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1. Introduction

The Navier-Stokes equations govern the motion of usual fluids like water, air, oil,
etc. These equations have been the subject of numerous works since the first paper of
Leray was published in 1933 (see Constantin & Foias 1988; Lions 1969; Temam 1979,
and the references therein). In our recent work Caraballo & Real (2001) we consider
a Navier-Stokes model in which the external force contains some hereditary features
and prove the existence of weak solutions. These situations containing delays may
appear when we want to control the system (in certain sense) by applying a force
which takes into account not only the present state of the system but the history
of the solution.

Another interesting problem concerns the asymptotic behaviour of the systems,
since this analysis can provide useful information on the future evolution of the
system. This will be the main aim of this paper.

To this end, let Ω ⊂ R2 be an open bounded set with regular boundary Γ, and
consider the following functional 2D−Navier-Stokes problem (for further details
and notations see Lions 1969 and Temam 1979):





∂u

∂t
− ν∆u +

∑2
i=1 ui

∂u

∂xi
= f −∇p + g(t, ut) in (0, +∞)× Ω,

div u = 0 in (0, +∞)× Ω,

u = 0 on (0, +∞)× Γ,

u(0, x) = u0(x), x ∈ Ω,

u(t, x) = φ(t, x), t ∈ (−h, 0) x ∈ Ω,
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2 T. Caraballo & J. Real

where we assume that ν > 0 is the kinematic viscosity, u is the velocity field of
the fluid, p the pressure, u0 the initial velocity field, f a nondelayed external force
field, g another external force with some hereditary characteristics and φ the initial
datum in the interval of time (−h, 0), where h is a fixed positive number.

In Section 2, we will recall some preliminary results on the existence and unique-
ness of weak solutions of our model that were proved in Caraballo & Real (2001).
Then, we will complete these by proving a regularity result concerning the exis-
tence of strong solutions; such solutions will be needed in our stability analysis.
In Section 3, we analyze the exponential convergence towards a unique stationary
solution; such a solution exists if, for instance, the viscosity is large enough. Our
main aim is to exhibit two different approaches ensuring this asymptotic behaviour:
a direct method, and a Razumikhin type one. To apply the former, we need only
the existence of weak solutions but must impose a restriction on the delay term,
while the latter needs strong solutions but the extra assumption on the delay forc-
ing term can be removed. A surprising fact, in principle, is that we can establish a
sufficient condition on the parameters and functions appearing in the model, such
that both results hold true in some particular cases.

2. Preliminaries and statement of the problem

To start, we consider the following usual abstract spaces:

V =
{

u ∈ (C∞0 (Ω))2 : div u = 0
}

,

H = the closure of V in (L2(Ω))2 with norm |·| , and inner product (·, ·) where for
u, v ∈ (L2(Ω))2,

(u, v) =
2∑

j=1

∫

Ω

uj(x)vj(x)dx,

V = the closure of V in (H1
0 (Ω))2 with norm ‖·‖ , and associated scalar product

((·, ·)), where for u, v ∈ (H1
0 (Ω))2,

((u, v)) =
2∑

i,j=1

∫

Ω

∂uj

∂xi

∂vj

∂xi
dx.

It follows that V ⊂ H ≡ H ′ ⊂ V ′, where the injections are dense and compact.
Finally, we will use ‖·‖∗ for the norm in V ′ and 〈·, ·〉 for the duality pairing

between V and V ′.
Now we define the trilinear form b on V × V × V by

b(u, v, w) =
2∑

i,j=1

∫

Ω

ui
∂vj

∂xi
wj dx ∀u, v, w ∈ V.

The trilinear form satisfies

b(u, v, w) = −b(u,w, v), ∀u, v, w ∈ V,

and consequently
b(u, v, v) = 0, ∀u, v ∈ V,
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Asymptotic behaviour of 2D−Navier-Stokes equations with delays 3

b(u, u, v − u)− b(v, v, v − u) = −b(v − u, u, v − u), ∀u, v ∈ V.

We recall that (H1
0 (Ω))2 (and, as a consequence, V too) is embedded in (L4(Ω))2,

this injection being compact. Also, there exists C1(Ω) > 0 such that

|b(u, v, w)| ≤ C1(Ω)|u|(L4(Ω))2‖v‖‖w‖, ∀u, v, w ∈ V.

Now, consider a fixed T > 0. Let X be a Banach space. Given a function
u : (−h, T ) → X, for each t ∈ (0, T ) we denote by ut the function defined on
(−h, 0) by the relation ut(s) = u(t + s), s ∈ (−h, 0).

In order to state the problem in the correct framework, let us first establish
suitable assumptions on the term in which the delay is present.

In a general way, let X and Y be two separable Banach spaces, and g : [0, T ]×
C0([−h, 0];X) → Y such that

(I) for all ξ ∈ C0([−h, 0];X), the mapping t ∈ [0, T ] → g(t, ξ) ∈ Y is measur-
able,

(II) for each t ∈ [0, T ], g(t, 0) = 0,
(III) there exists Lg > 0 such that ∀ t ∈ [0, T ], ∀ ξ, η ∈ C0([−h, 0]; X)

‖g(t, ξ)− g(t, η)‖Y ≤ Lg ‖ξ − η‖C0([−h,0];X) ,

(IV) there exists Cg > 0 such that ∀ t ∈ [0, T ], ∀u, v ∈ C0([−h, T ];X)
∫ t

0

‖g(s, us)− g(s, vs)‖2Y ds ≤ Cg

∫ t

−h

‖u(s)− v(s)‖2X ds.

Observe that (I)-(III) imply that given u ∈ C0([−h, T ]; X), the function gu : t ∈
[0, T ] → Y defined by gu(t) = g(t, ut) ∀ t ∈ [0, T ], is measurable (see Bensoussan et
al. 1992) and, in fact, belongs to L∞(0, T ;Y ). Then, thanks to (IV), the mapping

G : u ∈ C0([−h, T ];X) → gu ∈ L2(0, T ; Y )

has a unique extension to a mapping G̃ which is uniformly continuous from L2(−h, T ; X)
into L2(0, T ; Y ). From now on, we will denote g(t, ut) = G̃(u)(t) for each u ∈
L2(−h, T ;X), and thus, ∀ t ∈ [0, T ], ∀u, v ∈ L2(−h, T ; X), we will have

∫ t

0

‖g(s, us)− g(s, vs)‖2Y ds ≤ Cg

∫ t

−h

‖u(s)− v(s)‖2X ds.

With the convention above, assume that u0 ∈ H, φ ∈ L2(−h, 0; V ), f ∈ L2(0, T ; V ′),
g : [0, T ] × C0([−h, 0];V ) → (L2(Ω))2 satisfies hypotheses (I)-(IV) with X = V ,
Y = (L2(Ω))2, Lg = L1 and Cg1 = C1. For example, when the function g is defined
by g(t, φ) = G(φ(−ρ(t)) for a suitable differentiable delay function ρ and a Lips-
chitz continuous G, the assumptions above hold (see Caraballo and Real (2001) for
more details and further examples).

Thus, we are interested in the following problem:




To find u ∈ L2(−h, T ; V ) ∩ L∞(0, T ; H) such that, for all v ∈ V,
d
dt

(u(t), v) + ν((u(t), v)) + b(u(t), u(t), v) = 〈f(t), v〉+ (g(t, ut), v)

u(0) = u0, u(t) = φ(t), t ∈ (−h, 0),

(2.1)

where the equation in (2.1) must be understood in the sense of D′(0, T ).
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4 T. Caraballo & J. Real

Remark 2.1. Observe that the terms in (2.1) are well defined. In particular, by
hypotheses (I)-(IV), if u ∈ L2(−h, T ; V ) the term g(t, ut) defines a function in
L2(0, T ; (L2(Ω)2). Moreover, if there exists a solution to this problem, then it belongs
to the space C0([0, T ];H).

Remark 2.2. Define the operator A : V 7→ V ′ by

〈Au, v〉 = ((u, v)), ∀u, v ∈ V,

consider the operator B : V × V 7→ V ′ defined by

〈B(u, v), w〉 = b(u, v, w), ∀u, v, w ∈ V,

and set B(u) = B(u, u). Then, (2.1) can be rewritten as





To find u ∈ L2(−h, T ; V ) ∩ L∞(0, T ; H) such that, ,
d
dt

u(t) + νAu(t) + B(u(t)) = f(t) + g(t, ut) in V ′

u(0) = u0, u(t) = φ(t), t ∈ (−h, 0),

(2.2)

Observe that if we denote D(A) = (H2(Ω))2 ∩ V, then

Au = −P∆u, ∀u ∈ D(A),

where P is the orthogonal projector from (L2(Ω))2 onto H, and there exists a con-
stant C2(Ω) > 0 such that

|u|2 ≤ C2(Ω)|Au|, ∀u ∈ D(A), (2.3)

where |u|2 denotes the norm of u in (H2(Ω))2 (see Constantin & Foias 1988).

In the following theorem we recall an existence and uniqueness result concerning
our 2D-Navier-Stokes model with delays, completed with a statement about the
existence of strong solutions.

Theorem 2.3. Let us consider u0 ∈ H, φ ∈ L2(−h, 0; V ), f ∈ L2(0, T ; V ′), and
assume that g : [0, T ]×C0([−h, 0]; V ) → (L2(Ω))2 satisfies hypotheses (I)-(IV) with
X = V , Y = (L2(Ω))2, Lg = L1 and Cg = C1. Also, we assume that the following
condition (V) holds:

(V) If vm converges weakly to v in L2(−h, T ; V ) and strongly in L2(−h, T ;H),
then g(·, vm

· ) converges weakly to g(·, v·) in L2(0, T ; V ′).
Then,
a) There exists a unique weak solution to (2.1) which, in addition, belongs to

the space C0([0, T ];H).
b) If f ∈ L2(0, T ; (L2(Ω))2) and u0 ∈ V, then, the solution u to (2.1) is a strong

solution, that is,

u ∈ L2(0, T ; D(A)) ∩ C0([0, T ];V ) and u′ ∈ L2(0, T ;H). (2.4)

In particular, if φ ∈ C0([−h, 0];V ) and u0 = φ(0), then u ∈ C0([−h, T ]; V ).
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Asymptotic behaviour of 2D−Navier-Stokes equations with delays 5

Proof. For the proof of a), see Caraballo & Real (2001).
To prove b), observe that if f ∈ L2(0, T ; (L2(Ω))2) and we denote f̃(t) =

P (f(t) + g(t, ut)), then, for all v ∈ V , u satisfies




u ∈ L2(0, T ; V ) ∩ L∞(0, T ; H),
d
dt

(u(t), v) + ν((u(t), v)) + b(u(t), u(t), v) = (f̃(t), v) in D′(0, T ),

u(0) = u0,

(2.5)

with f̃ ∈ L2(0, T ; H), and consequently, if u0 ∈ V , u satisfies (2.4) (see Temam
1979, 1995).

3. Stability of stationary solutions

First of all, we will prove a result ensuring the existence of stationary solutions
to our Navier-Stokes model when the delay term has a special form, provided the
viscosity is large enough. Then, we will prove that when this stationary solution is
unique all the solutions to our problem converge to it exponentially fast. This result
requires a strong assumption on the delay function, which we will relax later on by
using a different approach, namely, a Razumikhin type argument (see Razumikhin
(1956), (1960) and Hale and Lunel (1995) for a modern and nice presentation of
the method in the finite-dimensional case), but for this it will be necessary to deal
with strong solutions. In the sequel, λ1 will denote the first eigenvalue of A.

(a) Existence and uniqueness of stationary solutions

Let us consider the following equation

du

dt
+ νAu + B(u) = f + g(t, ut), (3.1)

with f ∈ V ′ independent of t. A stationary solution to (3.1) is a u? such that

νAu? + B(u?) = f + g(t, u?)

for all t ≥ 0. Now we will prove a result ensuring existence and uniqueness of
stationary solutions when the delay term has a particular form, namely, we will
assume that the term g is given by

g(t, ut) = G(u(t− ρ(t))),

with G : R2 → R2 a function satisfying G(0) = 0 and such that there exists L1 > 0
for which

|G(u)−G(v)|R2 ≤ L1|u− v|R2 ,∀u, v ∈ R2,

and ρ ∈ C1([0,+∞)), ρ(t) ≥ 0 for all t ≥ 0, h = supt≥0 ρ(t) ∈ (0, +∞) and
ρ∗ = supt≥0 ρ′(t) < 1. Observe that this situation is within our framework and
satisfies our assumptions (Conditions (I)-(V)) ensuring the existence and uniqueness
of solutions (see Caraballo & Real 2001).

Now we are interested in proving that there exist stationary solutions to our
equation (3.1), i.e., there exists u? ∈ V such that

νAu? + B(u?) = f + G(u?).
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6 T. Caraballo & J. Real

We can prove the following result.

Theorem 3.1. Suppose that G satisfies the conditions above and ν > λ−1
1 L1. Then,

(a) for all f ∈ V ′ there exists a stationary solution to (3.1);
(b) if f ∈ (L2(Ω))2, the stationary solutions belong to D(A);
(c) there exists a constant C3(Ω) > 0 such that if (ν − λ−1

1 L1)2 > C3(Ω)‖f‖V ′ ,
then the stationary solution to (3.1) is unique.

Proof. (a) Let f ∈ V ′ be fixed. By the Lax-Milgram Theorem, it is easy to see that
for each z ∈ V given, there exists a unique u ∈ V such that

ν((u, v)) + b(z, u, v) = 〈f, v〉+ (G(z), v), ∀ v ∈ V. (3.2)

Moreover, taking v = u in (3.2), it follows that

ν‖u‖ ≤ ‖f‖V ′ + λ−1
1 L1‖z‖. (3.3)

Take k > 0 such that k(ν − λ−1
1 L1) ≥ ‖f‖V ′ , and denote

C = {z ∈ V ; ‖z‖ ≤ k}.
Then, C is a convex and compact subset of (L4(Ω))2, and moreover, by (3.3), the
mapping z 7→ u, defined by means of (3.2), maps C into C. If we see that this
mapping is continuous in C with the topology induced by (L4(Ω))2, then, thanks
to Schauder’s Theorem, we will obtain the existence of a fixed point in C for the
mapping, and obviously this fixed point is a stationary solution to (3.1). The con-
tinuity of the mapping z 7→ u can be seen as follows. Let zi ∈ C and ui ∈ C be such
that

ν((ui, v)) + b(zi, ui, v) = 〈f, v〉+ (G(zi), v), ∀ v ∈ V, i = 1, 2.

Then, it is easy to obtain that

ν‖u1 − u2‖2 = b(z2 − z1, u1, u1 − u2) + (G(z1)−G(z2), u1 − u2)
≤ kC1(Ω)|z1 − z2|L4(Ω))2‖u1 − u2‖

+L1λ
−1/2
1 |z1 − z2|‖u1 − u2‖. (3.4)

As V ⊂ (L4(Ω))2 and (L4(Ω))2 ⊂ (L2(Ω))2 with continuous injections, the continu-
ity of the mapping z 7→ u in C, with respect to the topology induced by (L4(Ω))2,
is a direct consequence of (3.4).

(b) Notice that if f ∈ (L2(Ω))2, then every stationary solution u∗ to (3.1) is also
a solution to (2.1), but with initial data u0 = φ(t) = u∗ for t ∈ [−h, 0), and forcing
term f̃ = P (f + G(u∗)) ∈ H ⊂ L2(0, T ; H). Thus, we can apply the standard
regularity results from the theory of the Navier-Stokes equations without delays.

(c) Let f ∈ V be given, and let u1 and u2 be two stationary solutions to (3.1).
Then, arguing as we did for the inequality (3.4), we obtain

ν‖u1−u2‖2 ≤ C1(Ω)|u1−u2|L4(Ω))2‖u1‖‖u1−u2‖+L1λ
−1/2
1 |u1−u2|‖u1−u2‖. (3.5)

But

ν‖u1‖2 = 〈f, u1〉+ (G(u1), u1)
≤ ‖f‖V ′‖u1‖+ λ−1

1 L1‖u1‖2,
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Asymptotic behaviour of 2D−Navier-Stokes equations with delays 7

Thus,
(ν − λ−1

1 L1)‖u1‖ ≤ ‖f‖V ′ .

Using this last inequality, and the continuous injection of V into (L4(Ω))2, we obtain
easily from (3.5) that there exists C3(Ω) > 0 such that

(ν − λ−1
1 L1)2‖u1 − u2‖2 ≤ C3(Ω)‖f‖V ′‖u1 − u2‖2.

This completes the proof of the theorem.

Remark 3.2. a) Although we have proved the existence of a unique stationary
solution in this particular situation, this may well happen in more general cases.
b) Also, it is worth pointing out that the regularity result in part (b) of the previous
theorem does not depend on the particular form of the term g we have chosen; this
is clear from the argument used in the proof.

(b) Exponential convergence of solutions: a direct approach

Now we will prove that, under appropriate assumptions, our model has a unique
stationary solution, u∞, and every weak solution approaches u∞ exponentially fast
as t goes to +∞.

Theorem 3.3. Assume that the forcing term g(t, ut) is given by g(t, ut) = G(u(t−
ρ(t)) with ρ ∈ C1(R+; [0, h]) such that ρ′(t) ≤ ρ∗ < 1 for all t ≥ 0. Then, there
exist two constants ki > 0, i = 1, 2, depending only on Ω, such that if f ∈ (L2(Ω))2

and ν > λ−1
1 L1 satisfy in addition

2νλ1 >
(2− ρ∗)L1

1− ρ∗
+

k1|f |
ν − λ−1

1 L1

+
k2|f |3

ν2(ν − λ−1
1 L1)3

, (3.6)

then there is a unique stationary solution u∞of (3.1) and every solution of (2.1)
converges to u∞ exponentially fast as t → +∞. More exactly, there exist two positive
constants C and λ, such that for all u0 ∈ H and φ ∈ L2(−h, 0; V ), the solution u
of (2.1) with f(t) ≡ f satisfies

|u(t)− u∞|2 ≤ Ce−λt
(
|u0 − u∞|2 + ‖φ− u∞‖2L2(−h,0;V )

)
, (3.7)

for all t ≥ 0.

Proof. Let f ∈ (L2(Ω))2 be fixed. Consider u, the solution of (2.2) for f(t) ≡ f ,
and let u∞ ∈ D(A) be a stationary solution to (3.1). We set w(t) = u(t)−u∞, and
observe that

d
dt

w(t) + νAw(t) + B(u(t))−B(u∞) = G(u(t− ρ(t))−G(u∞).

Now fix a positive λ to be determined later on. By standard computations we get

d
dt

(eλt|w(t)|2) = λeλt|w(t)|2 + eλt d
dt
|w(t)|2

≤ eλt(λ|w(t)|2 − 2ν‖w(t)‖2 + 2b(w(t), w(t), u∞)
+2L1|w(t− ρ(t))||w(t)|)

≤ λ−1
1 eλt(λ + L1 − 2νλ1)‖w(t)‖2

+2eλt|b(w(t), w(t), u∞)|+ L1eλt|w(t− ρ(t))|2. (3.8)
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8 T. Caraballo & J. Real

Obviously
|b(w(t), w(t), u∞)| ≤ c|w(t)|‖w(t)‖|u∞|∞, (3.9)

where we denote by |u∞|∞ the norm of u∞ in (L∞(Ω))2. Observe that H2(Ω) ⊂
L∞(Ω) with continuous injection, thus, using (2.3), we obtain the existence of a
constant c1 > 0 depending only on Ω such that

|b(w(t), w(t), u∞)| ≤ c1λ
−1/2
1 ‖w(t)‖2|Au∞|. (3.10)

On the other hand,

ν|Au∞| ≤ |f |+ |G(u∞)|+ |B(u∞)|
≤ |f |+ L1|u∞|+ c′‖u∞‖|u∞|∞,

and consequently, from the continuous injection of H2(Ω) into L∞(Ω), the inequal-
ity (2.3), and the Gagliardo-Nirenberg interpolation inequality, we obtain

ν|Au∞| ≤ |f |+ L1|u∞|+ c′′‖u∞‖|u∞|1/2|Au∞|1/2. (3.11)

But

c′′‖u∞‖|u∞|1/2|Au∞|1/2 ≤ (c′′)2λ−1/2
1

2ν
‖u∞‖3 +

ν

2
|Au∞|,

and thus, from (3.11) we deduce

|Au∞| ≤ 2
ν
|f |+ 2L1λ

−1/2
1

ν
‖u∞‖+

(c′′)2λ−1/2
1

ν2
‖u∞‖3. (3.12)

Now, as
ν‖u∞‖2 = (f, u∞) + (G(u∞), u∞)

≤ |f |λ−1/2
1 ‖u∞‖+ L1λ

−1
1 ‖u∞‖2,

we obtain from (3.12)

|Au∞| ≤ 2
ν
|f |+ 2L1λ

−1
1

ν(ν − L1λ
−1
1 )

|f |+ (c′′)2λ−2
1

ν2(ν − L1λ
−1
1 )3

|f |3

=
2

(ν − L1λ
−1
1 )

|f |+ (c′′)2λ−2
1

ν2(ν − L1λ
−1
1 )3

|f |3. (3.13)

From (3.8), (3.10), (3.13), and denoting

k1 = 4c1λ
1/2
1 , k2 = 2c1λ

−3/2
1 (c′′)2,

it follows that

d
dt

(eλt|w(t)|2)

≤ λ−1
1 eλt

(
λ + L1 − 2νλ1 +

k1|f |
(ν − L1λ

−1
1 )

+
k2|f |3

ν2(ν − L1λ
−1
1 )3

)
‖w(t)‖2

+L1eλt|w(t− ρ(t))|2. (3.14)
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Now, taking into account the properties of the function ρ, we deduce that if we
denote τ(t) = t − ρ(t), the function τ is strictly increasing in [0, +∞), and that
there exists a µ > 0 such that τ−1(t) ≤ t+µ for all t ≥ −ρ(0). Thus, by the change
of variable η = s− ρ(s) = τ(s), we have

∫ t

0

eλs|w(s− ρ(s))|2 ds =
∫ t−ρ(t)

−ρ(0)

eλτ−1(η)|w(η)| 1
τ ′(τ−1(η)

dη

≤ eλµ

1− ρ∗

∫ t

−h

eλη|w(η)|2 dη. (3.15)

If (3.6) is satisfied, then there exists λ > 0 small enough such that

λ + L1 − 2νλ1 +
k1|f |

(ν − L1λ
−1
1 )

+
k2|f |3

ν2(ν − L1λ
−1
1 )3

+
L1eλµ

1− ρ∗
≥ 0,

integrating (3.14) over the interval [0, t], and taking into account (3.15), we deduce
that for this λ > 0

eλt|w(t)|2 ≤ |w(0)|2 +
L1eλµ

1− ρ∗

∫ 0

−h

eλη|w(η)|2dη,

and thus (3.7) is satisfied. The uniqueness of u∞ follows from the fact that if û∞

is another stationary solution of (3.1), then u(t) ≡ û∞ is a solution of (2.1) with
u0 = û∞ and φ = û∞, and consequently, applying (3.7) and making t → +∞, one
has |û∞ − u∞|2 ≤ 0.

Remark 3.4. Notice that the result holds true for more general delay terms. For
instance, if g satisfies

∫ t

0

eεs|g(s, us)− g(s, vs)|2ds ≤ C(h)
∫ t

−h

eεs|u(s)− v(s)|2ds, (3.16)

for sufficiently small ε > 0, and the existence of a unique stationary solution is
known.

(c) Exponential convergence of solutions: a Razumikhin approach

In the previous section we proved a result on the exponential convergence of
weak solutions to the unique stationary solution when the delay term g has a
particular form, but we needed to impose a restriction on the delay function, so
that our proof worked appropriately or that condition (3.16) holds. However, it is
possible to prove a result for more general forcing terms and relax this restriction
by using a different method which is also much used in dealing with the stability
properties of delay differential equations. This method was firstly developed by
Razumikhin (see Razumikhin (1956), (1960)) in the context of ordinary differential
functional equations, and has already been applied to some stochastic ODEs and
PDEs (e.g. Caraballo et al. 2000). However, one interesting point to be noted is that
this method requires some kind of continuity concerning the operators in the model
and the solutions. This will allow us to prove a result that weaken the assumptions
on the delay function or condition (3.16), but concerns only the strong solutions to
(2.1).
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Theorem 3.5. Assume that g satisfies conditions (I)-(V) for any T > 0, with X
and Y as in Theorem 2.3, and that moreover for all ξ ∈ C0([−h, 0];V ) the mapping
t ∈ [0, +∞) 7→ g(t, ξ) ∈ (L2(Ω))2 is continuous. Suppose that for a given ν > 0
and f ∈ (L2(Ω))2 there exists a stationary solution u∞ of (3.1) such that for some
λ > 0

−ν〈A(φ(0)− u∞), φ(0)− u∞〉 − 〈B(φ(0))−B(u∞), φ(0)− u∞〉
+(g(t, φ)− g(t, u∞), φ(0)− u∞)
≤ −λ|φ(0)− u∞|2, t ≥ 0, (3.17)

whenever φ ∈ C0([−h, 0];V ) satisfies

‖φ− u∞‖2C(−h,0;H) ≤ eλh|φ(0)− u∞|2. (3.18)

Then, the stationary solution u∞ of (3.1) is unique, and for all ψ ∈ C0([−h, 0]; V ),
the strong solution u(t;ψ) to (2.1) corresponding to this initial datum satisfies

|u(t; ψ)− u∞|2 ≤ e−λt‖ψ − u∞‖2C0([−h,0];H), ∀t ≥ 0. (3.19)

Proof. Suppose there exists an initial datum ψ ∈ C0([−h, 0];V ) such that (3.19)
does not hold. Then, denoting

σ = inf{t > 0; |u(t; ψ)− u∞|2 > e−λt‖ψ − u∞‖2},

we obtain that

eλt|u(t; ψ)− u∞|2 ≤ eλσ|u(σ; ψ)− u∞|2 = ||ψ − u∞||2C0([−h,0];H), (3.20)

for all 0 ≤ t ≤ σ, and there is a sequence {tk}k≥1 in R+ such that tk ↓ σ, as k →∞,
and

eλtk |u(tk;ψ)− u∞|2 > eλσ|u(σ; ψ)− u∞|2. (3.21)

On the other hand, by virtue of (3.20) it is easy to deduce

|u(σ + θ; ψ)− u∞|2 ≤ eλh|u(σ;ψ)− u∞|2,

for all −h ≤ θ ≤ 0, which, in view of assumption (3.17), immediately implies that

−ν〈A(u(σ; ψ)− u∞), u(σ; ψ)− u∞〉 − 〈B(u(σ; ψ))−B(u∞), u(σ; ψ)− u∞〉
+(g(σ, uσ(·;ψ))− g(σ, u∞), u(σ; ψ)− u∞)
≤ −λ|u(σ;ψ)− u∞|2. (3.22)

As u(·; ψ) ∈ C0([−h, +∞); V ), by the continuity of the operators in the problem,

there exists ε∗ > such that for all ε ∈ (0, ε∗],

−ν〈A(u(t; ψ)− u∞), u(t; ψ)− u∞〉 − 〈B(u(t;ψ))−B(u∞), u(t;ψ)− u∞〉
+(g(t, ut(·; ψ))− g(t, u∞), u(t; ψ)− u∞)
≤ −λ|u(t; ψ)− u∞|2, t ≥ 0, (3.23)
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for all t ∈ [σ, σ + ε]. Thus, if we denote by w(t) = u(t; ψ)− u∞, we have

1
2

d
dt
|w(t)|2 = −ν〈Aw(t), w(t)〉 − 〈B(u(t;ψ))−B(u∞), w(t)〉

+(g(t, ut(·;ψ))− g(t, u∞), w(t))

for all t ∈ [σ, σ + ε], and after integrating we obtain

eλ(σ+ε)|w(σ + ε; ψ)|2 − eλσ|u(σ; ψ)− u∞|2

=
∫ σ+ε

σ

λeλt|w(t; ψ)|2dt

+
∫ σ+ε

σ

eλt (−2ν〈Aw(t), w(t)〉 − 2〈B(u(t; ψ))−B(u∞), w(t)〉) dt

+
∫ σ+ε

σ

eλt (g(t, ut(·; ψ))− g(t, u∞), w(t)) dt

≤ 0.

However, this contradicts (3.21), so (3.19) must be true.
The uniqueness of the stationary solution is deduced in the same way as in

Theorem 3.3.

Remark 3.6. We wish now to provide a sufficient condition which implies (3.17)
and that would be easier to check in applications.

Corollary 3.7. Assume that g satisfies conditions (I)-(V) for any T > 0, with
X and Y as in Theorem 2.3, and that for all ξ ∈ C0([−h, 0];V ) the mapping
t ∈ [0,+∞) 7→ g(t, ξ) ∈ (L2(Ω))2 is continuous. Suppose ν > 0 and f ∈ (L2(Ω))2

are given so that there exists a stationary solution u∞ of (3.1). There exist two
constants, ki > 0, i = 1, 2, depending only on Ω, such that if

2νλ1 > 2L1 +
k1|f |

ν − λ−1
1 L1

+
k2|f |3

ν2(ν − λ−1
1 L1)3

, (3.24)

then, the stationary solution u∞ of (3.1) is unique, and for all ψ ∈ C0([−h, 0]; V ),
the strong solution to (2.1) corresponding to this initial datum, u(t; ψ), satisfies
(3.19), i.e.

|u(t; ψ)− u∞|2 ≤ e−λt‖ψ − u∞‖2C0([−h,0];H), ∀t ≥ 0.

Proof. Let φ ∈ C0([−h, 0];V ) be such that

‖φ− u∞‖2C0([−h,0];H) ≤ eλh|φ(0)− u∞|2, (3.25)

where λ > 0 is a constant to be chosen later on. Then,

−ν〈A(φ(0)− u∞), φ(0)− u∞〉 − 〈B(φ(0))−B(u∞), φ(0)− u∞〉
+ (g(t, φ)− g(t, u∞), φ(0)− u∞)

≤ −ν‖φ(0)− u∞‖2 − b(φ(0)− u∞, u∞, φ(0)− u∞)
+L1‖φ− u∞‖C(−h,0;H)|φ(0)− u∞|

≤ −ν‖φ(0)− u∞‖2 + L1λ
−1
1 eλh‖φ(0)− u∞‖2

+|b(φ(0)− u∞, φ(0)− u∞, u∞)|.
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Now, using (3.10) and (3.13), and the notation used in the proof of Theorem 3.3,
it follows immediately that

−ν 〈A(φ(0)− u∞), φ(0)− u∞〉 − 〈B(φ(0))−B(u∞), φ(0)− u∞〉 (3.26)
+(g(t, φ)− g(t, u∞), φ(0)− u∞)

≤
(
−ν + L1λ

−1
1 eλh +

k1λ
−1
1 |f |

2(ν − λ−1
1 L1)

+
k2λ

−1
1 |f |3

2ν2(ν − λ−1
1 L1)3

,

)
‖φ(0)− u∞‖2.

Then, if (3.24) is fulfilled, there exists λ > 0 such that

λλ−1
1 − ν + L1λ

−1
1 eλh +

k1λ
−1
1 |f |

2(ν − λ−1
1 L1)

+
k2λ

−1
1 |f |3

2ν2(ν − λ−1
1 L1)3

≥ 0,

and, for this fixed λ, we can obtain from (3.26)

−ν 〈A(φ(0)− u∞), φ(0)− u∞〉 − 〈B(φ(0))−B(u∞), φ(0)− u∞〉
+(g(t, φ)− g(t, u∞), φ(0)− u∞)
≤ −λλ−1

1 ‖φ(0)− u∞‖2
≤ −λ|φ(0)− u∞|2.

The proof is now complete.

Remark 3.8. Notice that Theorem 3.3 and Corollary 3.7 ensure exponential con-
vergence of solutions under very similar sufficient conditions. In fact, when the func-
tion g is defined as g(t, ut) = G(u(t− ρ(t)), assumption (3.6) coincides with (3.24)
when ρ∗ = 0 (i.e. when the delay function ρ is nonincreasing), but if 0 < ρ∗ < 1
then (3.6) implies (3.24).

Conclusions

We have proved some results concerning the asymptotic behaviour of solutions to
a two dimensional Navier-Stokes model containing delay forcing terms. We have
shown that two different techniques can be applied to get sufficient conditions
ensuring the exponential convergence towards the unique stationary solution (when
it exists). However, these results can be considered as some preliminary ones in the
analysis of the global behaviour of this model. In fact, the uniqueness of stationary
solutions holds when the viscosity is large enough, so it is very interesting to analyse
the behaviour of the system when the viscosity is small. As in the conventional
model, it will be possible to prove the existence of a global attractor describing
the long term dynamics of the system, although new concepts (e.g. attractors for
non-autonomous dynamical systems) will be needed on this occasion. This problem
is being analysed actually by the authors and will result in the forthcoming paper
Caraballo et al. (2003).
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