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1. Introduction

The main aim of this paper is to study stochastic PDE’s with delay terms. In fact, we
prove existence and uniqueness of solution (in Itô’s sense) for a rather general type of stochastic
PDEs with non linear monotone operators and with delays. We deal with the following stochastic
parabolic equation:

(1)
{

dx(t) + [A(t, x(t)) + B(t, x(τ(t))) + f(t)] dt = [C(t, x(ρ(t))) + g(t)] dwt , t > 0
x(0) = x0 ,

where A(t, .) , B(t, .) , C(t, .) are families of operators in Hilbert spaces, non linear eventually, and
satisfying a monotonicity condition; wt is a Hilbert valued Wiener process, and τ , ρ are delay
functions.

When there are not delays ( τ(t) = ρ(t) = 0 ), the equation (1) has been studied: in the case
B = C = 0, for A non linear, in Bensoussan [2] and Curtain [5], and for some type of non linear
operators A, in Bensoussan–Temam [3] and Marcus [7]; in the case C 6= 0 , B = 0, for linear A and
C, in Balakrishann [1], for linear A and non linear C in Dawson [6], and for non linear monotone
A and Lipschitz continuous C in Pardoux [8].

In the case with deviating arguments, Real [9] studies a rather general case when all of the
operators are linear and there exists a term which is a non continuous martingale. However, we
have not found in the literature the case we are going to analyze here.

We will adapt to our problem one of the most important method for solving non linear PDEs:
the monotonicity method. Pardoux [8] also used an adaptation of that method for another type of
non linear monotone equations: when B = 0 and without delays.

2. Statement of the problem and the main results

The theory of stochastic integrals in Hilbert spaces is well developed (see [8], for example).
We consider the classical pair of real separable Hilbert spaces V , H satisfying V ↪→ H

(injection continuous and dense).
We will denote by ‖.‖ , |.| and ‖.‖∗ the norms in V , H and V ′ respectively; by 〈., .〉 the

duality product between V ′, V , and by (.,.) the scalar product in H .
Let us fix T > 0 and, let wt be a Wiener process defined on the complete probability space

(Ω,F , P ) and taking values in the separable Hilbert space K , with incremental covariance operator
W . Let (Ft)t≥0 be the σ-algebra generated by {ws, 0 ≤ s ≤ t}, then wt is a martingale relative to
(Ft)t≥0 .

As an abuse of notation, we also use |.| for the norm in the linear continuous operator space
L(K,H) .

We denote by Ip(0, T ; V ) , for p > 1 , the space of V –valued processes (x(t))t∈[0,T ] (we will
write x(t) for short) measurable (from [0, T ]× Ω in V ), and satisfying:

i) x(t) is Ft−measurable a.e. in t (in the sequel, we will write a.e.t.)
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ii) E
∫ T

0
|xt|p dt < +∞ .

For short, we shall write L2(Ω;C(−h, T ; H)) instead of L2(Ω,F , dP ; C(−h, T ; H)) .

Let A(t, .) : V → V ′ be a family of non linear operators defined a.e.t., and let p > 1 . We
make the following hypotheses:
(a.1) Coercivity: ∃α > 0 , λ ∈ R : 2〈A(t, x), x〉+ λ|x|2 ≥ α‖x‖p , ∀x ∈ V , a.e.t.
(a.2) Monotonicity: 2〈A(t, x)−A(t, y), x− y〉+ λ|x− y|2 ≥ 0 , ∀x, y ∈ V , a.e.t.
(a.3) Boundedness: ∃β > 0 : ‖A(t, x)‖∗ ≤ β‖x‖p−1 , ∀x ∈ V , a.e.t.
(a.4) Hemicontinuity: θ ∈ R → 〈A(t, x + θy), z〉 ∈ R is continuous ∀x, y, z ∈ V , a.e.t.
(a.5) Measurability: t ∈ (0, T ) → A(t, x) ∈ V ′ is Lebesgue−measurable ∀x ∈ V , a.e.t.

Let B(t, .) : H → H be a family of operators defined a.e.t., and satisfying:
(b.1) B(t, 0) = 0
(b.2) Lipschitz condition: ∃ k1 : |B(t, x)−B(t, y)| ≤ k1|x− y| , ∀x, y ∈ H , a.e.t.
(b.3) Measurability: t ∈ (0, T ) → B(t, x) ∈ H is Lebesgue–measurable, ∀x ∈ V .

And let C(t, .) : H → L(K,H) be another family defined a.e.t. and verifying:
(c.1) C(t, 0) = 0
(c.2) Lipschitz condition: ∃ k2 : |C(t, x)− C(t, y)| ≤ k2|x− y| , ∀x, y ∈ H , a.e.t.
(c.3) Measurability: t ∈ (0, T ) → C(t, x) ∈ L(K, H) is Lebesgue–measurable ∀x ∈ H .

We also consider two measurable functions (of delay) ρ, τ : [0, T ] → [0, T ] , such that

(ρ.τ) 0 ≤ ρ(t), τ(t) ≤ t , ∀t ∈ [0, T ].

For f , g we suppose that
(f.g) f ∈ I2(0, T ; H) , g ∈ I2(0, T ;L(K, H)).

And finally, we are given an initial value x0 ∈ L2(Ω,F0, P ;H) .

Now, we state the following problem:

(PC)





To find a process x ∈ Ip(0, T ;V ) ∩ L2(Ω; C(0, T ; H)) such that :
x(t) +

∫ t

0
[A(s, x(s)) + B(s, x(τ(s))) + f(s)] ds

= x0 +
∫ t

0
[C(s, x(ρ(s))) + g(s)] dws , P − a.s., ∀t ∈ [0, T ].

The main result we prove is the following theorem

Theorem 1

Assume the precedent conditions. Then, there exists a unique solution of (PC) in

Ip(0, T ;V ) ∩ L2(Ω; C(0, T ; H)) .

Proof. (See [4]) Uniqueness follows from Ito’s formula and Gronwall’s inequality. For the existence,
we consider the equations

(∗) x1(t) +
∫ t

0

[
A(s, x1(s)) +

λ

2
x1(s)

]
ds +

∫ t

0

f(s) ds = x0 +
∫ t

0

g(s) dws

xn+1(t) +
∫ t

0

[
A(s, xn+1(s)) +

λ

2
xn+1(s)

]
ds +

∫ t

0

B(s, xn(τ(s))) ds +
∫ t

0

f(s) ds(∗∗)

= x0 +
∫ t

0

λ

2
xn(s) ds +

∫ t

0

C(s, xn(ρ(s))) dws +
∫ t

0

g(s) dws , ∀n = 1, 2, 3, ...

and we prove that there exists a sequence of solutions for (∗) − (∗∗) , {xn}n≥1 ⊂ Ip(0, T ; V ) ∩
L2(Ω;C(0, T ; H)) .



Last, we prove that the sequence {xn} is convergent in Ip(0, T ;V ) ∩ L2(Ω;C(0, T ;H)) , and
the limit process is the solution of (PC).

Remark 1.– We observe that theorem 1 also holds when V is a separable and reflexive Banach
space with V ↪→ H .

Remark 2.– We note that theorem 1 holds when ρ , τ take negative values.

Theorem 2

Assume the hypotheses in theorem 1, but changing (ρ.τ) by the following:

∃h > 0 such that − h ≤ τ(t), ρ(t) ≤ t , ∀t ∈ [0, T ] ,
and let ψ be a process such that ψ ∈ Ip(−h, 0;V )∩L2(Ω; C(−h, 0; H)) (where these spaces

are defined in the obvious manner, setting Ft = F0 , ∀t ∈ [−h, 0] ). Then, there exists a unique

process x ∈ Ip(−h, T ;V ) ∩ L2(Ω; C(−h, T ;H)) such that,

(PC)′





x(t) +
∫ t

0
[A(s, x(s)) + B(s, x(τ(s))) + f(s)] ds

= ψ(0) +
∫ t

0
[C(s, x(ρ(s))) + g(s)] dws , P − a.s., ∀t ∈ [0, T ],

x(t) = ψ(t) , t ∈ (−h, 0]

Proof. See Caraballo [4]

Remark 3.– Some examples are given in Caraballo [4] in order to justify the results.

References

[1] A. Balakrishnan, Stochastic bilinear partial differential equations, U.S.–Italy Conference on
Variable Structure Systems, Oregon (1974).

[2] A. Bensoussan, Filtrage optimal des systemes linéaires, Dunod.
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