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Abstract

Some exponential growth results for the pullback attractor of a reaction-diffusion
when time goes to −∞ are proved in this paper. First, a general result about Lp∩H1

0

exponential growth is established. Then, under additional assumptions, an expo-
nential growth condition in H2 for the pullback attractor of the non-autonomous
reaction-diffusion equation is also deduced.
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1 Introduction and setting of the problem

Let us consider the following problem for a non-autonomous reaction-diffusion
equation: 




∂u

∂t
−4u = f(u) + h(t) in Ω× (τ, +∞) ,

u = 0 on ∂Ω× (τ, +∞) ,

u(x, τ) = uτ (x), x ∈ Ω,

(1)
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where Ω ⊂ RN is a bounded open set, τ ∈ R, uτ ∈ L2 (Ω), f ∈ C1(R) and
h ∈ L2

loc(R; L2 (Ω)). We assume that there exist positive constants α1, α2, k,
l, and p > 2 such that

−k − α1 |s|p ≤ f(s)s ≤ k − α2 |s|p , ∀s ∈ R, (2)

f ′(s) ≤ l, ∀s ∈ R. (3)

Let us denote
F(s) :=

∫ s

0
f(r)dr.

Then, there exist positive constants α̃1, α̃2 and k̃ such that

−k̃ − α̃1 |s|p ≤ F(s) ≤ k̃ − α̃2 |s|p , ∀s ∈ R. (4)

It is well-known (see, e.g. [8] or [11]) that under the conditions above, for any
initial condition uτ ∈ L2 (Ω), there exists a unique solution u(·) = u(·; τ, uτ ) of
(1), i.e., a unique function u ∈ L2(τ, T ; H1

0 (Ω))∩Lp(τ, T ; Lp(Ω))∩C0([τ, T ]; L2(Ω))
for all T > τ, such that

u(t)−
∫ t

τ
∆u(s) ds = uτ +

∫ t

τ
(f(u(s)) + h(s)) ds ∀ t ≥ τ,

where the equality must be understood in the sense of the dual of H1
0 (Ω) ∩

Lp(Ω).

Therefore, we can define a process U = {U(t, τ), τ ≤ t} in L2 (Ω) as

U(t, τ)uτ = u(t; τ, uτ ) ∀uτ ∈ L2 (Ω) , ∀τ ≤ t. (5)

A pullback attractor for the process U defined by (5) (cf. [3], [4], [5]) is a
family A = {A(t) : t ∈ R} of compact subsets of L2(Ω) such that

a) U(t, τ)A(τ) = A(t) for all τ ≤ t,(invariance property),
b) lim

τ→−∞ sup
uτ∈B

inf
v∈A(t)

|U(t, τ)uτ − v| = 0, for all t ∈ R, for any bounded subset

B ⊂ L2(Ω), (pullback attraction),

where |·| denotes the norm in L2 (Ω).

It can be proved (see, for instance, [2] and [7]) that, under the above conditions,
if in addition h satisfies

∫ t

−∞
eλ1s |h(s)|2 ds < +∞ ∀ t ∈ R, (6)

where λ1 denotes the first eigenvalue of −∆ with zero Dirichlet boundary
condition in Ω, then there exists a pullback attractor for the process U defined
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by (5), and satisfying

lim
τ→−∞

(
eλ1τ sup

v∈A(τ)
|v|2

)
= 0. (7)

Several studies on this model have already been published (see, for example,
[1], [6], [9], [10], [12]).

More precisely, we proved in [1] that, under the above conditions, if Ω is regular
enough, then for any τ ∈ R the setA(τ) is a bounded subset of Lp (Ω)∩H1

0 (Ω),
and if moreover h ∈ W 1,2

loc (R; L2(Ω)), then A(τ) is also a bounded subset of
H2 (Ω). Therefore, the aim of this paper is to continue with the analysis of this
model in the sense of proving that the family A(τ) satisfies also an exponential
growth condition on the space Lp (Ω)∩H1

0 (Ω) , and finally in H2 (Ω) provided
some additional assumptions are fulfilled.

This will be carried out in the next section where we first prove an exponential
growth condition for the attractor A(τ) in Lp (Ω)∩H1

0 (Ω) when τ → −∞. We
also prove, under appropriate additional assumptions, an exponential growth
condition in H2 (Ω) for A(τ).

2 An exponential growth condition for the pullback attractor.

First, we recall a lemma (see [8]) which is necessary for the proof of our results.

Lemma 2.1 Let X,Y be Banach spaces such that X is reflexive, and the
inclusion X ⊂ Y is continuous. Assume that {un} is a bounded sequence in
L∞(t0, T ; X) such that un ⇀ u weakly in Lq(t0, T ; X) for some q ∈ [1, +∞)
and u ∈ C0([t0, T ]; Y ).

Then, u(t) ∈ X for all t ∈ [t0, T ] and

‖u(t)‖X ≤ sup
n≥1

‖un‖L∞(t0,T ;X) ∀t ∈ [t0, T ].

We will denote by (·, ·) the scalar product in L2 (Ω), by ‖·‖ = |∇·| the norm in
H1

0 (Ω), by ‖·‖H2(Ω) the norm in H2 (Ω), and by ‖·‖Lp(Ω) the norm in Lp (Ω) .

We will use 〈·, ·〉 to denote either the duality product between H−1 (Ω) and
H1

0 (Ω) or between Lp′ (Ω) and Lp (Ω).
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For each integer n ≥ 1, we denote by un(t) = un(t; τ, uτ ) the Galerkin approx-
imation of the solution u(t; τ, uτ ) of (1), which is given by

un(t) =
n∑

j=1

γnj(t)wj, (8)

and is the solution of




d

dt
(un(t), wj) = 〈∆un(t), wj〉+ (f(un(t)), wj) + (h(t), wj) ,

(un(τ), wj) = (uτ , wj) j = 1, .., n,
(9)

where {wj : j ≥ 1} is the Hilbert basis of L2(Ω) formed by the eigenfunctions
associated to −∆ in H1

0 (Ω).

We prove the following result.

Theorem 1 Assume that f ∈ C1(R) satisfies (2) and (3). Suppose moreover
that Ω ⊂ RN is a bounded Cκ domain, with κ ≥ max(2, N(p − 2)/2p), h ∈
L2

loc(R; L2 (Ω)), and condition (6) holds. Then A(τ) satisfies

lim
τ→−∞

{
eλ1τ

(
sup

v∈A(τ)
‖v‖2 + sup

v∈A(τ)
‖v‖p

Lp(Ω)

)}
= 0. (10)

PROOF. From the inequality (9) of [1], for any t ≥ τ we have

|un(r)|2 +
∫ r

τ
‖un(s)‖2 ds +

∫ r

τ
‖un(s)‖p

Lp(Ω) ds (11)

≤ C1

(
|uτ |2 +

∫ t

τ
|h(s)|2 ds + (t− τ)

)
,

for all r ∈ [τ, t], and all n ≥ 1, where C1 :=
max

{
1, λ−1

1 , 2k |Ω|
}

min {1, 2α2} .

Also, integrating inequality (10) of [1] with respect to s from τ to r, we obtain

(r − τ)
(
‖un(r)‖2 + ‖un(r)‖p

Lp(Ω)

)
(12)

≤ C2

(∫ r

τ
‖un(s)‖2 ds +

∫ r

τ
‖un(s)‖p

Lp(Ω) ds
)

+
(t− τ)

min {1, 2α̃2}
∫ t

τ
|h(s)|2 ds

+
4k̃

min {1, 2α̃2} |Ω| (t− τ),

for any t ≥ τ, all r ∈ [τ, t], and all n ≥ 1, where C2 :=
max {1, 2α̃1}
min {1, 2α̃2} .
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From (11) and (12) we now obtain that

(r − τ)
(
‖un(r)‖2 + ‖un(r)‖p

Lp(Ω)

)
≤ C1C2

(
|uτ |2 +

∫ t

τ
|h(s)|2 ds + (t− τ)

)

+
(t− τ)

min {1, 2α̃2}
∫ t

τ
|h(s)|2 ds

+
4k̃

min {1, 2α̃2} |Ω| (t− τ), (13)

for any t ≥ τ, all r ∈ [τ, t], and all n ≥ 1.
In particular, from (13) we deduce

‖un(r)‖2 + ‖un(r)‖p
Lp(Ω) ≤ C3

(
|uτ |2 +

∫ τ+2

τ
|h(s)|2 ds + 1

)
, (14)

for all r ∈ [τ + 1, τ + 2] , and any n ≥ 1, where

C3 := max

{
C1C2 +

2

min {1, 2α̃2} , 2C1C2 +
8k̃

min {1, 2α̃2} |Ω|
}

.

It is well known (see [8] or [11]) that un(·) = un (·; τ, uτ ) converges weakly to
u(·) = u (·; τ, uτ ) in L2 (τ, t; H1

0 (Ω))∩Lp (τ, t; Lp (Ω)), for all t > τ. Thus, from
(14) and Lemma 2.1, we in particular obtain

‖u(τ + 1)‖2 + ‖u(τ + 1)‖p
Lp(Ω) ≤ C3

(
|uτ |2 +

∫ τ+2

τ
|h(s)|2 ds + 1

)
.

Multiplying this inequality by eλ1(τ+1) and using (5), we have

eλ1(τ+1)
(
‖U(τ + 1, τ)uτ‖2 + ‖U(τ + 1, τ)uτ‖p

Lp(Ω)

)
(15)

≤ C3e
λ1

(
eλ1τ |uτ |2 +

∫ τ+2

τ
eλ1s |h(s)|2 ds + eλ1τ

)
,

for all τ ∈ R, and all uτ ∈ L2 (Ω).

As A (τ + 1) = U(τ + 1, τ)A (τ), it follows from (15) that

eλ1(τ+1)
(
‖v‖2 + ‖v‖p

Lp(Ω)

)

≤ C3e
λ1

(
eλ1τ sup

w∈A(τ)
|w|2 +

∫ τ+2

τ
eλ1s |h(s)|2 ds + eλ1τ

)
,

for all v ∈ A (τ + 1), and any τ ∈ R.
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Finally, this inequality implies

eλ1τ
(
‖v‖2 + ‖v‖p

Lp(Ω)

)
(16)

≤ C3e
λ1

(
eλ1(τ−1) sup

w∈A(τ−1)
|w|2 +

∫ τ+1

τ−1
eλ1s |h(s)|2 ds + eλ1(τ−1)

)
,

for all v ∈ A (τ), and any τ ∈ R. Taking into account (6) and (7), from (16)
we obtain (10).

Theorem 2 In addition to the assumptions in Theorem 1, assume moreover
that h ∈ W 1,2

loc (R; L2 (Ω)), and satisfies

lim
τ→−∞ eλ1τ

∫ τ+1

τ
|h′(s)|2 ds = 0 (17)

and

lim
τ→−∞ eλ1τ |h(τ)|2 = 0. (18)

Then A(τ) satisfies that

lim
τ→−∞

(
eλ1τ sup

v∈A(τ)
‖v‖2

H2(Ω)

)
= 0. (19)

PROOF. From inequality (11) in [1], taking t = τ + 3 and ε = 2, we have

|u′n(r)|2 ≤ (4l + 3)
∫ τ+3

τ+1
|u′n(s)|2 ds (20)

+
∫ τ+3

τ+1
|h′(s)|2 ds,

for all r ∈ [τ + 2, τ + 3], and any n ≥ 1.

Analogously, and if we take s = τ + 1 and r = t = τ + 3 in inequality (10) of
[1], we have

∫ τ+3

τ+1
|u′n(s)|2 ds + ‖un(τ + 3)‖2 + 2α̃2‖un(τ + 3)‖p

Lp(Ω) (21)

≤ ‖un(τ + 1)‖2 +
∫ τ+3

τ
|h(s)|2 ds + 4k̃ |Ω|+ 2α̃1 ‖un(τ + 1)‖p

Lp(Ω) ,

for all n ≥ 1.
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From (21) and (20), we obtain

|u′n(r)|2 ≤ (4l + 3)
(
‖un(τ + 1)‖2 + 2α̃1 ‖un(τ + 1)‖p

Lp(Ω)

)

+ (4l + 3)
(∫ τ+3

τ
|h(s)|2 ds + 4k̃ |Ω|

)

+
∫ τ+3

τ+1
|h′(s)|2 ds,

for all r ∈ [τ + 2, τ + 3], and any n ≥ 1.

Owing to this inequality and (14), there exists a constant C̃1 > 0 such that

|u′n(r)|2 ≤ C̃1

(
|uτ |2 +

∫ τ+3

τ

(
|h(s)|2 + |h′(s)|2

)
ds + 1

)
, (22)

for all r ∈ [τ + 2, τ + 3], and any n ≥ 1.

From inequality (13) of [1], and thanks to (22), we have

|∆un(r)|2 ≤ 8C̃1

(
|uτ |2 +

∫ τ+3

τ

(
|h(s)|2 + |h′(s)|2

)
ds + 1

)
+ 8 |h(r)|2

+ 4l2 |un(r)|2 + 4 (f(0))2 |Ω| ,

for all r ∈ [τ + 2, τ + 3], and any n ≥ 1, and therefore, by (11) we obtain that
there exists a constant C̃2 > 0 such that

|∆un(r)|2 (23)

≤ C̃2

(
|uτ |2 +

∫ τ+3

τ

(
|h(s)|2 + |h′(s)|2

)
ds + 1 + sup

r∈[τ+2,τ+3]
|h(r)|2

)
,

for all r ∈ [τ + 2, τ + 3], and any n ≥ 1.

It is well known that, in particular, un(·) = un (·; τ, uτ ) converges weakly to
u(·) = u (·; τ, uτ ) in L2 (τ + 2, τ + 3; H1

0 (Ω)) and u (·; τ, uτ ) ∈ C0 ([τ + 2, τ + 3] ; H1
0 (Ω)) .

Then, by Lemma 2.1, inequality (23) and the equivalence of the norms |∆v|
and ‖v‖H2(Ω), we have that there exists a constant C̃3 > 0 such that

‖u(r; τ, uτ )‖2
H2(Ω) (24)

≤ C̃3

(
|uτ |2 +

∫ τ+3

τ

(
|h(s)|2 + |h′(s)|2

)
ds + 1 + sup

r∈[τ+2,τ+3]
|h(r)|2

)
,

for all r ∈ [τ + 2, τ + 3], any τ ∈ R, and uτ ∈ L2(Ω).

Now, observe that by Cauchy inequality,

|h(r)| ≤ |h(τ + 2)|+
(∫ τ+3

τ+2
|h′(s)|2 ds

)1/2

,
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for all r ∈ [τ + 2, τ + 3]. Thus, from (24), and using (5), we deduce that there
exists a constant C̃4 > 0 such that

‖U(τ+2, τ)uτ‖2
H2(Ω) ≤ C̃4

(
|uτ |2 +

∫ τ+3

τ

(
|h(s)|2 + |h′(s)|2

)
ds + |h(τ + 2)|2 + 1

)
,

for all τ ∈ R, uτ ∈ L2(Ω).

From this inequality, and the fact that A(τ) =U(τ, τ − 2)A(τ−2), we obtain

‖v‖2
H2(Ω) ≤ C̃4

(
sup

w∈A(τ−2)
|w|2 +

∫ τ+1

τ−2

(
|h(s)|2 + |h′(s)|2

)
ds + |h(τ)|2 + 1

)
,

(25)
for all v ∈ A(τ), and any τ ∈ R.

Now, thanks to (6), (7), (17) and (18), we obtain (19) from (25).

Remark 3 In theorems 1 and 2, the pullback attraction property is not needed.
In fact, both theorems are also valid for any family {A(τ) : τ ∈ R} of
nonempty subsets of L2(Ω) satisfying (7) and the semi-invariance property

A(τ + n) ⊂ U(τ + n, τ)A(τ),

for all τ ∈ R and any integer n ≥ 1.

Acknowledgements. We would like to thank one of the referees of our previ-
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