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Abstract. We study the asymptotic behaviour of a non-autonomous stochas-
tic reaction-diffusion equation with memory. In fact, we prove the existence of
a random pullback attractor for our stochastic parabolic PDE with memory.

The randomness enters in our model as an additive Hilbert valued noise. We
first prove that the equation generates a random dynamical system (RDS) in

an appropriate phase space. Due to the fact that the memory term takes into
account the whole past history of the phenomenon, we are not able to prove

compactness of the generated RDS, but its asymptotic compactness, ensuring

thus the existence of the random pullback attractor.

1. Introduction and motivation of the problem. The main aim of this paper
is to analyse the long-time behaviour of stochastic diffferential systems with memory
terms, expressed by convolution integrals, which represent the past history of one
or more variables. In particular, we focus on a non-autonomous stochastic reaction-
diffusion equation with memory.

Needless to say that many physical phenomena are better described if one con-
siders in the equations of the model some terms which take into account the past
history of the system. Although, in some situations, the contribution of the past
history may not be so relevant to significantly affect the long time dynamics of the
problem, in certain models, such as those describing high viscosity liquids at low
temperatures, or the thermomechanical behaviour of polymers (see, [16], [25] and
the references therein) the past history plays a nontrivial role.

On the other hand, it is sensible to assume that the models of certain phenomena
from the real world are more realistic if some kind of uncertainty, for instance, some
randomness or environmental noise, is also considered in the formulation. We will
consider an additive noise in our model which we interpret as the environmental
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noisy effect produced on the system, and will exploit the recent theory of random
dynamical systems (see [1], [7], [12], [27]) to obtain information on the asymptotic
behaviour of our model, in particular we will be able to prove the existence of a
pullback (random) attractor.

In the remaining part of this section, we first describe the deterministic problem,
and later we consider the stochastic version to be analysed in this paper. In Section 2
we state the assumptions on the coefficients in our equation as well as the necessary
background on the theory of pullback attractors. The existence and uniqueness
of solution to our model and the construction of the associate random dynamical
system is proved in Section 3, while the existence of a pullback attractor is shown
in the last section.

1.1. The deterministic non-autonomous model. The starting point for our
considerations is the following (deterministic) heat conduction model.

Let O be a regular enough bounded domain in Rd (d = 1, 2, 3). We denote by
v = v(x, t) the temperature at position x ∈ Ō and time t. Following the theory
developed by Coleman & Gurtin [10], Gurtin & Pipkin [21] and Nunziato [24] we
assume that the density e(x, t) of the internal energy and the heat flux q(x, t) are
related to the temperature and its gradient by the constitutive relations:

e(x, t) = b0v(x, t), t ∈ R, x ∈ Ō (1)

and

q(x, t) = −c0∇v(x, t) +
∫ t

−∞
γ(t− s)∇v(x, s)ds, t ∈ R, x ∈ Ō. (2)

Here the constants b0 > 0 and c0 > 0 are called respectively the heat capacity
and the thermal conduction, γ is the heat flux relaxation function (the standard
example is γ(s) = γ0e

−d0t with d0 > 0 and γ0 < 0).
The energy balance for the system has the form

∂te(x, t) = −div q(x, t) + f(v(x, t), x, t), t ∈ R, x ∈ Ō, (3)

where f(v, x, t) is the energy supply which may depend on the temperature. Thus
we arrive at the following non-autonomous heat equation with memory

b0∂tv(x, t) = c0∆v(x, t)−
∫ t

−∞
γ(t− s)∆v(x, s)ds + f(v(x, t), x, t), (4)

where t > 0, x ∈ O. We also need to impose some (natural) boundary conditions
for v(x, t).

1.2. The stochastic model. We are interested in the case in which the function
f describing the energy supply in (4) possesses a stochastic term representing an
environmental (white) noise. More precisely, we assume that the energy supply
function f(v, x, t) has the form

f(v, x, t) = −f(v) + ∂tW (x, t),

where W (x, t) is a Wiener process in L2(O). Thus, we have the following non-
autonomous SPDE with memory

vt − ν∆v +
∫ t

−∞
γ(t− s)∆v(s)ds + f(v) = ∂tW (t) (5)

in the bounded domain O, with the boundary condition

v(t, x) = 0 for x ∈ ∂O. (6)
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We also need to equip (5) with the initial datum:

v(t, x) = v0(t, x) for t ≤ 0, x ∈ O. (7)

We note that the linear version of this problem has been studied in [9]. In par-
ticular, it was shown in [9] that, in the case f ≡ 0, the solution to (5)-(7) is a
Gaussian process which possesses some regularity properties and converges in law
to a stationary process as t →∞.

Our goal in this paper is to study the long time dynamics of solutions to (5) in
the nonlinear situation. Namely, we prove that solutions to (5) converge (in the
pullback sense) to a compact random attractor. Since pullback convergence im-
plies forward convergence in law, our Theorem 3 extends the result given in [9] to
nonlinear models. Our results also generalize deterministic (autonomous)
results on the dynamical systems with memory which are perturbed by
non-autonomous features (random, in fact, in our case). This general-
ization is not trivial due to the appearance of an additional source for
the non-compactness, which is represented by the additional variable ω
in a probability space Ω (see below for more details). We also emphasize
that memory systems possesses infinite retarded time, which definitely
enhance all the difficulties.

As a consequence, our analysis comes to reinforce the power and suitability of
the theory of pullback attractors in the study of dynamical systems generated by
stochastic partial differential equations, now in the special case of stochastic systems
with memory.

We also note that the long time behaviour of the deterministic version (4) of
problem (5) was studied in [5, 11, 17, 18] for the autonomous case and in [19, 20]
for the case of time-dependent coefficients.

2. Hypotheses and preliminaries. To start with let us establish the assump-
tions to be imposed on the terms in our problem (5):

• f(·) ∈ C1(R) possesses the property f ′(v) ≥ −c for all v ∈ R and also satisfies
the relations

vf(v) ≥ a0|v|p+1 − c, |f ′(v)| ≤ a1|v|p−1 + c, v ∈ R, (8)

where ai and c are positive constants and p ≥ 1;
• the kernel γ(s) belongs to C2(R+), lims→∞ γ(s) = 0, and the function µ(s) ≡
−γ′(s) possesses the properties

µ(s) ≥ 0, µ′(s) + δµ(s) ≤ 0, (9)

where δ is a positive constant;
• W (t), t ∈ R, is a two-sided L2(O)-valued Wiener process with covariance

operator K = K∗ ≥ 0 such that

trK(−∆)2α−1 < ∞ for some α > α∗ ≡ 1 +
d

2

(
1
2
− 1

p + 1

)
, (10)

where ∆ is the Laplace operator with the Dirichlet boundary conditions. We
denote by (Ω,F , P) the corresponding probability space, and by Ẇ ≡ ∂tW
the generalized derivative with respect to t.

We note that the hypotheses concerning γ(s) implies that

0 ≤ µ(s) ≤ µ(0)e−δs, s ∈ R+, (11)
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and

0 ≤ γ(s) ≤ µ(0)
δ

e−δs, s ∈ R+. (12)

It also follows from (9) that either (i) µ(s) > 0 for all s ∈ R+ or (ii) there exists
s∗ > 0 such that µ(s) > 0 for s ∈ [0, s∗) and µ(s) = 0 for all s ≥ s∗. In the latter
case we have a retarded problem with finite delay and therefore we will concentrate
mainly on the first case.

We suppose that we can also associate with the Wiener process W on (Ω,F , P)
a metric dynamical system θ ≡ (Ω,F , P, {θt, t ∈ R}), i.e. we can define a family of
measure preserving transformations {θt : Ω 7→ Ω, t ∈ R} such that

(i) θ0 = id, θt ◦ θs = θt+s for all t, s ∈ R;
(ii) the map (t, ω) 7→ θtω is measurable and θtP = P for all t ∈ R;
(iii) the following helix property holds:

W (t + s, ω)−W (s, ω) = W (t, θsω), s, t ∈ R, ω ∈ Ω.

We now introduce the Ornstein-Uhlenbeck process η(t) given by

η(t;ω) =
(∫ t

−∞
e−ν(t−τ)AdW (τ)

)
(ω), t ∈ R, (13)

where, from now on, A denotes the operator −∆ with Dirichlet boundary conditions
on O. The integral in (13) exists as an operator stochastic integral and gives a
stationary Gaussian process (see, e.g., [22] or [14, 15]) which solves the stochastic
equation

dη + νAηdt = dW.

We can also involve a perfection procedure to define η(t;ω) ≡ η(θtω) for all ω ∈ Ω
(for details see Proposition 3.1 in [8]). Moreover t 7→ η(θtω) is continuous from R
into D(Aα∗) for each ω ∈ Ω and the following temperedness condition

sup
t∈R

{‖ Aα∗η(θtω) ‖ e−β|t|} < ∞ for all β > 0, ω ∈ Ω, (14)

is fulfilled. We refer to [8] for details and further references. We also note that for
α∗ given in (10) we have (see, e.g., [29, Chap.4]) that

D(Aα∗) ⊂ W 2α∗
2 (O) ⊂ W 2

p+1(O),

where W s
q (O) is the Lq-based Sobolev space of order s. Therefore ω 7→ ∆η(ω) is

a tempered random variable with values in Lp+1(O). We will use this observation
later.

Below we need the notion of a random closed set. We recall the following defini-
tions (see [1] or [4]).

Definition 1 (Random Closed Set). Let X be a Polish space with a metric dX .
The multifunction ω 7→ D(ω) 6= ∅ is said to be a random closed set if the mapping
ω 7→ distX(v,D(ω)) is measurable for any v ∈ X, where distX(v,B) is the distance
in X between the element v and the set B ⊂ X, and D(ω) is closed for each ω ∈ Ω.
For ease of notations, we denote the random closed set ω 7→ D(ω) by D̂ or {D(ω)}.
If D(ω) is a compact set for every ω ∈ Ω, then D̂ is called a random compact set.
A random closed set {D(ω)} is said to be tempered if there exists v0 ∈ X such
that D(ω) ⊂ {v ∈ X : dX(v, v0) ≤ r(ω)} for all ω ∈ Ω, where the random variable
r(ω) > 0 is tempered, i.e.

sup
t∈R

{r(θtω)e−β|t|} < ∞ for all β > 0, ω ∈ Ω.
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Now we introduce the notion of a random dynamical system.

Definition 2. Let X be a Polish space. A pair (θ, φ) consisting of a metric dy-
namical system θ = (Ω,F, P, {θt, t ∈ R}) and a measurable mapping

φ : R+ × Ω×X 7→ X

possessing the following cocycle property:

φ(0, ω, u) = u, φ(t, θτω, φ(τ, ω, u)) = φ(t + τ, ω, u), ∀u ∈ X, t, τ ≥ 0,

is called a random dynamical system (driven by the metric dynamical system θ)
with phase space X and cocycle φ.

Random dynamical systems are generated by differential equations with random
coefficients or stochastic differential equations with a unique and global solution.
We refer to [1] for more details on the general theory of random dynamical systems.

Below we also need the following concept of (random) pullback attractor for
random dynamical systems, (see, e.g., [1, 12, 26, 27] and the references therein).
The appearance of this concept is motivated by the corresponding definition of a
global attractor (cf. [2, 6, 28], for example).

Definition 3. Let (θ, φ) be a random dynamical system with the phase space X.
We denote by D the collection of all tempered random sets in X. A random closed
set {A(ω)} from D is said to be a random pullback attractor for (θ, φ) in D if (i) Â

is an invariant set, i.e. φ(t, ω,A(ω)) = A(θtω) for t ≥ 0 and ω ∈ Ω; and (ii) Â is
pullback attracting in D, i.e.

lim
t→+∞

distX{φ(t, θ−tω, D(θ−tω)) |A(ω)} = 0, ω ∈ Ω, (15)

for all D̂∈ D, where distX{A|B} = supa∈A infb∈B dX(a, b).

Remark 1. It is worth mentioning that, although it is also possible to
define a random pullback attractor as an invariant random compact set
which attracts all the deterministic bounded sets (as was originally in-
troduced in the paper by Crauel and Flandoli [12])), and then prove that
it attracts the more general class of all tempered sets (which, in par-
ticular, contains all the deterministic bounded sets), from the practical
point of view, it may be more convenient for our problem to deal with
this more general class of tempered sets, since, in the end, the attractor
will belong to this family.

We conclude this section with a theorem ensuring the existence of random pull-
back attractor under suitable assumptions (see, e.g., [7, Theorem 1.8.1] for more
details).

Theorem 1. Let (θ, φ) be an asymptotically compact RDS in D, i.e. there exists a
compact attracting set B̂0 (in the sense of (15)) in D. Then, this RDS possesses a
unique random compact pullback attractor {A(ω)} in the universe D, and A(ω) ⊂
B0(ω) for all ω ∈ Ω. This attractor has the form

A(ω) =
⋂
t>0

⋃
τ≥t

φ(τ, θ−τω, B0(θ−τω)) for every ω ∈ Ω.
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3. Existence and uniqueness of solution. Generation of RDS on an ap-
propriate phase space. In this section we rewrite problem (5)–(7) as a random
PDE with memory and show that this PDE possesses a unique solution which allows
to construct a random dynamical system in an appropriate phase space.

Introducing a new variable u = v− η, our problem (5)–(7) can be rewritten as a
random parabolic equation with memory of the form

ut − ν∆u +
∫ t

−∞
γ(t− s)∆u(s)ds + f(u + η) = ηγ(t) (16)

in the bounded domain O with the boundary condition

u(t, x) = 0 for x ∈ ∂O, (17)

where ηγ(t) is a process defined by

ηγ(t, ω) = −
∫ t

−∞
γ(t− s)∆η(s, ω)ds ≡

∫ t

−∞
γ(t− s)Aη(s, ω)ds. (18)

We also need to equip (16) with an initial value:

u(t, x) = u0(t, x) ≡ v0(t, x)− η(t) for t ≤ 0, x ∈ O. (19)

It is straightforward to prove the following result.

Lemma 1. The process t 7→ ηγ(t, ω) given by (18) is continuous with values in
D(Aα∗−1). Moreover ηγ(t, ω) ≡ ηγ(θtω), where

ηγ(ω) =
∫ ∞

0

γ(s)Aη(θ−sω)ds

is a tempered random variable with values in D(Aα∗−1). Here above D(Aβ) denotes
the domain of Aβ for β ≥ 0.

Now following the idea introduced by Dafermos [13] (see also [11, 17] and the
survey [20]), we introduce the new variable

q(t; s, x) =
∫ s

0

u(t− τ, x)dτ ≡
∫ t

t−s

u(τ, x)dτ, s ≥ 0.

Integrating by parts we can rewrite problem (16)–(19) as

ut − ν∆u−
∫ ∞

0

µ(s)∆q(t; s)ds + f(u + η(t)) = ηγ(t), x ∈ O, t > 0; (20)

qt + ∂sq = u, (s;x) ∈ R+ ×O, t > 0; (21)

in the bounded domain O, with the boundary condition

u(t, x) = 0, q(t, s, x) = 0, x ∈ ∂O, s ∈ R+, t > 0; q(t, 0, x) = 0, x ∈ O, t > 0.
(22)

We also need to equip (20) and (21) with the initial data

u(0, x) = u0(x), q(0; s, x) = q0(s, x) for s ∈ R+, x ∈ O. (23)

Now we introduce an appropriate phase space to handle our situation. We denote
H ≡ H0 = L2(O) and Hσ = D(Aσ/2), where σ ≥ 0. We also consider the weighted
Hilbert spaces

Wσ
µ ≡ L2(R+, µ(s)ds;Hσ)
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which consists of Hσ-valued measurable functions q(s) such that

‖q‖2Wσ
µ
≡

∫
R+

µ(s)‖Aσ/2q(s)‖2Hds

(in the case when µ(s) = 0 for s ≥ s∗ instead of R+ we take the interval [0, s∗]).
We also denote

H ≡ H ×W1
µ.

We start with the following assertion.

Proposition 1. For any initial data (u0; q0) ∈ H, problem (20)–(23) possesses
a unique solution (u(t); q(t)) = (u(t;ω, u0, q0); q(t;ω, u0, q0)), such that for each
ω ∈ Ω,

u(·;ω, u0, q0) ∈ C([0, T ],H)∩L2(0, T ;D(A1/2))∩Lp+1((0, T )×O) for every T > 0,

and q(·;ω, u0, q0) ∈ C(R+,W1
µ). Moreover, for each ω ∈ Ω the mapping

{t;u0; q0} 7→ (u(t;ω, u0, q0); q(t;ω, u0, q0))

is continuous from R+×H into H, and for each {t;u0; q0} ∈ R+×H, the mapping

ω ∈ Ω 7→ (u(t;ω, u0, q0); q(t;ω, u0, q0)) ∈ H (24)

is F-measurable.

Proof. The existence, uniqueness and continuity properties of solutions for every
fixed ω ∈ Ω can be established by the standard deterministic approach involv-
ing the compactness method based on Galerkin approximations and the theory of
monotone operators (see, e.g. [5] or [11] for the corresponding considerations in the
autonomous deterministic case). The F-measurability of the mapping (24) follows
from the same property for the corresponding Galerkin approximations which are
finite dimensional differential-integral equations.

Remark 2. To obtain the existence of a unique solution to the problem considered
we can also apply the result which was established in [3] for a problem like (5)–(7) in
the case of a much more general (multiplicative) diffusion term. However this result
provides us with solutions which are defined almost surely in ω ∈ Ω. In contrast,
Proposition 1 gives us a perfect solution, i.e., a solution defined for all ω ∈ Ω. This
is a key fact which allows us to construct the corresponding cocycle and to show
that problem (20)–(23) generates an RDS. We refer to [1] for a discussion of the role
played by the perfection procedure in the theory of random dynamical systems.

Remark 3. Suppose that u0 ∈ H1
0 (O) and q0 ∈ W2

µ. Then, as ηγ is a tempered
random variable with values in L2(O), using the finite dimensional approximations
of the solution (u(t); q(t)) of problem (20)–(23), one can prove that in fact, for
every ω ∈ Ω, u ∈ C([0, T ],H1

0 (O)) ∩ L2(0, T ;D(A)) ∩ Lp+1((0, T )×O) for every
T > 0, and q ∈ C(R+,W2

µ). The corresponding arguments are almost the same
as in Subsection 4.2. However we do not give details because we do not use these
smoothness properties in our further considerations.

Our main result in this section is the following assertion.

Theorem 2 (Generation of RDS). Problem (20)–(23) generates an RDS in the
phase space H with the cocycle φ given by the formula

φ(t, ω, U0) = U(t) ≡ (u(t); q(t)), U0 = (u0; q0), (25)

where (u(t); q(t)) is the solution to (20)–(23).
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Proof. We only need to establish the cocycle property for the mapping φ(·, ·, ·) given
by (25). This follows from the uniqueness of solution and the fact that problem
(20)–(23) can be written as an evolution equation in H of the form

Ut +AU + F (θtω, U) = 0, U(t) = (u(t); q(t))T .

4. Existence of the pullback attractor. Our main result is the following asser-
tion.

Theorem 3 (Pullback Attractor). The RDS (θ, φ) generated in H by problem (20)–
(23) possesses a compact random pullback attractor Â = {A(ω)} in the collection D

of all tempered sets in H. This attractor Â is a tempered set in the space

D(A1/2)×
{
q ∈ W2

µ : ∂sq ∈ W1
µ

}
. (26)

If νλ1+infs∈R f ′(s) > 0, where λ1 is the smallest eigenvalue of A, then the attractor
Â is a singleton, i.e. there exists a random variable V (ω) with values in H such that
A(ω) = {V (ω)} for every ω ∈ Ω.

To prove Theorem 3 we show that conditions in Theorem 1 are fulfilled. We split
the proof into two steps.

4.1. Pullback dissipativity. The first step in our argument is the following as-
sertion.

Proposition 2. The RDS (θ, φ) is pullback dissipative in D, i.e. there exists a
tempered random variable R(ω) > 0 such that for any random closed set D̂ from D

we can find t0(ω,D̂) > 0 such that

‖φ(t, θ−tω, U)‖H ≤ R(ω) for all U ∈ D(θ−tω), t ≥ t0(ω,D̂).

Thus the random ball B0(ω) = {U ∈ H : ‖U‖H ≤ R(ω)} is absorbing. This ball is
forward invariant and absorbing if we take

R2(ω) = c0

∫ 0

−∞
eν0τ

(
1 + ‖η(θτω)‖p+1

Lp+1(O) + ‖A−1/2ηγ(θτω)‖2
)

dτ, (27)

where ν0 = min{νλ1, δ}, and the constant c0 does not depend on the properties of
the function µ(s).

Proof. Although the calculations below seem to be formal, they can be justified by
using the corresponding Galerkin approximations.

Multiplying (20) by u in H, we obtain that

1
2

d

dt
‖u‖2 + ν‖A1/2u‖2 +

∫ ∞

0

µ(s)(Aq(t; s), u(t))ds + (f(u + η), u) = (ηγ , u). (28)

Using (21) and (9) we have that∫ ∞

0

µ(s)(Aq(t; s), u(t))ds =
∫ ∞

0

µ(s)(Aq, qt + qs)ds

=
1
2

d

dt

∫ ∞

0

µ(s)‖A1/2q(t; s)‖2ds− 1
2

∫ ∞

0

µ′(s)‖A1/2q(t; s)‖2ds

≥ 1
2

d

dt
‖q(t)‖2W 1

µ
+

δ

2
‖q(t)‖2W 1

µ
. (29)



STOCHASTIC HEAT EQUATIONS WITH MEMORY 9

From (8) we also have that

(f(u + η), u) =
∫
O

f(u)udx +
∫
O

∫ 1

0

f ′(u + λη)ηudx

≥ a0‖u‖p+1
Lp+1(O) − c1

∫
O

(
1 + |u|p−1 + |η|p−1

)
|η||u|dx− c2

≥ a0

2
‖u‖p+1

Lp+1(O) − b0

(
1 + ‖η‖p+1

Lp+1(O)

)
. (30)

Now from (28)–(30) we obtain that

d

dt

(
‖u‖2 + ‖q‖2W 1

µ

)
+ ν‖A1/2u‖2 + δ‖q‖2W 1

µ
+ a0‖u‖p+1

Lp+1(O) ≤ R2
0(θtω), (31)

where

R2
0(ω) = c

(
1 + ‖η(ω)‖p+1

Lp+1(O) + ‖A−1/2ηγ(ω)‖2
)

. (32)

This implies that

‖φ(t, ω, U)‖2H ≤ e−ν0t‖U‖2H +
∫ t

0

e−ν0(t−τ)R2
0(θτω)dτ, t ≥ 0,

which allows to complete the proof of Proposition 2.

Remark 4. It follows from (31) that

d

dt
‖U‖2H + ν∗‖U‖2H +

ν

2
‖A1/2u‖2 + a0‖u‖p+1

Lp+1(O) ≤ R2
0(θtω),

for any 0 < ν∗ ≤ ν1 ≡ 1
2 min{νλ1, δ}, where U = (u; q). Multiplying by eν∗t after

integration we obtain∫ t

0

e−ν∗(t−τ)
[ν

2
‖A1/2u(τ)‖2 + a0‖u(τ)‖p+1

Lp+1(O)

]
dτ

≤ ‖U0‖2He−ν∗t +
∫ t

0

e−ν∗(t−τ)R2
0(θτω)dτ, (33)

for any 0 < ν∗ ≤ ν1 ≡ 1
2 min{νλ1, δ}, where R0(ω) is given by (32).

4.2. Asymptotic compactness. To prove asymptotic compactness we use the
splitting method.

Let U(t) = (u(t); q(t)) be the solution to problem (20)–(23). We represent it in
the form

U(t) = (u(t); q(t)) = (ust(t); qst(t)) + (uc(t); qc(t)) ≡ Ust(t) + U c(t).

Here Ust(t) (stable part) and U c(t) (compact part) satisfy the boundary condition
(22) and solve the following problems

ust
t − ν∆ust −

∫ ∞

0

µ(s)∆qst(t; s)ds

+ f(ust + uc + η)− f(uc + η) + Must = 0, x ∈ O, t > 0; (34)

qst
t + ∂sq

st = ust, x ∈ O, s ∈ R+, t > 0;

ust(0, x) = u0(x), qst(0; s, x) = q0(s, x), s ∈ R+, x ∈ O;
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where the constant M > 0 is chosen such that f ′(s) + M ≥ 0 for all s ∈ R, and

uc
t − ν∆uc −

∫ ∞

0

µ(s)∆qc(t; s)ds

+ f(uc + η) + Muc = Mu + ηγ(t), x ∈ O, t > 0; (35)

qc
t + ∂sq

c = uc, x ∈ O, s ∈ R+, t > 0;

uc(0, x) = 0, qc(0; s, x) = 0, s ∈ R+, x ∈ O.

In the deterministic case a similar splitting was used in [11]. We also note that the
well-posedness of problems (34) and (35) can be established similarly to Proposi-
tion 1.

Lemma 2. We have the following estimate

‖Ust(t)‖2H ≤ e−ν0t‖U0‖2H, U0 = (u0; q0) ∈ H, t ≥ 0,

where ν0 > 0 is the same as in Proposition 2.

Proof. The argument is the same as in Proposition 2. Indeed we clearly have relation
(28) with ηγ ≡ 0 and non-negative term

(f(u + uc + η)− f(uc + η) + Mu, u)

instead of (f(u + η), u). Therefore using (29) we obtain
d

dt

(
‖ust‖2 + ‖qst‖2W 1

µ

)
+ ν‖A1/2ust‖2 + δ‖qst‖2W 1

µ
≤ 0,

which implies the conclusion of the lemma.

Now we deal with the compact part U c(t).

Lemma 3. We have the following estimate

‖U c(t)‖2H +
∫ t

0

e−ν∗(t−τ)
[ν

2
‖A1/2uc(τ)‖2 + a0‖uc(τ)‖p+1

Lp+1(O)

]
dτ

≤
∫ t

0

e−ν∗(t−τ)
[
C‖u(τ)‖2 + R2

0(θτω)
]
dτ, (36)

for any 0 < ν∗ ≤ ν1 ≡ 1
2 min{νλ1, δ}, where R0(ω) is given by (32).

Proof. In the same way as in Proposition 2 we can obtain the following analogue
to relation (31):

d

dt

(
‖uc‖2 + ‖qc‖2W 1

µ

)
+ ν‖A1/2uc‖2 + δ‖qc‖2W 1

µ
+ a0‖uc‖p+1

Lp+1(O)

≤ C‖u(t)‖2 + R2
0(θtω), (37)

where R0(ω) is given by (32). Thus we have
d

dt
‖U c‖2H + ν∗‖U c‖2H +

ν

2
‖A1/2uc‖2 + a0‖uc‖p+1

Lp+1(O) ≤ C‖u(t)‖2 + R2
0(θtω),

for any 0 < ν∗ ≤ ν1. Multiplying by eν∗t after integration we obtain (36).

Lemma 4. We have the following estimate

‖A1/2uc(t)‖2 + ‖qc(t)‖2W 2
µ

+
ν

2

∫ t

0

e−ν∗(t−τ)‖Auc(τ)‖2dτ

≤ C

∫ t

0

e−ν∗(t−τ)
[
‖u(τ)‖2 + R2

1(θτω)
]
dτ (38)
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for any 0 < ν∗ ≤ ν1 ≡ 1
2 min{νλ1, δ}, where

R2
1(ω) =

(
1 + ‖η(ω)‖p+1

Lp+1(O) + ‖Aη(ω)‖p+1
Lp+1(O) + ‖ηγ(ω)‖2

)
. (39)

Proof. We multiply the first equation in (35) by Auc(t) in H and find that

1
2

d

dt
‖A1/2uc‖2 + ν‖Auc‖2 +

∫ ∞

0

µ(s)(Aqc(t; s), Auc(t))ds

+(f(uc + η) + Muc, Auc) + M‖A1/2uc‖2 = (Mu + ηγ , Auc). (40)

As in the proof of relation (29) one can see that∫ ∞

0

µ(s)(Aqs(t; s), Aus(t))ds ≥ 1
2

d

dt
‖qc(t)‖2W 2

µ
+

δ

2
‖qc(t)‖2W 2

µ
. (41)

We also have that

(f(uc + η), Auc) = (∇[f(uc + η)],∇(uc + η))− (f(uc + η), Aη) + (f(0), Auc)

≥ −M‖∇(uc + η)‖2 −
[∫
O
|f(uc + η)|1+1/p

dx

] p
p+1

· ‖Aη‖Lp+1(O) + (f(0), Auc)

≥ −M‖A1/2(uc + η)‖2 − C
(
1 + ‖uc‖p+1

Lp+1(O) + ‖Aη‖p+1
Lp+1(O)

)
− ν

4
‖Auc‖2

≥ −2M‖A1/2uc‖2 − C
(
1 + ‖uc‖p+1

Lp+1
+ ‖η‖p+1

Lp+1
+ ‖Aη‖p+1

Lp+1

)
− ν

4
‖Auc‖2.

Therefore (40) and (41) imply that

d

dt

(
‖A1/2uc‖2 + ‖qc(t)‖2W 2

µ

)
+ ν‖Auc‖2 + δ‖qc(t)‖2W 2

µ

≤ C
(
‖A1/2uc‖2 + ‖uc‖p+1

Lp+1(O) + ‖u‖2 + R2
1(θtω)

)
.

Thus using Lemma 3 we obtain (38).

Now we derive further estimates which are necessary for the compactness.

Lemma 5. We have the following relations

‖∂sq
c(t)‖2W 1

µ
≤ C

∫ t

0

e−ν∗(t−τ)
[
‖u(τ)‖2 + R2

0(θτω)
]
dτ, (42)

and ∫ ∞

0

sµ(s)‖A1/2qc(t; s)‖2ds ≤ C

∫ t

0

e−ν∗(t−τ)
[
‖u(τ)‖2 + R2

0(θτω)
]
dτ, (43)

for any 0 < ν∗ ≤ ν1 ≡ 1
2 min{νλ1, δ}, where R0(ω) is given by (32).

Proof. It follows from the second equation in (35) and from the zero boundary and
initial data for qc that

qc(t; s, x) =


∫ s

0
uc(t− τ)dτ, for s ≤ t,∫ t

0
uc(t− τ)dτ, for s > t.

(44)

Therefore

∂sq
c(t; s, x) =

{
uc(t− s), for s ≤ t,
0, for s > t.
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Thus, by (11) we have that

‖∂sq
c(t)‖2W 1

µ
=

∫ t

0

µ(t− s)‖A1/2uc(s)‖2ds ≤ µ(0)
∫ t

0

e−δ(t−s)‖A1/2uc(s)‖2ds

Consequently, by Lemma 3 we obtain (42).
To prove (43) we note that (44) implies that

‖A1/2qc(t; s)‖2 ≤ s ·


∫ t

t−s
‖A1/2uc(τ)‖2dτ, for s ≤ t,∫ t

0
‖A1/2uc(τ)‖2dτ, for s > t.

Thus

‖A1/2qc(t; s)‖2 ≤ s ·


eν∗s

∫ t

t−s
e−ν∗(t−τ)‖A1/2uc(τ)‖2dτ, for s ≤ t,

eν∗t
∫ t

0
e−ν∗(t−τ)‖A1/2uc(τ)‖2dτ, for s > t,

and hence

‖A1/2qc(t; s)‖2 ≤ seν∗s

∫ t

0

e−ν∗(t−τ)‖A1/2uc(τ)‖2dτ, (45)

Consequently,∫ ∞

0

sµ(s)‖A1/2qc(t; s)‖2 ≤ Cµ

∫ t

0

e−ν∗(t−τ)‖A1/2uc(τ)‖2dτ,

where

Cµ =
∫ ∞

0

s2µ(s)eν∗sds < ∞.

As above Lemma 3 implies (43).

Remark 5. It is clear from the argument given in the proof of Lemma 5 that
estimates (42) and (43) remain true if we replace the function µ(s) by the function
µ̃(s) = µ(s) + e−βs with β > 0 large enough. Moreover, using (45) with A instead
of A1/2 and also (38) one can prove that

‖qc(t)‖2W 2
µ̃
≤ C

∫ t

0

e−ν∗(t−τ)
[
‖u(τ)‖2 + R2

1(θτω)
]
dτ.

This observation is important in the case when µ(s) ≡ 0 for s ≥ s∗ for some s∗ > 0.

Now we are in a position to construct a pullback attracting compact set.
It follows from Lemma 4 and (33) that

‖A1/2uc(t, θ−tω)‖2 + ‖qc(t, θ−tω)‖2W 2
µ
≤ C‖U0(θ−tω)‖2He−ν∗t + R2

∗(ω) (46)

where the tempered random variable R2
∗(ω) has the form

R2
∗(ω) = C

∫ 0

−∞
eν∗τR2

1(θτω)dτ (47)

with R2
1(ω) given by (39). In a similar way Lemma 5 implies that

‖∂sq
c(t, θ−tω)‖2W 1

µ
+

∫ ∞

0

sµ(s)‖A1/2qc(t; s, θ−tω)‖2ds

≤ C‖U0(θ−tω)‖2He−ν∗t + R2
∗(ω). (48)

Now we introduce the random closed set B in H by the formula

B(ω) = B1(ω)×B2(ω),
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where

B1(ω) =
{

u ∈ H : ‖A1/2u‖2 ≤ 1 + R2
∗(ω)

}
and

B2(ω)=
{

q ∈ W 2
µ : ‖q‖2W 2

µ
+ ‖∂sq‖2W 1

µ
+

∫ ∞

0

sµ(s)‖A1/2q(s)‖2ds ≤ 1+ 2R2
∗(ω)

}
.

Proposition 3. The set B(ω) is uniformly pullback attracting in D, i.e.

lim
t→∞

sup {distH(φ(t, θ−tω, y),B(ω)) : y ∈ D(θ−tω)} = 0 (49)

for any D̂ ∈ D and any ω ∈ Ω. The same is true when we replace µ by µ̃ (see
Remark 5).

Proof. This follows from Lemma 2 and relations (46) and (48).

Lemma 6. If µ(s) > 0 for all s ≥ 0, then B(ω) is a random compact set in H. In
the case when µ(s) ≡ 0 for s ≥ s0 for some s0 > 0, the same assertion is true if we
replace µ by µ̃ in the definition of the set B2(ω).

Proof. Let µ(s) > 0 for all s ≥ 0. Since D(A1/2) is compactly embedded in H, we
only need to prove that the set

BR =
{

q ∈ W 2
µ : ‖q‖2W 2

µ
+ ‖∂sq‖2W 1

µ
+

∫ ∞

0

sµ(s)‖A1/2q(s)‖2ds ≤ R

}
is compact in W 1

µ for every R > 0.
Let {qN} be a sequence in BR. Then for each T > 0 this sequence is bounded

in the space

LT =
{

q ∈ L2(0, T ;D(A)) : ∂sq ∈ L2(0, T ;D(A1/2))
}

.

Therefore, by Aubin’s compactness theorem (see, e.g., [23]) and a diagonal proce-
dure, we can choose a subsequence {qNk

} which is Cauchy in L2(0, T ;D(A1/2)) for
every T > 0. Since

‖qNk
− qNm‖2W 1

µ
≤ µ(0)

∫ T

0

‖A1/2qNk
(s)−A1/2qNm(s))‖2ds

+
2
T

∫ ∞

T

sµ(s)
[
‖A1/2qNk

(s)‖2 + ‖A1/2qNm
(s)‖2

]
ds

≤ µ(0)
∫ T

0

‖A1/2qNk
(s)−A1/2qNm

(s)‖2ds +
4R

T
,

we obtain that

lim sup
k,m→∞

‖qNk
− qNm

‖2W 1
µ
≤ 2R T−1 for every T > 0.

This implies that {qNk
} is a Cauchy sequence in W 1

µ .
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4.3. Proof of Theorem 3. By Proposition 3 and Lemma 6 the RDS (θ, φ) gener-
ated by problem (20)–(23) is asymptotically compact in D. Therefore by Theorem 1
there exists a random compact pullback attractor Â. It follows from Proposition 3
that the attractor Â is a tempered set in the space given by (26).

Now we prove the final statement of Theorem 3.
Let U1(t) = (u1(t); q1(t)) and U2(t) = (u2(t); q2(t)) be two solutions to prob-

lem (20)–(23) with initial data U1
0 = (u1

0; q
1
0) and U2

0 = (u2
0; q

2
0). Then the same

calculations as in the proof of Proposition 2 give us the relation

1
2

d

dt

(
‖u1 − u2‖2 + ‖q1 − q2‖2W 1

µ

)
+ ν‖A1/2(u1 − u2)‖2 +

δ

2
‖q1 − q2‖2W 1

µ

+(f(u1 + η)− f(u2 + η), u1 − u2) ≤ 0.

This implies that

1
2

d

dt

(
‖u1 − u2‖2 + ‖q1 − q2‖2W 1

µ

)
+ β‖u1 − u2‖2 +

δ

2
‖q1 − q2‖2W 1

µ
≤ 0,

where β = νλ1 + infs∈R f ′(s). Since in the case considered β > 0 we have that

‖U1(t)− U2(t)‖H ≤ e−β∗t‖U1
0 − U2

0 ‖H, t ≥ 0, (50)

where β∗ = min{β; δ/2} > 0.
Now we consider two elements V1 and V2 from A(ω) for some fixed ω ∈ Ω. By

the invariance property of pullback attractor for any t > 0 there exist V t
1 and V t

2

from A(θ−tω) such that Vi = φ(t, θ−tω, V t
i ), i = 1, 2. Therefore (50) implies that

‖V1 − V2‖H ≤ e−β∗t‖V t
1 − V t

2 ‖H, t ≥ 0.

Since Â is tempered in H, after the limit transition t → +∞ we can conclude that
‖V1− V2‖H = 0. Thus A(ω) is a singleton. This completes the proof of Theorem 3.
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