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Abstract

This paper introduces a method for obtaining stable and robust self-sustained oscillations in a class of single input nonlinear
systems of dimensionn ≥ 2. The oscillations are associated to a limit cycle that is produced in a second-order subsystem by
means of an appropriate feedback law. Then, the controller is extended to the full system by a backstepping procedure. Itis shown
that the closed-loop system turns out to be generalized Hamiltonian and that the limit cycle can be thought as born in a Hopf
bifurcation after moving a parameter.
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I. I NTRODUCTION AND STATEMENT OF THE PROBLEM

Self-sustained oscillations are one of the distinctive behavioral characteristics of nonlinear systems. Whenever anoscillatory
behavior is found or is to be built, there is or must be introduced an underlying nonlinearity. In this paper, a procedure to
obtain a nonlinear feedback law that renders a class of single input cascade systems oscillatory is introduced. The oscillation is
associated with a stable limit cycle and therefore it is self-sustained and robust. The method is based on matching the open-loop
system to a closed-loop one that displays such a stable limitcycle. The feedback law is obtained in two steps. In the first step,
a second-order subsystem is controlled to yield a robust nonlinear oscillator. To this end, a fourth degree polynomial Lyapunov
function is introduced that guarantees the appropriate properties. Then, the cascade structure of the open-loop system allows
us to apply backstepping to recursively obtain the feedbacklaw for the full system. A very appealing byproduct is that the
closed-loop system obtained has a generalized Hamiltonianstructure [1].

The problem considered here is, therefore, the synthesis oflimit cycles and belongs to the class of so-called inverse problems
in dynamical systems. Several authors have considered thisproblem in the past (see for instance [2], [3], [4] and references
therein) by working with systems of moderate dimension. Oneof the interests of the algorithm proposed in this paper is its
ability to cope with arbitrary dimensions. Related material can be found in [5].

To set the problem under study in a precise form, consider thecascade systems for which the backstepping method is
applicable. In particular, we will be concerned with the special class of strict-feedback systems [6] given by:

ẋ1 = x2,

ẋ2 = f0(x1, x2) + g0(x1, x2)x3

ẋ3 = f1(x1, x2, x3) + g1(x1, x2, x3)x4
... (1)

ẋn−1 = fm−1(x1, x2, . . . , xn−1) + gm−1(x1, x2, . . . , xn−1)xn

ẋn = fm(x1, x2, . . . , xn) + gm(x1, x2, . . . , xn)u

with m = n− 2 andgi 6= 0, ∀i in the domain of interest. The form for the first equation is quite usual, mainly in mechanical
and electrical systems.

Our goal is to design a feedback lawu for system (1) that causes it to oscillate in a stable and robust way. This will
be obtained through a controller such that the closed-loop system displays a limit cycle as a limit set. This limit cycle is
responsible for the oscillatory behavior.

The paper is organized as follows. In Section II, forn = 2, a control law that renders systems of the form (1) oscillatory
is proposed. Next, in Section III the law is extended to arbitrary dimensionn. The paper closes with a section of conclusions
and some technical details are relegated to the Appendix.
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II. OSCILLATIONS IN TWO-DIMENSIONAL SYSTEMS

We start with the subsystem formed by the first two equations of (1)

ẋ1 = x2,
ẋ2 = f0(x1, x2) + g0(x1, x2)x3,

(2)

wherex3 has to be interpreted as a virtual controlx3 = α0(x1, x2). Now we design a feedback law to render this two-
dimensional subsystem oscillatory. To that end we adopt as reference behavior that of the nonlinear oscillator,

ẋ1 = x2,
ẋ2 = −x1 − k0x2Γ(x1, x2),

(3)

whereΓ(x1, x2) = x21 + x22 − µ, the constantsk0 andµ are positive, and for the sake of simplicity we have considered a
unitary natural frequency. Then, adopting the feedback law

x3 = α0(x1, x2) = − 1

g0
[x1 + k0x2Γ(x1, x2) + f0], (4)

system (2) is converted into system (3), and thus behaves as astable nonlinear oscillator. Indeed, if we choose the Lyapunov
function candidate

V0(x1, x2) =
1

4
Γ(x1, x2)

2, (5)

and compute its orbital derivative for (3), it turns out that

V̇0(x1, x2) = (x1ẋ1 + x2ẋ2)Γ(x1, x2) = −k0x22Γ(x1, x2)2, (6)

so the functionV0 is monotone decreasing when bothx2 6= 0 andΓ(x1, x2) 6= 0, and it is constant when eitherx2 = 0 or
Γ(x1, x2) = 0. Since the only equilibrium point of system (3) is the origin(which is unstable) and there are no other invariant
subsets in the straight linex2 = 0, from LaSalle’s invariance principle, we conclude that theinvariant manifoldx21 + x22 = µ,
corresponding toΓ(x1, x2) = 0, is globally attractive for all initial conditions different from the origin. The corresponding
circle is then a stable (almost) globally attractive limit cycle.

Note that forΓ(x1, x2) 6= 0, system (3) can be written in the form
[
ẋ1
ẋ2

]
=

[
0 1
−1 −k0Γ

] [
x1
x2

]
=

[
0 1

Γ
− 1

Γ −k0

] [
x1Γ
x2Γ

]
,

where [x1Γ, x2Γ]
T
= ∂V0/∂x, so it has the structure of a generalized Hamiltonian system[1]. Also, if we took k0 = 0 in

(3), the system would become a harmonic oscillator and the origin would be a stable center, the origin being stable but not
asymptotically stable. The geometric shape ofV0 is discussed in [7].

Remark 1: It is easy to see that this target system can also be obtained when the first equation of (1) takes the form:

ẋ1 = ψ(x1, x2)

whereψ is invertible with respect to its second argument, so a function ϕ exists such thatx2 = ϕ(x1, ψ). Indeed, if we change
the variables by the transformationx2 → z = ψ(x1, x2) the first two equations become

ẋ1 = z

ż = f̄0(x1, z) + ḡ0(x1, z)x3

with

f̄0(x1, z) =

(
∂ψ

x1
z +

∂ψ

x2
f0

)∣∣∣∣
x2=ϕ(x1,z)

and ḡ0 =

(
∂ψ

x2
g0

)∣∣∣∣
x2=ϕ(x1,z)

.

Thus, the form (1) is recovered. However, for simplicity’s sake, in the rest of this paper we will be concerned only with
systems of form (1).

Remark 2: In this paper, we are interested in the generation of periodic movements in which the two first state variables
behave asΓ = x21 + x22 − µ = 0. Obviously ,other choices of the target limit cycleΓ̂(x1, x2) = 0 are possible, and then the
target system would be expressed by [

ẋ1
ẋ2

]
=

[
0 1

Γ̂
− 1

Γ̂
−k0

][
Γ̂ ∂Γ̂

∂x1

Γ̂ ∂Γ̂
∂x2

]
,

with Hamiltonian functionĤ = Γ̂2/2. The study of the class of open-loop systems for which this more general target system
is reachable by an appropriate control law is outside of the scope of this paper and will be considered elsewhere.
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III. H IGHER-DIMENSION SYSTEMS

In this section, the casen > 2 is considered by using the backstepping method starting from the two-dimensional system
(2). This two-dimensional system fulfills the following assumption, which is stated in a general way in order to apply the
method recursively.

Assumption 1: For the system
ẋ = Fi(x) +Gi(x)u, (7)

wherex ∈ Ri+2 is the state andu ∈ R is the control input, there is a continuously differentiable control law,u = αi(x), and
a smooth, non-negative, radially unbounded function,Vi : R

i+2 → R, such that1

(
∂Vi
∂x

(x)

)T

[Fi(x) +Gi(x)αi(x)] ≤ 0, ∀x ∈ R
i+2. (8)

Below,Mi will denote the largest invariant set for which the equalityof the previous expression holds. Under Assumption 1,
LaSalle’s invariance principle states that for system (7),with u = αi(x), all the trajectories tend to the setMi.

In the first backstep, which corresponds toi = 0, Assumption 1 is fulfilled by system (2) withF0 = [x2, f0]
T , G0 = [0, g0]

T ,
α0(x) given by (4) andV0 = Γ2/4. Also, from (6), it can be seen that

M0 = {(0, 0)} ∪ {(x1, x2) : Γ(x1, x2) = 0}.

The following lemma is a slight modification of Lemma 2.8 in [6].
Lemma 1: Let system (7) be augmented in the following way:

ẋ = Fi(x) +Gi(x)ξ (9)

ξ̇ = fi+1(x, ξ) + gi+1(x, ξ)u, (10)

with gi+1 6= 0 and suppose that (9) satisfies Assumption 1 withξ ∈ R as its control variable. Then, there is a feedback law
that renders all the trajectories tending to the setMi+1 = {(x, ξ) : x ∈ Mi, ξ = αi(x)}. One such control is

u
△
= αi+1(x, ξ) =

1

gi+1

[
−fi+1 − ki+1[ξ − αi(x)] +

(
∂αi

∂x
(x)

)T

[Fi(x) +Gi(x)ξ]−

(
∂Vi
∂x

(x)

)T

Gi(x)

]
, ki+1 > 0. (11)

Proof: As is usual in the backstepping procedure, a new variable is introducedzi+1
△
= ξ−αi(x) as the difference (error)

between the augmented state variable and the desired virtual-control law. By using (11), the time derivative ofzk+1 is

żi+1 = −ki+1zi+1 −Gi(x)
T ∂Vi
∂x

(x). (12)

Defining the Lyapunov function candidateVi+1 = Vi + z2i+1/2, it is easy to see that

V̇i+1 =

(
∂Vi
∂x

(x)

)T

[Fi(x) +Gi(x)αi(x)] − ki+1z
2
i+1.

Now, by applying LaSalle’s invariance principle, the claimof the lemma is deduced.
Remark 3: Note that by renaming(x, ξ) by x, and takingFi+1 = [Fi + Giξ, fi+1]

T , Gi+1 = [0, gi+1]
T , αi+1 as in (11)

andVi+1 = Vi + (ξ − αi)
2/2, Assumption 1 withi replaced byi+ 1, also holds for the augmented system (9)–(10).

Below, it is shown that, after one application step of Lemma 1, the resulting closed-loop system preserves the structureof
generalized Hamiltonian systems [1]. First, a slightly stronger assumption than the previous one is formulated.

Assumption 2: For the system
ẋ = Fi(x) +Gi(x)u, (13)

wherex ∈ Ri+2 is the state andu ∈ R is the control input, there exists a continuously differentiable control law,u = αi(x),
and a smooth, non-negative, radially unbounded function,V : Ri+2 → R, such that

Fi(x) +Gi(x)αi(x) = (J −R)
∂Vi
∂x

for some matricesJ = −JT andR = RT ≥ 0. This means that the closed-loop system is a generalized Hamiltonian system.

1Throughout the paper all vectors, including the gradient∇(·) = ∂

∂(·)
, are defined as column vectors.
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Lemma 2: Let the system (13) be augmented in the following way:

ẋ = Fi(x) +Gi(x)ξ (14)

ξ̇ = fi+1(x, ξ) + gi+1(x, ξ)u, (15)

and suppose that (14) satisfies Assumption 2 withξ ∈ R as its control. Then, Lemma 1 applies and, if the usual backstepping
law (11) is used, the resulting closed-loop system is also a generalized Hamiltonian system.

Proof: From Assumption 2 it is easy to see that (8) holds and, thus, wecan apply Lemma 1. Defining, as usual, the error

variablezi+1
△
= ξ − αi(x), and using variables(x, zi+1), and taking into account (12), the equations of the system are:

[
ẋ
żi+1

]
=

[
J −R Gi(x)

−Gi(x)
T −ki+1

] [
∂Vi

∂x

zi+1

]
,

which means that the system is a generalized Hamiltonian system with HamiltonianVi+ z2i+1/2. As is well known, in passing
to variables(x, ξ) the generalized Hamiltonian character is preserved [8].

Remark 4: Notice that the applicability of this lemma goes beyond the stabilization of oscillations problem as stated here
and, thus, it shows an interesting connection between backstepping and generalized Hamiltonian systems.

Remark 5: By applying the above lemmas in recursive form and starting with the target system defined in the previous
section, the control law for systems of form (1) of arbitrarydimensionn can be obtained so that the resulting closed-loop
system is an oscillating generalized Hamiltonian system, which presents an almost-globally stable limit cycle. The limit cycle
corresponds to the set

LC = {(x1, x2, z1, . . . , zm) ∈ R
n : Γ(x1, x2) = 0, zi = 0, i = 1, . . . ,m} .

For a generaln, the successive virtual control lawsαi, i = 1, . . . ,m can be obtained and, thus, variableszi = xi+2−αi−1, i =
1, . . . ,m can be defined. It is easy to see that working in(x1, x2, z1, z2, . . . , zm) variables the following expression for the
closed-loop system is obtained:




ẋ1
ẋ2
ż1
ż2
...

żm−1

żm




=




0 1
Γ 0 0 · · · 0 0

− 1
Γ −k0 g0 0 · · · 0 0
0 −g0 −k1 g1 · · · 0 0
0 0 −g1 −k2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · −km−1 gm−1

0 0 0 0 · · · −gm−1 −km







x1Γ
x2Γ
z1
z2
...

zm−1

zm




, (16)

where,Γ(x1, x2) 6= 0 and, for brevity, the arguments of functionsgi have been omitted. Actually, they should begi(x1, x2, z1+
α0, . . . , zi + αi−1). Thus, the closed-loop system is again a generalized Hamiltonian one. As was pointed out above, the
generalized Hamiltonian structure is preserved when the transformation(x1, x2, z1, z2, . . . , zm) → (x1, x2, x3, x4, . . . , xn) is
performed.

Remark 6: Upon applying LaSalle’s invariance principle to system (16), it is easy to see that, in order to achieve the
objective, the requirementki > 0, i = 0, . . . ,m can be relaxed toki ≥ 0, i = 0, . . . ,m− 1, km > 0.

Since Assumptions 1 and 2 are always fulfilled by the first two equations of (1), and in successive steps, as shown above,
the previous results can be stated by means of the following theorem.

Theorem 1: Given a strict-feedback system of form (1) where functionsgi do not vanish, a nonlinear feedback law exists
that renders this system a robust oscillator, in the sense that the only limit set is one almost globally attractive limitcycle.

Remark 7: Notice that class (1) includes linear systems in Brunovsky canonical form [9] and, thus, the method presented
is applicable, among others, to feedback linearizable systems. Notice also that although the open-loop system is, in this case,
linear, the closed-loop system is nonlinear as it has to be inorder to present robust oscillations.

Example 1: Consider the following linear, three-dimensional system in Brunovsky form

ẋ1 = x2,

ẋ2 = x3, (17)

ẋ3 = u.

Starting with the system obtained in Section II, only one backstep is needed withi = 0, ξ = x3, F0(x1, x2) = [x2, 0]
T ,

G0(x1, x2) = [0, 1]T , α0(x) given by (4) andV = V0. The application of Eq. (11) yields:

u = −x2 − (x1 + x3)(k1 + 2k0x
2
2)− [(1 + k0k1)x2 + k0x3] Γ(x1, x2), (18)
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with k0 ≥ 0 andk1 > 0, which is a nonlinear feedback law in spite of the fact that the open-loop system is linear. As a result
of this control law, for every initial condition except the origin, the trajectories of the closed-loop system tend to the limit
cycle {Γ(x1, x2) = 0, x1 = −x3}.

Furthermore, following Lemma 2 the resulting generalized Hamiltonian system in(x1, x2, z) coordinates is:



ẋ1
ẋ2
ż


 =




0 1
Γ 0

− 1
Γ −k0 1
0 −1 −k1






∂V1

∂x1

∂V1

∂x2

∂V1

∂z


 ,

with z = x3 + x1 + k0x2Γ(x1, x2) andV1(x1, x2, x3) = V0(x1, x2) + z2/2. Returning to the(x1, x2, x3) variables, it is found
ẋ = [J −R]∂V 1/∂x, with V 1(x1, x2, x3) = Γ2/4 + (x1 + x3 + k0x2Γ)

2/2,

J =
1

Γ




0 1 −k0(Γ + 2x22)
−1 0 1 + 2k0x1x2 + Γ

k0(Γ + 2x22) −1− 2k0x1x2Γ 0




and

R =




0 0 0
0 k0 −k20(Γ + 2x22)
0 −k20(Γ + 2x22) k30(Γ + 2x22)

2 + k1


 .

Thus,J andR display the hidden generalized Hamiltonian structure of system (17)–(18).
Example 2: Let us illustrate the applicability of the method with a physical example, a magnetic levitation ball system. The

system, which consists of an iron ball in a vertical magneticfield created by a single electromagnet, is depicted in Fig. 1. The
position of the ball is denoted byx1, with the x1-axis oriented upwards. The magnetic flux in the inductance is denoted by
x3.

x1

x3

m

u

i

g

Fig. 1. Magnetic levitation system.

The open-loop equations of the magnetic levitation system [10] are given by

ẋ1 = x2

ẋ2 =
1

2m
x23 − g (19)

ẋ3 = −R(1− x1)x3 + u

wherex2 = ẋ1, m is the mass of the ball,R is the electrical resistance of the electromagnet andg is the gravity acceleration.
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In order to write the model in the form (1), the change of variablesw = x23/2 is introduced. Notice that it is reasonable to
only consider positive values forx3 since the magnetic force has to compensate for gravity. In this way, the model becomes

ẋ1 = x2

ẋ2 =
w

m
− g (20)

ẇ = −2R(1− x1)w + u
√
2w.

Thus,f0 = −g, g0 = 1/m, f1 = −2R(1− x1)w andg1 =
√
2w. The expression forα0 can be obtained from (4)

α0 = m(g − x1 − k0x2Γ).

Using (11) the control law is obtained

u = α1 =
1√
2w

(
2R(1− x1)w − k1(w − α0)−

m(1 + 2k0x1x2)x2 −mk0(Γ + 2x22)(
w

m
− g)− Γx2

m

)
. (21)

The final control law is obtained by undoing the change of variables

u = α1 =
1

x3

(
2R(1− x1)

x23
2

− k1(
x23
2

−m(g − x1 − k0x2Γ))−

m(1 + 2k0x1x2)x2 −mk0(Γ + 2x22)(
x23
2m

− g)− Γx2
m

)
. (22)

This feedback law is valid provided thatx3 > 0, which limits the domain of attraction of the limit cycle. Ithas been checked
by simulation and yields the desired behavior. The results for m = 0.5, g = 9.8, R = 2, k0 = 0.5, k1 = 1, µ = 1 and initial
conditions(x1, x2, x3) = (0.1, 0, 1) are depicted in Fig. 2. The top-left graph shows the projection of the trajectory on the
x1 −x2 plane. It can be seen that the closed curveΓ = 0 is reached. The top-right graph shows the time evolution of the state
variables, while the bottom-left graph shows the control signal behaviour. Finally, in the bottom-right graph the evolution of
the Lyapunov functionV1 = Γ2

4 + (w−α0)
2

2 is represented.

−1 −0.5 0 0.5 1
−2

−1

0

1

0 5 10 15 20
−2

−1

0

1

2

3

0 5 10 15 20
0

5

10

15

0 1 2 3
0

2

4

6

8

10

x1

x1

x2

x
2

x3

u

TimeTime

Time

V
1

Fig. 2. Simulation results for the magnetic levitation system.

The following theorem states that the limit cycle, which acts as the only attractor of the controlled system, can also be
conceived of as a consequence of a dynamic bifurcation [11] after varying the value of parameterµ.

Theorem 2: System (1) with the control law resulting from the iterativeapplication of (11) undergoes a supercritical Hopf
bifurcation atµ = 0.
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Proof: See the Appendix.
The fact that a Hopf bifurcation occurs is interesting because it gives as a by-product a point stabilization law on the “other

side” of the bifurcation point. In other words, by changing the bifurcation parameterµ from positive to negative values we
have a method by which to go in a continuous way from a controller that makes the system oscillatory to an equilibrium
stabilizing controller, in the sense of asymptotic stabilization of an equilibrium point.

Remark 8: It is well known that the Hopf bifurcation takes place in a space of dimension two. For higher order systems
there is a reduction procedure based on the center manifold theorem [12]. This theorem gives a procedure for reducing an
n-dimensional system to a two-dimensional one where the Hopfbifurcation takes place. This procedure is known as the
Reduction Principle. Here we proceed in the opposite sense.We built an appropriate feedback law by considering first a
two-dimensional subsystem of the whole system that undergoes a Hopf bifurcation. Then, by backstepping, the full system is
rendered oscillatory. Therefore, the method proposed heregives rise to a kind of extension method where the Hopf bifurcation
is extended to a higher-order system.

IV. CONCLUSIONS

In this paper, we have presented a technique for obtaining stable and robust oscillations in a class of single-input nonlinear
cascade systems. To accomplish this, a feedback law was introduced that converts an appropriate second-order subsystem into
a damped harmonic oscillator. Then, by backstepping, a feedback law is recursively obtained for the full system. It is shown
that, as a result of applying backstepping, the oscillator evolves into a stable limit cycle, and therefore the oscillations are
robust. It is also shown that the resulting closed-loop system displays the generalized Hamiltonian structure. The birth of the
limit cycle responsible for the oscillations has been associated with the occurrence of a Hopf bifurcation.

APPENDIX: CHECKING THE HOPF BIFURCATION CONDITIONS ATµ = 0

We start from the linearization matrixA(µ) of system (16) at the origin, which yields

A(µ) =




0 1 0 0 · · · 0 0
−1 µk0 g0 0 · · · 0 0
0 µg0 −k1 g1 · · · 0 0
0 0 −g1 −k2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · −km−1 gm−1

0 0 0 0 · · · −gm−1 −km




, (23)

where functionsgi are evaluated at(x1 = 0, x2 = 0, z1 = 0, . . . , zm = 0).
It will be shown that this matrix has an eigenvalue pairσ(µ)±jω(µ) that crosses the imaginary axis atµ = 0 with a positive

velocity (that is,σ′(0) > 0, the so-called transversality condition), while the othereigenvalues have negative real parts. All
these are necessary conditions for the occurrence of a supercritical Hopf bifurcation atµ = 0 that gives rise to a stable limit
cycle forµ > 0.

Let us define fori = 1, 2, . . . ,m the determinants

∆i(s) = det




s+ ki −gi · · · 0 0
gi s+ ki+1 · · · 0 0
...

...
. . .

...
...

0 0 · · · s+ km−1 −gm−1

0 0 · · · gm−1 s+ km



, (24)

so that∆m(s) = s+ km, and they can be recursively computed by taking∆m+1(s) ≡ 1 and noting that

∆i(s) = (s+ ki)∆i+1(s) + g2i∆i+2(s) (25)

for i = 1, 2, . . . ,m− 1. The following result will be useful.
Lemma 3: Assume that all the constantsk1, k2, . . . , km are non-negative and the last one is positive. Ifs = σ + jω ∈ C

has a non-negative real part (that is,σ ≥ 0), then∆i(s) 6= 0 and the quotient∆i(s)/∆i+1(s) has a positive real part for
i = 1, 2, . . . ,m.

Proof: The statement is trivial wheni = m. From (25), we can write

∆m−1(s)

∆m(s)
= s+ km−1 + g2m−1

(
∆m(s)

∆m+1(s)

)−1

,

so that the left hand side has a positive real part and , thus∆m−1(s) 6= 0. Clearly, we can proceed backwards up toi = 1.
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If we now compute the characteristic polynomial ofA(µ), we get

p(s, µ) = det [sI −A(µ)] = (s2 − µk0s+ 1)∆1(s)− µg20s∆2(s), (26)

and thenp(s, 0) = (s2 + 1)∆1(s). From Lemma 3, all the roots of the polynomial∆1 have negative real parts (i.e. it is a
Hurwitz polynomial), and we conclude that for smallµ matrix A(µ) hasn − 2 eigenvalues with negative real parts and a
single eigenvalue pairs±(µ) = σ(µ) ± jω(µ) with σ(0) = 0, ω(0) = 1. Below, it is shown thatσ′(0) > 0.

Applying the Implicit Function Theorem to the equationp(s, µ) = 0 in a neighborhood of(s+(µ), µ) = (j, 0) yields

∂p

∂s
(s+(0), 0)

ds+
dµ

(0) +
∂p

∂µ
(s+(0), 0) = 0

and using (26), we obtain the equation

2j∆1(j)s
′

+(0)− k0j∆1(j)− jg20∆2(j) = 0,

so

s′+(0) =
1

2

(
k0 + g20

∆2(j)

∆1(j)

)
.

Thus, again from Lemma 3, we see thatσ′(0) = ℜ[s′+(0)] is positive and the transversality condition for the occurrence of a
Hopf bifurcation is satisfied.
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