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Abstract. We prove the existence of a stationary random solution to a delay

random ordinary differential system which attracts all other solutions in both
pullback and forwards senses. The equation contains a one-sided dissipative

Lipschitz term without delay, while the random delay appears in a globally Lip-

schitz one. The delay function only needs to be continuous in time. Moreover,
we also prove that the split implicit Euler scheme associated to the random

delay differential system generates a discrete time random dynamical system

which also possesses a stochastic stationary solution with the same attracting
property, and which converges to the stationary solution of the delay random

differential equation pathwise as the stepsize goes to zero.

1. Introduction

We consider ordinary delay differential equations of the form

(1)
d

dt
x(t) = F (x(t)) + G(x(t− τ(t, ω)))

with a random delay τ(t, ω) which has continuous sample paths with bounded val-
ues τ(t, ω) ∈ [τ∗, τ∗] where 0 ≤ τ∗ ≤ τ∗ are finite deterministic numbers and ω ∈
Ω for a given probability space (Ω,F , P). In particular, we will be more interested
in the case where the delay is a stationary stochastic process, for example τ(t, ω)
= 1 + cos2 Ut(ω) for an Ornstein-Uhlenbeck process Ut.

The function F : Rd → Rd is assumed to be continuously differentiable and satisfy
a one-sided dissipative Lipschitz condition

(2) 〈x− y, F (x)− F (y)〉 ≤ −L‖x− y‖2
d for all x, y ∈ Rd,

where L > 0 and ‖ · ‖d is the Euclidean norm on Rd, and function G : Rd → Rd is
assumed to satisfy the global Lipschitz condition

(3) ‖G(x)−G(y)‖d ≤ LG‖x− y‖d for all x, y ∈ Rd.

Caraballo et al. [4] have considered the existence of nonautonomous pullback at-
tractors for deterministic time-variable delays. Their results apply pathwise here
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too. Our work here differs in that we use the cocycle rather than process formu-
lation of nonautonomous dynamical systems, which allows us to use the theory of
random dynamical systems. In addition, we do not assume that the delay term
G is bounded and we use Razumikhin-Lyapunov theory to establish dissipativity
of the system which allows to weaken the differentiability assumption on the delay
function in [4] to be only continuous.

We will also investigate the effect of time discretization with a constant time step
∆ > 0 for which N∆ := τ∗/∆ is an integer. Let tn = n∆ for n ≥ −N∆ and define
Nn(∆, ω) := bτ(θtn

ω)/∆c (integer part) for n ≥ 0. We apply to the random DDE
(1) the split implicit Euler scheme (SIES)

(4) xn+1 = xn + F (xn+1) ∆ + G(xn−Nn(∆,ω)) ∆, n = 0, 1, 2, · · · ,

which is essentially a difference equation in Rd of random order or delay requiring
initial data

(5) x−N∆ , x−N∆+1, · · · , x−1, x0.

We will take x−j := φ0(−j∆) for j = 0, 1, · · · , N∆, where φ0 ∈ C([−τ∗, 0], Rd) is
the initial value under consideration of the random DDE (1).

Our main result is the following.

Theorem 1.1. In addition to the previous assumptions, suppose LG < L and that
the delay function is given by τ(t, ω) = τ(θtω), where θ is a metric dynamical
system on Ω representing the noise (see Section 2 below) and t 7→ τ(θtω) is a con-
tinuous function from R into [τ∗, τ∗] for each ω ∈ Ω. Then, the DDE (1) and the
SIES (4) generate, respectively, continuous and discrete time random dynamical
systems, each of which has a stochastic stationary solution which pathwise attracts
in both forward and pullback senses all other trajectories of their respective equa-
tions. Moreover, the numerical stochastic stationary solution converges to that of
the DDE pathwise as the stepsize converges to zero.

In Section 2 we recall some background on random dynamical systems. The ex-
istence of a stationary solution for the delay system (1) which attracts all other
solutions in both the pullback and forwards senses is proved in Section 3. A
Razumikhin-Lyapunov argument is exploited in the proofs so that no differentia-
bility of the delay function is needed. Finally, we prove in Section 4 that the split
implicit Euler scheme (4) replicates the behaviour of the random DDE (1). The
convergence of the numerical attractor to the stationary solution to the DDE (1)
is finally established in Section 5.

2. Random dynamical systems

We need some background notation and results. Let (Ω,F , P) be a probability
space and let (X , dX ) be a metric space and let T+ = R+ for a continuous time
system and T+ = Z+ for a discrete time system.

Arnold [1] defined a random dynamical system (RDS) (θ, Φ) on Ω×X in terms of
a metric dynamical system θ on Ω, which represents the noise driving the system,
and a cocycle mapping Φ : T+×Ω×X → X , which represents the dynamics in the
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state space X and satisfies the properties

1). Φ(0, ω, φ0) = φ0 for all φ0 ∈ X and ω ∈ Ω;

2). Φ(s + t, ω, φ0) = Φ(s, θtω, Φ(t, ω, φ0)) for all s, t ≥ 0; φ0 ∈ X and ω ∈ Ω;

3). (t, φ0) 7→ Φ(t, ω, φ0) is continuous for each ω ∈ Ω;

4). ω 7→ Φ(t, ω, φ0) is F-measurable for all (t, φ0) ∈ T+ ×X .

For example, for an Ito stochastic differential equation on Rd driven by a two-
sided scalar Wiener process Wt, i.e. defined for all t ∈ R, θ is defined by θtω(·) =
ω(t + ·)− ω(·) on a canonical sample space Ω = C0(R, R) (the space of continuous
functions from R into itself and vanishing at zero) and Φ on the the space X = Rd

is defined by Φ(t, ω, x0) = X(t; 0, ω, x0), the solution of the SDE starting at x0 at
time 0. See [1] for more details. In what follows, we consider as our probability
space the canonical one described above.

Although a more general expression for the random delay could be possible, in
this paper we only consider a time dependent random delay of the form τ(t, ω) :=
τ(θtω) where τ : Ω → [τ∗, τ∗], for some finite τ∗ ≥ τ∗ ≥ 0, is a given F-measurable
function. Then, the solutions of the random delay DE (1) generate a continuous
time RDS Φ(·, ·, ·) on the Banach state space X = C([−τ∗, 0], Rd) with the norm
‖φ‖X = max−τ∗≤s≤0 ‖φ(s)‖d. To fix our notation, we denote by x(·; t0, ω, φ) the
solution of the following problem

(6)

{
d

dt
x(t) = F (x(t)) + G(x(t− τ(θtω))), t ≥ 0,

x(t0 + s) = φ(s), s ∈ [−τ∗, 0],

where φ ∈ X . For t ≥ 0, we denote by xt(·; t0, ω, φ) the element in C([−τ∗, 0], Rd)
defined by

xt(s; t0, ω, φ) = x(t + s; t0, ω, φ), s ∈ [−τ∗, 0].
Then, Φ is defined as follows:

Φ : R+ × Ω×X −→ X
(t, ω, φ) 7→ Φ(t, ω, φ) := xt(·; 0, ω, φ).

The cocycle mapping properties 1–3 above follow pathwise as in the nonrandom
variable case considered in [4], while the measurability property 4 follows from the
fact that the projection x(t) = Φ(t, ω, φ0)(0) in Rd of the solution Φ(t, ω, φ0) in X
satisfies the integral equation

x(t) = x(0) +
∫ t

0

F (x(s)) ds +
∫ t

0

G(x(s− τ(θsω))) ds,

the right hand side of which is measurable in ω in view of the measurability of
τ and θt, the continuity of the solution and the mapping G. Similarly, the split
implicit Euler scheme (4) with constant stepsize ∆ applied to the random delay
DE (1) generates a discrete time RDS on the state space R(1+N∆)d with dimension
depending on the stepsize ∆.
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A family Â = {A(ω), ω ∈ Ω} of nonempty measurable compact subsets of X is
called Φ-invariant if Φ(t, ω,A(ω)) = A(θtω) for all t ≥ 0 and is called a random
attractor if in addition it is pathwise pullback attracting in the sense that

H∗
X (Φ(t, θ−tω, D(θ−tω)), A(ω)) → 0 as t → +∞

for all suitable (i.e. in a given attracting universe) families of D̂ = {D(ω), ω ∈ Ω}
of nonempty measurable bounded subsets of X . Here H∗

X is the Hausdorff semi-
distance between the closed and bounded subsets of X . The following result [1]
ensures the existence of a random attractor for RDS on a metric space.

Theorem 2.1. Let (θ, Φ) be a continuous or discrete time RDS on Ω×X such that
Φ(t, ω, ·) : X → X is a compact operator for each fixed t > 0 and ω ∈ Ω. If there
exists a family B̂ = {B(ω), ω ∈ Ω} of nonempty measurable closed and bounded
subsets of X and a T bD,ω ≥ 0 such that

Φ(t, θ−tω, D(θ−tω)) ⊂ B(ω), ∀t ≥ T bD,ω

for all families D̂ = {D(ω), ω ∈ Ω} in the given attracting universe, then the RDS
(θ, Φ) has a random attractor Â = {A(ω), ω ∈ Ω} with the component subsets
defined for each ω ∈ Ω by

A(ω) =
⋂
s>0

⋃
t≥s

Φ(t, θ−tω, B(θ−tω))
dX

.

The family B(ω) is called a pullback absorbing family for the RDS.

Note that if the random attractor consists of singleton sets, i.e A(ω) = {X∗(ω)}
for some random variable X∗ with X∗(ω) ∈ X , then X∗(t, ω) := X∗(θtω) is a
stationary stochastic process on X .

3. Stationary stochastic solutions of the DDE

We first show that the delay system (1) is pathwise “extremely stable” in the
terminology of Yoshizawa. Thus all solutions converge together – then we will use
the theory of random dynamical systems to show that they converge to a stochastic
stationary solution. To prove this fact we will use a Razumikhin-Lyapunov type
argument which is an improvement of some results in [11] which is also mentioned
in [12]. We also need the following lemma.

Lemma 3.1. Let x(·) and y(·) be two solutions to the random DDE (1). Then,
denoting by R(t) := ‖x(t)− y(t)‖d, it follows that

(7)
d

dt
R2(t) ≤ −2LR2(t) + 2LGR(t)R(t− τ(t)), ∀ t ≥ 0.
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Proof. Let us fix ω ∈ Ω and write τ(t) instead of τ(θtω). Observe that, thanks to
our assumptions, if x(·) and y(·) are two solutions to the random DDE (1), we have

d

dt
‖x(t)− y(t)‖2

d = 2
〈

x(t)− y(t),
d

dt
x(t)− d

dt
y(t)

〉
= 2 〈x(t)− y(t), F (x(t))− F (y(t))〉

+ 〈x(t)− y(t), G(x(t− τ(t)))−G(y(t− τ(t)))〉

≤ −2L‖x(t)− y(t)‖2
d

+ 2LG‖x(t)− y(t)‖d ‖x(t− τ(t))− y(t− τ(t)‖d.

�

We now have the following result.

Theorem 3.2. If LG < L, then ‖x(t) − y(t)‖d → 0 pathwise as t → ∞ for any
two solutions x(·) and y(·) of the random DDE (1).

Proof. Let us fix ω ∈ Ω and write τ(t) instead of τ(θtω). Now, we consider a
fixed solution y(·) to Eq. (1) defined globally in time, and take another arbitrary
solution x(·) satisfying the same condition. First, we need to write a differential
system which has zero and x(·) − y(·) as solutions. Then, we will prove that zero
is a global attractor.
Indeed, let us notice that

d

dt
(x(t)− y(t)) = F (x(t))− F (y(t)) + G(x(t− τ(t)))−G(y(t− τ(t))), t ≥ 0

= F (y(t) + x(t)− y(t))− F (y(t))

+ G(y(t− τ(t)) + x(t− τ(t))− y(t− τ(t)))−G(y(t− τ(t)))

= F̂ (t, x(t)− y(t)) + Ĝ(t, x(t− τ(t))− y(t− τ(t))),

where the functions F̂ and Ĝ are defined as

F̂ (t, v) = F (y(t) + v)− F (y(t)), t ≥ 0, v ∈ Rd,

Ĝ(t, v) = G(y(t− τ(t)) + v)−G(y(t− τ(t))), t ≥ 0, v ∈ Rd.

Denoting u(t) = x(t)− y(t), it follows that

d

dt
u(t) = F̂ (t, u(t)) + Ĝ(t, u(t− τ(t)))

= f(t, ut), t ≥ 0,(8)

where
f(t, φ) = F̂ (t, φ(0)) + Ĝ(t, φ(−τ(t))), for φ ∈ X , t ≥ 0.

Now we are going to apply Theorem 4.2 in Hale & Lunel [12] taking into ac-
count that the assumption in this theorem which imposes on f in (8) to take
R+×(bounded sets of X ) into bounded sets in Rd has been weakened by Burton in
[2] to satisfy only that f takes bounded and closed sets from R+×X into bounded
sets of Rd, which in our case is obviously fulfilled thanks to the continuity of F and
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the Lipschitz continuity of G. Then, denoting R(t) = ‖x(t)− y(t)‖d = ‖u(t)‖d, we
have from Lemma 3.1

d

dt
R2(t) ≤ −2LR2(t) + 2LGR(t)R(t− τ(t)), t ≥ 0.

Taking now V (v) = ||v||2d for v ∈ Rd, it follows that V (u(t)) = R2(t) and

d

dt
V (u(t)) =

d

dt
R2(t)

≤ −2LR2(t) + 2LGR(t)R(t− τ(t))

≤ −2(L− LG)R2(t),

provided V (u(t− τ(t))) = R2(t− τ(t)) < R2(t) = V (u(t)).
On the other hand, if we consider again the Lyapunov-Razumikhin function V (v) =
||v||2d for v ∈ Rd, and the real function p(s) = q2s, s ∈ R+ for some q > 1 such
that L− qLG > 0 (which is possible since L− LG > 0), we then have

d

dt
V (u(t)) =

d

dt
R2(t)

≤ −2LR2(t) + 2LGR(t)R(t− τ(t))

≤ −2(L− qLG)R2(t),

provided p(V (u(t))) = q2R2(t) > V (u(t − τ(t))) = R2(t − τ(t)). Consequently, by
Theorem 4.2 in [12] it follows that u = 0 is a global attractor for the problem (8),
and the proof is complete. �

We adapt the definition in Hale ([10], page 104) of uniformly ultimately bounded.

Definition 3.3. The random DDE (1) is said to be pathwise uniformly ultimately
bounded if there is a β > 0 such that for each ω and α > 0 there is a T0(ω, α) > 0
such that the solution of (1) satisfies

‖x(t; t0, ω, φ)‖d ≤ β for t ≥ t0 + T0(ω, α)

for all t0 ∈ R and φ ∈ X with ‖φ‖X ≤ α.

The following theorem will also be proved using Razumikhin-Lyapunov arguments.

Theorem 3.4. If LG < L, then the random DDE (1) is pathwise uniformly ulti-
mately bounded.

Proof. ¿From assumptions (2) and (3) with y = 0 we have

(9) 〈x, F (x)〉 ≤ −L‖x‖2
d + ‖x‖d ‖F (0)‖d for all x ∈ Rd,

and

(10) ‖G(x))‖d ≤ LG‖x‖d + ‖G(0)‖d for all x ∈ Rd.
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Writing τ(t) again instead of τ(θtω) and using the inequalities (9)–(10) we have

d

dt
‖x(t)‖2

d = 2
〈

x(t),
d

dt
x(t)

〉
= 2 〈x(t), F (x(t))〉+ 2 〈x(t), G(x(t− τ(t)))〉

≤ −2L‖x(t)‖2
d + 2‖x(t)‖d ‖F (0)‖d + 2‖x(t)‖d (LG‖x(t− τ(t))‖d + ‖G(0)‖d)

= −2L‖x(t)‖2
d + 2LG‖x(t)‖d‖x(t− τ(t))‖d + 2‖x(t)‖d (‖F (0)‖d + ‖G(0)‖d)

and, for a small enough γ > 0 such that L− LG − γ > 0,

(11)
d

dt
R2(t) ≤ −2(L− γ)R2(t) + 2LGR(t)R(t− τ(t)) + C0

where R(t) := ‖x(t)‖d and C0 := 1
2γ (‖F (0)‖d + ‖G(0)‖d)

2.

Now we apply Theorem 4.3 in Hale [12] for each ω. To this end, we take q > 1 such
that L − LGq − γ > 0, define p(s) = q2s for s > 0, and w(s) = 2(L − LGq − γ)s
for s > 0. Now, we observe that

d

dt
R2(t) ≤ −2(L− γ)R2(t) + 2LGR(t)R(t− τ(t)) + C0

≤ −2(L− γ − LGq)R2(t) + C0

provided R2(t− τ(t)) < p(R2(t)). In addition, there exists H ≥ 0 such that
d

dt
R2(t) ≤ −2(L− γ − LGq)R2(t) + C0

≤ −2(L− γ − LGq)R(t),

provided that R(t) ≥ H. This completes the proof. �

Since we have uniform ultimate boundedness and, as one can prove by straightfor-
ward computations that

(12) x(t; t0, θt1ω, φ) = x(t + t1; t0 + t1, ω, φ),

for t, t0, t1 ∈ R, ω ∈ Ω, φ ∈ X , then we have that T0(θtω, α) ≡ T0(ω, α) for all t ∈
R. Indeed, observe that the uniform ultimate boundedness implies that

||x(t; t0, ω, φ)||d ≤ β for t ≥ t0 + T0(ω, α).

Applying this definition for θt1ω instead of ω, we have

||x(t; t0, θt1ω, φ)||d ≤ β for t ≥ t0 + T0(θt1ω, α),

but, thanks to (12), we should have

||x(t; t0, θt1ω, φ)||d = ||x(t + t1; t0 + t1, ω, φ)||d ≤ β for t ≥ t0 + T0(θt1ω, α)

and
||x(t + t1; t0 + t1, ω, φ)||d ≤ β for t + t1 ≥ t0 + t1 + T0(ω, α),

so T0(θt1ω, α) = T0(ω, α) for any t1 ∈ R.
Hence we have both pullback and forward ultimate boundedness, i.e. absorbing
sets, for each fixed ω and we can take B(ω) to be the ball of radius β about the
origin in the space X .
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The solution mapping Φ(t, ω, ·) of our pathwise random DDE (1) is compact from
the space X into itself for each t > 0 and ω ∈ Ω. This follows from the fact that the
solutions are Lipschitz in time even if the initial value function φ0 ∈ C([−τ∗, 0], R)
is only continuous, i.e.

(13) ‖x(t + ρ)− x(t)‖d ≤
∫ t+ρ

t

‖F (x(s))‖d ds +
∫ t+ρ

t

‖G(x(s− τ(s)))‖d ds ≤ Kρ,

for t, ρ ≥ 0, where K := maxx∈C ‖F (x)‖d + maxx∈C ‖G(x)‖d and C is a compact
subset of Rd which contains the DDE solution over the time interval [0, T ].

Hence the pathwise random DDE (1) has a random attractor which pathwise at-
tracts all bounded subsets in both the pullback and forward senses.

By Theorem 3.2 all solutions converge together as time increases, which means
that the random attractor consists of singleton sets, i.e. is a stochastic stationary
solution X∗(·) ∈ X . It is pathwise asymptotically attracting in both the pullback
and forward senses.

4. Stationary stochastic solutions of the SIES

Our aim here is to show that the split implicit Euler scheme (SIES) (4) repli-
cates the behaviour of the random DDE (1) projected into Rd, in particular that
it has a unique entire solution {x∗n(ω), n ∈ Z}, which attracts all other solu-
tions pathwise in both forwards and pullback senses, and is stationary in the
sense that the N∆d-dimensional random vectors X∗

n,∆ with realisations X∗
n,∆(ω)

=
(
x∗n−N∆

(ω), x∗n−N∆+1(ω), · · · , x∗n(ω)
)> are stationarily distributed in R(1+N∆)d.

Moreover , we will show that the X∗
0,∆ converge in an appropriate sense to X∗(ω)

for each ω ∈ Ω as ∆ → 0. For this we will show that the SIES generates a discrete-
time random dynamical system on R(1+N∆)d.

We need discrete time analogues of Theorems 3.2 and 3.4. As in their proofs we
have the following inequalities. For notational brevity we write Nn(ω) for Nn(∆, ω)
when ∆ is fixed.

Lemma 4.1. Any two solutions xn and yn of the SIES (4) satisfy

‖xn+1 − yn+1‖d ≤
1

1 + L∆
‖xn − yn‖d +

LG∆
1 + L∆

‖xn−Nn(ω) − yn−Nn(ω)‖d,

‖xn+1‖d ≤
1

1 + L∆
‖xn‖d +

LG∆
1 + L∆

‖xn−Nn(ω)‖d

+
∆

1 + L∆
(‖F (0)‖d + ‖G(0)‖d)

for n = 0, 1, 2, · · · .
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Proof. The proof of the first inequality follows from the fact that

‖xn+1 − yn+1‖2
d = 〈xn+1 − yn+1, xn − yn〉+ 〈xn+1 − yn+1, F (xn+1)− F (yn+1)〉∆

+
〈
xn+1 − yn+1, G(xn−Nn(ω))−G(yn−Nn(ω))

〉
∆

≤ ‖xn+1 − yn+1‖d ‖xn − yn‖d − L∆‖xn+1 − yn+1‖2
d

+ LG∆‖xn+1 − yn+1‖d ‖xn−Nn(ω) − yn−Nn(ω)‖d,

while the proof of the second inequality follows from the fact that

‖xn+1‖2
d = 〈xn+1, xn〉+ 〈xn+1 − 0, F (xn+1)− F (0)〉∆ + 〈xn+1, F (0)〉∆

+
〈
xn+1 − 0, G(xn−Nn(ω))−G(0)

〉
∆ + 〈xn+1, G(0)〉∆

≤ ‖xn+1‖d ‖xn‖d − L∆‖xn+1‖2
d + ‖xn+1‖d ‖F (0)‖d∆

+ LG∆‖xn+1‖d ‖xn−Nn(ω)‖d + ‖xn+1‖d ‖G(0)‖d∆.

�

Theorem 4.2. Suppose that LG < L. Then ‖xn − yn‖d → 0 as n → ∞ for two
solutions xn and yn of the SIES (4).

Proof. Define Rn := ‖xn − yn‖d ≥ 0 for n ≥ −N∆. The first inequality of Lemma
4.1 then reads

Rn+1 ≤ γ(∆)Rn + γ(∆)LG∆Rn−Nn(ω), n ≥ 1,

where
γ(∆) :=

1
1 + L∆

.

Suppose that the initial values R−j ∈ [0, B] for j = 0, 1, . . ., N∆ and define η(∆)
:= γ(∆)(1 + LG∆), so clearly γ(∆) < η(∆) < 1. Then

R1 ≤ γ(∆)R0 + γ(∆)LG∆R−N0(ω) ≤ η(∆)B < B.

Repeating this argument inductively we obtain Rn ≤ η(∆)B < B for all n ≥ 1.

Consider the norm
‖x‖∞ := max

j=0,1,...,N∆
‖xj‖d

on R(1+N∆) and define Rn := (Rn−N∆ , · · · , Rn)> ∈ R(1+N∆) for n ≥ 0. Then
‖R0‖∞ ≤ B by assumption, hence ‖Rn‖∞ ≤ B for n = 1, · · · , N∆. Thereafter we
have

‖RN∆+1‖∞ ≤ γ(∆)‖RN∆‖∞ + γ(∆)LG∆‖RN∆‖∞ = η(∆)‖RN∆‖∞
and it follows inductively that

‖RN∆+j‖∞ ≤ η(∆)j‖RN∆‖∞ ≤ η(∆)jB

for j ≥ 1. Thus ‖Rn‖∞ → 0 as n →∞, which completes the proof of the theorem.
�

Theorem 4.3. Suppose that LG < L. Then the SIES (4) is pathwise uniformly
ultimately bounded.
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Proof. Define Rn := ‖xn‖d ≥ 0 for n ≥ −N∆, so Rn ≥ 0 for n ≥ −N∆. The second
inequality of Lemma 4.1 then reads

Rn+1 ≤ γ(∆)Rn + γ(∆)LG∆Rn−Nn(ω) + γ(∆)∆C0, n ≥ 1,

where C0 := ‖F (0)‖d + ‖G(0)‖d.
Suppose that the initial values R−j ∈ [0, B] for j = 0, 1, . . ., N∆. Then

R1 ≤ γ(∆)R0 + γ(∆)LG∆R−N0(ω) + γ(∆)∆C0

≤ η(∆)B + γ(∆)∆C0 ≤ B + γ(∆)∆C0.

Then
R2 ≤ η(∆)(B + γ(∆)∆C0) + γ(∆)∆C0 < B + 2γ(∆)∆C0

and repeating this argument inductively we obtain Rn ≤ B + nγ(∆)∆C0 ≤ B +
γ(∆)C0τ

∗ for n = 1, . . ., N∆, since N∆∆ = τ∗.

Now define Rn := (Rn−N∆ , · · · , Rn)> ∈ R(1+N∆) for n ≥ 0. Then ‖R0‖∞ ≤ B by
assumption and ‖Rn‖∞ ≤ B+γ(∆)C0τ

∗ for n = 1, · · · , N∆ from above. Thereafter
we have

‖RN∆+j+1‖∞ ≤ γ(∆)‖RN∆+j‖∞ + γ(∆)C0∆

and it follows inductively that

‖RN∆+j‖∞ ≤ η(∆)j (B + γ(∆)C0T ) +
γ(∆)C0∆
1− η(∆)

= η(∆)j (B + N∆) +
C0

L− LG

for j ≥ 1. Thus

‖RN∆+j‖∞ ≤ 1 +
C0

L− LG

for all j ≥ JB,∆, where

JB,∆ := 1 +

⌊
ln 1

B+γ(∆)C0τ∗

ln η(∆)

⌋
(integer part).

Note that the time N∆ + JB,∆ to be absorbed into the ball of radius 1 + C0
L−LG

centered on the origin is independent of ω.
This completes the proof of the theorem. �

We now observe that the SIES generates a discrete time random dynamical system
on the state space X := R(1+N∆)d with cocycle mapping Φ∆ : Z+ × Ω× R(1+N∆)d

→ R(1+N∆)d defined by
Xn := Φ∆ (n, ω,X0)

where Xn := (xn−N∆ , · · · , xn)> for n ≥ 0. As the driving system we take the
discrete time metric system formed by iterating θ∆ on Ω. RDS theory (see, e.g.
[6], [8], [9], [15]) then says that we have a unique singleton set pullback attractor
{X∗

∆(θn∆ω)} formed by a stochastic stationary solution X∗
∆(ω) ∈ R(1+N∆)d, which

is obviously given by X∗
∆(ω) = (X∗

∆(ω), · · · , X∗
∆(ω))>, where X∗

∆(ω) is the station-
ary solution of the system SIES in Rd.
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5. Convergence of the numerical attractor

We will prove here that X∗
∆(ω) converges pathwise to X∗(ω)(0) in Rd as ∆ → 0

(with the ∆ dividing τ∗ exactly) using a proof by contradiction following [13] using
the error bound for the SIES in Theorem 5.1 in the Appendix applied pathwise.

Suppose that there is an ω̄, a sequence ∆j → 0 as j → ∞ and an ε0 > 0 such that

(14)
∥∥∥X∗

∆j
(ω̄)−X∗(ω̄)(0)

∥∥∥
d
≥ ε0

The X∗
∆(ω) belong to a common compact absorbing ball B of radius 1+ C0

L−LG
about

the origin, which is independent of both ω and ∆. Now the family of identical balls
{B(ω) ≡ B,ω ∈ Ω} is pullback attracted to the random DDE stationary solution.
Thus there is a T (ω̄) such that∥∥∥Φ

(
t, θ−tω̄, X̂∗

∆(θ−tω̄)
)

(0)−X∗(ω̄)(0)
∥∥∥

d
≤ ε0/4

for t ≥ T (ω̄) where X̂∗
∆(θ−tω̄) ∈ C([−τ∗, 0], Rd) is the linear interpolation of the

numerical stationary solution for stepsize ∆ and is such that X̂∗
∆(θ−tω̄)(0) ∈ B.

Let kj be the first integer so that kj∆j ≥ T (ω̄) for any j ∈ N. Applying this to
X̂∗

∆j
(θ−kj∆j ω̄) we then have∥∥∥Φ

(
kj∆j , θ−kj∆j

ω̄, X̂∗
∆j

(θ−kj∆j
ω̄)

)
(0)−X∗(ω̄)(0)

∥∥∥
d
≤ ε0/4

Now we use the global discretization error of the split implicit Euler scheme from
Theorem 5.1 of the Appendix on the interval [−1 − T (ω̄), 0] for the delay path
corresponding to ω̄ to obtain∥∥∥x

∆j

kj
(θ−kj∆j ω̄)− Φ

(
kj∆j , θ−kj∆j ω̄, X̂∗

∆j
(θ−kj∆j ω̄)

)
(0)

∥∥∥
d
≤ ε0/4

for j large enough, where x
∆j

kj
(θ−kj∆j ω̄) is the kjth iterate of the split implicit Euler

solution with step size ∆j starting at X∗
∆j

(θ−kj∆j
ω̄). Since this is the numerical

stationary solution, we have x
∆j

kj
(θ−kj∆j

ω̄) = X∗
∆j

(ω̄), and hence∥∥∥X∗
∆j

(ω̄)− Φ
(
kj∆j , θ−kj∆j ω̄, X̂∗

∆j
(θ−kj∆j ω̄)

)
(0)

∥∥∥
d
≤ ε0/4

We combine this with the preceding estimate to obtain∥∥∥X∗
∆j

(ω̄)− X̄∗(ω̄)(0)
∥∥∥

d
≤ ε0/2

which contradicts (14).

Appendix: Numerical discretization error

We show here that the SIES (4) has global discretization error on any finite time
interval. We will do this for the deterministic version of the delay DE (1).
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Theorem 5.1. If F is continuously differentiable, hence satisfies a local Lipschitz
condition, if G satisfies a global Lipschitz condition, and if the delay is a continuous
function τ : R → (0, τ∗], then split implicit Euler scheme (4) with constant stepsize
∆ which divides τ∗ exactly has global discretization error of order at least 1/2 when
applied to the DDE (1).

Proof. Let x(t) be the value in Rd of the solution of the DDE (1) for t ∈ [0, T ]
and let xn be the corresponding solution of the SIES (4) with constant stepsize
∆ which divides τ∗ exactly, i.e. so there is an integer N∆ such that N∆∆ = τ∗.
Furthermore let tn = n∆, let Nn = bτ(tn)/∆c (integer part) and let x∆ denote the
linearly interpolated numerical solution, i.e. with in particular

x∆(t) = xn + (t− tn)F (xn+1) + (t− tn)G(xn−Nn
), t ∈ [tn, tn+1], n ≥ 0.

By continuity of the coefficient functions F and G as well as of the DDE solution,
there exists a compact subset C of Rd which contains the DDE and SIES solutions
as well as the linearly interpolated SIES solution over the time interval [0, T ]. The
linearly interpolated SIES solution is obviously Lipschitz continuous and there exists
a constant K which depends on T but not on ∆ such that

‖x∆(t)− xn‖d ≤ K∆, ‖x∆(t)− xn+1‖d ≤ K∆,

for t ∈ [tn, tn+1] ⊂ [0, T ]. We know from (13) that the solutions of the DDE are
Lipschitz continuous for t > 0, so it is no loss of generality to assume that the initial
value φ0 ∈ C([−τ∗, 0], Rd) is already Lipschitz continuous. Hence we can assume
that the above inequalities also hold for the linearly interpolated initial data on
initial time interval [−τ∗, 0] as well as that ‖x∆(t − τ(t)) − φ0(t − τ(t))‖d ≤ K∆
for t ≥ 0 with t− τ(t) ∈ [−τ∗, 0]. Moreover,

x(t)− x∆(t) = x(tn)− x∆(tn) +
∫ t

tn

[F (x(s))− F (xn+1)] ds

+
∫ t

tn

[G(x(s− τ(s)))−G(xn−Nn
)] ds

so within the interval (tn, tn+1) we have

d

dt
[x(t)− x∆(t)] = [F (x(t))− F (xn+1)] + [G(x(t− τ(t)))−G(xn−Nn)] .

Using a superscript on the vectors as the component index, for each i = 1, . . ., d,
this gives∣∣∣∣ d

dt

[
xi(t)− xi

∆(t)
]∣∣∣∣ ≤ ‖F (x(t))− F (xn+1)‖d + ‖G(x(t− τ(t)))−G(xn−Nn)‖d .

Now from the (local) Lipschitz condition of F on the set C (with constant LF )we
have

‖F (x(t))− F (xn+1)‖d ≤ LF ‖x(s)− xn+1‖d

≤ LF ‖x(t)− x∆(t)‖d + LF ‖x∆(t)− xn+1‖d

≤ LF ‖x(t)− x∆(t)‖d + LF K∆
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and from the global Lipschitz condition of G

‖G(x(t− τ(t)))−G(xn−Nn
)‖d ≤ LG‖x(t− τ(t))− xn−Nn

‖d

≤ LG‖x(t− τ(t))− x∆(t− τ(t))‖d

+ LG‖x∆(t− τ(t))− xn−Nn
‖d

≤ LG‖x(t− τ(t))− x∆(t− τ(t))‖d + LGK∆,

where we have used the earlier estimates on the linear interpolations of the numer-
ical solution and initial data.

Defining R(t) := ‖x(t)− x∆(t)‖d we have the differential inequality∣∣∣∣ d

dt

[
xi(t)− xi

∆(t)
]∣∣∣∣ ≤ (LF + LG)K∆ + LF R(t) + LGR(t− τ(t)),

for each i = 1, . . ., d, and all t ∈ (tn, tn+1) and n with n∆ ≤ T .

Now for ρi(t) =
[
xi(t)− xi

∆(t)
]

we have

d

dt
ρi(t)2 = 2ρi(t)

d

dt
ρi(t) ≤ 2|ρi(t)|

∣∣∣∣ d

dt
ρi(t)

∣∣∣∣
from which it follows that

d

dt
R(t)2 =

d

dt

d∑
i=1

ρi(t)2 ≤ 2R(t)
d∑

i=1

∣∣∣∣ d

dt
ρi(t)

∣∣∣∣
and hence that

d

dt
R(t)2 ≤ 2d(LF + LG)KR(t)∆ + 2dLF R(t)2 + 2dLGR(t− τ(t))R(t)

Finally, we obtain the differential inequality

(15)
d

dt
R(t)2 ≤ d[LF +LG]K∆2+d[LF (K+2)+LG(K+1)]R(t)2+dLGR(t−τ(t))2

for t ∈ (tn, tn+1) and n such that n∆ ≤ T .

Now,define

Rn(∆)2 := max
−τ∗≤t≤tn

R(t)2, n = 0, 1, 2 . . . .

¿From the assumption above that the initial value φ0 ∈ C([−τ∗, 0], Rd) is Lipschitz
continuous, we have R(t− τ(t)) ≤ K∆ for t ≥ 0 with t− τ(t) ∈ [−τ∗, 0], so R0(∆)2

≤ K2∆2. Moreover, the differential inequality (15) for t ∈ [tn, tn+1] simplifies to

d

dt
R(t)2 ≤ d[LF + LG]K∆2 + d[LF (K + 2) + LG(K + 1)]R(T )2 + dLGRn(∆)2

or

d

dt
R(t)2 ≤ d

(
[LF + LG]K∆2 + LGRn(∆)2

)
+ d[LF (K + 2) + LG(K + 1)]R(t)2.
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The Gronwall inequality with the initial condition R(tn)2 then yields

R(t)2 ≤ R(tn)2eL∗∆ +
[LF + LG]K

LF (K + 2) + LG(K + 1)
∆2

(
eL∗∆ − 1

)
[2ex] +

LG

LF (K + 2) + LG(K + 1)
Rn(∆)2

(
eL∗∆ − 1

)
[2ex] ≤ Rn(∆)2eL∗∆ + K2∆2

(
eL∗∆ − 1

)
+ Rn(∆)2

(
eL∗∆ − 1

)
where we have assumed without loss of generality that K ≥ 1 and set L∗ :=
d[LF (K + 2) + LG(K + 1)], so

LF + LG

LF (K + 2) + LG(K + 1)
≤ 1,

LG

LF (K + 2) + LG(K + 1)
≤ 1.

Taking the maximum over the interval [tn, tn+1] gives the difference inequality

Rn+1(∆)2 ≤ Rn(∆)2
(
2eL∗∆ − 1

)
+ K2∆2

(
eL∗∆ − 1

)
since the right hand side is larger than Rn(∆)2 and

Rn+1(∆)2 = max{ max
tn≤t≤tn+1

R(t)2, Rn(∆)2}.

The solution of this difference inequality is bounded above by

Rn(∆)2 ≤ R0(∆)2
(
2eL∗∆ − 1

)n

+ K2∆2

(
2eL∗∆ − 1

)n+1 − 1
(2eL∗∆ − 1)− 1

[2ex] ≤ K2∆2
(
e3L∗∆

)n

+
K2∆
2L∗

((
e3L∗∆

)n+1

− 1
)

since R0(∆)2 ≤ K2∆2 and also L∗∆ ≤ eL∗∆ − 1 and 2eL∗∆ − 1 ≤ e3L∗∆ for all ∆
> 0. Simplifying then gives

Rn(∆)2 ≤ K2∆
L∗

e3L∗(n+1)∆, n = 0, 1, . . .

for ∆ sufficently small, and thus

Rn(∆)2 ≤ K2∆
L∗

e3L∗(T+∆) ≤ K2

L∗
e3L∗(T+1)∆, n = 0, 1, . . . , NT ,

for ∆ sufficently small, since NT ∆ = T and we can assume without loss of gener-
ality that ∆ ≤ 1.

This proves that the SIES has global discretization or convergence error of order at
least one half. �
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