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Abstract

We introduce the concept of a monotone multi-valued semi-�ow as an order-preserving map. This
de�nition is motivated by the applications in the theory of di¤erential equations without uniqueness of
solutions. For an order preserving multi-valued semi-�ow we prove several results on the structure of
the global attractor. Some applications to models governed by ordinary di¤erential equations and delay
equations with continuous right-hand side are presented. In particular, the abstract results are applied
to a biochemical control circuit.
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1 Introduction

There exists a wide literature on the theory of monotone methods and comparison principles for di¤erential
equations; that is, ordered initial states remain ordered for subsequent times (among many others, see, for
example, the monographs of Smith [20] or Hirsch [13]). Actually, this theory has become an important
branch in the theory of dynamical systems. In particular, monotonicity leads to some important properties
of the asymptotic behaviour of the models; among them, the forward evolution of intervals, the existence
of �xed points for monotone dynamical systems, and some properties related to the structure of attracting
sets.
But none of these concepts is well de�ned when we have a multi-valued dynamical system related, for

example, to a di¤erential equation without uniqueness of solutions, or to a di¤erential inclusion. In these
cases, the concept of an order, and even those of sub, super-equilibria, and equilibria becomes unclear. In
this paper we contribute to the theory of order-preserving multi-valued dynamical systems, by proposing
a suitable de�nition of an order-preserving multi-valued semi-�ow G, which has a direct application to a
variety of models. If we suppose that the multi-valued dynamical system has a global attractor in the sense
of Melnik and Valero [17], we then prove our main theorem, which gives the existence of maximal and
minimal equilibria on the attractor in which all the asymptotic behaviour of the system is then con�ned,
providing also some information on the stability properties of these equilibria and on the structure of the
global attractor. In particular, under some conditions we show the existence of two equilibria which attract
all the bounded sets allocated, respectively, above or below these values. To our knowledge, this is the �rst
time in which the well developed techniques related to monotone dynamical systems (see, for example, Smith
[20]) have been applied to analyse the asymptotic behaviour of multi-valued semi-�ows.
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Some applications to di¤erential equations without uniqueness of solutions are developed in the following
section. In all of them, we prove that G is order preserving, so that our main theorem can be applied. Also,
under some conditions we prove that the set G(t; x0), corresponding to a �xed initial data and a �xed t, is
a totally ordered set. The results are applied to cooperative systems of di¤erential equations and to scalar
delay equations. In particular, we consider a model of a biochemical control circuit.
Finally, we note that these results could be extended to other situations, as di¤erential inclusions, or

non-autonomous and stochastic di¤erential equations and inclusions (see [1], [10], where monotone systems
are studied for stochastic equations with uniqueness of solutions). This is part of our future work.

2 Monotone multi-valued dynamical systems

Let (X; �) be a complete metric space and let P (X) be the set of all non-empty subsets of X. Denote

B (X) = fA 2 P (X) : A is boundedg ;
C (X) = fA 2 P (X) : A is closedg ;
K (X) = fA 2 P (X) : A is compactg ;

dist (A;B) = sup
x2A

inf
y2B

� (x; y) ; for A;B � X:

De�nition 1 A map G : R+ �X ! P (X) is said to be a multi-valued semi-�ow (MSF) on X if:

i) G (0; �) = Id; i.e., the identity map;

ii) G(t+ s; x) � G(t; G(s; x)), for all x 2 X; s; t 2 R+:

It is called a strict multi-valued semi-�ow (SMSF) if, moreover, G(t+ s; x) = G(t; G(s; x)).

Multi-valued semi-�ows are a natural generalization of the semigroups of operators for equations without
uniqueness (see [4], [15], [14], [17], [18], [19], [22]). However, other approaches, such as generalized semigroups
([5], [6], [11]), have also been used (see [8] for a comparison of the two methods with respect to the theory
of attractors).
Order preserving semigroups have been used widely and fruitfully in the literature. Among many other

applications, this property has enabled the proof of some nice properties on the asymptotic behaviour
of solutions for ordinary and partial di¤erential equations (see [1], [2], [10], [20]). The question about
the possible generalization of this rich concept to the multi-valued case arises naturally. In the following
subsections we give such a generalization concerning the asymptotic behaviour of these systems.

2.1 Order preserving multi-valued semi-�ows
We now introduce the concept of order-preserving (or monotone) multi-valued systems.

De�nition 2 A MSF fG(t;�) : X ! C(X)g is said to be order-preserving if there exists an order relation
���in X such that, if x0 � y0; then G(t; x0) � G(t; y0); for all t � 0; in the sense that

a) There exists x(t) 2 G(t; x0) such that

x(t) � y(t); for all y(t) 2 G(t; y0);

b) There exists y(t) 2 G(t; y0) such that

x(t) � y(t); for all x(t) 2 G(t; x0):

In particular, it follows from the de�nition the existence of maximal and minimal elements in G(t; x0),
so that x(t) (resp. y (t)) can be chosen independent of y0 (resp. x0) if y0 6= x0.
It is important to assume that the order is compatible with the topology in the following sense:
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1. Any bounded subset B of X is contained in some �interval�, i.e., there exist a � b such that B �
[a; b] = fx 2 X : a � x � bg.

2. If xn ! x; yn ! y and xn � yn, then x � y.

The second condition implies that any interval [a; b] is closed.

2.2 Global attractors for order-preserving multi-valued semi-�ows
Now we brie�y recall some concepts and results from the theory of attractors for MSF.

De�nition 3 A set A � X is said to be a global attractor associated to G if:

i) A � G(t;A), for all t 2 R+; that is, it is negatively semi-invariant;

ii) A attracts any bounded subset D � X, i.e.

lim
t!+1

dist(G(t;D);A) = 0:

In applications it is desirable to prove also that A is compact and strictly invariant, i.e.

A = G(t;A); for all t 2 R+:

We now establish some su¢ cient conditions that guarantee the existence of a global attractor (see [17]).
Suppose the following conditions for the MSF G:

(H1) G is point dissipative, i.e., there exists a bounded subset B0 such that for every x 2 X there is tx for
which

G(t; x) � B0, for all t � tx:

(H2) The set 
+0 (B) = [t�0G (t; B) is bounded for every B 2 B (X) and G is asymptotically compact, i.e.,
any sequence �n 2 G (tn; B), where tn ! +1, is pre-compact for all B 2 B (X).

(H3) G(t;�) : X ! C(X) is upper semi-continuous, that is, for all t 2 R+; given x 2 X and a neighbourhood
O(G(t; x)) of G(t; x), there exists � > 0 such that if �(x; y) < � then

G(t; y) � O(G(t; x)):

The following theorem is a direct consequence of Lemma 1, Theorem 3 and Remark 8 in [17]:

Theorem 4 If (H1) � (H3) hold, then G has a global compact attractor A. If, in addition, G is a strict
semi-�ow, then A is strictly invariant.

De�nition 5 A point x 2 X is said to be an equilibrium (or a �xed point) of G if

x 2 G (t; x) , for all t � 0.

The following result provides su¢ cient conditions for the existence of upper and lower asymptotically
stable equilibria, as well as some information on the structure of the global attractor.

Theorem 6 Let G be an order-preserving SMSF satisfying (H1)� (H3) and A its associated global compact
invariant attractor. Then, there exist equilibria x�; y� 2 A such that:

1. x� � y� and
A � [x�; y�] : (1)
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2. x� (resp. y�) is minimal (resp. maximal) in the sense that any other �xed points are contained in the
interval [x�; y�].

If the solutions corresponding to the initial conditions x� and y� are unique (i.e. if G(t; x�) = x� and
G(t; y�) = y� for all t 2 R), then:

3. x� is globally attracting from below, that is, for all v 2 X with v � x�; we have that

lim
t!+1

dist(G(t; v); x�) = 0:

4. y� is globally attracting from above, that is, for all v 2 X with y� � v we have that

lim
t!+1

dist(G(t; v); y�) = 0:

Proof. We note that A is bounded, and then by the condition of compatibility of the order with the topology
there exist x � y such that A � [x; y] . Hence,

x � u � y, for all u 2 A:

Since G is order preserving, we have

G(t; x) � G(t; u) � G(t; y);

so that, there exist x(t; u) 2 G(t; x) and y(t; u) 2 G(t; y) such that

x(t; u) � z � y (t; u) ; for all z 2 G (t; u) , u 2 A:

But note also that G (t; x) � G (t; x) implies that G (t; x) has a minimal and a maximal element, and then
there exist x(t) 2 G(t; x) and y(t) 2 G(t; y) (not depending on u) such that

x(t) � z � y (t) ; for all z 2 G (t; u) , u 2 A:

Thus, since A � G (t;A) we have
x(t) � u � y (t) ; for all u 2 A:

The compact set A attracts x and y, so that dist (x(t);A) ! 0, dist (y (t) ;A) ! 0, as t ! +1, and then
we can choose converging subsequences x(tn) ! x� 2 A, y (tn) ! y� 2 A. The compatibility of the order
with the topology gives

x� � u � y�, for all u 2 A: (2)

In order to check that x�; y� are equilibria we �rst note that x�; y� 2 A implies that these points are uniquely
determined by (2). Indeed, if x1�; x

2
� 2 A are two points satisfying (2), then x1� � x2� and x

1
� � x2�, so that

x1� = x2�. Since the attractor A is negatively semi-invariant and the MSF G order preserving, for any t � 0
there exist x(t) 2 G (t; x�), y (t) 2 G (t; y�) such that

x(t) � u � y(t), for all u 2 A:

But A is also positively semi-invariant, so that x(t); y(t) 2 A, and then x(t) = x�, y(t) = y�.
It is clear that any equilibrium has to be contained in the global attractor (by the attractivity property),

so that point 2 of the theorem is also proved.
Finally, if the solution corresponding to x� is unique, then for any v � x� we have

G (t; v) � G (t; x�) = x�;

dist (G (t; v) ;A)! 0, as t! +1,
so that the only possibility is dist (G (t; v) ; x�)! 0. The same argument is valid for y�.
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3 Applications

In this section we apply our theory to some systems modeled by ordinary di¤erential equations and delay
equations without uniqueness of solutions, so that a multi-valued semi-�ow has to be de�ned. Under some
conditions, we show that the corresponding semi-�ow is monotone, so that our previous results can be
applied.

3.1 Ordinary di¤erential equations with continuous right hand-side
3.1.1 An N-dimensional case: a cooperative system

Consider the usual order in RN , i.e.

x � y () xi � yi for all i = 1; 2; :::; N:

We say that x < y if x � y and there exists j 2 f1; 2; :::; Ng such that xj < yj .
Let us now consider the system �

x0(t) = f(x(t));
x(0) = x0;

(3)

with f : RN �! RN continuous and satisfying

(f (x) ; x) � c1 kxk2 + c2, c1 2 R; c2 > 0; (4)

where (�,�), k�k are respectively the scalar product and the norm in RN . Suppose also the following monotonic-
ity hypothesis on f :

fi(x) � fi(y); if x; y 2 RN ; xi = yi; and x � y: (5)

Condition (4) implies easily that any solution is globally de�ned in time, and for any T > 0 the set
of solutions is uniformly bounded in bounded sets of initial data, so that, for all B � RN bounded and
T > 0; there exists C(B; T ) such that supt2[0;T ] jx(t)j � C(B; T );where x(t) denotes any solution of (3)
corresponding to x0 2 B. Denote by S (x0) � C

�
[0;+1) ;RN+

�
the set of all solutions with initial condition

x0. De�ne also the set

S(x0; T ) = fx(�) 2 C([0; T ];RN ) : x(�) is a solution of (3) and x(0) = x0g;

which is compact in C([0; T ];RN ) by the Ascoli-Arzelà theorem, and the map G : R+ � RN �! K(RN ) by

G (t; x0) = fx (t) : x (�) 2 S (x0)g :

It is easy to check that G is a strict multi-valued semi-�ow. The inclusion G (t+ s; x) � G (t; G (s; x))
follows from the fact that if x (�) 2 S (x0; t+ s), then y (�) = x (s+ �) 2 S (x (s) ; t). The converse inclu-
sion G (t; G (s; x)) � G (t+ s; x) follows from the concatenation property: if x (�) 2 S (x0; s) and y (�) 2
S (x (s) ; t), then

z (r) =

�
x (r) , if 0 � r � s;

y (r � s) , if s � r � s+ t;

belongs to S (x0; t+ s). Hence, we have the SMSF G : R+ � RN �! K(RN ).

We also note that the set of �xed points coincides with the set of zeros of f . Indeed, if x0 is a �xed point
and for some i, say, fi (x0) > 0, then for any x (�) 2 S (x0) we have x0i (t) > 0 for t 2 [0; �], so that xi (t) > x0i
in (0; �], and x0 62 G (t; x0). Hence, x0 is not an equilibrium. Conversely, if f (x0) = 0, then x (t) = x0, for
all t, is a solution and then x0 2 G (t; x0).
In many physical and biological applications the variables xi have to be non-negative. Hence, we need

to de�ne a multi-valued semi-�ow in the phase space RN+ instead of RN .
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Lemma 7 Suppose that

fi (x) � 0; for all i and x 2 RN+ such that xi = 0. (6)

Then, for any x0 � 0 (i.e. x0i � 0 for all i) there exists at least one global solution such that x (t) � 0, for
any t � 0:

Proof. De�ne the approximate functions f" (x) = f (x) + "d, " > 0, where d = (1; :::; 1), which satis�es
f"i (x) � ", for all i and x 2 RN+ such that xi = 0. Consider an arbitrary solution x" (t) of the equation
x0 = f" (x) corresponding to x0 � 0. Suppose x" (t) 6� 0, for some t. Let the i component of this solution be
negative in some interval (t0; t1) ; xi (t) � 0, for t � t0, with i the �rst component which becomes negative.
Thus, by the continuity of f" we have

d

dt
x"i (t) = f"i (x

" (t)) > 0, for t 2 (t0; t0 + �) ;

which is a contradiction. Hence, x" (t) � 0, for all t � 0.
Fix T > 0. Then by (4) and the continuity of f the functions x" and

d

dt
x" are uniformly bounded in

C
�
[0; T ] ;RN

�
, so that by the Ascoli-Arzelá theorem there exists a converging subsequence x"n . The limit

x (�) is a solution of (3) in [0; T ] and x (t) � 0, for all t 2 [0; T ], as can be easily checked. Repeating the same
in the intervals [T; 2T ], [2T; 3T ], etc., and using a diagonal argument we obtain a globally de�ned solution
x (�) such that x (t) � 0, for t � 0, as desired.

Remark 8 This lemma does not guarantee that all the solutions are non-negative, as happens in the case
of equations with uniqueness. This can be checked in the following simple example:

x0 = sign (x)
p
jxj; x (0) = 0;

where sign (x) = 1 (resp. �1; 0); if x > 0 (resp. < 0;= 0), We have the solutions x1 (t) = 0; x2 (t) =
t2

4 ;

x3 (t) = � t2

4 among many others.

Denote by U (x0) � C
�
[0;+1) ;RN+

�
the set of all solutions with initial condition x0 such that x (t) � 0

for all t � 0. De�ne also the set

D(x0; T ) = fx(�) 2 C([0; T ];RN ) : x(�) is a solution of (3) and x(0) = x0, x (t) � 0g

and the map U : R+ � RN+ �! K(RN+ ) :

U (t; x) = fx (t) : x (�) 2 D (x0)g :

U is a SMSF. We note that D (x0; T ) is a closed subset of S (x0; T ), so that it is compact. Therefore, U (t; x0)
is compact as well.
We are going to study whether the SMSF G and U are order preserving. Let us begin with the map G.

Lemma 9 Let conditions (4) and (5) hold. Then for any x0 � y0 there exists two solutions y (�) 2 S(T; y0);
x(�) 2 S(T; x0), such that

y (t)� x (t) , for all t 2 [0; T ] and x (�) 2 S(T; x0);
x (t)� y (t) , for all t 2 [0; T ] and y (�) 2 S(T; y0):

Hence, G is order preserving.
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Proof. De�ne the functions g" (x) = f (x) + "d, " > 0, where d = (1; :::; 1). It is clear from (5) that

g"i (y) � fi (x) + ", if xi = yi and x � y. (7)

Let y"(�); y" (0) = y0; be a solution of (3) where f is replaced by g", and let x (�) 2 S(T; x0) be arbitrary.
We claim that y" (t) � x (t), for all t 2 [0; T ]. If not, then there exist a time 0 � t0 < T and i; � > 0 such
that

xi(t0) = yi(t0); y(t0) � x(t0);
y"i(t) < xi(t); for all t0 < t � t0 + �:

Then (7) gives g"i (y (t0)) � "+ fi (x (t0)) and the continuity of the functions g"; f implies that

d

dt
(y"i(t)� xi(t)) = g"i (y(t))� fi(x(t)) > 0; for all t 2 (t0; t0 + ~�);

for some ~� � �; and thus y"i(t) > xi(t); which is a contradiction.

Further, by (4) and the continuity of f we obtain that the functions y";
d

dt
y" are uniformly bounded in

C
�
[0; T ] ;RN

�
, so that by the Ascoli-Arzelà theorem there exists a converging subsequence y"n . The limit

y (t) is a solution of (3) and clearly y (t) � x (t), for all t 2 [0; T ].
The existence of the function x (�) can be proved in a similar way by de�ning the function g" (x) =

f (x)� "d.
This means that G is order preserving.
We have the following result:

Theorem 10 Let conditions (4) and (5) hold. Assume also that (H1)� (H2) are satis�ed. Then G satis�es
also (H3) and the statement of Theorem 6 holds true.

Remark 11 In this case (H2) is equivalent to the fact that the set 
+0 (B) is bounded for any B bounded.

Remark 12 In the scalar case, that is N = 1, the order preserving property is satis�ed without assuming
any condition of the type (5) [12, p.27, Corollary 4.2].

Proof. We have already seen that G (t; x) is a compact set, so that in order to get (H3) it remains to
prove that the map G (t; �) is upper semi-continuous. Arguing again by contradiction, take a sequence
yn 2 G (t; xn), xn ! x0, and a neighborhood N of G (t; x0) ; such that yn =2 N . If xn (�) 2 S (xn; t) are such
that xn (0) = xn, yn = xn (t), then, by (4), we have that xn (t) and x0n (t) are uniformly bounded in [0; t].
The Ascoli-Arzelà theorem gives (up to a subsequence) xn (�)! x (�) in C

�
[0; t] ;RN

�
. Hence,

xn (t) = xn +
R t
0
f (xn (�)) d�

# # #
x (t) = x0 +

R t
0
f (x (�)) d� :

Therefore, x (�) 2 S (x0; t) and x (t) 2 G (t; x0), which is a contradiction. (H3) is then proved.
Since G is order preserving by Lemma 9, we can apply Theorem 6.

Consider now the map U . We note �rst that if we try to repeat the same proof of Lemma 6, then one
can get the existence of the solution y (�). However, the proof for the solution x(�) fails because, when we
take the function g" (x) = f (x)� "d; the solutions of (3) are not in general non-negative. We will be able to
prove the order preserving property for U under more restrictive conditions.
We shall use the following condition:

fi(x) < fi(y); if x; y 2 RN ; xi = yi; and x < y: (8)

7



Theorem 13 Let conditions (4), (6) and (8) hold and let the set U (t; x) have a minimal and a maximal
element for any (t; x). Then U is order preserving.
If we assume that (H1)� (H2) are satis�ed, then (H3) also holds and the statement of Theorem 6 holds

true.

Proof. Denote by x and x the maximal and the minimal element in U (T; x0) ; and let x(t) be a solution
corresponding to the maximal element x 2 U (T; x0) :
Take y0 < x0 and y(�) 2 D (T; y0). If y(t0) = x(t0) for some t0, then we de�ne x(�) 2 D (x0; T ) as

x(t) =

�
�x(t); if 0 � t � t0;
y(t); if t0 � t � T:

Since x (T ) 2 U (T; x0) and x (T ) is the maximal element of U (T; x0), we have x (T ) = y (T ) � x (T ) = x.
Assume then that y(T ) � x is not true and y (t0) 6= x (t0) for all t0. Then there exists i 2 f1; : : : ; Ng, t0 < T
and � > 0 such that

xi(t0) = yi(t0); x (t0) 6= y (t0) ; y(t0) � x(t0);
yi(t) > xi(t) for all t0 < t � t0 + �:

Thus, by (8), we have that fi(y(t0))� fi(x(t0)) < 0: Then, the continuity of f implies that

d

dt
(yi(t)� xi(t)) = fi(y(t))� fi(x(t)) < 0; for all t 2 (t0; t0 + ~�);

for some ~� � �; and thus yi(t)� xi(t) < 0; which is a contradiction.
Therefore, repeating a similar argument for x, it follows that U is order preserving.
We conclude by repeating the same proof of Theorem 10.

In order to prove that the set U (T; x) always has maximal and minimal points we need to assume an
additional condition on the function f .
Let us now consider the case N = 2 and assume the additional condition:

fi(x) < fi(y), if x; y 2 R2; xi � yi; xj < yj ; for j 6= i: (9)

Clearly, (9) implies (8). We have:

Theorem 14 Let N = 2 and let conditions (4), (6) and (9) hold. Then U is order preserving.
If (H1)� (H2) hold, then U also satis�es (H3) and the statement of Theorem 6 is valid.

Proof. Condition (8) gives us that, when two solutions with the same initial data become di¤erent, they do
that simultaneously in all directions. Indeed, suppose that, for the two solutions x(�); ~x(�), and t0 2 [0; T ];
we have that xi(t0) = ~xi(t0); for i = 1; 2; but x1(t) > ~x1(t) and x2(t) = ~x2(t) for t 2 (t0; t0 + �): Then,

d

dt
(x2(t)� ~x2(t)) = f2(x(t))� f2(~x(t)) > 0, for t 2 (t0; t0 + �);

so that x2(t) > ~x2(t); which is a contradiction.
The stronger condition (9) implies that it is not possible that

xi(t0) = ~xi(t0); for i = 1; 2;

x1(t) > ~x1(t); x2(t) < ~x2(t), for t 2 (t0; t0 + �);

since we then obtain

d

dt
(x2(t)� ~x2(t)) = f2(x(t))� f2(~x(t)) > 0, for t 2 (t0; t0 + �);
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which is a contradiction.
Using again (9) or (8) one can see that after t0 either the two components xi (t) remain di¤erent for

all t, or for some t1 > t0 we have again x (t1) = ex (t1). Indeed, if x1 (t1) = ex1 (t1) ; x2 (t1) > ex2 (t1) and
xi (t) > exi (t) ; for t 2 [t1 � �; t1), i = 1; 2 (for instance), then

d

dt
(x1(t)� ~x1(t)) = f1(x(t))� f1(~x(t)) > 0, for t 2 [t1 � �; t1);

so that x1 (t1) > ex1 (t1), a contradiction. We repeat again the argument in the following interval and
conclude that for any given moment of time t the set U (t; x0) is totally ordered.
Moreover, as this set is compact, then we have the existence of a maximal and minimal elements in

U (t; x0). We conclude by applying Theorem 13.

Remark 15 We have proved here the additional property that the set U (t; x) is totally ordered. This is
valid also for the map G if we assume condition (9).
It is also clear that in the case of the map U it is su¢ cient to assume (9) for x; y 2 R2+:

3.1.2 A biochemical control circuit

As an application of the previous results we consider a model on the control of protein synthesis in the cell.
Consider the two dimensional system (see Arnold and Chueshov [1], Chueshov [10] for the random case and
Smith [20] for the deterministic case): 8<:x

0
1(t) = g(x2(t))� �1x1(t)
x02(t) = x1(t)� �2x2(t)
xi(0) = xi0;

(10)

where g satis�es g (0) � 0 and is a continuous strictly increasing sub-linear function, so that there exist
a; b > 0 such that

jg(x)j � a+ bjxj; (11)

and

�i > 0; i = 1; 2; (12)

�1�2 >
(b+ 1)2

4
or f�1 > 1 and �2 > bg : (13)

The unknowns represent concentrations of macromolecules in a cell, so they are supposed to be non-negative
(see Smith [20] or Chueshov [10]). It is clear that (4) and (6) hold, which means that the SMSF U is well
de�ned.
This system satis�es (H1) � (H2), so that it is dissipative. Indeed, according to (11)-(13) we have to

consider two cases:
Case I: �1�2 >

(b+1)2

4 . We obtain that

1

2

d

dt
kxk2 = f1(x)x1 + f2(x)x2 = g(x2)x1 � �1x21 + x1x2 � �2x22

� (a+ bx2)x1 � �1x21 + x1x2 � �2x22
� ax1 + ((b+ 1)� 2(1� ")

p
�1
p
�2)x1x2

�(1� ")(
p
�1x1 �

p
�2x2)

2 � "(�1x21 + �2x22)
� � "

2�1x
2
1 � "

2�2x
2
2 + c1

� �c2jjxjj2 + c1;

for some ci > 0, i = 1; 2. Hence by Gronwall�s Lemma kx (t)k2 � e�2c2t kx0k2 + c1
c2
, and then (H1)� (H2)

follow.
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Case II: �1 > 1 and �2 > b. Summing up the two equations we have

1

2

d

dt
(x1 + x2)

2
= (g(x2(t)) + x1 (t)� �1x1(t)� �2x2 (t)) (x1 + x2)
� (a+ (1� �1)x1 + (b� �2)x2) (x1 + x2)
� c1 � c2 (x1 + x2)2 ;

for some ci > 0. Again by the Gronwall lemma we obtain that (H1)� (H2) hold. The set B0 is de�ned by
B0 = fx 2 R2+ : 0 � x1 + x2 � c1

c2
+ �, � > 0g.

Therefore, (4) and (H1)� (H2) hold. On the other hand, (9) is satis�ed, and then Theorem 14 implies
that the statement of Theorem 6 is valid.
If we assume, moreover, that g is Lipschitz in a neighborhood of the �xed point x� (resp. y�), then the

solution corresponding to this initial condition is unique, so that x� (resp. y�) is globally attracting from
below (resp. above).

If the function g is uniformly bounded by a constant a (as in Smith [20, p.58]) we can withdraw condition

(13). Indeed, in that case we can use the variation of constants formula with the matrix A =
�
��1 0
1 ��2

�
:

x (t) = eAtx0 +

Z t

0

eA(t�s)
�
g (x2)
0

�
ds (14)

and properties (H1)� (H2) are ful�lled since jg (u)j � a and �i > 0. Hence, the statement of Theorem 6 is
valid.
Also, if g (u) = g0 (u) + bu, where jg0 (u)j � a, we can assume that �1�2 > b (instead of (13)). In such

a case the eigenvalues of the matrix A =
�
��1 b
1 ��2

�
have negative real parts, and then using again (14),

but putting g0 instead of g; we obtain the desired result.

Remark 16 We also note that in this equation the set of �xed points is totally ordered (see Smith [20,
p.58]).

3.1.3 A biochemical control circuit in RN

In the N -dimensional case consider the system8>>>>><>>>>>:

x01(t) = f1(xN ; x1);
x02(t) = f2(x1; x2);
...
x0N = fN (xN�1; xN );
xi(0) = xi0;

(15)

with the monotonicity condition

fi(x; ex) < fi(y; ey); if ex � ey, and x < y; 8i, (16)

which is the analogue of (9). Assume again that (4) holds.
We shall check that U is order preserving.

Theorem 17 Let conditions (4), (6) and (16) hold. Then U is order preserving.
If (H1)� (H2) hold, then U satis�es also (H3) and the statement of Theorem 6 is valid.

10



Proof. Suppose �rst that U (T; x0) has a maximal element x 2 U (T; x0) and let �x(t) be the corresponding
solution. Let y0 < x0 and y(�) 2 D (y0; T ) be such that y(T ) 6� �x: As before, in such a case there cannot
exist t0 such that y (t0) = x (t0) by the concatenation argument, which leads to a contradiction. Then, there
exist t0 2 [0; T ); � > 0 and i; j such that

xi(t0) = yi(t0); xj(t0) > yj(t0); x(t0) � y(t0);

xi(t) < yi(t); for t 2 (t0; t0 + �):
Thus, we also get that xj+1(t) > yj+1(t) for all t 2 (t0; t0 + �2), for some �2 > 0: This is clear if xj+1(t0) >
yj+1(t0); and, if xj+1(t0) = yj+1(t0); then (16) implies that

fj+1(xj(t); xj+1(t)) > fj+1(yj(t); yj+1(t));

for all t 2 (t0; t0 + �2); from which we can conclude that (xj+1(t)� yj+1(t))
0 > 0 and so xj+1(t) > yj+1(t):

Further, xj+2(t) > yj+2(t) for all t 2 (t0; t0 + �3), for some �3 > 0, since, otherwise, xj+2(t0) = yj+2(t0),
xj+2(t) � yj+2(t); for t 2 [t0; t0 + �4] ; and condition (16) leads again to a contradiction. In a similar way,
by repeating the argument for j + 3; j + 4; : : : ; up to j + k = i; we get a contradiction.
Since a similar argument is also valid for the minimal element, it follows that U is order preserving.
Let us now prove that we can obtain maximal and minimal elements in U (T; x0) : First, if there exist

t0 2 [0; T ]; x(�); y(�) 2 D (x0; T ) such that x(t) 6= y(t), for t 2 (t0; t0 + �) ; and x (t) = y (t), for t � t0, then
all of their coordinates must be di¤erent. Indeed, if not, there exist xi; yi; xj ; yj such that

xi(t0) = yi(t0); xi(t) < yi(t); for t 2 (t0; t0 + �);
xj(t) = yj(t); for t 2 [t0; t0 + �) :

Then, xi+1(t) < yi+1(t); for t 2 (t0; t0+e�) and some e� < �, since, otherwise, by (16) we have
d

dt
(xi+1 (t)� yi+1 (t)) <

0, a contradiction. But the same is true for i + 2; i + 3; : : : ; i + k = j; from which we get a contradiction,
because xj(t) = yj(t); for t 2 [t0; t0 + �). Moreover, the same argument leads us to prove that it is not
possible to have

x(t0) = y(t0);

xi(t) > yi(t); xj(t) < yj(t); for t 2 (t0; t0 + �):

Then, in some
�
t0; t0 + b�� we have xj (t) > yj (t) for all j. After the time t0 there can exist another moment

t1 > t0 where one of the components, say i, satis�es again xi (t1) = yi (t1) and change the inequality, i.e.
xi (t) < yi (t) in (t1; t1 + �). Since this is the �rst time when this occurs, we have xj (t) � yj (t), for t 2 [t0; t1]
and all j. We claim now that xj (t1) = yj (t1) for all j. By contradiction, suppose that there is j such that
xj (t1) > yj (t1). Hence, either xj+1 (t1) > yj+1 (t1) or xj+1 (t1) = yj+1 (t1) : In the last case we have by (16)

d

dt
(xj+1 � yj+1) = fj+1 (xj (t) ; xj+1 (t))� fj+1 (yj (t) ; yj+1 (t)) > 0, for t 2 (t1; t1 + �1) ;

from which xj+1 (t) > yj+1 (t) ; for t 2 (t1; t1 + �1), in both cases. Further, for j + 2 we have again that
either xj+2 (t1) > yj+2 (t1) or xj+2 (t1) = yj+2 (t1) : In both cases it holds again that xj+2 (t) > yj+2 (t) ; for
t 2 (t1; t1 + �2) : For the second case if xj+2 (t) � yj+2 (t), then applying (16) again we have

d

dt
(xj+2 � yj+2) = fj+2 (xj+1 (t) ; xj+2 (t))� fj+2 (yj+1 (t) ; yj+2 (t)) > 0, for t 2 (t1; t1 + �2) ;

a contradiction. We continue the same argument for j + 3; j + 4, etc. When j + k = i we obtain a new
contradiction, so that xj (t1) = yj (t1) for all j. But then arguing as before in some (t1; t1 + �3) we have
xj (t) < yj (t) for all j.
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This argument implies that U (T; x0) is totally ordered for any (T; x0). Hence, a maximal and a minimal
elements exist and then U is order preserving.
We have already proved in Theorem 13 that (H1)� (H2) imply (H3).

We now consider the N -dimensional variant of the previous model on a biochemical control circuit:8>>>>><>>>>>:

x01(t) = g(xN (t))� �1x1(t);
x02(t) = x1(t)� �2x2(t);
...
x0N (t) = xN�1(t)� �NxN (t);
xi(0) = xi0;

(17)

where �i > 0 and
�i�i+1 > 1, i = 2; : : : ; N � 1; �N�1 > b2, or

�i > 1, i = 1; :::; N � 1; �N > b:
(18)

Here, g (0) � 0 and is a continuous strictly increasing function such that jg (x)j � a+ b jxj. The variables xi
take only non-negative values.
Since (4), (6) and (16) are satis�ed, the associated multi-valued semi-�ow U(t; x0) is order preserving.

On the other hand, (18) implies that this system satis�es (H1)� (H2). Indeed, consider again two cases:
Case I: �i�i+1 > 1, i = 2; : : : ; N � 1; �N�1 > b2. We get

1

2

d

dt
kxk2 =

PN
i=1 fi(x)xi = g(xN )x1 �

PN
i=1 �ix

2
i +

PN�1
i=1 xixi+1

� (a+ bxN )x1 � 1
2

�
�1x

2
1 + �Nx

2
N

�
+
PN�1

i=1

�
xixi+1 � 1

2

�
�ix

2
i + �i+1x

2
i+1

��
� ax1 + (b� (1� 2"))

p
�1
p
�Nx1xN

�( 12 � ")(
p
�1x1 �

p
�2xN )

2 � "(�1x21 + �2x2N )
+
PN�1

i=1

�
(1� (1� 2")p�i

p
�i+1

�
xixi+1

�( 12 � ")(
p
�ixi �

p
�i+1xi+1)

2 � "(�ix2i + �i+1x2i+1))
� c1 � c2 kxk2 ;

for ci > 0; i = 1; 2, so that by Gronwall�s lemma (H1)� (H2) hold.
Case II: �i > 1, i = 1; :::; N � 1; �N > b. The proof is similar to that of the two dimensional case.
Hence, Theorem 17 implies that the statement of Theorem 6 is valid. If we assume, moreover, that g

is Lipschitz in a neighborhood of the �xed points x� (resp. y�), then the solutions corresponding to these
initial conditions are unique, so that x� (resp. y�) is globally attracting from below (resp. above).

As in the two dimensional case if the function g is uniformly bounded by a constant a we can withdraw
condition (18) and use for the proof the variation of constants formula.
Also, if g (u) = g0 (u) + bu, where jg0 (u)j � a, we can assume that �1�2 � � ��N > b (instead of (18)). In

such a case the eigenvalues of the matrix A, in which the only non-zero elements are aii = ��i, ai+1;i = 1,
a1N = b; have negative real parts, and then using again (14), but putting g0 instead of g; we obtain the
desired result.

3.2 Delay di¤erential equations: the scalar case
Let h > 0 be a given positive number (the delay time) and denote by C the Banach space C([�h; 0];R)
endowed with the norm k k = sup�2[�h;0] j (�)j. However, it is sometimes useful to consider the solutions
as mappings from R into R. If x 2 C ([�h;+1) ;R) for any t � 0 we denote by xt the element in C given
by xt(s) = x(t+ s) for all s 2 [�h; 0]. We consider the usual partial order in C([�h; 0];R), i.e

x � y , x (�) � y (�) , for all � 2 [�h; 0] .
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We say that x < y if x � y and there exists � 2 [�h; 0] such that x (�) < y (�).
We will now consider the functional di¤erential equation with �nite delay:

x0(t) = f(xt); x0 =  2 C; (19)

where f : C ! C. We assume that for any initial data  2 C there exists at least one solution x (�) and also
that each solution is de�ned globally in time. This allows us to de�ne an associated multi-valued semi-�ow.
As before denote by S (x0) � C ([0;+1) ; C) the set of all solutions corresponding to the initial condition x0
and by S (x0; T ) � C ([0; T ] ; C) the set

S(x0; T ) = fx(�) 2 C([0; T ]; C) : x(�) is a solution of (19) and x(0) = x0g:

As in the previous cases, it is usual to consider non-negative solutions. Let X = C ([�h; 0] ;R+) (in general
we can consider the phase space X = C ([�h; 0] ; Z), where Z is a closed subset of R) and assume that at
least one globally de�ned solution with x (t) 2 X, for all t � 0; exists for any initial data in X. Denote by
U (x0) � C ([0;+1) ; X) the set of all solutions with initial condition x0 such that x (t) � 0 for all t � 0.
De�ne also the set

D(x0; T ) = fx(�) 2 C([0; T ]; C) : x(�) is a solution of (19) and x(0) = x0, x (t) � 0g:

Then the maps G : R+ � C �! P (C); U : R+ �X �! P (X) :

G (t; x) = fxt : x (�) 2 S (x0)g ;
U (t; x) = fxt : x (�) 2 U (x0)g ;

are SMSF (see [9]).
As in the case of ordinary di¤erential equations we can easily prove that the �xed points coincide with

the set of constant functions  (�) � x 2 R, such that f ( ) = 0.
Some general conditions providing the existence of globally de�ned solutions and also (H1)� (H3) (and

hence the existence of a global compact attractor) are given in [9]. We will not write them here and, instead,
we consider the following particular case (which contains for instance models of populations with variable
age of maturation [7]):

x0 (t) = f(xt) = F0 (x (t)) + F1 (x (t� h)) +
Z 0

�h
b (s; x (t+ s)) ds; (20)

where we assume that Fi 2 C (R;R), i = 0; 1, b 2 C ([�h; 0]� R;R) and the following conditions:

(B) There exist scalar positive functions mi 2 L1 ([�h; 0]), i = 0; 1; such that

jb (s; x)j � m0 (s) +m1 (s) jxj , for all (s; x) : (21)

(F) There exist positive constants k1; k2; � and � such that

xF0 (x) � ��x2 + �; (22)

jF1 (x)j2 � k21 + k
2
2 jxj

2
; for all x: (23)

Denote Mi =
R 0
�hmi (s) ds. Assume also that the following inequalities hold:

2M1eh < 1; (24)

k22 < e�1� (�� ��) ;
�� < �;

where �� 2 (�0; �1) and �i are the two solutions of the equation �e��h = 2M1 if M1 > 0 (�
� = 0 if M1 = 0).

Then all the solutions are globally de�ned in time and we can de�ne the strict multi-valued semi-�ow G
[9]. Let, moreover, one of the following conditions hold:

13



1. For all  2 C([�h; 0];R+) with  (0) = 0 we have

F0( (0)) + F1( (�h)) +
Z 0

�h
b(s;  (s))ds = 0; (25)

2. For all  2 C([�h; 0];R) with  (0) < 0 we have

F0( (0)) + F1( (�h)) +
Z 0

�h
b(s;  (s))ds > 0: (26)

Then for any initial data in X there exists at least one globally de�ned solution such that x (t) � 0, for
any t � 0 [9]. Hence, we can de�ne also the SMSF U . It is also proved in [9] that G and U have a global
compact invariant attractor.
Let us study now whether the SMSF G (resp. U) is order preserving.

Theorem 18 We assume that

f ( 1) < f ( 2) , for any  i 2 C([�h; 0];R) (27)

such that  1 (0) =  2 (0) and  1 <  2:

Let (H1) � (H3) hold and let f be a continuous and bounded map. Then G is order preserving and the
statement of Theorem 6 is valid. If either (25) or (26) holds and (27) is satis�ed for  i 2 C ([�h; 0] ;R+),
then the same is valid for U .

Proof. We shall write the proof for the SMSF G. For U the proof is exactly the same. First let us prove
that G (t; x0) has a maximal and a minimal element. Let

At (0) = fxt (0) : xt 2 G (t; x0)g

and denote byMt, mt the maximal and minimal elements of At (0), respectively. We shall prove the existence
of a solution x (�) 2 S (x0; t) such that

x (�) � x (�) , for all x (�) 2 S (x0; t) , � 2 [0; t] :

For this purpose we de�ne the following sequence of solutions with initial condition x0 :

x1 (�) such that x1 (t) =Mt;

x2 (�) such that : x2
�
t

2

�
=M t

2
; x2 (t) =Mt;

x4 (�) such that x4
�
kt

4

�
=M kt

4
; k = 1; :::; 4;

...

x2
n

(�) such that x2
n

�
kt

2n

�
=M kt

2n
, for k = 1; 2; :::; 2n;

which exists because the concatenation of solutions is a solution as well. In view of (H2) and the boundednes

of f this sequence and its derivative
d

dt
x2

n

are bounded in C ([0; t] ;R), so that the Ascoli-Arzelà theorem
implies that x2

n

is pre-compact in C ([0; t] ;R). The continuity and boundedness of f allows us to apply
Lebesgue theorem and pass to the limit in the integral expression

x2
n

(�) = x0 (0) +

Z �

0

f
�
x2

n

s

�
ds;
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so that the limit function x (�) is also a solution. We note that x (�) =M� , for all � 2 A, where A is a dense
subset of [0; t]. By continuity x (�) = M� , for all � 2 [0; t]. Hence, x (�) � x (�), for all x (�) 2 S (x0; t),
� 2 [0; t], and then xt � xt, for any xt 2 G (t; x0) : xt is the desired maximal element of G (t; x0).
In a similar way we obtain the existence of a minimal element xt.
Let now y0 < x0. We shall prove that

y (�) � x (�) , for all � 2 [0; t] , y (�) 2 S (y0; t) ;

where x (�) is the maximal solution corresponding to x0. If this is not the case, then there exists t0 < t such
that

y (t0) = x (t0)

y (�) � x (�) , for any � � t;

y (�) > x (�) , for any � 2 (t0; t0 + �) :

We have now two cases.
Case I: There exists � 2 [t0 � h; t0) such that y (�) < x (�). In this case condition (27) and the continuity

of f imply that
d

d�
(x� y) > 0, in

h
t0; t0 + e��, which leads to a contradiction.

Case II: x (�) = y (�), for all � 2 [t0 � h; t0]. In such a case we can de�ne the solution

z (�) =

�
x (�) , if � 2 [�h; t0] ;
y (�) , if � 2 [t0; t] ;

which belongs to S (x0; t). This contradicts that x (�) is a maximal solution for x0.
In a similar way we consider the case y0 > x0. We have proved that G (resp. U) is order preserving. We

conclude the proof by applying Theorem 6.

Remark 19 In the case of the map G it could be possible to prove this result under less restrictive conditions,
as happens for ordinary di¤erential equations (see Theorem 10). However, in applications, the solutions
usually take non-negative values, so that we omit here such results.

Consider now equation (20).

Theorem 20 Let conditions (21)-(24) hold. Assume also that the function b (s; x) is strictly increasing with
respect to x (s constant) and that F1 is non-decreasing. Then G is order preserving and the statement of
Theorem 6 is valid. If one of conditions (25)-(26) holds, then the same is true for U .

Proof. Conditions (H1)� (H3) are proved in Caraballo et. al. [9]. We note also that the continuity of the
functions Fi, b implies that f is continuous and bounded. Further, consider  i such that  1 (0) =  2 (0)
and  1 <  2. Then

f ( 1)� f ( 2) = F1 ( 1 (�h))� F1 ( 2 (�h)) +
Z 0

�h
(b (s;  1 (s))� b (s;  2 (s))) d� < 0:

Therefore, (27) is satis�ed. Hence, we can apply Theorem 18.
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