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1. Introduction 

 

Transportation is a classic discipline with a long tradition in the industrial engineering research 

(see for example Xie and Jia, 2012; Yan et al. 2012; Yin and Kim, 2012; Keshavarz and Khorram, 

2011; or Muñuzuri et al. 2010 amongst others as recent contributions). A particular case of 

transportation is vertical transportation which considers the vertical transportation of 

passengers or freight in a building through its floors. In fact, in the late years, the rapid growth 

of the building industry and associated technologies has been demanding parallel growth in 

the field of vertical transportation. The progressive price increase in the urban centres of the 

larger cities makes the necessary intensive ground exploitation by means of the construction 

of tall buildings (see figure 1 depicting an image of the Manhattan business centre). To manage 

with the vertical transportation system of such buildings, the installation of synchronized 

elevator groups in is a usual practice. 

 
Figure 1. A landscape of the upper Manhattan skyscrapers from the Empire State Building 

 



The main objective of an optimal elevator group control system (EGCS) is to provide a good 

quality of service to its passengers (see CIBSE Guide, 2005). The problem tackled by every EGCS 

is to solve the assignment process of a car of the elevator group to a hall call made by a 

passenger wanting to travel from a floor to other different floor in the building. When a 

passenger presses a landing call button of the panel in the hall, he/she expects that a car of the 

EGCS will arrive in a few seconds. This assignment process must be done analysing the 

different options and selecting the most suitable car to serve the person having issued the call. 

This assignment must be done optimizing the waiting times that the passenger will 

experiment. The most common optimization criterion (Cortés et al., 2006) for quality of service 

in elevator group controllers is the reduction of the average journey time (AJT) which consists 

of the waiting time queuing in the hall (average waiting time, AWT) plus the travel time to 

destination inside the car (average travel time, ATT). 

 

The average waiting time (AWT) is the actual time a prospective passenger waits after 

registering a hall call (or entering the waiting queue if a call has already been registered) until 

the responding elevator doors begin to open. Following the CIBSE Guide, for car loads less than 

50%, AWT can be approximated by (1), while for car loads over 50%, it is approximated by (2) 
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Where INT is the interval (the main floor arrival average time), P is the number of passengers, 

and CC is the rated car capacity.  

 

The average travel time (ATT) is the time the responding elevator doors begin to open to the 

time the doors begin to open again at the passengers’ destination. Following the CIBSE Guide 

again, it is calculated as (3). 
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Where H is the highest reversal floor, S the expected number of stops, tv the single floor transit 

time (in seconds), tS the stopping time (in seconds), tP the passenger transfer time (in seconds), 

and L the number of cars within the elevator group. 

 

Therefore, the problem that an EGCS must tackle consists of the allocation of a car of the 

group to a hall call made by a passenger based on a criterion such as the AJT, and it is a NP-

Hard problem that presents n
k
 possible combinations for n floors and k lifts, and therefore it is 

an extreme computational complexity problem. 

 

In the recent years, research on EGCS for vertical transportation in buildings is gaining a 

considerable interest from the scientific community. Although mathematical approaches have 

been sometimes considered (see Zhang et al., 2010; Mulvaney et al., 2010; or Utgoff and 

Connell, 2012), advanced approaches including soft computing or artificial intelligence 

algorithms are prevailing to provide optimal car-call allocation for EGCS in nowadays. In this 

line, genetic algorithms have been widely used providing good and valuable results since a long 

time (Fujino et al., 1997; Cortés et al., 2004; Tyni and Ylinen, 2006) and research continues 

being undertaken in this field (Hirasawa et al., 2008; Bolat et al., 2010). Also, other soft 

computing techniques such as particle swarm optimization have been also applied (Li et al., 

2007), as well as immune systems algorithms (Li et al., 2007). Tabu search has attracted less 



attention than genetic algorithms, although recently two algorithms based on deterministic 

and probabilistic approaches have been presented to deal with the problem (Bolat et al., 

2011). Lastly, control systems based on fuzzy logic are being enthusiastically tried recently 

(Jamaludin et al., 2010; Rashid et al., 2011; or Cortés et al., 2012) too. 

 

Recently, viral systems which are a novel bio-inspired technique has been introduced in the 

literature devoted to applied bio-inspired algorithms (Cortés et al., 2008) providing successful 

applications to the Steiner problem in networks (Cortés et al., 2010), knapsack problem 

(Suryadi and Kartika, 2011), vehicle routing problem (Pérez-Martínez et al., 2011), or 

scheduling problems (Cortés et al., 2012). It is interesting to note that an application of the 

biological virus concept was developed by Kubota et al. (1996) as a genetic operator of a 

genetic algorithm applied to a self-organizing manufacturing system. 

 

Here, we have applied this novel technique to deal with the optimization of the hall call-car 

allocation system of the EGCS. Following the method, cells are defined as the feasible solutions 

that are encoded following the Cortés et al. (2004) strategy that has been widely accepted by 

the vertical transportation scientific community. In addition, we follow the Bolat et al. (2011) 

methodology to make a quick evaluation of the cell fitness. 

 

The remaining of the paper deals with the presentation of the problem and the adaptation of 

the viral system algorithm to solve the car-call allocation optimization in EGCS, which is shown 

in section 2. Then in section 3, experimental results are provided for tall buildings from 10 to 

24 floors, and several car configurations from 2 to 6 cars. Finally, the main conclusions are 

drawn in the final section.  

 

 

2. The viral system approach to optimize the elevator group control system 

 

The elevator group control system of a building includes a set of microchips in controllers to 

determine which car of the group should serve each hall call. When passengers arrive to the 

hall of the building and press an up or down button the EGCS must assign a car of the group to 

such call.  

 

Passengers arrive to a building following specific traffic patterns. Four main patterns are 

traditionally catalogued (see CIBSE Guide, 2005 and Benmakhlouf and Khatorfor, 1993 

amongst others). Figure 2 shows usual patterns in an office building. Uppeak traffic 

characterizes a larger than average number of up landing calls; it typically appears when 

workers arrive to the building in the early morning to start their working day. Downpeak traffic 

characterizes a larger than average number of down landing calls; it takes place when the 

workers leave the building to go back home. A lunchpeak traffic pattern takes place in the 

middle of the day, and it is due to the appearance of up and down peaks; it appears usually for 

lunching at midday. Finally interfloor traffic corresponds to the rest of the day; this pattern is 

characterized for a low demand (usually around a 4% of the population) in both directions. 



 
Figure 2. Traffic pattern in an office building 

This section presents an algorithm that assigns the most suitable car to a hall call made by a 

passenger arriving to the hall of a building. The next subsections show the solution encoding 

(cell genome in terms of the viral system); the evaluation of the solution (that is, the fitness 

evaluation of such genome when infected by a virus); and the details of the viral system 

implementation. 

 

2.1. Cell genome definition 

 

The possible solutions for the allocation of a hall call to a car are encoded according to binary 

array (see Cortés et al., 2004 for a first proposal). So, one array is associated to each car in the 

elevator group, and is defined by representing the up and down calls at each floor that are 

assigned to this specific car. So the length of each array is equal to 2×(Number_of_Floors-1). 

 

So, the first Number_of_Floors-1 integers correspond to the hall calls in the upward direction 

from the ground floor to the highest floor. The second Number_of_Floors-1 integers 

correspond to the hall calls in the downward direction from the highest floor to the ground 

floor. Figure 3 depicts the solution encoding. 

 

The array holds the information referring to the hall calls by means of a binary codification. A 

bit 0 indicates no hall call at that floor, and a bit 1 indicates an existing hall call at that floor. 

 
Figure 3. Solution encoding for a twelve story building corresponding to one car of the group and its 

associated physical button box 

 

 

2.2. Evaluation of the cell fitness  

 

Each possible car-hall call allocation (cell) is evaluated following the methodology described in 

Bolat et al. (2011), which has been proved to be an easy-to-implement and fast-to-compute 

technique. 
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So, given the following parameters:  

- L1: ground floor level 

- L2: highest down hall call level 

- L3: number of down hall calls between L1 and L2. 

- L4: highest up hall call level 

- L5: number of up hall calls between L1 and L4. 

- L6: lowest down hall call level 

- t: door opening and closing time 

- tp: passenger transfer time 

- Hct: Highest car trip time 

- Lct: lowest car trip time 

 

The cell fitness, f, is calculated depending on the type of passengers’ movements. So, a fitness 

value is firstly calculated for each car, i, in the group taking into account the three different 

cases of table 1. Each formula relates in which floor the passenger is taken and in which floor 

the passenger is transferred. So, as a general definition for L, it shows the floors where 

passengers are get on and off. In case of no hall calls fi = 0. 

 

Table 1. Fitness evaluation as function of the traffic pattern in the building 

Uppeak traffic pattern Downpeak traffic pattern Lunchpeak or interfloor traffic patterns 

fi = t(L4-L1) + tp(L5-L1) fi = t(L2-L1) + tp(L3-L1) fi = t(L4-L1) + t(L2-L4) + t(L2-L6) + tp(L3+L5-L1) 

 

Finally the group fitness evaluation is given by (4), and the final fitness is evaluated for the 

proposed assignment and given in (5). Parameters k1 and k2 are chosen equal to 1.5 and 2 

following the recommendations given in Bolat et al. (2011).  
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2.3. Viral system algorithm 

 

A viral system algorithm (VS) is inspired in the virus behaviour. Viruses are intracellular 

parasites shaped by nucleic acids, such as DNA or RNA, and proteins. The protein generates a 

capsule, called a capsid, where the nucleic acid is located. The capsid plus the nucleic acid 

shape the nucleus-capsid, defining the virus. Although there are many different types of 

viruses developing with different behaviours when infected cells, here we follow the specific 

case of phages. A phage is any one of a number of viruses that infect bacteria. They do this by 

injecting genetic material, which they carry enclosed in an outer protein capsid.   

 

One of the main characteristics of phages is the replication mechanism which follows a lytic 

replication process. A lytic replication process follows the next steps: (i) the virus is adhered to 

the border of the bacterium. After that, the virus penetrates the border being injected inside 

this one; (ii) the infected cell stops the production of its proteins, beginning to produce the 

phage proteins, starting to replicate copies of the virus nucleus-capsids; and (iii) after 

replicating a number of nucleus-capsids, the bacterium border is broken, and new viruses are 

released, which can infect near cells. 

 



As an alternative to lytic replication, some viruses are capable of lodging in cells giving rise to 

the lysogenic replication. A lysogenic replication follows the next steps: (i) the virus infects the 

host cell, being lodged in its genome, where a pro-phage (mutation) can arise; (ii) the virus 

remains hidden inside the cell during a while until it is activated; and (iii) the replication of cells 

altered, with proteins from the virus, starts. So, lysogenic replication produces the genome 

alteration of the cell leading to a procedure similar to a mutation process. 

 

On the other hand, phages have the property of leading an antigenic response in the infected 

organism. In these situations an immune response is originated causing the creation of 

antibodies. So, in such case the infection is stopped for that cell. 

 

So in computational terms, VS follows an exploration process that combines lytic replication to 

search the neighbourhood of the existing solutions together with a mutation process, including 

some randomness due to the probability of developing antibodies. VS has proved effectiveness 

for massive and selective infections (Cortés et al., 2008; Cortés et al., 2010). However, here we 

opted for a selective infection due to its lighter computational load required by a real time 

problem as the EGCS. Furthermore, here we have developed the evolution of a virus through 

the organism instead of a population of virus trying to make faster the computation of the 

algorithm too.  

 

Once a selective infection takes place and viruses are liberated inside the organism, the virus 

selects a cell with a low value of fitness, f(x), in the neighbourhood. This infected cell is stored 

in the clinical picture (accordingly with viral system notation). The clinical picture includes the 

encoding of the solution that is being explored (the genome of the cell that is infected, in 

biological terms) and the number of nucleus-capsids being replicated, NR, (for lytic 

replications) or the number of hidden generations, IT, (for lysogenic replications). Thus the 

state of each virus is given by the three-tuple “cell genome-NR-IT”.  

 

Every cell infected by a virus develops a lytic or a lysogenic replication according to a 

probability plt (for lytic replication) or plg otherwise, where plt + plg  = 1. 

 

In case of lysogenic replications, the activation of the mutation process takes place after a limit 

of iterations has been reached (LIT). The value of LIT depends on the cell’s health conditions, 

so a healthy cell (high value of the objective function being minimised, f(x)) will have a low 

infection probability, i.e. the value of LIT will be higher. An unhealthy cell, on the contrary, will 

have a lower value of LIT. See Cortés et al. (2008) for adjusting the value of LIT.  

 

In case of lytic replications, a number of virus replications (NR) is calculated for each iteration 

as a function of a binomial variable, Z, adding its value to the current NR in the clinical picture. 

Z is calculated using a Binomial distribution given by the maximum level of nucleus-capsids 

replicated, LNR, and the single probability of one replication, pr. So, Z = Bin (LNR , pr). LNR 

represents the limit to break the cell border and to release the lodged viruses. As in the 

lysogenic cycle, the value of LNR is set depending on the value of the objective function being 

minimised, f(x). Thus cells with higher f(x) have lower probability of getting infected, and 

therefore the value of LNR will be higher. See Cortés et al. (2008) for adjusting the value of 

LNR. 

 

However, the virus will not be able to infect those cells that have developed antigens. Given 

pan(x) the probability of generating antibodies for a cell x, the antibody response is defined by 

the random variable A(x) as a Bernoulli: A(x) = Ber (pan(x)). If cell x generates antibodies, the 

cell is not infected, but starts a lysogenic process.  

 



Higher values of f(x) imply healthy cells and therefore cells that have a higher probability of 

developing antigenic responses. On the contrary, cells with low value of f(x) imply unhealthy 

cells with lower probability of developing antigenic responses. This effect is represented by an 

hypergeometric function, where the cell with an inverse objective function evaluation, 1/f(x), 

in ranking position-i, has a probability of generating antibodies, pan(x), that is given by q(1-q)
i
, 

with q equal to the probability of generating antibodies for the worst healthy cell. Finally, a 

residual probability remains, which is added to the worst cell. 

 

Figure 4 defines the algorithm evolution for the lytic replication. The initial state is on the left-

hand side: the virus process starts with the virus breaking the border and starting the infection 

of new cells in its neighbourhood. The virus selects the most promising cell, which is the least 

healthy cell. The Organism process is characterized by the probability of antigenic response in 

the least healthy cell. Those cells developing antibodies are not infected. Finally, the right hand 

side of the figure defines the new clinical picture, with new infected cells lodging viruses. The 

cells generating antibodies follow a new lysogenic replication in order to gain computational 

efficiency. 

 

 
Figure 4. Viral system lytic replication evolution concept 

 

 

The flowchart of the algorithm is presented in figure 5. 
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Figure 5. Viral system flowchart 

 

 

3. Experimental results 

 

The experimentation was carried out using an Intel Pentium M Processor 740 at 1.73 GHz with 

2 GB RAM, and algorithms were encoded using software Matlab version 7.0. 

 

Tests were carried out for tall buildings from 10 to 24 floors at 3.3 metres of distance. We also 

considered different car configurations for the EGCS: 2, 3, 4 and 6 cars. Table 2 gives the main 

specifications of the building and elevators respectively. Total time of a car stopping is given by 

ts = topen+tclose+tp, where topen is the time for opening door, tclose is the time for closing door, and tp 

is the time for passenger transfer. 

 

Parameters of the viral system algorithm were calibrated to the following values (table 3) after 

testing and trying with different combinations. The algorithm was 10,000 times iterated.  

 

Define type of replication: plt:  lytic replication / plg: lysogenic replication 

Lytic replicationLysogenic replication

Infected cell replicates nucleus-capsids

NRi ≥ LNRi , for 

i infected cell

Neighbourhood search: identify lowest healthy cell

NO

YES

Develops antigenic 

response?

YES

Store value

Best solution?
YES

NO

NO

ITi ≥ LITi , for i

infected cell

Mutate cell genome encoding

NO

ITi = ITi + 1, for i infected cell

YES

New cell infected by virus

New cell infected by virus

Store value

YES

Best solution?

NO

Update NR parameter for infected cell

Initiate: inoculate a virus in a randomly selected cell



Table 2. Specifications of the elevator system 

Items for elevator system Value 

Car capacity (people) 8 

Time of travel between floors 4.5 (s) 

Time for opening door 2.5 (s) 

Time for closing door 3 (s) 

Time for passenger transfer 3 (s) 
 

Table 3. Specifications of the elevator system 

Parameter Value 

Lytic probability / Lysogenic probability plt = 0.7 / plg = 0.3 

LNR (limit of nucleus-capsids) 15 

LIT (limit of iterations) 10 

Antigenic response probability pan = 0.053  

Single replication probability pr = 0.7 
 

 

We compared the viral system algorithm with the genetic algorithm, and the tabu and 

probabilistic tabu search implementations addressed in Bolat et al (2010), and Bolat et al. 

(2011). Average journey time analysis is provided in table 4 for each approach for buildings 

that have 10 to 24 floors and 2 to 6 cars.  

 

Table 4. Average Journey Time comparison 

Floors 
2 cars 3 cars 4 cars 6 cars 

GA
1
 TS

2
 PTS

3
 VS

4
 GA TS PTS VS GA TS PTS VS GA TS PTS VS 

10 

58.5(SPC) 

58.5 58.5 45.5 

41(SPC) 

42.0 41.0 31.4 

37.5(SPC) 

41.3 31.5 26.8 

32.5(SPC) 

33.0 27.5 17.7 61.5(TPC) 40(TPC) 35.25(TPC) 31.5(TPC) 

58.5(UC) 39(UC) 37.5(UC) 31(UC) 

12 

60(SPC) 

63.0 64.5 57.9 

46(SPC) 

46.0 45.0 34.3 

42(SPC) 

40.5 42.0 32.5 

36(SPC) 

37.0 31.5 22.4 60(TPC) 47(TPC) 38.25(TPC) 32.5(TPC) 

60(UC) 47(UC) 39.75(UC) 39(UC) 

14 

82.5(SPC) 

82.5 76.5 71.9 

54(SPC) 

56.0 51.0 47.7 

46.5(SPC) 

46.5 46.5 39.3 

40(SPC) 

48.5 40.5 27.0 75(TPC) 53(TPC) 45(TPC) 40(TPC) 

76.5(UC) 54(UC) 45.75(UC) 40(UC) 

16 

72(SPC) 

72.0 72.0 86.8 

56(SPC) 

60.0 52.0 58.7 

48.75(SPC) 

48.8 48.8 45.0 

49.5(SPC) 

49.5 47.5 33.8 75(TPC) 52(TPC) 46.5(TPC) 45.5(TPC) 

72(UC) 61(UC) 48(UC) 46(UC) 

18 

90(SPC) 

87.0 87.0 66.6 

66(SPC) 

65.0 64.0 59.8 

60(SPC) 

60.8 59.3 57.0 

49(SPC) 

67.5 50.0 37.7 90(TPC) 65(TPC) 63.75(TPC) 53.5(TPC) 

84(UC) 66(UC) 61.5(UC) 61(UC) 

20 

93(SPC) 

108.0 99.0 99.6 

89(SPC) 

84.0 76.0 60.3 

75.75(SPC) 

74.3 59.8 64.6 

66(SPC) 

70.0 66.5 43.4 93(TPC) 74(TPC) 69(TPC) 64.5(TPC) 

99(UC) 84(UC) 66(UC) 67.5(UC) 

22 

105(SPC) 

105.0 109.5 96.6 

87(SPC) 

87.0 89.0 82.4 

78.75(SPC) 

81.0 75.8 60.4 

68.5(SPC) 

71.0 64.5 47.9 120(TPC) 85(TPC) 77.25(TPC) 69.5(TPC) 

105(UC) 81(UC) 76.5(UC) 66.5(UC) 

24 

115.5(SPC) 

115.5 111.0 117.3 

95(SPC) 

90.0 90.0 68.1 

80.25(SPC) 

87.8 74.3 72.7 

64(SPC) 

66.5 63.0 53.4 115.5(TPC) 89(TPC) 78.75(TPC) 67(TPC) 

115.5(UC) 90(UC) 73.5(UC) 65.5(UC) 
1 

Genetic algorithm (Bolat et al., 2010); SPC: single point crossover; TPC: two point crossover; UC: uniform crossover 
2
 Tabu search (Bolat et al., 2011) 

3
 Probabilistic tabu search (Bolat et al., 2011) 

4
 Viral system 

 

The results confirm that the viral system approach outperforms the genetic and tabu 

approaches practically in every configuration. Results provided for VS are only slightly worse 

for specific configurations given by two cars. Just, these cases represent those situations where 

an EGCS is less necessary and soft computing approaches can be avoided by using traditional 

heuristic dispatching rules. When the complexity of the EGCS increases, as well as the height of 

the building, VS provides very interesting results outperforming the AJT provided by other 

methods.  



 

Figure 6 depicts the evolution of AJT when the number of floors grows and the number of cars 

decreases. The increase of AJT is especially significant for the case of 2 cars and more than 16 

floors. 

 
Figure 6. VS AJT evolution with respect to the number of cars in the EGCS, and floors in the building 

 

The computational required for each approach is provided in table 5 for the considered 

configurations.  

 

PTS produced the quickest results for low car configurations (2 and 3 cars) although its 

computational time increases significantly for higher configurations. In general terms, GA 

provided the best results from a computational perspective, specifically when the size of the 

group grows (cases with 4, and especially 6 cars). The computational time provided by the viral 

system algorithm was better than the results provided by the tabu approaches especially for 

those complex cases (that is, 4 to 6 cars in the group, and tall buildings). Results provided by 

the VS were bounded in general terms and did not rise as significantly as the tabu approaches 

following a more moderate increase as the genetic approaches. 

 



Table 5. Computational time comparison 

Floors 
2 cars 3 cars 4 cars 6 cars 

GA
1
 TS

2
 PTS

3
 VS

4
 GA TS PTS VS GA TS PTS VS GA TS PTS VS 

10 

1.6 (SPC) 

3.2 0.5 6.5 

2.6 (SPC) 

4.4 0.8 8.1 

2.9 (SPC) 

9.3 6.2 9.7 

1.9 (SPC) 

43.6 27.3 12.6 3.0 (TPC) 2.5 (TPC) 2.2 (TPC) 1.9 (TPC) 

1.6 (UC) 2.4 (UC) 1.8 (UC) 2.0 (UC) 

12 

2.0 (SPC) 

6.5 0.4 6.6 

2.3 (SPC) 

4.8 0.8 8.1 

1.7 (SPC) 

22.0 2.9 9.7 

2.0 (SPC) 

57.2 22.3 13.0 1.9 (TPC) 2.5 (TPC) 1.7 (TPC) 2.5 (TPC) 

2.2 (UC) 2.5 (UC) 1.7 (UC) 2.0 (UC) 

14 

2.2 (SPC) 

5.0 0.5 6.5 

2.2 (SPC) 

9.2 0.8 8.1 

1.8 (SPC) 

30.7 4.7 9.8 

2.0 (SPC) 

81.6 29.6 12.9 2.0 (TPC) 2.2 (TPC) 1.7 (TPC) 2.0 (TPC) 

2.0 (UC) 2.6 (UC) 1.5 (UC) 2.0 (UC) 

16 

2.1 (SPC) 

6.8 0.5 7.0 

2.2 (SPC) 

9.9 0.7 8.3 

1.8 (SPC) 

28.9 5.1 9.8 

1.8 (SPC) 

104.1 16.9 13.0 2.3 (TPC) 2.4 (TPC) 1.7 (TPC) 1.9 (TPC) 

2.1 (UC) 2.2 (UC) 1.7 (UC) 1.7 (UC) 

18 

2.3 (SPC) 

4.8 0.6 6.5 

2.4 (SPC) 

13.5 1.5 8.3 

1.7 (SPC) 

67.5 8.4 9.9 

1.9 (SPC) 

183.5 46.2 13.0 2.3 (TPC) 2.3 (TPC) 1.7 (TPC) 1.9 (TPC) 

2.0 (UC) 2.2 (UC) 1.8 (UC) 2.1 (UC) 

20 

2.0 (SPC) 

4.6 0.6 6.8 

4.8 (SPC) 

13.0 1.9 8.4 

1.7 (SPC) 

57.0 6.3 9.8 

2.1 (SPC) 

167.8 57.5 13.1 2.3 (TPC) 2.4 (TPC) 1.9 (TPC) 2.1 (TPC) 

2.1 (UC) 2.4 (UC) 1.9 (UC) 1.9 (UC) 

22 

2.2 (SPC) 

5.4 0.6 6.6 

2.3 (SPC) 

9.4 2.0 8.3 

1.9 (SPC) 

50.4 14.0 9.9 

1.8 (SPC) 

173.0 60.8 13.2 2.2 (TPC) 2.5 (TPC) 1.8 (TPC) 1.9 (TPC) 

2.0 (UC) 2.4 (UC) 1.9 (UC) 2.1 (UC) 

24 

2.3 (SPC) 

6.1 0.7 7.0 

2.7 (SPC) 

16.3 2.1 8.3 

1.8 (SPC) 

89.4 12.8 10.0 

1.8 (SPC) 

134.4 47.8 13.3 2.1 (TPC) 2.8 (TPC) 1.8 (TPC) 1.9 (TPC) 

2.0 (UC) 2.5 (UC) 1.8 (UC) 2.5 (UC) 
1 

Genetic algorithm (Bolat et al., 2010); SPC: single point crossover; TPC: two point crossover; UC: uniform crossover 
2
 Tabu search (Bolat et al., 2011) 

3
 Probabilistic tabu search (Bolat et al., 2011) 

4
 Viral system 

 

Figure 7 shows the computational time evolution with respect to the number of floors, and the 

number of cars. The higher values are obtained for cases of higher number of cars, and tallest 

buildings. 

 

 
Figure 7. Computational time evolution with respect to the number of cars in the EGCS, and floors in the 

building 



 

Another important aspect arises when analyzing the number of iterations of the viral system. If 

the number of iterations is reduced from 10,000 to 1,000 the quality of the solutions is 

practically the same (AJT is increased only in a 1 to 2% as average) and the computational 

times are drastically reduced to a value in the order of magnitude of genetic implementations. 

An example is provided for the case of a building with 24 floors and 6 cars in figure 8: the best 

value is reached at the 446th iteration providing a fitness value equal to 53.42 seconds. The 

computational time required to get such value was 2.5 seconds, very similar to the times 

required in the genetic implementations. In addition, another good fitness value (55.04 

seconds) was reached at the 751st iteration. In general for every case, a maximum of 1,000 

iterations in the VS can be considered enough, and it provides values around 2 seconds which 

is suitable time consumption for a real time control as an EGCS requires. 

 

 

 
Figure 8. Learning curve of the algorithm for a building with 24 floors and 6 cars for 1,000 iterations 

 

 

4. Conclusions 

 

This paper presents the application of a novel bio-inspired algorithm called viral system to the 

car dispatching problem for multi-cars elevator group control systems. The problem arises 

when passengers make a landing call in the hall of the building wanting to travel from a floor 

to other floor of the building. The algorithm makes use of a binary encoding strategy to 

identify the cars being assigned to the landing calls, and of a fitness estimation allowing a quick 

evaluation. This estimation requires the identification of the type of traffic pattern in the 

building: uppeak, downpeak, lunchpeak or interfloor. 

 

The viral system algorithm provided valuable figures for the average journey time (AJT) when 

was compared to genetic algorithms, and tabu search approaches that have proven efficiency 

in the vertical transportation literature. The experiments were undertaken in tall buildings 

from 10 to 24 floors, and several car configurations from 2 to 6 cars, and the better results 

were obtained for the more complex configuration implying larger car groups and taller 

buildings.  

 

The computational time required by the VS to find the best solution was lower than the tabu 

approaches, and it was in the order of magnitude of the genetic implementations when using 



1,000 iterations for the VS. It can be said that the required computational time was adequate 

when dealing with a real time problem such as the elevator group control system. In addition, 

the better results attending to the computational time were again obtained for the more 

complex configurations. Even more, it has to be noted that results obtained with a CPU can be 

limited with respect the real industry operation. In practice, real implementations are installed 

on proprietary microchips requiring lighter implementations. Bounding this fact, the real 

implementation of the VS algorithm in the industry appears to be possible. For example, in real 

cases an alternative can be calculating the fitness not every time but in a selective manner, or 

stopping the algorithm after a lower number of iterations. Of course all these decisions are 

very dependent on the computation speed of the electronic microchips installed by the 

company in the controller, and could affect the quality of the implemented algorithm. 
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