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PULLBACK ATTRACTORS FOR REACTION-DIFFUSION

EQUATIONS IN SOME UNBOUNDED DOMAINS WITH AN

H−1-VALUED NON-AUTONOMOUS FORCING TERM AND

WITHOUT UNIQUENESS OF SOLUTIONS

M. ANGUIANO, T. CARABALLO, J. REAL, AND J. VALERO

Abstract. The existence of a pullback attractor for a reaction-diffusion equa-
tions in an unbounded domain containing a non-autonomous forcing term tak-
ing values in the space H−1, and with a continuous nonlinearity which does
not ensure uniqueness of solutions, is proved in this paper. The theory of
set-valued non-autonomous dynamical systems is applied to the problem.

Dedicated to Peter E. Kloeden on his 60th birthday.

1. Introduction and setting of the problem. Let Ω ⊂ R
N be a nonempty open

set, not necessarily bounded, and suppose that Ω satisfies the Poincaré inequality,
i.e., there exists a constant λ1 > 0 such that

∫

Ω

|u(x)|2 dx ≤ λ−1
1

∫

Ω

|∇u(x)|2 dx ∀u ∈ H1
0 (Ω) . (1)

Let us consider the following problem for a non-autonomous reaction-diffusion equa-
tion with zero Dirichlet boundary condition in Ω,






∂u

∂t
−△u = f(x, u) + h(t) in Ω × (τ, +∞),

u = 0 on ∂Ω × (τ, +∞),
u(x, τ) = uτ (x), x ∈ Ω,

(2)

where τ ∈ R, uτ ∈ L2 (Ω), h ∈ L2
loc(R; H−1 (Ω)) and f : Ω×R → R is a measurable

function such that f(x, ·) ∈ C(R) for almost every x ∈ Ω, and satisfies that there
exist constants α1 > 0, α2 > 0, and p ≥ 2 and positive functions C1(x), C2(x) ∈
L1 (Ω) such that

|f(x, s)|
p

p−1 ≤ α1 |s|p + C1(x) ∀s ∈ R, x ∈ Ω, (3)

f(x, s)s ≤ −α2 |s|p + C2(x) ∀s ∈ R, x ∈ Ω. (4)

Several aspects of reaction-diffusion equations are being analyzed over the last
years, particularly, their asymptotic behaviour. The motivations for the study of
this kind of evolution equation are out of any doubt (see the cited references in
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this paper as well as the references cited in those). However, we will mention below
some papers which are significant contributions in any of the cases considered when
uniqueness of solutions cannot be ensured or do not hold (see [1] and the references
therein for the case of uniqueness of solutions). Therefore, the dynamical system
generated by our problem will be a set-valued (or multi-valued) one.

The study of autonomous reaction-diffusion equations without uniqueness of
solutions in a bounded domain Ω in the autonomous case (i.e. h does not depend
on the time t), or in the non-autonomous case but with strong uniformity properties
on the time dependent terms, can be found in [17], [20], [21], [22], [23], [24], [41],
[44], [46], where the classical theory of global attractor is adapted to handle this
set-valued case. Nevertheless, the theory of trajectory attractors is used in [13],
[14] to investigate the problem.

In the autonomous case, when the domain Ω is unbounded, but we have unique-
ness of solutions, several studies on our problem can be found in [2], [3], [4], [5],
[16], [18], [19], [25], [26], [32], [33], [37], [39], [43], [47], [48], while in the case of
non-uniqueness (but still being Ω unbounded, and the problem autonomous), some
results on the existence of attractors have been obtained in [34], [35], [36].

However, due to the non-autonomous character of our problem in this paper, we
have to use an appropriate framework. Being possible to choose amongst several
theories (skew-product flows, uniform attractors, trajectory attractors, pullback at-
tractors) we will use the theory of pullback attractors since this allows for more
generality in the non-autonomous terms (see [12], [9], [10], [11], [29], [30], [1] for
some results concerning pullback attractors and several reasons justifying the in-
terest of using this theory).

Concerning existence of pullback attractors for reaction-diffusion equations with
uniqueness of solutions in bounded or unbounded domains domains several results
are given in [1], [8], [27], [42], [49], [50].

Finally, it is also worth mentioning that the existence of random (pullback)
attractor for a stochastic reaction-diffusion equation in un unbounded domain has
been proved in [6] in the case of uniqueness of solutions.

Now, our aim in this paper is to consider a much more general problem: a
reaction-diffusion equation in an unbounded domain, with a continuous nonlin-
earity and a non-autonomous forcing term with values in the space H−1 which
does not have uniqueness of solutions, and we will use the theory of multi-valued
non-autonomous (pullback) dynamical systems to prove the existence of a pullback
attractor for our problem.

In Section 2 we establish a result ensuring existence of solution of our reaction-
diffusion problem. Some preliminaries on the theory of multi-valued (or set-valued)
non-autonomous dynamical systems are stated in Section 3. Finally, the existence
of a pullback attractor for our model is proved in Section 4.

2. Existence of solution. We prove in this section a result on existence of solu-
tions of problem (2).

By |·| we denote the norm in L2 (Ω), by ‖·‖ = |∇·| the norm in H1
0 (Ω) and by

‖·‖∗ the norm in H−1 (Ω). We will use (·, ·) to denote the scalar product in L2 (Ω)
or [L2 (Ω)]N , and 〈·, ·〉 to denote either the duality product between H−1 (Ω) and

H1
0 (Ω) or between Lp′

(Ω) and Lp (Ω), where p′ = p
p−1 is the conjugate exponent

of p.
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Definition 1. A weak solution of (2) is any function u : (τ, +∞) → Lp(Ω)∩H1
0 (Ω),

such that u ∈ Lp (τ, T ; Lp (Ω)) ∩ L2
(
τ, T ; H1

0 (Ω)
)

for all T > τ, and

(u(t), w) +

∫ t

τ

(∇u(s), w) ds = (uτ , w) +

∫ t

τ

〈f(x, u(s)) + h(s), w〉 ds ∀ t ≥ τ, (5)

for all w ∈ Lp(Ω) ∩ H1
0 (Ω).

It is well known [14, p.285] under the above assumptions on uτ , f and h, if u
is a weak solution of (2), then u ∈ C([τ, +∞); L2(Ω)), the function t 7→ ‖u(t)‖2 is

absolutely continuous on every interval [τ, T ] and
d

dt
|u(t)|2 = 2

〈
du

dt
, u

〉
for a.a.

t ∈ (τ, T ). Hence, it satisfies the energy equality

|u(t)|2 + 2

∫ t

τ

‖u(s)‖2 ds = |uτ |2 + 2

∫ t

τ

〈f(x, u(s)) + h(s), u(s)〉 ds ∀ t ≥ τ.

From now on, for all m ≥ 1, we denote

Ωm = Ω ∩
{
x ∈ R

N : |x|
RN < m

}
,

where |·|
RN denotes the Euclidean norm in R

N .
We will denote by ”⇀” the weak convergence in the corresponding indicated

space, while ”→” will denote the strong convergence, as usual.

Theorem 2. Assume that Ω satisfies (1), h ∈ L2
loc(R; H−1 (Ω)) and f ∈ C(R)

satisfies (3) and (4). Then, for all τ ∈ R, uτ ∈ L2 (Ω), there exists at least a weak
solution u of (2).

Proof. (Sketch) For each integer n ≥ 1, we denote by

un(t) =
n∑

j=1

γnj(t)wj ,

a solution of
{

d
dt

(un(t), wj) = − (∇un(t),∇wj) + 〈f(x, un(t)), wj〉 + 〈h(t), wj〉 t > τ ,
(un(τ), wj) = (uτ , wj) j = 1, .., n,

where {wj : j ≥ 1} ⊂ H1
0 (Ω)∩Lp (Ω) is a Hilbert basis of L2 (Ω) such that span {wj}j≥1

is dense in H1
0 (Ω) ∩ Lp (Ω).

It is a standard matter to deduce that

{un} is bounded in L2(τ, T ; H1
0 (Ω)) ∩ Lp(τ, T ; Lp (Ω)) ∩ C([τ, T ]; L2 (Ω)), (6)

and

f(x, un) is bounded in Lp′

(τ, T ; Lp′

(Ω)),

for all T > τ (we note that the above estimates allow to extend every solution to a
global one).

Then, there exists a subsequence {uµ} ⊂ {un} such that

uµ
∗
⇀ u weak-star in L∞(τ, T ; L2 (Ω)),

uµ ⇀ u in Lp(τ, T ; Lp (Ω)),

uµ ⇀ u in L2(τ, T ; H1
0 (Ω)), (7)

f(x, uµ) ⇀ χ in Lp′

(τ, T ; Lp′

(Ω)), (8)
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for all T > τ. Now (7) implies that

∆uµ ⇀ ∆u in L2(τ, T ; H−1 (Ω)).

On the other hand, to prove that χ(t) = f(x, u(t)), we argue similarly to [40]. Also,
arguing in a similar way as in [40, p.75] we first deduce

lim
a→0

sup
µ

∫ T−a

τ

|uµ(t + a) − uµ(t)|2 dt = 0, (9)

for all T > τ.
Let φ ∈ C1 ([0, +∞)) be a function such that

0 ≤ φ(s) ≤ 1,

φ(s) = 1 ∀s ∈ [0, 1],

φ(s) = 0 ∀s ≥ 2.

For each µ and m ≥ 1, we define

vµ,m(x, t) = φ

(
|x|2

RN

m2

)
uµ(x, t) ∀x ∈ Ω2m, ∀µ, ∀m ≥ 1. (10)

We obtain from (6) that, for all m ≥ 1, the sequence {vµ,m}
µ≥1 is bounded in

L∞
(
τ, T ; L2 (Ω2m)

)
∩ Lp (τ, T ; Lp (Ω2m)) ∩ L2

(
τ, T ; H1

0 (Ω2m)
)
, for all T > τ.

In particular, it follows that

lim
a→0

sup
µ

(∫ τ+a

τ

|vµ,m(x, t)|2
L2(Ω2m) dt +

∫ T

T−a

|vµ,m(x, t)|2
L2(Ω2m) dt

)
= 0.

On the other hand, from (9) we deduce that for m ≥ 1,

lim
a→0

sup
µ

(∫ T−a

τ

|vµ,m(x, t + a) − vµ,m(x, t)|2
L2(Ω2m) dt

)
= 0.

Moreover, as Ω2m is a bounded set, then H1
0 (Ω2m) is included in L2 (Ω2m) with

compact injection.
Then, by the compactness Theorem 13.3 and Remark 13.1 of [45] with X =

L2 (Ω2m), Y = H1
0 (Ω2m), r = 2 and G = {vµ,m}

µ≥1, we obtain that

{vµ,m}
µ≥1 is relatively compact in L2

(
τ, T ; L2 (Ω2m)

)
,

and thus, taking into account that vµ,m(x, t) = uµ(x, t) for all x ∈ Ωm, we deduce
that, in particular, for all m ≥ 1

{
uµ|Ωm

}
µ≥1

is pre-compact in L2
(
τ, T ; L2 (Ωm)

)
. (11)

It is not difficult to conclude from (11), (7) and (1), via a diagonal procedure, the
existence of a subsequence

{
uµ

µ

}
µ≥1

⊂ {uµ}µ≥1 such that

uµ
µ → u a.e. in Ωm × (τ, +∞) as µ −→ ∞, ∀m ≥ 1.

Then, as f is continuous,

f(x, uµ
µ) −→ f(x, u) a.e. in Ωm × (τ, +∞) ,

and as
{
f(x, uµ

µ)
}

is bounded in Lp′

(Ωm × (τ, T )), by Lemma 1.3, Chapter 1 in
[28], we obtain

f(x, uµ
µ) ⇀ f(x, u) in Lp′

(
τ, T ; Lp′

(Ωm)
)

∀T > τ .
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From (8)

f(x, uµ) ⇀ χ|Ωm×(τ,T ) in Lp′
(
τ, T ; Lp′

(Ωm)
)

.

By the uniqueness of the weak limit, we have

χ = f(x, u) a.e. in Ωm × (τ, T ) ∀T > τ, ∀m ≥ 1,

and thus, taking into account that

∞⋃

m=1

Ωm = Ω, we obtain

χ = f(x, u) a.e. in Ω × (τ, +∞) . (12)

Then, (12) and (8) yield that

f(x, uµ) ⇀ f(x, u(t)) in Lp′

(τ, T ; Lp′

(Ω)) ∀T > τ , (13)

and thanks to the equation satisfied by u′
µ and the fact that span {wj}j≥1 is dense

in H1
0 (Ω)∩Lp (Ω), it is a standard matter to prove that we can pick an element in

the equivalence class of u satisfying

(u(t), w) = (uτ , w) +

∫ t

τ

〈∆u(s) + f(x, u(s)) + h(s), w〉ds, (14)

for all t ≥ τ , for any w ∈ H1
0 (Ω) ∩ Lp (Ω) .

Remark 3. Observe that the conditions on the function f do not allow to obtain the
uniqueness of the Cauchy problem (see [24] for a counterexample in the autonomous
case).

3. Preliminaries on the theory of pullback attractors. As the uniqueness
of the Cauchy problem fails to be true for our equation, we have to work with
set-valued non-autonomous dynamical systems.

First we recall some basic definitions for set-valued non-autonomous dynamical
systems and establish a sufficient condition for the existence of a pullback attractor
for these systems (see [10], [11], [12], [30] and [31] for more details).

Let X = (X, dX) be a metric space, and let P (X) denote the family of all
nonempty subsets of X , and let us denote R

2
d :=

{
(t, s) ∈ R

2 : t ≥ s
}
.

Definition 4. A multi-valued map U : R
2
d × X −→ P (X) is called a multi-valued

non-autonomous dynamical system (MNDS) on X (also named a multi-valued
process on X) if

U(s, s, ·) = idX(·) for all s ∈ R,

U(t, τ, x) ⊂ U(t, s, U(s, τ, x)) for all τ ≤ s ≤ t, x ∈ X,

where U(t, τ, V ) :=
⋃

x0∈V

U(t, τ, x0) for any non-empty set V ⊂ X.

An MNDS is said to be strict if

U(t, τ, x) = U(t, s, U(s, τ, x)) for all τ ≤ s ≤ t, x ∈ X.

Definition 5. An MNDS U on X is said to be upper-semicontinuous if for all
t ≥ τ the mapping U(t, τ, ·) is upper-semicontinuous from X into P(X), i.e., for
any x0 ∈ X and for every neighborhood N in X of the set U(t, τ, x0), there exists
δ > 0 such that U(t, τ, y) ⊂ N whenever dX(x0, y) < δ.
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Let D be a class of sets parameterized in time, D̂ = {D(t) : t ∈ R} ⊂ P(X).

We will say that the class D is inclusion-closed, if D̂ ∈ D and ∅ 6= D′(t) ⊂ D(t)

for all t ∈ R, imply that D̂′ = {D′(t) : t ∈ R} belongs to D.

Definition 6. We say that a family B̂ = {B(t) : t ∈ R} ⊂ P(X) is pullback D-

absorbing if for every D̂ ∈ D and every t ∈ R, there exists τ(t, D̂) ≤ t such
that

U(t, τ, D(τ)) ⊂ B(t) for all τ ≤ τ(t, D̂).

Definition 7. The MNDS U is asymptotically compact with respect to a family

B̂ = {B(t) : t ∈ R} ⊂ P(X) if for all t ∈ R and every sequence τn ≤ t tending to
−∞, any sequence yn ∈ U(t, τn, B(τn)) is pre-compact.

Let distX(·, ·) denote the Hausdorff semidistance, defined by

distX(C1, C2) := sup
x∈C1

inf
y∈C2

dX(x, y) for C1, C2 ⊂ X.

Definition 8. A family Â = {A(t) : t ∈ R} ⊂ P(X) is said to be a global pullback

D- attractor for the MNDS U if it satisfies
1. A(t) is compact for any t ∈ R,

2. Â is pullback D-attracting, i.e.

lim
τ→−∞

distX(U(t, τ, D(τ)), A(t)) = 0 ∀t ∈ R,

for all D̂ ∈ D,

3. Â is negatively invariant, i.e.,

A(t) ⊂ U(t, τ, A(τ)), for any (t, τ) ∈ R
2
d.

Â is said to be a strict global pullback D-attractor if the invariance property
in the third item is strict, i.e.,

A(t) = U(t, τ, A(τ)), for (t, τ) ∈ R
2
d.

Theorem 9. Assume that the MNDS U is upper-semicontinuous, and let B̂ =
{B(t) : t ∈ R} ⊂ P(X) be pullback D- absorbing and such that U is asymptotically

compact with respect to B̂.

Then, the set Â given by

A(t) := Λ
(
B̂, t

)
=
⋂

s≤t

⋃

τ≤s

U(t, τ, B(τ)) t ∈ R, (15)

is a pullback D- attractor for the MNDS U .
Moreover, suppose that D is inclusion closed, B̂ ∈ D, and B(t) is closed in X

for any t ∈ R. Then the family Â defined by (15) belongs to D, and is the unique
pullback D- attractor with this property. In addition, in this case, if U is a strict

MNDS, then Â is strictly invariant.

Proof. See [12] and [30].

Remark 10. For some discussions on the relationship between the concept of D-
attractor and the notion of attractor for fixed bounded subsets of X, see [29] and
[30].
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4. The pullback attractor for system (2). In this section we prove our main
result in this paper. First, we need a priori estimates and a continuity result which
are established in the next subsections.

4.1. A priori estimates. For each τ ∈ R and uτ ∈ L2(Ω), let us denote S(τ, uτ )
the set of all weak solutions of (2) defined for all t ≥ τ .

We define a multi-valued map U : R
2
d × L2(Ω) → P(L2(Ω)) by

U(t, τ, uτ ) = {u(t) : u ∈ S(τ, uτ )} , τ ≤ t, uτ ∈ L2(Ω). (16)

Lemma 11. Under the assumptions of Theorem 2, the multi-valued mapping U
defined by (16) is a strict MNDS on L2(Ω).

Proof. It is easy to check that U is well defined. Moreover, U satisfies the first part
in Definition 4.

Let us now prove that U(t, τ, uτ ) ⊂ U(t, s, U(s, τ, uτ)) also holds for all τ ≤ s ≤ t,
uτ ∈ L2 (Ω). Consider φ ∈ U(t, τ, uτ ). Then from the definition of U , there exists
a solution u ∈ S(τ, uτ ) such that u(t) = φ. If τ ≤ s, then u(s) ∈ U(s, τ, uτ ), and as

U(t, s, u(s)) = {z(t) : z ∈ S(s, u(s)) such that z(s) = u(s)} ,

obviously,

u(t) = φ ∈ U(t, s, u(s)) ⊂ U(t, s, U(s, τ, uτ)).

Thus,

U(t, τ, uτ ) ⊂ U(t, s, U(s, τ, uτ )) ∀τ ≤ s ≤ t.

To prove that the MNDS is strict, let us consider φ ∈ U(t, s, U(s, τ, uτ)). Then
there exists a solution u to (2) such that u(s) = y(s), where y is another solution
to (2) with initial value y(τ) = uτ . We now define

z(r) =

{
y(r) if τ ≤ r ≤ s,
u(r) if s ≤ r ≤ t.

It is clear that z (·) is solution to (2) (see [35]), and it is also holds that z(τ) =
y(τ) = uτ , and z(t) = u(t) = φ, i.e., φ ∈ U(t, τ, uτ ). Which means that

U(t, s, U(s, τ, uτ )) ⊂ U(t, τ, uτ ) ∀τ ≤ s ≤ t.

Let Rλ1
be the set of all functions r : R → (0, +∞) such that

lim
t→−∞

eλ1tr2(t) = 0,

and denote by Dλ1
the class of all families D̂ = {D(t) : t ∈ R} ⊂ P(L2 (Ω)) such

that D(t) ⊂ B(0, r bD
(t)) for some r bD

∈ Rλ1
, where B(0, r bD

(t)) denotes the closed

ball in L2 (Ω) centered at zero with radius r bD
(t). Observe that the class Dλ1

is
inclusion-closed.

Lemma 12. Suppose that Ω satisfies (1) and suppose that f ∈ C(R) satisfies (3)

and (4). Let h =
∑N

i=1
∂hi

∂xi
, with hi ∈ L2

loc(R; L2 (Ω)) for all 1 ≤ i ≤ N, such that

N∑

i=1

∫ t

−∞

eλ1s |hi(s)|2 ds < +∞ ∀t ∈ R. (17)
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Then, the balls Bλ1
(t) = BL2(Ω)(0, Rλ1

(t)), where Rλ1
(t) is the nonnegative number

given for each t ∈ R by

R2
λ1

(t) = 2e−λ1t

N∑

i=1

∫ t

−∞

eλ1s |hi(s)|2 ds + 2λ−1
1 ‖C2‖L1(Ω) + 1, (18)

form a family B̂λ1
∈ Dλ1

which is pullback Dλ1
-absorbing for the MNDS U defined

by (16).

Proof. As a consequence of (18), it is evident that B̂λ1
∈ Dλ1

. On the other hand,
taking into account the energy equality, (1) and (4), if u ∈ S(τ, uτ ) we obtain

d

dt

(
eλ1t |u(t)|2

)
+

λ1

2
eλ1t |u(t)|2 ≤ 2eλ1t

N∑

i=1

|hi(t)|2 + 2eλ1t ‖C2‖L1(Ω) , (19)

for t ≥ τ.
In particular, integrating between τ and t, we have

eλ1t |u(t)|2 ≤ eλ1τ |uτ |2 + 2

N∑

i=1

∫ t

−∞

eλ1s |hi(s)|2 ds + 2λ−1
1 ‖C2‖L1(Ω) eλ1t,

for all t ≥ τ.
From this inequality, we deduce that if D̂ ∈ Dλ1

and y ∈ U(t, τ, D(τ)), then

|y|2 ≤ eλ1(τ−t)r2
bD
(τ) + 2e−λ1t

N∑

i=1

∫ t

−∞

eλ1s |hi(s)|2 ds + 2λ−1
1 ‖C2‖L1(Ω) .

Consequently the family B̂λ1
is pullback Dλ1

-absorbing for U .

Lemma 13. Under the assumptions in Lemma 12, for any real numbers t1 ≤ t2
and any ε > 0, there exist T = T (t1, t2, ε, B̂λ1

) ≤ t1 and M = M(t1, t2, ε, B̂λ1
) ≥ 1

verifying
∫

Ω∩{|x|
RN ≥2m}

u2 (x, t) dx ≤ ε, ∀τ ≤ T , t ∈ [t1, t2], m ≥ M ,

for any weak solution u ∈ S(τ, uτ ) where uτ ∈ Bλ1
(τ).

Proof. Let τ ∈ R, uτ ∈ L2 (Ω) and u ∈ S(τ, uτ) be fixed. We take a smooth
function θ ∈ C1 ([0, +∞)) verifying

0 ≤ θ(s) ≤ 1,

θ(s) = 0 ∀s ∈ [0, 1],

θ(s) = 1 ∀s ≥ 2.

Under the above assumptions on uτ , f and h, if u is a weak solution of (2),

the function ‖θu(t)‖2
=

∫
RN θ2

(
|x|2

n2

)
|u (x, t)|2 dx is absolutely continuous and

d

dt
‖θu‖2

= 2

〈
du

dt
, θ2u

〉
for a.a. t (see [35, Lemma 3] or [34, Lemma 32]). On

the other hand (see for example [7, propositions IX.4 and IX.5]) observe that

θ

(
|·|2

RN

m2

)
u(·, t) ∈ H1

0 (Ω), a.e. in (τ,∞), with

∂i

(
θ

(
|x|2

RN

m2

)
u(x, t)

)
= θ

(
|x|2

RN

m2

)
∂iu(x, t) +

2xi

m2
θ′

(
|x|2

RN

m2

)
u(x, t), (20)
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and the same is true replacing θ by θ2.
Hence, we obtain for every t ≥ τ,

1

2

d

dt

∫

Ω

θ2

(
|x|2

RN

m2

)
u2(x, t)dx +

∫

Ω

θ2

(
|x|2

RN

m2

)
|∇u(x, t)|2 dx (21)

+
4

m2

∫

Ω

θ′

(
|x|2

RN

m2

)
θ

(
|x|2

RN

m2

)
u(x, t)x · ∇u(x, t)dx

=

∫

Ω

θ2

(
|x|2

RN

m2

)
f(x, u(x, t))u(x, t)dx −

N∑

i=1

∫

Ω

θ2

(
|x|2

RN

m2

)
hi(x, t)∂iu(x, t)dx

−
N∑

i=1

∫

Ω

4xi

m2
θ′

(
|x|2

RN

m2

)
θ

(
|x|2

RN

m2

)
u(x, t)hi(x, t)dx

= I1 + I2 + I3.

From (4), we obtain

I1 ≤
∫

Ω

θ2

(
|x|2

RN

m2

)
C2(x)dx. (22)

Using the Cauchy-Schwarz inequality, we obtain

I2 ≤ 1

4

∫

Ω

θ2

(
|x|2

RN

m2

)
|∇u(x, t)|2 dx (23)

+

N∑

i=1

∫

Ω

θ2

(
|x|2

RN

m2

)
h2

i (x, t)dx.

Using that θ′
(

|x|2
RN

m2

)
= 0 if |x|

RN >
√

2m, θ′
(

|x|2
RN

m2

)
≤ Cθ′ for all x, and the

Cauchy-Schwarz inequality, we obtain

|I3| ≤
16

m2
C2

θ′N

∫

Ω

|u(x, t)|2 dx +

N∑

i=1

∫

Ω

θ2

(
|x|2

RN

m2

)
h2

i (x, t)dx. (24)

Moreover, we have
∣∣∣∣∣

4

m2

∫

Ω

θ′

(
|x|2

RN

m2

)
θ

(
|x|2

RN

m2

)
u(x, t)x · ∇u(x, t)dx

∣∣∣∣∣ (25)

≤ 4

m
Cθ′

∫

Ω

|u(x, t)|2 dx +
4

m
Cθ′

∫

Ω

θ2

(
|x|2

RN

m2

)
|∇u(x, t)|2 dx.

From (21)-(25) we deduce

1

2

d

dt

∫

Ω

θ2

(
|x|2

RN

m2

)
u2(x, t)dx +

(
3

4
− 4

m
Cθ′

)∫

Ω

θ2

(
|x|2

RN

m2

)
|∇u(x, t)|2 dx (26)

≤
∫

Ω

θ2

(
|x|2

RN

m2

)
C2(x)dx +

4

m
Cθ′

∫

Ω

u2(x, t)dx

+
16

m2
C2

θ′N

∫

Ω

u2(x, t)dx + 2
N∑

i=1

∫

Ω

θ2

(
|x|2

RN

m2

)
h2

i (x, t)dx.
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Thus, by (20) we have
∣∣∣∣∣∇
(

θ

(
|x|2

RN

m2

)
u(x, t)

)∣∣∣∣∣

2

= θ2

(
|x|2

RN

m2

)
|∇u(x, t)|2

+
4 |x|2

RN

m4

(
θ′

(
|x|2

RN

m2

))2

u2(x, t)

+
4

m2
θ′

(
|x|2

RN

m2

)
u(x, t)θ

(
|x|2

RN

m2

)
x · ∇u(x, t),

and therefore

∫

Ω

∣∣∣∣∣∇
(

θ

(
|x|2

RN

m2

)
u(x, t)

)∣∣∣∣∣

2

dx ≤
∫

Ω

θ2

(
|x|2

RN

m2

)
|∇u(x, t)|2 dx

+
8

m2
C2

θ′

∫

Ω

u2(x, t)dx

+
4

m
Cθ′

(∫

Ω

u2(x, t)dx +

∫

Ω

θ2

(
|x|2

RN

m2

)
|∇u(x, t)|2 dx

)

=

(
1 +

4

m
Cθ′

)∫

Ω

θ2

(
|x|2

RN

m2

)
|∇u(x, t)|2 dx

+

(
8

m2
C2

θ′ +
4

m
Cθ′

)∫

Ω

u2(x, t)dx.

From this inequality and (1) we obtain

∫

Ω

θ2

(
|x|2

RN

m2

)
|∇u(x, t)|2 dx ≥

(
m

m + 4Cθ′

)
λ1

∫

Ω

θ2

(
|x|2

RN

m2

)
u2(x, t)dx (27)

−
(

m

m + 4Cθ′

)(
8

m2
C2

θ′ +
4

m
Cθ′

)∫

Ω

u2(x, t)dx.

Assume that 3
4 − 4

m
Cθ′ > 0 (and this is true for m large enough). Then, from

(26) and (27), we have

1

2

d

dt

∫

Ω

θ2

(
|x|2

RN

m2

)
u2(x, t)dx (28)

+

(
3

4
− 4

m
Cθ′

)(
m

m + 4Cθ′

)
λ1

∫

Ω

θ2

(
|x|2

RN

m2

)
u2(x, t) dx

≤
(

4Cθ′

m
+

16C2
θ′N

m2
+

(
m

m + 4Cθ′

)(
8C2

θ′

m2
+

4Cθ′

m

)(
3

4
− 4Cθ′

m

))∫

Ω

u2(x, t) dx

+ 2

N∑

i=1

∫

Ω

θ2

(
|x|2

RN

m2

)
h2

i (x, t)dx +

∫

Ω

θ2

(
|x|2

RN

m2

)
C2(x)dx.

Evidently, there exists m0 such that for all m ≥ m0 we have
(

3

4
− 4

m
Cθ′

)(
m

m + 4Cθ′

)
>

1

2
.
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Then from (28), if we denote Ĉ = 14Cθ′ + 44C2
θ′N , and multiplying by eλ1t, we

obtain

d

dt

(
eλ1t

∫

Ω

θ2

(
|x|2

RN

m2

)
u2(x, t)dx

)
≤ Ĉ

m
eλ1t

∫

Ω

u2(x, t)dx

+ 4

N∑

i=1

eλ1t

∫

Ω

θ2

(
|x|2

RN

m2

)
h2

i (x, t)dx

+ 2eλ1t

∫

Ω

θ2

(
|x|2

RN

m2

)
C2(x)dx.

Integrating now between τ and t, and using the properties of θ, we have

∫

Ω∩{|x|
RN ≥2m}

u2(x, t)dx ≤ e−λ1teλ1τ

∫

Ω

θ2

(
|x|2

RN

m2

)
u2

τ (x) dx (29)

+
Ĉ

m
e−λ1t

∫ t

τ

eλ1s |u(s)|2 ds

+ 4

N∑

i=1

e−λ1t

∫ t

−∞

eλ1s

∫

Ω

θ2

(
|x|2

RN

m2

)
h2

i (x, s)dxds

+ 2λ−1
1

∫

Ω

θ2

(
|x|2

RN

m2

)
C2(x)dx,

for all m ≥ m0, t ≥ τ .
On the other hand, from (19), integrating between τ and t, we have

λ1

2

∫ t

τ

eλ1s |u(s)|2 ds ≤ eλ1τ |uτ |2 + 2
N∑

i=1

∫ t

τ

eλ1s |hi(s)|2 ds (30)

+ 2λ−1
1 ‖C2‖L1(Ω) eλ1t.

Thus, if we take uτ ∈ Bλ1
(τ), we obtain

∫ t

τ

eλ1s|u(s)|2ds ≤ 2λ−1
1 eλ1τR2

λ1
(τ) (31)

+ 4λ−1
1

N∑

i=1

∫ t

−∞

eλ1s |hi(s)|2 ds

+ 4λ−2
1 ‖C2‖L1(Ω) eλ1t.

Let us fix t1 ≤ t2 ∈ R. Observing that limτ→−∞ eλ1τR2
λ1

(τ) = 0, from (17) and
(31), we deduce that there exists a constant C(t1, t2) such that

e−λ1t

∫ t

τ

eλ1s|u(s)|2 ds ≤ C(t1, t2) ∀ t ∈ [t1, t2], τ ≤ t1,
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and therefore, by (29),
∫

Ω∩{|x|
RN ≥2m}

u2(x, t)dx ≤ e−λ1teλ1τR2
λ1

(τ) +
Ĉ

m
C(t1, t2) (32)

+ 4

N∑

i=1

e−λ1t

∫ t

−∞

eλ1s

∫

Ω

θ2

(
|x|2

RN

m2

)
h2

i (x, s)dxds

+ 2λ−1
1

∫

Ω

θ2

(
|x|2

RN

m2

)
C2(x)dx,

for all m ≥ m0 and t ∈ [t1, t2], for every u ∈ S(τ, uτ ), where τ ≤ t1 and uτ ∈ Bλ1
(τ).

On the other hand, from (17) and Lebesgue’s Dominated Convergence Theorem,
for every t ∈ [t1, t2] we obtain

∫ t

−∞

eλ1s

∫

Ω

θ2

(
|x|2

RN

m2

)
h2

i (x, s)dxds (33)

≤
∫ t2

−∞

∫

Ω

χ{|x|
RN ≥m}eλ1sh2

i (x, s)dxds −→ 0 as m → ∞,

for all i = 1, .., N , where χ is the indicator function.
Analogously,

∫

Ω

θ2

(
|x|2

RN

m2

)
C2(x)dx ≤

∫

Ω

χ{|x|
RN ≥m}C2(x)dx −→ 0 as m → ∞. (34)

From (32), (33) and (34) we deduce our lemma.

Remark 14. It is clear from the proof that Lemma 13 above also holds for any

D̂ ∈ Dλ1
instead of B̂λ1

.

Lemma 15. Under the assumptions in Lemma 12, let K be a relatively compact
set in L2 (Ω). Then, for all τ ≤ T and ε > 0 there exists M = M(τ, T, ε, K) such
that ∫

Ω∩{|x|
RN ≥2m}

u2 (x, t) dx ≤ ε, ∀t ∈ [τ, T ], ∀m ≥ M ,

for any u ∈ S(τ, uτ ), where uτ ∈ K is arbitrary.

Proof. We note that, as shown in Lemma 13, we have

∫

Ω∩{|x|
RN ≥2m}

u2(x, t)dx ≤ e−λ1teλ1τ

∫

Ω

θ2

(
|x|2

RN

m2

)
u2

τ (x) dx (35)

+
Ĉ

m
e−λ1t

∫ t

τ

eλ1s |u(s)|2 ds

+ 4

N∑

i=1

e−λ1t

∫ t

−∞

eλ1s

∫

Ω

θ2

(
|x|2

RN

m2

)
h2

i (x, s)dxds

+ 2λ−1
1

∫

Ω

θ2

(
|x|2

RN

m2

)
C2(x)dx,
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for all m ≥ m0, and any u ∈ S(τ, uτ ), where τ ≤ t and uτ ∈ L2(Ω) are arbitrary,

and where m0 and Ĉ are defined in Lemma 13. On the other hand, as K is a
bounded subset of L2(Ω), from (30) we deduce that for some constant c > 0,

∫ t

τ

eλ1s|u(s)|2ds ≤ 2λ−1
1 eλ1τc2 + 4λ−1

1

N∑

i=1

∫ t

−∞

eλ1s |hi(s)|2 ds

+ 4λ−2
1 ‖C2‖L1(Ω) eλ1t,

and thus there exists a constant C(τ, T ) such that

e−λ1t

∫ t

τ

eλ1s

∫

Ω

u2(x, s)dxds ≤ C(τ, T ), ∀t ∈ [τ, T ], (36)

for any u ∈ S(τ, uτ ), where uτ ∈ K is arbitrary. Finally, as K is a relatively
compact subset of L2 (Ω), then for all ε > 0 there exists mε such that

∫

Ω

θ2

(
|x|2

RN

m2

)
u2

τ (x)dx < ε ∀uτ ∈ K, ∀m ≥ mε. (37)

In the contrary case, there would exist an ε > 0 and a sequence {un} ⊂ K such
that ∫

Ω

θ2

(
|x|2

RN

n2

)
u2

n(x)dx ≥ ε, ∀n ≥ 1.

But then, there would exist a convergent subsequence {uµ} ⊂ {un}, with uµ → u
in L2(Ω) as µ → ∞. And thus we would have

ε ≤
∫

Ω

θ2

(
|x|2

RN

µ2

)
u2

µ(x)dx

≤ 2

∫

Ω

θ2

(
|x|2

RN

µ2

)
(uµ(x) − u(x))2dx + 2

∫

Ω

θ2

(
|x|2

RN

µ2

)
u2(x)dx

≤ 2

∫

Ω

(uµ(x) − u(x))2dx + 2

∫

Ω

θ2

(
|x|2

RN

µ2

)
u2(x)dx,

and therefore, making µ → ∞, we would have ε ≤ 0, which is a contradiction.
From (35)-(37), and taking into account (33) and (34), we deduce the assertion of
the lemma.

4.2. A continuity result. Further, we obtain a continuity result leading to the
upper semicontinuity of the MNDS U.

Proposition 16. Under the assumptions in Lemma 12, let τ ∈ R and {un
τ } ⊂

L2 (Ω) be a sequence converging weakly in L2 (Ω) to an element uτ ∈ L2 (Ω). For
each n ≥ 1 let us fix un ∈ S(τ, un

τ ). Then there exists a subsequence {uµ} ⊂ {un}
satisfying that there exists u ∈ S(τ, uτ ) such that

uµ (t) ⇀ u(t) in L2 (Ω) ∀t ≥ τ , (38)

uµ ⇀ u in L2(τ, T ; H1
0 (Ω)) ∀T > τ , (39)

uµ ⇀ u in Lp(τ, T ; Lp (Ω)) ∀T > τ , (40)

f(x, uµ) ⇀ f(x, u) in Lp′(τ, T ; Lp′ (Ω)) ∀T > τ , (41)

uµ|Ωm
→ u|Ωm

in L2(τ, T ; L2 (Ωm)) ∀T > τ, ∀m ≥ 1. (42)
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Finally, if the sequence {un
τ } converges strongly in L2 (Ω) to uτ , then

uµ → u in L2
(
τ, T ; L2 (Ω)

)
∀T > τ , (43)

and

uµ (t) → u (t) in L2 (Ω) ∀t ≥ τ . (44)

Proof. Taking into account the energy equality

1

2

d

dt
|un(t)|2 + |∇un(t)|2 = 〈f(x, un(t)), un(t)〉 + 〈h(t), un(t)〉 ,

if we argue similarly to the proof of Theorem 2, we obtain that there exists a
subsequence {uµ} ⊂ {un} such that

uµ ⇀ u in L2(τ, T ; H1
0 (Ω)), (45)

uµ ⇀ u in Lp(τ, T ; Lp (Ω)),

f(x, uµ) ⇀ f(x, u) in Lp′

(τ, T ; Lp′

(Ω)),

for all T > τ , and u ∈ S(τ, uτ ).
On the other hand, in particular, for a fixed T > τ , the sequence {uµ(T )} is

bounded in L2 (Ω), then there exists a subsequence {uµ′} ⊂ {uµ} such that

uµ′(T ) ⇀ ξ in L2 (Ω) . (46)

Let w ∈ H1
0 (Ω) ∩ Lp (Ω). From the equation satisfied by uµ′ , we obtain

(uµ′(T ), w) =
(
uµ′

τ , w
)

+

∫ T

τ

〈∆uµ′(s) + f(x, uµ′(s)) + h(s), w〉 ds,

and thus, making µ′ → ∞,

(ξ, w) = (uτ , w) +

∫ T

τ

〈∆u(s) + f(x, u(s)) + h(s), w〉 ds.

Consequently, as u ∈ S(τ, uτ ), we obtain

(ξ, w) = (u(T ), w) ∀w ∈ H1
0 (Ω) ∩ Lp (Ω) ,

and therefore, by density, it follows

ξ = u(T ). (47)

Then, from (46), (47), we can deduce that the whole sequence {uµ(T )} satisfies

uµ(T ) ⇀ u(T ) in L2 (Ω) .

As T > τ has been taken arbitrarily, we see that (38) holds.
On the other hand, reasoning as in the proof of (11) in Theorem 2, we can deduce

that for all m ≥ 1,
{
uµ|Ωm

}
µ≥1

is pre-compact in L2
(
τ, T ; L2 (Ωm)

)
∀T > τ . (48)

From (39) and (48), we deduce (42).
Assume now that the sequence {un

τ } converges strongly in L2 (Ω) to uτ , and let
us fix T > τ .
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Then, by Lemma 15, we have that for all ε > 0 there exists Mε ≥ 1 such that
∫ T

τ

∫

Ω∩{|x|
RN ≥2m}

(un − u)2 dxds ≤ 2

∫ T

τ

∫

Ω∩{|x|
RN ≥2m}

u2
ndxds (49)

+ 2

∫ T

τ

∫

Ω∩{|x|
RN ≥2m}

u2dxds

≤ 4ε(T − τ), ∀n ≥ 1, ∀m ≥ Mε.

Moreover, by (42),
∫ T

τ

∫

Ω2m

(uµ − u)
2
dxds → 0, as µ → ∞, for all m ≥ 1. (50)

From (49) and (50) we obtain (43).
From (43) we deduce that from every subsequence of {uµ} we can extract a

subsequence that we will denote by {uν}, such that

|uν(t)| → |u(t)| a.e. in (τ, T ) . (51)

Let us define

Jν(t) =
1

2
|uν(t)|2 −

∫ t

τ

〈h(s), uν(s)〉 ds −
∫ t

τ

∫

Ω

C2(x)dxds,

and

J(t) =
1

2
|u(t)|2 −

∫ t

τ

〈h(s), u(s)〉 ds −
∫ t

τ

∫

Ω

C2(x)dxds,

for all t ≥ τ.
It is clear that Jν and J are continuous functions. Also, from (39) and (51) we

see that

Jν(t) → J(t) a.e. t ∈ (τ, T ) as ν → ∞. (52)

On the other hand, taking into account the energy equality and (4), we obtain

1

2

d

dt
|uν(t)|2 ≤

∫

Ω

C2(x)dx + 〈h(t), uν(t)〉 t > τ . (53)

Thus, for every ν, the function Jν is a non-increasing function of t.
We are now in position to show that

Jν(t) → J(t) for all t ∈ (τ, T ) . (54)

Let t ∈ (τ, T ) and ε > 0 be fixed. From (52) and the continuity of J , we can take
t′ > t and t′′ < t such that

Jν(t′) → J(t′) as ν → ∞, (55)

Jν(t′′) → J(t′′) as ν → ∞, (56)

|J(t′′) − J(t)| ≤ ε, (57)

and

|J(t) − J(t′)| ≤ ε. (58)

As Jν is a non-increasing function of t, we obtain

Jν(t′) − Jν(t) ≤ 0, (59)

and

Jν(t′′) − Jν(t) ≥ 0, (60)
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for every ν. Using (57) and (60) we have

Jν(t) − J(t) = Jν(t) − Jν(t′′) + Jν(t′′) − J(t′′) (61)

+ J(t′′) − J(t)

≤ |Jν(t′′) − J(t′′)| + ε.

Analogously, using (58) and (59) we obtain

J(t) − Jν(t) = J(t) − J(t′) + J(t′) − Jν(t′)

+ Jν(t′) − Jν(t)

≤ |J(t′) − Jν(t′)| + ε. (62)

From (55), (56), (61) and (62), we have

lim sup
ν→∞

|J(t) − Jν(t)| ≤ ε, (63)

and therefore, as ε > 0 is arbitrary, (54) follows from (63). Thanks to (63), and
taking into account (39), we deduce that

|uν(t)| → |u(t)| ∀t ∈ (τ, T ) ,

and then, by (38), we obtain

uν(t) → u(t) in L2 (Ω) ∀t ∈ (τ, T ) .

Then from a standard contradiction argument combined with the fact that T > τ
has been taken arbitrarily, we deduce that (44) holds.

4.3. Existence of the global pullback attractor. Now, we are ready to obtain
the main result of this paper, that is, the existence of the global pullback attractor.

Lemma 17. Under the assumptions in Lemma 12, the MNDS U defined by (16)
is upper semicontinuous.

Proof. If U is not upper semicontinuous, then there exist τ ≤ t, a point uτ ∈ L2 (Ω),
a neighborhood N of U(t, τ, uτ ) and a sequence yn ∈ U(t, τ, un

τ ) with un
τ → uτ in

L2 (Ω) , such that yn /∈ N for all n. Proposition 16 implies that there exists a
subsequence {yµ} ⊂ {yn} and y ∈ U(t, τ, uτ ) such that yµ → y in L2 (Ω), which is
a contradiction.

Lemma 18. Under the assumptions in Lemma 12, the MNDS U defined by (16)

is asymptotically compact with respect to the family B̂λ1
defined in that lemma.

Proof. Let us fix a sequence τn −→ −∞, a sequence uτn
∈ Bλ1

(τn) and t ∈ R.
We have to prove that from any sequence yn ∈ U(t, τn, uτn

) we can extract a
subsequence that converges in L2 (Ω). As yn ∈ U(t, τn, uτn

), there exists un ∈
S (τn, uτn

) such that un (t) = yn. As the family B̂λ1
is pullback Dλ1

-absorbing and
τn −→ −∞, there exists n0(t) ≥ 1 such that τn ≤ t − 1 and

un(t − 1) ∈ U(t − 1, τn, uτn
) ⊂ U(t − 1, τn, Bλ1

(τn)) ⊂ Bλ1
(t − 1), (64)

for all n ≥ n0(t). From (64), we deduce that there exists a subsequence {uµ} ⊂ {un}
and ζ0 ∈ Bλ1

(t − 1), such that

uµ(t − 1) ⇀ ζ0 in L2 (Ω) . (65)
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As uµ ∈ S(t−1, uµ(t−1)), by Proposition 16 we have that there exists a subsequence
{un′} ⊂ {uµ}, such that there exists u ∈ S(t − 1, ζ0) satisfying in particular

yn′ = un′(t) ⇀ u(t) in L2 (Ω) , (66)

and

un′|Ω2m
→ u|Ω2m

in L2
(
t − 1, t, L2 (Ω2m)

)
, ∀m ≥ 1. (67)

By Lemma 13, for any ε > 0 there exists T = T (t − 1, t, ε, B̂λ1
) ≤ t − 1, and

M = M(t − 1, t, ε, B̂λ1
) ≥ 1, such that
∫ t

t−1

∫

|x|
RN≥2m

(un′(x, s) − u(x, s))
2
dxds (68)

≤
∫ t

t−1

∫

|x|
RN ≥2m

u2
n′(x, s)dxds

+

∫ t

t−1

∫

|x|
RN ≥2m

u2(x, s)dxds ≤ 2ε,

for all m ≥ M and any n′ such that τn′ ≤ T. From (67) and (68) we have

un′ −→ u in L2
(
t − 1, t; L2 (Ω)

)
.

Now, if we argue similarly to Proposition 16 we obtain

yn′ = un′(t) → u(t) in L2 (Ω) .

Now, as a direct consequence of the preceding results, we have the existence of
the pullback attractor for the MNDS U defined by (16).

Theorem 19. Under the assumptions in Lemma 12, the MNDS U defined by (16)

has a unique pullback Dλ1
-attractor Â belonging to Dλ1

, which is given by

A(t) := Λ
(
B̂λ1

, t
)

=
⋂

s≤t

⋃

τ≤s

U(t, τ, Bλ1
(τ)), (69)

where B̂λ1
was defined in Lemma 12, and the closure is taken in L2(Ω). Moreover,

Â is strictly invariant.

Remark 20. Let us denote by B the family of all nonempty bounded subsets of
L2(Ω). For each t ∈ R, let us define

A(t) :=
⋃

B∈B

Λ(B, t), (70)

where

Λ (B, t) :=
⋂

s≤t

⋃

τ≤s

U(t, τ, B),

and the closures are taken in L2(Ω).
According to the results in [29] and [30], under the assumptions in Theorem 19,

the family Â = {A(t) : t ∈ R} belongs to Dλ1
and is a pullback attractor of B in

the sense of [9] (see [15] for the single-valued case), and more exactly satisfies:
a) A(t) is compact for any t ∈ R,
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b) Â is pullback B-attracting, i.e.

lim
τ→−∞

distL2(Ω)(U(t, τ, B), A(t)) = 0 ∀t ∈ R,

for all B ∈ B,

c) Â is negatively invariant, i.e.,

A(t) ⊂ U(t, τ,A(τ)), for any t ≥ τ ,

d) A(t) ⊂ A(t) for any t ∈ R, where A(t) is defined by (69).

e) If moreover

sup
t≤0

e−λ1t

N∑

i=1

∫ t

−∞

eλ1s|hi(s)|2 ds < ∞,

then in fact

A(t) = A(t) for any t ∈ R.
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unicité, Ann. Fac. Sci. Toulouse Math., Série 6, V.IX (2000), Fasc. 4, 631-654.



PULLBACK ATTRACTOR FOR A REACTION-DIFFUSION EQUATION 19

[18] E. Feireisl, Ph. Laurencot and F.Simondon, Global attractors for degenerate parabolic equa-
tions on unbounded domains, J. Differential Equations, 129 (1996), 239-262.

[19] E. Feireisl, P. Laurencot, F. Simondon and H. Touré, Compact attractors for reaction-diffusion
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