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Abstract— This paper presents the use of FPGA in data acquisition
and digital preprocessing of the electric current signal of resistance
welding stations. This work demonstrates that electric current has
enough information to classify this kind of welds in mass production
industries. Parameters extracted with the FPGA excite a classifier that
accept o reject the welding junction. This system has been developed
using a neural classifier and installed in a welding station of General
Motors in Cádiz (Spain). Results confirm the validity of this novel
approach.

I. INTRODUCTION

Resistive welding has been considered as an inher-
ently safe and reliable method for joining metals
since its invention. Resistive welding techniques
have reached a high degree of fiability and are
widely employed as a manufacturing process. The
destructive test have played a critically important
role in quality control of resistive welding. In de-
structive tests a weld is qualified by measuring the
failure load of the junction. However this kind of
test can only be applied to a representative pieces.
Competitiveness has obliged to use high produc-
tivity weldings in conjunction with quality con-
trols of all welding junctions.
Non-destructive testing techniques
find widespread applications for evaluating the
integrity of critical components. Among them, ul-
trasonic waves and x-rays [1] are more often used
because of their precision. However, these tech-
niques are costly and unreliable and they have an
adverse effect on the productivity. For these rea-
sons they are not feasible for on-line applications.
Studies of welding process modeling and control
are based on the physics of the weld or the em-
pirical data [2]. However, these approaches are
not robust because of the existence of uncontrolled
parameters.
This paper proposes a monitoring system based on
FPGA to estimate, on-line, the failure load of the
junction as a function of the welding parameters
obtained directly during the process. If the failure
load is under a certain bound, the piece is refused.
The supervision system has been carried out us-
ing neural networks whose applications to several
domains like pattern recognition or industrial pro-
cess control have [3] been successful.

All the work presented have been developed us-
ing the welding stations installed in the suspen-
sion production lines of General Motors España in
the factory at Puerto Real (Cádiz). These stations
welds one rod to one reed. In figure 1 is shown a
rod and reed before and after the weld process.

Figure 1: Pieces before and after the weld.

Below the welding process is described, with spe-
cial emphasis in its control parameters and their
relationship with the failure load. In section III, the
data acquisition and process done by the FPGA is
studied. Finally, in section IV, an on-line applica-
tion is shown, analyzing the data obtained during
the process.

II. PARAMETERS OF THE WELDING PROCESS

A scheme of the welding process is shown in fig.
2. The welding station has a PRODIGI controller
of Pertron Controls Corp. [4]. This system can
control accurately the heat given to the junction
during the welding.
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Figure 2: Welding scheme.

Many factors affect the failure load obtained in the
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junction. Controlled parameters are the geometric
and energetic, and among the uncontrolled param-
eters is necessary to take into account impurities,
corrosion and surface treatments such as chroma-
tion, environmental pollution, etc. The presence of
all these uncontrolled parameters justify the use of
a system that supervises the quality of the welding.

In this work we assume that the shape of the cur-
rent waveform contains all the information about
the junction. If there is not any defect during its
execution, the current waveform is very regular.
Any problem can be detected because the current
waveform presents distortion. Figure 3 represents
the current waveform involved in the generation
of the junction and in figure 4 we can see a detail
of the previous one. These waveforms have been
captured using a digital oscilloscope with a base
time of 50 �s. The periodicity of this waveform
corresponds to one sixth of the 50 Hz three phase
supply voltage waveform.
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Figure 3: Oscilloscope view of the welding current.
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Figure 4: Detail of figure 3

It has been essayed 36 probes to study the rela-
tionship between the shapes of the recorded waves
and their failure loads. These probes are divided in
four groups according to the state of their surfaces.
The resulting failure loads are shown in Table 1.

A B C D
1 5090 3886 3400 4500
2 4802 4402 3902 4850
3 5190 3872 4386 3966
4 5600 3786 4516 5010
5 4884 2810 3810 4896
6 4862 3358 4384 3792
7 5022 2390 2900 4138
8 4720 3610 4270 4026
9 5080 2450 4098 4672

Table 1: Failure loads. A: Normal; B:oxides; C,D: chromatted

The shape factor of the current wave is defined by

Icsf =

s
NP
k=1

i2
k

N
(1)

where i is the sampled value of the current that
goes across the welder electrodes and N is the num-
ber of samples. This equation has been applied to
all current waveforms and the results are shown
in Table 2, being normalized between 0 and 1.

A B C D
1 0.3574 0.0122 0.2211 0.2960
2 0.4587 0.2283 0.2198 0.2977
3 0.5629 0.1170 0.3240 0.2877
4 0.4723 0.1348 0.3148 0.3133
5 0.4430 0.1140 0.2939 0.3586
6 0.4590 0.0830 0.2531 0.3980
7 0.4102 0.0168 0.1995 0.3176
8 0.3857 0.0000 0.3015 0.3068
9 0.3980 0.0456 0.3372 0.2954

Table 2: Current shape factors.

The statistic analysis of Tables 1 and 2 based on
T-Student function confirms the existence of a cor-
relationship greater that 95 % between the failure
load and Icsf , that validates the hypothesis of the
existence of a function that relates both magni-
tudes.
The relationship between the failure load and Icsf
is shown in figure 5. The linear correlation coef-
ficient between both variables is low (0.63), that
indicates the necessity of using more complicated
functions than the linear one, employing a larger
volume of information and using a non-linear clas-
sifier.
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Figure 5: Load failure vs. current shape factor.

To increase the volume of information involved,
a discrete histogram has been used, dividing the
sampled current curve in 8 level ranges of energy.
One of the advantages of using this histogram is
that it can be easily obtained with a simple digital
circuitry, and therefore it can be calculated in real
time. The histograms obtained for the probes in
Table 1 are shown in Table 3.
The linear correlation coefficient between the his-
tograms and the failure load is high (0.98). This
study has been done excluding 3 columns because
their values are practically constants. They are 0.5-
1V, 2-2.5V and 2.5-3V respectively. The high value
of the correlation coefficient indicates that these
histograms contains all the information of the fail-
ure load so they can be used as a parameters for a
neural classifier.

III. DATA ACQUISITION AND DIGITAL PROCESSING USING
FPGA

A Welding Monitoring System has been designed
to test the validity of the formulated method. Ba-
sically, it has a data acquisition card connected to a
computer which simulates the classifier. The elec-
tric current is sampled and a FPGA process the
digital results of the A/D converter.
The whole digital preprocessing circuitry has been
implemented using an Altera (EPM5128) FPGA
[5]. It also supports the communication protocol
with the computer.
In order to get the histograms of the current wave-
form, the FPGA has 8 counters that increase their
values as a function of the analog/digital conver-
sion of the current signal. The period of the sam-
ples is 50�s during the whole process of welding
(little less than 0.5 s). For this reason, the number
of samples for each weld are 10000, equivalent to
0.5 seconds.
The ALTERA EPM5128 FPGA contains 128 macro-
cells that are enough to implement digital process-
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Table 3: Current histograms of the probes employed in the learning
phase.



ing. First of all, it controls the A/D converter to ac-
quire data every 50 �s. The three most significant
bits of the converter (D7, D8 and D9) are inputs to
the FPGA (see figure 6). These bits divide the cur-
rent waveform in 8 levels whose histograms the
FPGA should calculate. Depending on the values
of these bits a different counter is increased in one
unit. The histogram of each level is the number
of points stored in its counter when the weld has
finished.
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Figure 6: Logic to obtain the histograms

The FPGA, also, controls the communication pro-
tocol with the personal computer. To minimize
digital logic, all counters are connected as a shift
register to send their information to the PC. This
structure avoid implementing a large multiplexer.

IV. APPLICATION

The functional diagram and the block diagram of
the specific acquisition system proposed for this
application is shown in figures 7 and 8 respectively.
A data acquisition card (figure 9) has been de-
signed to acquire and digital process the electric
current. This card correspond with data acqui-
sition system proposed in figure 7. The current
input signal is filtered before being converted to a
digital number. A low-pass filter has been defined
to avoid aliasing in the sampled current signal.
This specific hardware lets us calculate the his-
togram during the welding process and these re-
sults are read by the host computer at the end of the
welding. The computer also emulates the behav-
ior of the neural network using the captured data
as stimulus, both in the learning and recognition
phases.

Figure 9: Data acquisition card.

In this work has been chosen a neural network as a
classifier. The reasons for using this kind of classi-
fier are their learning ability and abstraction capac-
ity. The neural network used has been a multilayer
perceptron that had one hidden layer of 25 units
and output neuron. Basically, the learning process
of a perceptron calculates the weight adjustment
using the backpropagation method (equation 2)
after each iteration. In equation 2, E is the sum
of the squares of the differences between the neu-
ral network output and the expected output. The
initial weight values were set to random numbers
between 0 and 0.1. � and � are parameters that
affect the speed at which the network learns and
its final accuracy.

�!(t) = ��
@E

@!
+ ��!(t� 1) (2)

The neural network has been configured in a learn-
ing phase, using the data of Table 3. The number
of iterations needed in the learning phase has been
450000.
This system has been installed in a production line
to test it. The number of essayed probes has been
450. 98% of the probes were correctly classified
(438 were correctly welded and 3 had failure load
less than the minimum), and the remaining 2% has
given intermediate results in the neural network,
that is, they belong to an uncertain area which
has failure loads very close to the admissible min-
imum.

V. CONCLUSIONS

Digital signal processing is one of the most out-
standing applications of FPGAs. In our work we
make use of them to calculate histograms of ana-
log input signals. The proposed architecture is em-
bedded in a a weld monitoring system based on
neural networks. The system learns to classify the
welds thanks to data obtained by the FPGA based
card during the welding process. Once config-
ured, the supervision system has been installed in
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a production line allowing for the real time super-
vision of welding quality. It has been tested using
450 probes, having classified the vast majority of
them correctly. Nowadays the same technique is
being applied to continuous welding using sliding
windows [6].
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