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Abstract

This paper introduces a method for obtaining stable andstodeif-sustained oscillations in a class of single inputlinear
systems of dimension > 2. The oscillations are associated to a limit cycle that isdpoed in a second-order subsystem by
means of an appropriate feedback law. Then, the contrallextended to the full system by a backstepping proceduig shown
that the closed-loop system turns out to be generalized ktari@in and that the limit cycle can be thought as born in afHop
bifurcation after moving a parameter.

Keywords: Non-linear Oscillations, Limit Cycle Stabilization, Bestepping Control, Generalized Hamiltonian Systems,
Hopf Bifurcation.

I. INTRODUCTION AND STATEMENT OF THE PROBLEM

Self-sustained oscillations are one of the distinctivedvédral characteristics of nonlinear systems. Wheneveysaillatory
behavior is found or is to be built, there is or must be intrmetlian underlying nonlinearity. In this paper, a procedare t
obtain a nonlinear feedback law that renders a class ofesingut cascade systems oscillatory is introduced. Thdlatson is
associated with a stable limit cycle and therefore it is-saftained and robust. The method is based on matching grelopp
system to a closed-loop one that displays such a stablediie. The feedback law is obtained in two steps. In the fiegh,s
a second-order subsystem is controlled to yield a robudinear oscillator. To this end, a fourth degree polynomighpunov
function is introduced that guarantees the appropriatpgities. Then, the cascade structure of the open-loopmyatiews
us to apply backstepping to recursively obtain the feedbaekfor the full system. A very appealing byproduct is thag th
closed-loop system obtained has a generalized Hamiltstiacture [1].

The problem considered here is, therefore, the synthediimivitycles and belongs to the class of so-called inversblems
in dynamical systems. Several authors have consideregitbisem in the past (see for instance [2], [3], [4] and refess
therein) by working with systems of moderate dimension. ©hthe interests of the algorithm proposed in this papersis it
ability to cope with arbitrary dimensions. Related matecan be found in [5].

To set the problem under study in a precise form, considercttseade systems for which the backstepping method is
applicable. In particular, we will be concerned with the gpkclass of strict-feedback systems [6] given by:

T = o,
iy = folx1,x2) + go(x1, x0)as
t3 = fi(x1,x2,23) + g1(x1, T2, T3)X4
1)
Tp-1 = f'ﬁl—l(xla Z2,... 7-7371—1) + gm—l(xla L2y .- 7xn—1)$"
e S S

with m = n — 2 andg; # 0,Vi in the domain of interest. The form for the first equation istguisual, mainly in mechanical
and electrical systems.

Our goal is to design a feedback lawfor system (1) that causes it to oscillate in a stable and sotuay. This will
be obtained through a controller such that the closed-lgges displays a limit cycle as a limit set. This limit cycke i
responsible for the oscillatory behavior.

The paper is organized as follows. In Section II, fore= 2, a control law that renders systems of the form (1) osciiato
is proposed. Next, in Section Ill the law is extended to aalbyt dimension. The paper closes with a section of conclusions
and some technical details are relegated to the Appendix.
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II. OSCILLATIONS IN TWO-DIMENSIONAL SYSTEMS
We start with the subsystem formed by the first two equatidnd)o

lbl = T2,
oy = folw1,x2) + go(x1, x2)23,

()

where zs has to be interpreted as a virtual contml = ag(x1,x2). Now we design a feedback law to render this two-
dimensional subsystem oscillatory. To that end we adopefesance behavior that of the nonlinear oscillator,

jjl - 2,
2 = —mx1 — koxol'(x1, z2),

3)

whereT'(z1,z2) = x? + 22 — u, the constants, and u are positive, and for the sake of simplicity we have considea
unitary natural frequency. Then, adopting the feedback law

1
3 = (1, 22) = *%[331 + kowol' (21, 2) + fol, 4)

system (2) is converted into system (3), and thus behavesstabke nonlinear oscillator. Indeed, if we choose the Lyapu
function candidate 1
Vo(w1,22) = ZF(11,IC2)27 (%)

and compute its orbital derivative for (3), it turns out that
Vo(z1,2) = (v 4 i) (21, 29) = —kowil (21, 22), (6)

so the functionly is monotone decreasing when bath # 0 andI'(x1,z2) # 0, and it is constant when either, = 0 or
I'(z1,z2) = 0. Since the only equilibrium point of system (3) is the origivhich is unstable) and there are no other invariant
subsets in the straight line, = 0, from LaSalle’s invariance principle, we conclude that tveariant manifoldz? + 23 = 4,
corresponding td'(z1,z2) = 0, is globally attractive for all initial conditions differ¢ from the origin. The corresponding
circle is then a stable (almost) globally attractive limjcke.

Note that forl'(x1, z2) # 0, system (3) can be written in the form

2110 )= &)

where[z,T, z,T]" = 8V, /0z, so it has the structure of a generalized Hamiltonian sy§§mAlso, if we took ko = 0 in
(3), the system would become a harmonic oscillator and tiggnowould be a stable center, the origin being stable but not
asymptotically stable. The geometric shapé/pfis discussed in [7].

Remark 1: It is easy to see that this target system can also be obtaihed the first equation of (1) takes the form:

&y = 1p(x1, 22)

where is invertible with respect to its second argument, so a fongp exists such that, = ¢(x1, ). Indeed, if we change
the variables by the transformation — z = ¢(x1, z2) the first two equations become

dUl:z

2 = folw,2) + go(z1,2)zs

fo(x1,2) = <a—Z + a—wfo)

Z1 X2

with

B 0
and go = <—w90>
zy=p(x1,2) T2

Thus, the form (1) is recovered. However, for simplicityaks, in the rest of this paper we will be concerned only with

systems of form (1). [ |
Remark 2: In this paper, we are interested in the generation of pariathvements in which the two first state variables

behave ag” = #? + 22 — ;1 = 0. Obviously ,other choices of the target limit cydﬁéxl,xg) = 0 are possible, and then the

target system would be expressed by R
. 1 T .or
[ % ] R

T2 T —ko Fg—i ’

with Hamiltonian functiond = f2/2. The study of the class of open-loop systems for which thisengeneral target system
is reachable by an appropriate control law is outside of tmps of this paper and will be considered elsewhere. ]

zo=p(x1,2)



IIl. HIGHER-DIMENSION SYSTEMS

In this section, the case > 2 is considered by using the backstepping method starting tiee two-dimensional system
(2). This two-dimensional system fulfills the following assption, which is stated in a general way in order to apply the
method recursively.

Assumption 1. For the system

iz = Fi(z) + Gi(2)u, (7)

wherez € R is the state and € R is the control input, there is a continuously different@abbntrol law,u = «;(x), and
a smooth, non-negative, radially unbounded functign, R**2 — R, such thak

. T |
(aa‘; (x)) [Fi(z) + Gi(x)ai(z)] <0, Vz € Ri+2. ®

]
Below, M; will denote the largest invariant set for which the equatifythe previous expression holds. Under Assumption 1,
LaSalle’s invariance principle states that for system i)h v = «;(x), all the trajectories tend to the sat,.
In the first backstep, which correspondsi te 0, Assumption 1 is fulfilled by system (2) withy = [z2, fo]?, Go = [0, go]*,
ao(z) given by (4) andV = I'?/4. Also, from (6), it can be seen that

Mo ={(0,0)} U{(z1,22) : T'(x1,22) = 0}.

The following lemma is a slight modification of Lemma 2.8 ifi.[6
Lemma 1. Let system (7) be augmented in the following way:

= Fi(z)+Gi(z)¢ 9)

£ = fir(x,8) + gir1(2, §u, (10)
with g;11 # 0 and suppose that (9) satisfies Assumption 1 \ith R as its control variable. Then, there is a feedback law
that renders all the trajectories tending to the 8¢t = {(z,§) : © € M;,& = o;(z)}. One such control is

_ T
gii_l [fi+1 —kiy1[€ — ai(2)] + <860; (x)) [F;(z) + Gi(x)€] —

(2) G

Proof: As is usual in the backstepping procedure, a new variablatieducedz; | 2 ¢ — () as the difference (error)
between the augmented state variable and the desiredlxédntol law. By using (11), the time derivative of., is

. Vi
Zi+1 = *ki+lzi+1 - Gz (Z)T%(x) (12)

us aip1(z,§) =

ki1 >0. (11)

Defining the Lyapunov function candidatg,; = V; + 27, /2, it is easy to see that

: ov; T )
Vier = 5 (@) ) [Fi(2) + Gi(@)ai(@)] = ki1
Now, by applying LaSalle’s invariance principle, the claihthe lemma is deduced. ]
Remark 3. Note that by renamingz, &) by z, and takingF; .1 = [F; + Gi&, fir1]T, Giyr = [0,9i41]7, aiz1 as in (11)
andVi, 1 = V; + (£ — «;)?/2, Assumption 1 withi replaced byi + 1, also holds for the augmented system (9)—(10).
Below, it is shown that, after one application step of Lemmah# resulting closed-loop system preserves the structure
generalized Hamiltonian systems [1]. First, a slightlyostrer assumption than the previous one is formulated.
Assumption 2: For the system
& = Fi(z) + Gi(z)u, (13)
wherez € R is the state and € R is the control input, there exists a continuously diffeiaole control law,u = «;(z),
and a smooth, non-negative, radially unbounded funcfionR*+2 — R, such that
oV
ox
for some matrices/ = —J7 and R = RT > 0. This means that the closed-loop system is a generalizedltdaian system.

Fi(z) + Gi(x)ai(z) = (J — R)

1Throughout the paper all vectors, including the gradient, = %, are defined as column vectors.



Lemma 2. Let the system (13) be augmented in the following way:
i = Fi(z)+Gi(z)¢ (14)
3 fir1(z,8) + giv1(z, E)u, (15)

and suppose that (14) satisfies Assumption 2 §ithR as its control. Then, Lemma 1 applies and, if the usual bapkdtg
law (11) is used, the resulting closed-loop system is alsergerglized Hamiltonian system.
Proof: From Assumption 2 it is easy to see that (8) holds and, thus;ameapply Lemma 1. Defining, as usual, the error

variablez; 11 2 ¢ — (), and using variableér, z;11 ), and taking into account (12), the equations of the systesn ar

PANET R kA

which means that the system is a generalized Hamiltonialesywith HamiltonianV/; +z§+1/2. As is well known, in passing

to variables(z, £) the generalized Hamiltonian character is preserved [8]. ]
Remark 4: Notice that the applicability of this lemma goes beyond ttabitization of oscillations problem as stated here
and, thus, it shows an interesting connection between begmking and generalized Hamiltonian systems. [ |

Remark 5: By applying the above lemmas in recursive form and startirtly whe target system defined in the previous
section, the control law for systems of form (1) of arbitraliynensionn can be obtained so that the resulting closed-loop
system is an oscillating generalized Hamiltonian systetickvpresents an almost-globally stable limit cycle. Tmeitlicycle
corresponds to the set

LC ={(z1,22,21,..-,2m) ER" : T(x1,22) = 0,2, =0, i =1,...,m}.

]
For a generah, the successive virtual control laws, i = 1, ..., m can be obtained and, thus, variables= x;, 0 —a; 1,1 =
1,...,m can be defined. It is easy to see that working(in, z2, 21, 22, . . . , ) variables the following expression for the
closed-loop system is obtained:
(@ ] [ 0O £ 0 0 0 0 T[ a1l ]
j;‘g —% —ko go 0 0 0 l‘gr
2'1 0 —4go0 —kl g1 0 0 Z1
732 — 0 0 —g1 _kQ 0 0 ) , (16)
,é’m,1 0 0 0 0 e _k'rn—l Im—1 Zm—1
| Zm | | O 0 0 0 - —Gm-1 —km || Zm |
where,I'(x1, z2) # 0 and, for brevity, the arguments of functiopshave been omitted. Actually, they should féx1, x2, 21 +
ag, ...,z + a;—1). Thus, the closed-loop system is again a generalized Ham@h one. As was pointed out above, the
generalized Hamiltonian structure is preserved when testormation(x, xs, 21, 22, . . ., 2m) — (21,22, Z3, T4, ..., Ty) IS
performed.
Remark 6: Upon applying LaSalle’s invariance principle to system)(1i6 is easy to see that, in order to achieve the
objective, the requirementt; > 0, i = 0,...,m can be relaxed t&; >0, i =0,...,m —1,k,, > 0. [ |

Since Assumptions 1 and 2 are always fulfilled by the first twaagions of (1), and in successive steps, as shown above,
the previous results can be stated by means of the followiagrem.

Theorem 1. Given a strict-feedback system of form (1) where functignslo not vanish, a nonlinear feedback law exists
that renders this system a robust oscillator, in the seregetlile only limit set is one almost globally attractive linitcle.

Remark 7: Notice that class (1) includes linear systems in Brunovskyonical form [9] and, thus, the method presented
is applicable, among others, to feedback linearizableegyst Notice also that although the open-loop system is,isncise,
linear, the closed-loop system is nonlinear as it has to beder to present robust oscillations. ]

Example 1. Consider the following linear, three-dimensional systenBrunovsky form

-fl = T2,
j:2 = I3, (17)

Starting with the system obtained in Section Il, only onekstep is needed with = 0, & = x3, Fy(x1,22) = [22,0]7,
Go(x1,72) = [0,1]7, ap(x) given by (4) andV = V;. The application of Eq. (11) yields:

u=—x9 — (v1 + x3) (k1 + 2koz3) — [(1 + kok1)x2 + koz3] T'(z1, z2), (18)



with ky > 0 andk; > 0, which is a nonlinear feedback law in spite of the fact that dipen-loop system is linear. As a result
of this control law, for every initial condition except theigin, the trajectories of the closed-loop system tend ® Ithit
Cyde {F(Il,l'g) =0,21 = 715}

Furthermore, following Lemma 2 the resulting generalizeahtiltonian system ir{z1, 2, z) coordinates is:

. 1 A%
iy | = | L —k 1 ov;

-2 T 0 Oz )
z 0 -1 71171 %
z

with z = z3 +_£Cl + k()fQF(ll,l‘Q) and‘/l(l'l,l'g, Id) = ‘/E)(l'l,l'g) +22/2 Returning to the(:cl, £C2,l‘3) variables, it is found
T = [J — R]&Vl/am, with Vl(l‘l,xg,ng) = F2/4 + (1‘1 +x3 + kOxQF)Q/Q,

1 0 1 —ko(T + 223)
J== -1 0 1+ 2kgx129 +T
kQ(F + 21‘%) —1 — 2kgx1xT 0
and
0 0 0
R=1|0 ko —kg (T + 223)
0 —k3(T+222) Kk3(T +223) + ky
Thus, J and R display the hidden generalized Hamiltonian structure cteyn (17)—(18). [ |

Example 2: Let us illustrate the applicability of the method with a piogs example, a magnetic levitation ball system. The
system, which consists of an iron ball in a vertical magnigic created by a single electromagnet, is depicted in Fighe
position of the ball is denoted hy,, with the x;-axis oriented upwards. The magnetic flux in the inductasceenoted by
3.

g
1
\
Fig. 1. Magnetic levitation system.
The open-loop equations of the magnetic levitation syst&@j &re given by
lbl = X2
. 1 5
T2 = %333 -9 (19)
T3 = —R(l — .131)3;‘3 +u

wherez, = &1, m is the mass of the balR is the electrical resistance of the electromagnet @iglthe gravity acceleration.



In order to write the model in the form (1), the change of valéaw = 23 /2 is introduced. Notice that it is reasonable to
only consider positive values fars since the magnetic force has to compensate for gravity.ignvay, the model becomes

3.5‘1 = X2

. w

Ty = ——g (20)
m

w = —2R(1—z1)w + uv2w.

Thus, fo = —g, go = 1/m, f1 = —2R(1 — z1)w andg; = v2w. The expression fot, can be obtained from (4)
ap = m(g — X1 — k()L]S'QF).

Using (11) the control law is obtained

1
u=0a; = —|2R(1 —z1)w — k1(w — ag)—
1= o= (200 2w~ k(- )
r
m(1 + 2koz1xe)xe — mko(T + 235%)(E —g)— ﬁ) (22)
m m
The final control law is obtained by undoing the change ofaldgs
1 2 2
u=oaq = —( R(1- 301)ﬁ - kl(& —m(g —x1 — kozaT'))—
9., X3 [y

This feedback law is valid provided thag > 0, which limits the domain of attraction of the limit cycle.Has been checked
by simulation and yields the desired behavior. The resoitsif = 0.5, g = 9.8, R =2, kg = 0.5, k&; = 1, p = 1 and initial
conditions(zy, z2,23) = (0.1,0,1) are depicted in Fig. 2. The top-left graph shows the prajectf the trajectory on the
x1 — x2 plane. It can be seen that the closed curve 0 is reached. The top-right graph shows the time evolutiorhefstate
variables, while the bottom-left graph ghows the contrghal behaviour. Finally, in the bottom-right graph the etin of

the Lyapunov functiorl; = %2 + % is represented. [ |
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Fig. 2. Simulation results for the magnetic levitation syst

The following theorem states that the limit cycle, whichsaas the only attractor of the controlled system, can also be
conceived of as a consequence of a dynamic bifurcation [fté} sarying the value of parametgr

Theorem 2: System (1) with the control law resulting from the iteratiagplication of (11) undergoes a supercritical Hopf
bifurcation atu = 0.



Proof: See the Appendix. ]

The fact that a Hopf bifurcation occurs is interesting beeaiti gives as a by-product a point stabilization law on thiaéo
side” of the bifurcation point. In other words, by changifg thifurcation parameter from positive to negative values we
have a method by which to go in a continuous way from a comiragtat makes the system oscillatory to an equilibrium
stabilizing controller, in the sense of asymptotic stahbifion of an equilibrium point.

Remark 8: It is well known that the Hopf bifurcation takes place in a @paf dimension two. For higher order systems
there is a reduction procedure based on the center mantelatém [12]. This theorem gives a procedure for reducing an
n-dimensional system to a two-dimensional one where the Hiifpfrcation takes place. This procedure is known as the
Reduction Principle. Here we proceed in the opposite seWsebuilt an appropriate feedback law by considering first a
two-dimensional subsystem of the whole system that uneésrgoHopf bifurcation. Then, by backstepping, the full syste
rendered oscillatory. Therefore, the method proposed ¢iiges rise to a kind of extension method where the Hopf bition
is extended to a higher-order system. [ |

IV. CONCLUSIONS

In this paper, we have presented a technique for obtainaigesand robust oscillations in a class of single-input imealr
cascade systems. To accomplish this, a feedback law waslirted that converts an appropriate second-order subsyste
a damped harmonic oscillator. Then, by backstepping, abfseldlaw is recursively obtained for the full system. It isowim
that, as a result of applying backstepping, the oscillatamves into a stable limit cycle, and therefore the osddlas are
robust. It is also shown that the resulting closed-loopesystlisplays the generalized Hamiltonian structure. Thn lf the
limit cycle responsible for the oscillations has been aisded with the occurrence of a Hopf bifurcation.

APPENDIX: CHECKING THE HOPF BIFURCATION CONDITIONS ATy = 0
We start from the linearization matrid () of system (16) at the origin, which yields

0 1 0 0 0 0
-1 pko 9o 0 0 0
0 wugo —k1 o 0 0
A =| 0 0 =g —ke -0 0, (23)
0 0 0 0 e _k'rn—l Im—1
L 0 0 0 0 o —Ome1 —kn i

where functiongy; are evaluated atry = 0,22 = 0,21 =0,..., 2, = 0).

It will be shown that this matrix has an eigenvalue psir) £ jw(u) that crosses the imaginary axisiat= 0 with a positive
velocity (that is,o’(0) > 0, the so-called transversality condition), while the otk&genvalues have negative real parts. All
these are necessary conditions for the occurrence of aaijpal Hopf bifurcation atu = 0 that gives rise to a stable limit
cycle for u > 0.

Let us define for = 1,2,...,m the determinants

s+ k; —g; S 0 0
gi S + k‘i+1 cee 0 0
A;(s) = det : : : : ) (24)
0 0 e St kpo1 —9m—1
0 0 T Im—1 s+ km
so thatA,,(s) = s + k., and they can be recursively computed by takikg ;(s) = 1 and noting that
Ai(s) = (s + ki) Air1(s) + g7 Aiya(s) (25)
fori=1,2,...,m — 1. The following result will be useful.
Lemma 3: Assume that all the constants, ko, ..., k,, are non-negative and the last one is positives ¥ o + jw € C

has a non-negative real part (that is,> 0), then A;(s) # 0 and the quotient\,(s)/A,11(s) has a positive real part for
i=1,2,...,m.
Proof: The statement is trivial wheh= m. From (25), we can write

Am—l(s) Am(s) ) !
A (s) Apt(s) ,
so that the left hand side has a positive real part and , thys: (s) # 0. Clearly, we can proceed backwards upite 1. &

=s+ k'rn—l + 97271—1 (



If we now compute the characteristic polynomial 4f.), we get
p(s, 1) = det [s] — A(n)] = (s* — pkos + 1)A1(s) — uggsa(s), (26)

and thenp(s,0) = (s> + 1)A1(s). From Lemma 3, all the roots of the polynomial have negative real parts (i.e. it is a
Hurwitz polynomial), and we conclude that for smallmatrix A(y) hasn — 2 eigenvalues with negative real parts and a
single eigenvalue paisy (1) = o(p) £ jw(p) with (0) = 0, w(0) = 1. Below, it is shown that’(0) > 0.

Applying the Implicit Function Theorem to the equatipts, x) = 0 in a neighborhood ofs; (), 1) = (4,0) yields

Op dsy Op B
$(5+(0)70)W(0) + 6‘_u(8+(0)’0) =0
and using (26), we obtain the equation

2jA1(5)8" (0) — kojA1(§) — jgea(j) = 0,

s, (0) = 1 (ko +g2A2(j)> '

Thus, again from Lemma 3, we see tha{0) = R[s’, (0)] is positive and the transversality condition for the ocenoe of a
Hopf bifurcation is satisfied.
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