,

where Fσ1 is as in the previous section. It is understood that the map Fσ is defined for a.a. t ∈ R.
It follows from (G3) the existence of γi ≥ 0 such that
∥∥∥F̂σ1 (t, ω, u)

∥∥∥
+
≤ γ1 + γ2 ‖u‖X + γ2 ‖ζ (t)‖X + ‖Aζ (t)‖X + C0, for all u ∈ X, t ∈ R, ω ∈ Ω. (31)

It is easy to see that Fσ1 satisfies (G1)− (G2). As before, the operator A satisfies (A1)− (A3). Note
that (S1)− (S4) from Lemma 45 hold for Fσ.

We now construct the multivalued process corresponding to (28). It follows from (A1)− (A3) , (S1)−
(S4) that for any vτ ∈ L2 (Ω) there exists at least one integral solution to (30) for any T > τ [20, Theorem
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2.1]. We shall denote this solution by vσ (·) = I (vτ ) l (·). For a fixed σ ∈ Σ let Dσ,τ (x) be the set of
all integral solutions corresponding to the initial condition v (τ) = x. We shall write v instead of vσ for
simplicity of notation if no confussion is possible.

We define the map Uσ : Rd ×X → P (X) by

Uσ (t, τ , x) = {z + ζ(t) : there exists v (·) ∈ Dσ,τ (x− ζ (τ)) such that v (t) = z} .

Also note that, for a fixed τ ∈ R and arbitrary t ∈ R+, x ∈ X, σ ∈ Σ we can define the cocycle
(Kloeden and Schmalfuss [13], Caraballo et. al. [5, 6]) Gτ : R+ × Σ×X → P (X) by

Gτ (t, σ, x) = Uσ (t + τ , τ , x) .

Proposition 57 For each σ ∈ Σ, h ∈ R, τ ≤ s ≤ t, x ∈ X, we have

UT (h)σ (t, τ , x) = Uσ (t + h, τ + h, x) .

Uσ (t, s, Uσ (s, τ , x)) = Uσ (t, τ , x) ,

Hence, Uσ is a multivalued dynamical process for each σ ∈ Σ and condition (T1) holds.

Proof. In view of Lemma 19 we have to prove only the inclusion Uσ (t + h, τ + h, x) ⊂ UT (h)σ (t, τ , x).
Given η ∈ Uσ (t + h, τ + h, x), where h ∈ R, there exists y (·) ∈ Dσ,τ+h (x− ζ (τ + h)) such that
η = y (t + h) + ζ (t + h). Let z (s) = y (s + h) + ζ (h), lz (s) = l (s + h) − Aζ (h), where l (s) ∈
Fσ1 (s, y (s) + ζ (s))+Aζ (s)+gσ2 (s), a.e. on (τ + h, t + h) , y (·) = I (x− ζ (τ + h)) l (·), so that we have
lz (s) ∈ Fσ1 (s + h, y (s + h) + ζ (s + h))+Aζ (s + h)−Aζ (h)+ gσ2 (s + h) = FT1(h)σ1

(
s, z (s) + ζ̃ (s)

)
+

Aζ̃ (s) + gT2(h)σ2 (s) = FT (h)σ (s, z (s)) , a.e. on (τ , t) , where ζ̃ corresponds to θhω, and z (τ) = x −
ζ (τ + h) + ζ (h) = x− ζ̃ (τ) . We can show that z (·) ∈ DT (h)σ,τ

(
x− ζ̃ (τ)

)
as follows

‖z(t)− ξ‖2X = ‖y(t + h) + ζ (h)− ξ‖2X ≤ ‖y(s + h) + ζ (h)− ξ‖2X

+2
∫ t+h

s+h

(l(r)−Aζ (h) + Aξ, y(r) + ζ (h)− ξ) dr = ‖z(s)− ξ‖2X + 2
∫ t

s

(lz(r) + Aξ, z(r)− ξ) dr,

for any ξ ∈ D (A) . Therefore, η = y (t + h) + ζ (t + h) = z (t) + ζ (t + h)− ζ (h) ∈ UT (h)σ (t, τ , x) .
In a similar way as in [5, Proposition 4] we can prove G0(t + s, σ, x)) = G0 (t, T (s) σ, G0 (s, σ, x))

(the only difference in the proof is that we have to take into account the translation on time of the
map Fσ). Using the first property we obtain Uσ (t, τ , x) = UT (τ)σ (t− τ , 0, x) = G0 (t− τ , T (τ) σ, x) =
G0 (t− s, T (s) , G0 (s− τ , T (τ) , x)) = UT (s)σ

(
t− s, 0, UT (τ)σ (s− τ , 0, x)

)
= Uσ (t, s, Uσ (s, τ , x)) .

4.1.2 Existence of the global Σ1-uniform attractor

As in the previous section, the conditions of Theorem 41 providing the existence of a global Σ1-uniform
compact attractor hold.

Theorem 58 In the preceedings conditions, the family of semiprocesses Uσ has the Σ1−uniform global
compact attractor ΘΣ1 (σ2).

Proof. First we shall argue as in Lemma 50. Fix σ2 = (fσ2 , gσ2) ∈ Σ2. Take an arbitrary solution
to (30), v (·) = I (uτ − ζ (τ)) l (·) defined on [τ ,−1] , where l (s) ∈ Fσ1 (s, v (s) + ζ (s)) + Aζ (s) + gσ2 (s),
σ1 ∈ Σ1 and uτ ∈ B ∈ B (X) . Denote l̃ (s) = l (s)− Aζ (s)− gσ1 (s)− gσ2 (s). Multiplying (22) by v (s)
and using (F7) , (F8) , (G3) and (13) we have

1
2

d

ds
‖v‖2X + λ1 ‖v (s)‖2X ≤ 1

2
d

ds
‖v‖2X + ‖∇v (s)‖2X
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=
(
l̃ (s) , v (s)

)
+ (Aζ (s) + gσ1 (s) + gσ2 (s) , v (s))

=
(
l̃ (s) , v (s) + ζ (s)

)
−

(
l̃ (s) , ζ (s)

)
+ (Aζ (s) + gσ1 (s) + gσ2 (s) , v (s))

≤ (λ1 − ε) ‖v (s) + ζ (s)‖2X + Mµ (Ω) + (γ1 + γ2 ‖v (s)‖X + γ2 ‖ζ (s)‖X + 2C0) ‖ζ (s)‖X

+
(
C0 + R1 + R2 |s|R3 + ‖Aζ (s)‖X

)
‖v (s)‖X

≤
(
λ1 − ε

2

)
‖v‖2X + K1 + K2 ‖ζ (s)‖2X + K3

(
C0 + R1 + R2 |s|R3 + ‖Aζ (s)‖X

)2

,

where µ (Ω) is the Lebesgue measure of Ω in Rn. Arguing as in Lemma 50 and taking into account that the
map ζ (s) satisfies lims→∞

ζ(s)
s = 0, for a.a. ω ∈ Ω, we obtain that for any σ2 ∈ Σ2 there exists a radius

R0 (σ2) such that for any B ∈ B (X) there is T = T (B, σ2) < −1 for which ‖v (−1)‖X ≤ R0, as soon as
τ ≤ T (B). Hence, ‖v (−1) + ζ (−1)‖X ≤ R0 + ‖ζ (−1)‖X = R̃0 (σ2), so that ‖UΣ1,σ2 (−1, τ , B)‖+ ≤ R̃0.

Using the previous inequality and arguing as in Lemma 52 we prove that for any R0 > 0, σ2 ∈ Σ and
(t, τ) ∈ Rd, there exists R ≥ R0 such that ‖v (s)‖X ≤ R, for all τ ≤ s ≤ t, v ∈ Dσ,τ (uτ ) and uτ ∈ X

such that ‖uτ‖X ≤ R0. Hence, ‖UΣ1,σ2 (s, τ , u)‖+ ≤ R + ‖ζ (s)‖X . ≤ R̃ (σ2) .
Note that if we define,

Vσ (t, τ , x) = {z : there exists v (·) ∈ Dσ,τ (x) such that v (t) = z} ,

then, for τ < 0, Uσ (0, τ , x) = Vσ (0, τ , x). Since Fσ satisfies (S3) , we can prove exactly in the same way
as in Proposition 54 that there exists a compact set D (σ2) which is Σ1-uniformly attracting..

Finally, we have to prove that the graph of (σ1, x) 7→ Uσ1,σ2 (0, τ , x) is closed. As in the proof of
Proposition 48 we take sequences un (·) = I (un

τ − ζ (τ)) ln (·), ln (s) ∈ Fσ1n (s, un (s) + ζ (s)) + Aζ (s) +
gσ2 (s), a.e. on (τ , 0), such that yn = un (0) → y, un

τ → uτ , σ1n → σ1. Repeating the same steps of the
proof of Proposition 48 we obtain v (·) = I (uτ − ζ (τ)) l (·) such that un → v in C ([τ , 0] , X) and ln → l
weakly in L2 (τ , 0;L2 (D)).

If we prove l (s) ∈ Fσ1 (s, v (s) + ζ (s)) + Aζ (s) + gσ2 (s), a.e. on (τ , 0), then y ∈ Uσ1,σ2 (0, τ , uτ ).
This is equivalent to prove l (s) − gσ1 (s) − gσ2 (s) − Aζ (s) = d (s) ∈ Fσ1 (s, v (s) + ζ (s)) − gσ1 (s) =
F̃σ1 (s, v (s) + ζ (s)) .

Fix s. Passing to a subsequence and using (F1) we have

dist (fσ1 (s, un (s, x) + ζ (s)) , fσ1 (s, v (s, x) + ζ (s))) ≤ C |un (s, x)− v (s, x)| → 0, for a.a. x ∈ D.

On the other hand, since {un (s, x)} is bounded, that is |un (s, x)| ≤ C (x), for all n, and fσ1n converges
to fσ1 in C (R,M), we get

dist (fσ1n (s, un (s, x) + ζ (s)) , fσ1 (s, un (s, x) + ζ (s))) → 0, as n → +∞,

for a.a. x ∈ D. Then for dn (s) = ln (s)− gσ1n (s)− gσ2 (s)−Aζ (s) it holds

dist (dn (s, x) , fσ1 (s, v (s, x) + ζ (s))) ≤ dist (fσ1 (s, un (s, x) + ζ (s)) , fσ1 (s, v (s, x) + ζ (s)))

+dist (fσ1n (s, un (s, x) + ζ (s)) , fσ1 (s, un (s, x) + ζ (s))) → 0, for a.a. x ∈ Ω. (32)

As shown in Proposition 48, there exists a sequence zn such that zn (s) =
∑N(n)

i=1 λidki (s) , where
λi ∈ [0, 1] ,

∑N
i=1 λi = 1 and ki ≥ n, for all i, and zn (s, x) → d (s, x), a.e. in D. Now (32) implies that

for any ε > 0 and a.a. x ∈ D there exists n (x, ε) such that

dk (s, x) ⊂ [a (s, x)− ε, b (s, x) + ε] , for all k ≥ n,

where [a (s, x) , b (s, x)] = fσ1 (s, v (s, x) + ζ (s)) (note that the map fσ1 has convex closed values). Hence,

zn (s, x) ⊂ [a (s, x)− ε, b (s, x) + ε] ,

as well. Passing to the limit we obtain

d (s, x) ∈ [a (s, x) , b (s, x)] = fσ1 (s, v (s, x) + ζ (s)) , a.e. on Ω.

Thus, we can apply Theorem 41.
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4.2 Multiplicative white noise case

Finally, consider the following non-autonomous differential inclusion perturbed by a linear multiplicative
white noise in the Stratonovich sense





∂u

∂t
−∆u ∈ f (t, u) + g1 (t) + g2 (t) + u ◦ dw(t)

dt , on D × (τ , T ) ,

u |∂D= 0,
u |t=τ= uτ ,

(33)

where τ ∈ R, D ⊂ Rn is and open bounded set with smooth boundar ∂D, f : R× R→ Cv (R), i = 1, 2,
g1 ∈ L∞ (R, L2 (D)) , g2 ∈ Lloc

2 (R, L2 (D)) . Consider the Wiener probability space (Ω,F ,P) defined by

Ω = {ω = w (·) ∈ C (R,R) | ω (0) = 0} ,

equipped with the Borel σ−algebra F and the Wiener measure P.
Suppose again that f satisfies (F1)− (F3), (F7), whereas g2 satisfies (F8).

4.2.1 Construction of the family of multivalued processes

We define Σ = Σ1 × Σ2 = Σ1 × Σ̃2 × Ω and T1, T2 exactly as in the previous section, with θs : Ω → Ω

θsω = (w (s + ·)− w (s)) ∈ Ω.

Thus, if σ1 = (fσ1 , gσ1) ∈ Σ1, gσ2 ∈ Σ̃2, then fσ1 satisfies (F1) − (F3), (F7) and gσ2 ∈ Lloc
2 (R, L2 (Ω))

satisfies (F8) .
To study (33), we make the change of variable v (t) = γ(t)u (t) , with γ(t) = γ (ω, t) = e−w(t) (we shall

omit ω if no confusion is possible). Then inclusion (33) turns into
{

dv

dt
∈ ∆v (t) + γ(t)f

(
t, γ−1(t)v(t)

)
+ γ(t)(g1 (t) + g2 (t)),

v |∂D= 0, v (τ) = vτ = γ (τ) uτ .
(34)

Now let X = L2 (Ω). Consider
{

dv (t)
dt

∈ A (v (t)) + Fσ (t, v (t)) , t ∈ [τ ,∞) ,

v (τ) = vτ ,
(35)

where σ = (σ1, σ2) ∈ Σ, A : D (A) ⊂ X → X is defined as before, and Fσ : R×X → 2X is defined as

Fσ (t, ω, u) = γ (t) gσ2(t) + F̂σ1 (t, ω, u) ,

with

F̂σ1 (t, ω, u) = γ (t)Fσ1

(
t, γ−1 (t)u

)
,

where Fσ1 is as in the previous section. It follows from (G3) the existence of αi ≥ 0 such that
∥∥∥F̂σ1 (t, ω, u)

∥∥∥
+
≤ γ (t)

(
α1 + α2γ

−1 (t) ‖u‖X + C0

)
, for all u ∈ X, t ∈ R, ω ∈ Ω. (36)

It is easy to see that Fσ1 satisfies (G1)− (G2). As before, the operator A satisfies (A1)− (A3). Note
that (S1)− (S4) from Lemma 45 hold for Fσ.

We now construct the multivalued process corresponding to (33). It follows from (A1)− (A3) , (S1)−
(S4) that for any vτ ∈ L2 (Ω) there exists at least one integral solution to (35) for any T > τ . We shall
denote this solution by vσ (·) = I (vτ ) l (·). For a fixed σ ∈ Σ let Dσ,τ (x) be the set of all integral solutions
corresponding to the initial condition v (τ) = x.

We define the map Uσ : Rd ×X → P (X) by

Uσ (t, τ , x) =
{
γ−1 (t) z : there exists v (·) ∈ Dσ,τ (γ (τ)x) such that v (t) = z

}
.

Moreover, for a fixed τ ∈ R and arbitrary t ∈ R+, x ∈ X, σ ∈ Σ we can define the cocycle Gτ :
R+ × Σ×X → P (X) by

Gτ (t, σ, x) = Uσ (t + τ , τ , x) .
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Proposition 59 For each σ ∈ Σ, h ∈ R, τ ≤ s ≤ t, x ∈ X, we have

UT (h)σ (t, τ , x) = Uσ (t + h, τ + h, x) .

Uσ (t, s, Uσ (s, τ , x)) = Uσ (t, τ , x) ,

Hence, Uσ is a multivalued dynamical process for each σ ∈ Σ and condition (T1) holds.

Proof. In view of Lemma 19 for the first equality we have to prove only the inclusion Uσ (t + h, τ + h, x) ⊂
UT (h)σ (t, τ , x). Given η ∈ Uσ (t + h, τ + h, x), where h ∈ R, there exists y (·) ∈ Dσ,τ+h (γ (τ + h) x)
such that η = γ−1 (t + h) y (t + h). Let z (s) = γ−1 (h) y (s + h), lz (s) = γ−1 (h) l (s + h), where
l (s) ∈ γ (s) Fσ1

(
s, γ−1 (s) y (s)

)
+ γ (s) gσ2 (s), a.e. on (τ + h, t + h) , y (·) = I (γ (τ + h)x) l (·), so

that we have lz (s) ∈ γ−1 (h) γ (s + h)Fσ1

(
s + h, γ−1 (s + h) γ (h) z (s)

)
+ γ−1 (h) γ (s + h) gσ2 (s + h) =

FT (h)σ (s, z (s)), a.e. on (τ , t) , (note that γ−1 (h) γ (s + h) = γ (θhω, s) = γ̃ (s), and z (τ) = γ−1 (h) γ (τ + h)x =
γ̃ (τ)x. We can show that z (·) ∈ DT (h)σ,τ (γ̃ (τ) x) as follows

‖z(t)− ξ‖2X =
∥∥γ−1 (h) y(t + h)− ξ

∥∥2

X
≤ γ−2 (h) ‖y(s + h)− γ (h) ξ‖2X

+2γ−2 (h)
∫ t+h

s+h

(l(r) + γ (h)Aξ, y(r)− γ (h) ξ) dr = ‖z(s)− ξ‖2X + 2
∫ t

s

(lz(r) + Aξ, z(r)− ξ) dr,

for any ξ ∈ D (A) . Therefore, η = γ−1 (t + h) y (t + h) = γ−1 (t + h) γ (h) z (t) ∈ UT (h)σ (t, τ , x) .
For the second equality we proceed as in Proposition 57, but taking into account [6, Proposition 13].

4.2.2 Existence of the global Σ1-uniform attractor

Once more, the conditions of Theorem 41 providing the existence of a global Σ1-uniform compact attractor
hold.

Theorem 60 In the preceedings conditions, the family of semiprocesses Uσ has the Σ1−uniform global
compact attractor ΘΣ1 (σ2).

Proof. First we argue as in Lemma 50. Fix σ2 = (fσ2 , gσ2) ∈ Σ2. Take an arbitrary solution to (35),
v (·) = I (γ (τ) uτ ) l (·) defined on [τ ,−1] , where l (s) ∈ γ (s)Fσ1

(
s, γ−1 (s) v (s)

)
+ γ (s) gσ2 (s), σ1 ∈ Σ1

and uτ ∈ B ∈ B (X) . Denote l̃ (s) = l (s)−γ (s) gσ1 (s)−γ (s) gσ2 (s). Multiplying (22) by v (s) and using
(F7) , (F8) and (13) we have

1
2

d

ds
‖v‖2X + λ1 ‖v (s)‖2X ≤

(
l̃ (s) , v (s)

)
+ γ (s) (gσ1 (s) + gσ2 (s) , v (s))

= γ (s)
(
l̃ (s) , γ−1 (s) v (s)

)
+ γ (s) (gσ1 (s) + gσ2 (s) , v (s))

≤ (λ1 − ε) ‖v (s)‖2X + γ2 (s)Mµ (Ω) + γ (s)
(
C0 + R1 + R2 |s|R3

)
‖v (s)‖X

≤
(
λ1 − ε

2

)
‖v (s)‖2X + γ2 (s)

(
K1 + K2

(
C0 + R1 + R2 |s|R3

)2
)

.

Note that, for all ε > 0, T > 0, p, q > 0 and a.a. ω ∈ Ω, we have

∫ T

−∞
eεsγp(s)|s|qds < ∞, lim

s→−∞
exp (εs) γp (s) = 0,

35



so that arguing as in Lemma 50 we obtain that for any σ2 ∈ Σ2 there exists a radius R0 (σ2) such that
for any B ∈ B (X) there is T = T (B, σ2) < −1 for which ‖v (−1)‖X ≤ R0, as soon as τ ≤ T (B). Hence,∥∥γ−1 (−1) v (−1)

∥∥
X
≤ γ−1 (−1)R0 = R̃0 (σ2), so that ‖UΣ1,σ2 (−1, τ , B)‖+ ≤ R̃0.

Using the previous inequality and arguing as in Lemma 52 we prove that for any R0 > 0, σ2 ∈ Σ and
(t, τ) ∈ Rd, there exists R ≥ R0 such that ‖v (s)‖X ≤ R, for all τ ≤ s ≤ t, v ∈ Dσ,τ (γ (τ)uτ ) and uτ ∈ X

such that ‖uτ‖X ≤ R0. Hence, ‖UΣ1,σ2 (s, τ , u)‖+ ≤ γ−1 (s)R ≤ R̃ (σ2) .
As remarked in Theorem 58 we can follow the same steps of the proof in Proposition 54, so that there

exists a compact set D (σ2) which is Σ1-uniformly attracting.
To prove the statement of Proposition 48 we argue as in Theorem 58. We take sequences un (·) =

I (γ (τ) un
τ ) ln (·), ln (s) ∈ γ (s) Fσ1n

(
s, γ−1 (s) un (s)

)
+ γ (s) gσ2 (s), a.e. on (τ , 0), such that yn =

un (0) → y, un
τ → uτ , σ1n → σ1, and obtain v (·) = I (γ (τ)uτ ) l (·) such that un → v in C ([τ , 0] , X)

and ln → l weakly in L2 (τ , 0; L2 (D)). If we prove that l (s) ∈ γ (s)Fσ1

(
s, γ−1 (s) v (s)

)
+ γ (s) gσ2 (s),

a.e. on (τ , 0), then y ∈ Uσ1,σ2 (0, τ , uτ ). This is equivalent to prove l (s) − gσ1 (s) − gσ2 (s) = d (s) ∈
γ (s)Fσ1

(
s, γ−1 (s) v (s)

)− gσ1 (s) = γ (s) F̃σ1

(
s, γ−1 (s) v (s)

)
.

Fix s. Passing to a subsequence and using (F1) we have

dist
(
γ (s) fσ1

(
s, γ−1 (s)un (s, x)

)
, γ (s) fσ1

(
s, γ−1 (s) v (s, x)

)) ≤ C |un (s, x)− v (s, x)| → 0,

for a.a. x ∈ D. On the other hand, since {un (s, x)} is bounded and fσ1n converges to fσ1 in C (R,M),
we get

dist
(
γ (s) fσ1n

(
s, γ−1 (s) un (s, x)

)
, γ (s) fσ1

(
s, γ−1 (s) un (s, x)

)) → 0, as n → +∞,

for a.a. x ∈ D. Then for dn (s) = ln (s)− gσ1n (s)− gσ2 (s) it holds

dist
(
dn (s, x) , γ (s) fσ1

(
s, γ−1 (s) v (s, x)

)) ≤ dist
(
γ (s) fσ1

(
s, γ−1 (s)un (s, x)

)
, γ (s) fσ1

(
s, γ−1 (s) v (s, x)

))

+dist
(
γ (s) fσ1n

(
s, γ−1 (s)un (s, x)

)
, γ (s) fσ1

(
s, γ−1 (s)un (s, x)

)) → 0, for a.a. x ∈ D. (37)

We conclude the proof as in Theorem 58, but putting [a (s, x) , b (s, x)] = γ (s) fσ1

(
s, γ−1 (s) v (s, x)

)
.

Thus we can apply Theorem 41.

5 Conclusions

In this work we have given a general framework of nonautonomous attractors for PDE, which includes
the possibility of non-uniqueness of solutions and also the existence of unbounded (in time) trajectories.
Hence, random dynamical systems are in fact particular cases of the theory. The splitting of the parameter
set Σ in the product Σ1 × Σ2 allows us to consider together the classical nonautonomous attractor and
the attractor in the sense of the pull-back attraction.

We note that for the stochastic differential inclusions considered in this paper it is possible to study
the measurability of the global attractor ΘΣ1 (σ2) = ΘΣ1 (σ̃2, ω) with respect to the parameter ω (using
similar arguments as in [5, 6]) . However, this is out of the aim of this work.
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