
EXACT COST MINIMIZATION OF A SERIES-PARALLEL

RELIABLE SYSTEM WITH MULTIPLE COMPONENT CHOICES

USING AN ALGEBRAIC METHOD

J. GAGO-VARGAS, M.I. HARTILLO-HERMOSO, J. PUERTO, AND J.M. UCHA-ENRÍQUEZ

Abstract. The redundancy allocation problem is formulated minimizing the
design cost for a series-parallel system with multiple component choices while

ensuring a given system reliability level. The obtained model is a nonlinear

integer programming problem with a nonlinear, nonseparable constraint. We
propose a method based on the construction of a test set of an integer linear

problem, which allows us to obtain an exact solution of the problem. It is

compared to other approaches in the literature and standard nonlinear solvers.

1. Introduction

System reliability is considered an important measure in the engineering design
process. A series system is similar to a chain composed of links, each one rep-
resenting a subsystem. The failure of one of these components means the failure
of the whole system. In order to avoid this, it is usual to use redundant compo-
nents in parallel to guarantee a certain level of reliability. These systems are called
series-parallel systems.

Determining the optimal number of components in each subsystem is the so
called reliability optimization problem. Two different approaches are usual:

• maximize system reliability subject to system budget constraint, or
• minimize system cost subject to a required level of reliability.

Both problems are nonlinear integer programming problems, and they are NP-hard
[6]. There are very few papers looking for their exact solutions, due to the difficulty
of the problems. Those works use essentially dynamic programming [21], branch
and bound methods [12], or Lagrangian relaxation [16], among other techniques.
On the contrary, in the literature there are many heuristics and metaheuristic
algorithms, such as those based on Genetic Algorithms [7], Tabu Search [15] or
Ant Colony Optimization [2], among others.

In this paper we study the exact solution of one of the versions of the prob-
lem that minimizes the cost function of the chosen design, subject to a nonlinear
constraint which describes the reliability of the considered system. For a fixed sub-
system, its inner components can be considered equal, as in [12], or different, as in
[16] and [21]. If the components are equal, the reliability function is separable and
convex, and the problem can be reduced to a linear knapsack problem [12].

In the case of multiple component choices, the reliability function is no longer
separable. In [21], the solution is found using dynamic programming methods.
That approach presents two stages. In the first one the problem is restricted to each

1991 Mathematics Subject Classification. Primary: 90C10, 13P10. Secondary: 90B25.

Key words and phrases. Reliability, Integer programming, Test set.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51387192?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 J. GAGO-VARGAS, M.I. HARTILLO-HERMOSO, J. PUERTO, AND J.M. UCHA-ENRÍQUEZ

subsystem, with a level of reliability. Under this assumption the reliability function
is separable, and the optimization problem reduces to a knapsack problem. Those
knapsack problems need discrete values to be solved, and the level of accuracy is
determined by a constant L. So the exactness of solution is not guaranteed, a
priori. The reliability levels of the subsystems are determined using some lower
and upper bounds that also depend on the level of accuracy L, and a new dynamic
programming process is needed.

The solution method shown in [16] uses an algorithm based on Lagrangian re-
laxations over two linear relaxations of the original problem. The first relaxation
consists of deleting the nonlinear reliability constraint, and adding certain linear
constraints, one for each subsystem. The second relaxation assumes that the same
type of component is going to be used in every subsystem, so that the problem
reduces to one similar as in [12].

The algorithm of [16] is what their authors call a cut and partition scheme (a
geometric branch and bound). The solution space is partitioned in boxes, which
are divided and discarded under certain conditions. The cuts are built from the
best bound feasible solution of the above mentioned Lagrangian relaxations. Such
bounds allow to remove certain boxes depending on the improvement with respect
to the current best point.

We address the problem via a different approach based on Gröbner bases, which
in this framework gives better computational results than other methods in the
literature. As an introduction on this subject, we recommend the text books [1],
[4] and [10].

Gröbner bases were applied to integer linear programming, for the first time, in
[8]. Later, Tayur et al. [20] introduced a new application framework, which solves
nonlinear integer programming problems, with a linear objective function. This is
exactly our framework, as in [5].

First, we consider a relaxed integer programming problem where all the re-
strictions are linear. Then we find the solution of the relaxed integer problem by
computing a test set. Next, using the so called reverse test set, we can solve the
complete problem, generating paths from the solution of the relaxed problem to a
solution of the complete one. These paths increase the cost function at each step.
We also obtain a feasible solution with a greedy algorithm to begin with a good
upper bound with respect to the cost function.

A test set for a linear integer programming problem is a set of directions that
can be used to design descending algorithms with respect to a linear cost function.
A test set can be computed from a Gröbner basis of the toric ideal associated with
the linear restrictions, with respect to an order given by the cost function.

One of the most time consuming tasks in the process described above is usu-
ally the calculation of the Gröbner basis. In this paper we consider the relaxed
linear integer programming problem obtained by removing the nonlinear reliability
function. For this problem we explicitly give the associated Gröbner basis, and so
the test set to solve the main problem. We point out that for this problem the
Gröbner basis can be computed in polynomial time with respect to the number of
systems n and the number of different types of available components ki for the i-th
subsystem, i = 1, . . . , n.

The organization of the paper is as follows. In Section 2, we introduce the no-
tation and describe the model of a parallel-series system with multiple component



EXACT COST MINIMIZATION 3

r11 r21 rn1

r12 r22 rn2

...
...

· · · ...

r1k1 r2k2 rnkn

Figure 1. A series-parallel system with multiple choice components

choices. In Section 3, a greedy algorithm is described in order to compute a feasi-
ble point. Section 4 is devoted to a brief introduction to the essential facts about
Gröbner bases and how they can be applied to our problem. Section 5 contains our
main result: a closed formula for the test set of the underlying integer linear prob-
lem. Our computational experiments are reported in Section 6, with comparisons
to other exact approaches. Finally we draw some concluding remarks in Section 7.

2. General model

In order to formulate the problem, some notation used throughout the paper is
first introduced.

• n number of subsystems.
• ki number of different types of available components for the i-th subsystem,
i = 1, . . . , n.
• rij reliability of the j-th component for the i-th subsystem, i = 1, . . . , n,
j = 1, . . . , ki.
• cij cost of the j-th component for the i-th subsystem, i = 1, . . . , n, j =

1, . . . , ki.
• lij , uij lower/upper bounds of number of j components for the i-th subsys-

tem, i = 1, . . . , n, j = 1, . . . , ki.
• R0 admissible level of reliability of the whole system.
• xij number of j components used in the i-th subsystem, i = 1, . . . , n, j =

1, . . . , ki.

In our model, some assumptions are considered:

• Components have two states: working or failed.
• The reliability of each component is known and is deterministic.
• Failure of individual components are independent.
• Failed components do not damage other components or the system, and

they are not repaired.



4 J. GAGO-VARGAS, M.I. HARTILLO-HERMOSO, J. PUERTO, AND J.M. UCHA-ENRÍQUEZ

This model is illustrated in Figure 1. It is a system with n subsystems with the
notation introduced before. The optimization problem can be formulated as:

(1)

(RP ) min
∑n
i=1

∑ki
j=1 cijxij

s. t.
R(x) ≥ R0,∑ki
j=1 xij ≥ 1, i = 1, . . . , n,

0 ≤ lij ≤ xij ≤ uij , i = 1, . . . , n,
j = 1, . . . , ki,

xij ∈ N for all i, j,

where R(x) =
∏n
i=1(1−

∏ki
j=1(1−rij)xij ). The first n linear inequalities in Problem

(RP ) assert that each subsystem must have, at least, one component.
As usual, we can make a change of variables yij = xij − lij , so that we can

assume lij = 0. This does not alter the equations of Problem (RP ), and some of
the last equations can be redundant. Hence it can be assumed lij = 0 without loss
of generality, and:

(RP ) min
∑n
i=1

∑ki
j=1 cijxij

s. t.
R(x) ≥ R0,∑ki
j=1 xij ≥ 1, i = 1, . . . , n.

0 ≤ xij ≤ uij , i = 1, . . . , n,
j = 1, . . . , ki,

xij ∈ N for all i, j.

A feasible solution is sometimes called a reliable solution because it ensures a reli-
ability greater than or equal to R0.

3. Computing a reliable system with a greedy procedure

The main step used in the algebraic algorithm described in this article is to
consider an integer linear problem (LRP ), obtained by relaxing the nonlinear con-
straint of the original problem (RP ). There is only one nonlinear constraint in
(RP ), the equation which ensures the reliability of the whole system. Removing
the nonlinear constraint, we get an integer linear programming problem:

(LRP ) min
∑n
i=1

∑ki
j=1 cijxij

s. t. ∑ki
j=1 xij ≥ 1, i = 1, . . . , n.

0 ≤ xij ≤ uij , i = 1, . . . , n,
j = 1, . . . , ki,

xij ∈ N for all i, j.

In our approach, we start from the solution of the linear programming problem
(LRP ), and following the directions given by the test set of (LRP ) we follow a
descent path to the solution of the complete Problem (RP ).

The process is greatly improved if we have a feasible point y0 of (RP ). There
are lots of heuristic methods to obtain such a point. In our case, we use a greedy
algorithm similar to [12] or [16].



EXACT COST MINIMIZATION 5

At the beginning of the greedy algorithm, y0 describes the system with the
maximum number of components of every type. If the reliability of that system
is less than R0, then the problem has an empty feasible region. I will be the set
of all pairs (i, j), which describes the j-th component for the i-th subsystem. For
each (i, j), we calculate the rate tij =

cij
− log(1−rij) between cost and reliability, and

sort I by decreasing rates (ties are solved by lex order, for example). For the first
index (i0, j0) in I, we subtract components of type (i0, j0) from y0 until it is not
reliable, or there is no such component or the i0-th subsystem is empty. If the
solution obtained by this process is not reliable, or the i0-th subsystem is empty,
one (i0, j0) component is added. Then we take the next index in the set I and
repeat the procedure, until the index set I has been completely processed.

Data: rij , vector c
Result: y0 feasible point
y0 = (u11, . . . , unkn) ;

t =
(

c11
− log(1−r11) , . . . ,

cnkn

− log(1−rnkn )

)
;

I = {(1, 1), . . . , (1, k1) . . . , (n, kn)} ;

Sort I decreasingly by ti,j ;

forall the (i, j) ∈ I do
Reliable=TRUE ;

SubsystemNonEmpty=TRUE ;

while Reliable and SubsystemNonEmpty and y0
i,j > 0 do

y0
i,j = y0

i,j − 1 ;

if
∑
k y

0
ik < 1 then

SubsystemNonEmpty=FALSE ;

end

if R(y0) < R0 then
Reliable=FALSE ;

end

if Reliable=FALSE or SubsystemNonEmpty=FALSE then
y0
ij = y0

ij + 1 ;

end

end

end

Algorithm 1: Greedy algorithm

Using the above greedy algorithm, we obtain a feasible point y0, with a cost∑
ij cijy

0
ij = c0. Obviously, the optimal solution of (RP ) has a cost less than or

equal to c0.

4. A review on integer programming and Gröbner bases

In this section, we recall the concepts and algorithms used to solve integer linear
programming problems from an algebraic point of view, and the walk back proce-
dure for nonlinear integer programming problems based on test sets. To this end,
we have followed [19] and [20].

4.1. Gröbner bases. Denote by Q[x] = Q[x1, . . . , xN ] the ring of polynomials
with coefficients in Q. The ideal generated by a subset F ⊂ Q[x] is the set 〈F〉



6 J. GAGO-VARGAS, M.I. HARTILLO-HERMOSO, J. PUERTO, AND J.M. UCHA-ENRÍQUEZ

consisting of all linear combinations:

〈F〉 = {h1f1 + · · ·+ hrfr : f1, . . . , fr ∈ F , h1, . . . , hr ∈ Q[x]}.

A term order on NN is a total order ≺ satisfying the following properties:

• ≺ is compatible with sums, i.e., α ≺ β ⇒ α+γ ≺ β+γ, for all α, β, γ ∈ NN .
• ≺ is a well-ordering, i.e., 0 ≺ α for all α ∈ NN , α 6= 0.

If we fix a term order ≺, then every nonzero polynomial f has a unique initial
term in≺(f) = axα. It is the monomial axα where α is the maximizing term
appearing in f for the term order ≺. We are particularly interested in two term
orders:

(1) The lexicographic order <lex. For every α, β ∈ NN , we say α >lex β if, in
the vector difference α− β ∈ ZN , the first nonzero entry is positive.

(2) The vector induced order <c. Consider a vector c ∈ NN . Given α, β ∈ NN ,
we say α >c β if  ctα > ctβ

or
ctα = ctβ and α >lex β.

For example, consider the polynomial f = 6x1x
2
2x3 + 7x2

3 − 5x3
1 + 4x2

1x
2
3 and the

vector c = (3, 2, 2)t. The monomials in f are represented by the vectors

α1 = (1, 2, 1)t, α2 = (0, 0, 2)t, α3 = (3, 0, 0)t, α4 = (2, 0, 2)t.

With respect to the lexicographic order <lex we have

α3 >lex α4 >lex α1 >lex α2, so in<lex
(f) = −5x3

1.

With respect to the induced order <c, we compute

ctα1 = 9, ctα2 = 4, ctα3 = 9, ctα4 = 10,

so

α4 >c α3 >c α1 >c α2, so in<c(f) = 4x2
1x

2
3.

Of course, we can reorder the variables xi, and get a new term order. In general, the
notation <c means a term order which is compatible with the partial order defined
by the vector c and then a tie-break term order. If we change the lexicographic
order in the definition on <c, we get another vector induced order.

Suppose that J is an ideal in Q[x], and ≺ is a given term order. Then its initial
ideal in≺(J) is the ideal generated by the initial terms of the polynomials in J ,
that is, in≺(J) = 〈in≺(f) : f ∈ J〉. A finite subset G of J is a Gröbner basis
with respect to the term order ≺ if the initial terms of the elements in G suffice to
generate the initial ideal. In other words, in≺(J) = 〈in≺(g) : g ∈ G〉.

Given an ideal and a term order, a Gröbner basis is not unique. The uniqueness
is guaranteed by adding two more conditions. The reduced Gröbner basis of J with
respect to ≺ is a Gröbner basis G≺ of J such that:

• in≺(gi) has unit coefficient for each gi ∈ G≺.
• For each gi ∈ G≺, no monomial in gi lies in 〈in≺(G≺\{gi})〉.

Every ideal J has a unique reduced Gröbner basis for each term order.



EXACT COST MINIMIZATION 7

4.2. Test set. Consider an integer linear programming problem:

ILP (b) min ct · x
s. t.

A · x = b,
x ∈ NN ,

where A ∈ Zd×N , b ∈ Zd, c ∈ RN . The notation ILP (b) denotes the integer linear
programming problem with right-hand-side fixed to b. When we write (ILP ), we
note the set of all the integer linear programming problems obtained by varying
the right-hand-side vector b, fixing A and the cost function c. Consider the map
π : NN → Zd defined by π(x) = Ax. Given a vector b ∈ Zd, the set π−1(b) = {u ∈
NN : π(u) = b} is the fiber of (ILP ) over b.

We group points in NN according to increasing cost value ctx, and refine this
order to a total order <c breaking ties among points with the same cost value by
adopting some term order (lexicographic, for example, as defined in the previous
section). It is the vector induced order.

A set G<c ⊂ ZN is a test set for the family of integer linear problems (ILP )
with respect to the matrix A and the order <c if

• for each nonoptimal point α in each fiber of (ILP ), there exists g ∈ G<c

such that α− g is a feasible solution in the same fiber and α− g <c α,
• for the optimal point β in a fiber of (ILP ), β− g is not a feasible point for

every g ∈ G<c

A test set for (ILP ) gives an obvious algorithm to solve an integer program, pro-
vided we know a feasible solution to this problem. At every step of this algorithm,
we have two different cases:

• There exists an element in the test set which, when subtracted from the
current point, yields an improved point. We are then in a nonoptimal point,
but we get a better one.
• There will not exist such an element in the set, so we are in the optimum

of the fiber.

4.3. Toric ideal. We define IA the toric ideal associated with A as

IA = 〈xα − xβ : Aα = Aβ,α, β ∈ NN 〉.

Given an integral vector γ ∈ ZN , we can write it uniquely as γ = γ+ − γ−, where
γ+, γ− ∈ NN and have disjoint supports. It is well known [19] that

IA = 〈xα
+

− xα
−

: Aα = 0, α ∈ ZN 〉.

The relationship between the previous concepts is that the reduced Gröbner basis
G<c of IA with respect to the order <c allows us to compute a uniquely defined
minimal test set G<c for (ILP ). The reduced Gröbner basis is formed by binomials

G<c = {xαi − xβi , i = 1, 2, . . . , r}, with in<c(xαi − xβi) = xαi ,

and then the test set is expressed as

G<c = {αi − βi, i = 1, 2, . . . , r}.



8 J. GAGO-VARGAS, M.I. HARTILLO-HERMOSO, J. PUERTO, AND J.M. UCHA-ENRÍQUEZ

Data: Matrix A, vectors b, c, nonlinear restrictions
Result: Optimum
β = optimum for relaxed LRP ;

P = {P (β)} ;

y0 = greedy(RP ) ;

Y = {y0};
G<c = groebner(IA) with respect to <c ;

repeat
forall the P (α) ∈ P do

forall the g ∈ G<c do
w = α+ g ;

if w is a feasible point of (LRP) then
if w is feasible for (RP) then

Y = Y ∪ {w};
Prune P (w) ;

else
if y <c w for some y ∈ Y then

Prune P (w);

end

P = P ∪ {P (w)};
end

end

end

end

Delete P (α) from P ;

until all paths in P are pruned ;

Optimum = Select minimum <c element from Y ;

Algorithm 2: Walk back procedure

4.4. Walk back procedure. Basically the walk back procedure induces an algo-
rithm which computes the optimum for a nonlinear integer programming problem
under some conditions. The integer programming problem (RP ) introduced in Sec-
tion 2 is not linear. It has a nonlinear constraint (the reliability condition), while
the rest of the restrictions are linear and the cost function is also linear. These are
the conditions required to use the walk back procedure, introduced in [20].

In Algorithm 2, it is used the directed graph defined by the Gröbner basis over the
feasible points, but directions are reversed in the skeleton. In each step, elements
w = α+ g in the reverse skeleton are computed, where Aα = b and g is an element
in the Gröbner basis.

In general, Algorithm 2 uses the following notation. We denote by (RP ) the
entire nonlinear integer programming problem, (LRP ) the relaxed linear integer
programming problem which arises from (RP ). Let β be the optimum of (LRP ).
If β is a feasible point for (RP ), then it is the solution to (RP ). If it is not a feasible
point, then the reverse skeleton is needed.

Let P (α) denote the path, in the directed graph (reversed) of the linear integer
programming problem (LRP ), from the optimum β for (LRP ) to a feasible point



EXACT COST MINIMIZATION 9

α for (LRP ). There is always one. Any solution of (RP ) is feasible for (LRP ),
so the objective is to find such a path, in an ordered way. In each reversed step
the cost function increases, so the minimum cost feasible points for (RP ) are found
first. Observe that the feasible point y0 obtained in Section 3 is the first value for
variable Y , that contains feasible points of the Problem (RP ).

The cost of the point y0 is an upper bound for the cost of any feasible point
we will find in the procedure. If a feasible w point for Problem (RP ) is found and
its cost is greater than the cost for some y ∈ Y , then the branch of the point w is
pruned.

5. The test set of the relaxed integer linear problem

In the relaxed integer linear problem (LRP ), each inequality must be converted
to an equality, so we must introduce a new slack variable for each inequality:

(LRP ) min
∑n
i=1

∑ki
j=1 cijxij

s.t. ∑ki
j=1 xij − di = 1, i = 1, . . . , n,

xij + tij = uij , i = 1, . . . , n,
j = 1, . . . , ki,

xij , di, tij ∈ N for all i, j.

If we denote N = k1 + . . .+ kn and

Dn×N =


k1︷ ︸︸ ︷

1 . . . 1

k2︷ ︸︸ ︷
0 . . . 0 . . .

kn︷ ︸︸ ︷
0 . . . 0

0 . . . 0 1 . . . 1 . . . 0 . . . 0
. . .

0 . . . 0 0 . . . 0 . . . 1 . . . 1

 ,

the constraints in matrix form can be written as Az = b, where

(2) A =

(
D −In 0n×N
IN 0N×n IN

)
, b =


1n
u1

...
un

 , z =

xN×1

dn×1

tN×1

 ,

and

x =



x11

...
x1k1

...
xn1

...
xnkn


, t =



t11

...
t1k1

...
tn1

...
tnkn


,d =

 d1

...
dn

 ,ui =

 ui1
...

uiki

 , i = 1, . . . , n.

The vector 1n denotes the vector with all the n components equal to 1. We can
assume that, for each i = 1, . . . , n, the costs cij are sorted in descending order:



10 J. GAGO-VARGAS, M.I. HARTILLO-HERMOSO, J. PUERTO, AND J.M. UCHA-ENRÍQUEZ

ciq ≥ cip if q < p. We identify zy with

zy = xX11
11 · · ·x

Xnkn

nkn
dD1

1 · · · dDn
n tT11

11 · · · t
Tnkn

nkn
.

Consider the following set of binomials in Q[z]:

(3) G = {xikdi − tik, xiqtip − xiptiq},

for i = 1, . . . , n, k = 1, . . . , ki, 1 ≤ q < p ≤ ki. Let > be a term order in Q[z] such
that x > d > t. Within each block, the variables are lexicographically ordered as
follows:

x11 > · · · > x1k1 > x21 > · · · > xnkn ,

d1 > · · · > dn,

t11 > · · · > t1k1 > t21 > · · · > tnkn .

Theorem 1. The set G is the reduced Gröbner basis of the toric ideal IA with
respect to the term order >. Moreover, G is the reduced Gröbner basis with respect
to the order <c induced by the cost vector c.

Proof. The proof follows similar steps and notation as that in [20, Thm. 4]. First
of all, the set G is a subset of IA, because all the binomials zα − zβ in G verify
Aα = Aβ.

The initial term of every binomial in G with respect to > is the underlined term.
It is enough to show that for every binomial zα − zβ ∈ IA, with initial term zα,
there is some g ∈ G whose initial term divides zα. By definition of toric ideal,
zα − zβ ∈ IA if and only if α − β ∈ K = {y ∈ Zs : Ay = 0}, s = n + 2N . We
denote an element y in K by y = (yx, yd, yt) to indicate the correspondence between
components of y and the columns of A. In addition, we denote the components of
yx by (X11, . . . , Xnkn), and similarly for the others. We classify the elements in K
in the following manner:

(1) Let K1 = {y ∈ K : yx = 0}. Now y ∈ K1 if and only if (yd, yt) ∈ Zs1 , s1 =
n+N belongs to the lattice S′ = {w ∈ Zs1 : A′w = 0} where

A′ =

(
−In

IN

)
.

But S′ = 0 since A′ is a nonsingular matrix. Therefore K1 = 0. This
implies that there are no binomials of the form zα−zβ that do not contain
the variables xij .

(2) Let K2 = {y ∈ K : yd = 0}. Again y ∈ K2 if and only if (yx, yt) ∈
Zs2 , s2 = 2N belongs to the lattice S′′ = {w ∈ Zs2 : A′′w = 0}, where

A′′ =

(
D 0 0
IN IN 0

)
.

Let Xiq be the left most nonzero component of yx. We may assume that
Xiq > 0 since S is the set of integer points in a vector space which implies
that it contains the negative of every element in it. The i-th row of matrix
D in A′′ implies that there exists some p > q such that Xip < 0. Therefore,

xiq divides zy+

and xip divides zy−
.



EXACT COST MINIMIZATION 11

Consider now the rows given by the block
(
IN IN 0

)
in A′′. These

rows imply that Tiq = −Xiq < 0 and Tip = −Xip > 0. Therefore,

xiqtip divides zy+

and xiptiq divides zy−
.

The initial term of zy+ − zy−
with respect to > is zy+

since xiq divides

zy+

and xiq is the greatest variable that appears in this binomial. But this
implies that the initial term of xiqtip − xiptiq ∈ G divides the initial term

of zy+ − zy−
. Therefore, the initial term of all binomials associated with

K2 is divisible by the initial term of an element in G.
(3) Consider now a general element in S = {y ∈ Zs : Ay = 0}, s = n + 2N ,

with no variables restricted to be zero. By the previous cases we may
assume yx 6= 0, yd 6= 0. Let Di be the first nonzero component of yd. As
before, we may assume that Di > 0. Therefore,

di divides zy+

.

Then there exists Xik > 0, so

xikdi divides zy+

.

Similarly, there exists Tik < 0 and

tik divides zy−
,

so the initial term of zy+ − zy−
is zy+

because di > tik. This initial term
is divisible by xikdi, which is the initial term of xikdi − tik. Therefore

in<(IA) = 〈in<(G)〉,
which proves that G is a Gröbner basis of IA with respect to the term order
<. Clearly, it is a reduced basis.

Moreover, with respect to the term order <c,

in<c(xikdi − tik) = xikdi,

because the weight of the first monomial is equal to cik > 0, and the weight of the
second monomial is equal to zero. Similarly,

in<c(xiqtip − xiptiq) = xiqtip, 1 ≤ q < p < ki,

because the weight of the first monomial is ciq ≥ cip, which is the weight of the
second monomial. If ciq = cip, the tie is broken with the lexicographical order
xiq > xip. �

The above theorem gives a reduced Gröbner basis with respect to the term order
induced by the objective function of (LRP ). For comparison purposes, we mention
that [20, Thm. 4] only provides a Gröbner basis with respect to a lexicographical
order, and not with respect to the term order needed for the computation of the test
set. Therefore, one more computational step is required to get it. Our construction
gives directly the answer with its consequent saving.

Remark 1. It is worth observing that the constraint matrix A in Equation (2) is
totally unimodular. Therefore, the set of circuits C(A) is the universal Gröbner
basis U(A) associated with the toric ideal IA [19, Prop. 4.11, Prop. 8.11]. The set
of circuits can be computed, as proposed in [19, p. 35]. Nevertheless, the elements
that form our set G described in (3) must be extracted to construct the vectors that



12 J. GAGO-VARGAS, M.I. HARTILLO-HERMOSO, J. PUERTO, AND J.M. UCHA-ENRÍQUEZ

define the test set. Theorem 1 ensures that these two operations can be done directly
in a single step, providing the test set in a straightforward way. Moreover, from our
result we can state that the computational effort to get G has worst case complexity
O(nk2), where k = max{ki : i = 1, . . . , n}.

6. Computational results

The closed form construction of the test set for this particular problem is used
in the computational experiments of our algorithm. In all the examples, the test
set is computed in less than 0.1 seconds. A standard approach to compute the
Gröbner basis using a program like 4ti2 ([4ti2 team(2008)]) is fast too, although
Theorem 1 ensures that in our problem the computation does not depend on the
implementation of Buchberger’s algorithm.

The Algorithm 2 has been coded in Matlab and run on an Intel Xeon X5660
(2.8 GHz) with 32 GB RAM. For Table 1, all data in the test problems have been
randomly generated from uniform distributions, with lij = 0, uij = 4 and rij ∈
[0.99, 0.998], as in [16]. The linear cost function

∑n
i=1

∑ki
j=1 cijxij has coefficients

cij ∈ [10, 20].
First of all, we compare in Table 1 our results (column Walk-Back) against

the data from [16] (column Ruan-Sun). In the exact method described in [12],
there appear only illustrative examples, and they do not consider different types of
components within a subsystem.

We report the results in the following format. Columns n and k refer to the
number of subsystems, and the number of different components in each subsystem,
respectively.

Table 1. R0 = 0.90, rij ∈ [0.99, 0.998], 30 instances

Walk-Back
2.8 GHz, 32 GB

Ruan-Sun
2 GHz, 256 MB

n k Iter. CPU > 80000 Iter. CPU

10 2 0 0.0 0 696 0.9
10 3 0 0.0 0 5797 13.5
10 5 0 0.0 0 26427 109.1
15 2 0 0.0 0 15184 34.5
15 3 0 0.1 0 85103 316.6
15 4 0 0.0 0 New
17 3 84 0.1 0 New
17 4 58 0.1 1 New
19 2 3389 40.1 1 New
20 2 7254 173.7 6 294747 1031.9

The remaining data are grouped in two blocks. The first one reports the results of
our Walk-Back procedure, and the second one the data corresponding to the Ruan-
Sun algorithm (extracted from [16, Table 1]). We include number of iterations and
CPU time.

The average CPU time, and the average number of iterations (generated nodes)
of the Walk-Back procedure has been obtained by running the program for 30
instances. The column “> 80000” contains the number of instances with more



EXACT COST MINIMIZATION 13

than 80000 processed nodes. In that case, the process was terminated with a good
(probably optimum) point, although no certificate of optimality is proven. The
average CPU time is computed over the finished processes.

Since we have solved larger instances than those treated in [16], we label as
“New” those cases not contained there. Comparing our results with [16], not only
the CPU time is improved, but also the effort measured by the number of iterations
by the Walk-Back procedure is less than the number of iterations in [16]. We also
point out that the iterations in [16] compute two Lagrangian discrete relaxations
and their corresponding solutions for the best value, each time. After that, the
reliability of that solution is needed to discard remaining boxes in their branch
and bound tree. In each iteration of the Walk-Back procedure, a node is easily
computed by adding a vector, and its reliability is compared to R0. Clearly, these
iterations are less costly than theirs.

In [21] complete data for reliability and cost do not appear for all the examples,
but only for the illustrative example of [21, Sect. 3].

In order to better illustrate the results, new tests have been done with data
sets imposing the additional hypothesis that reliability and cost are correlated: the
components with a greater reliability are the most expensive. Note that if there is
no correlation between cost and reliability of a component (as in [16]), then it is
likely that certain components are not going to be used, because only more reliable
components would be chosen regardless their cost. Hence the dimensionality of
the problem is artificially reduced. In order to consider these more realistic design
problems we have also reported data generated with this correlation pattern, that
appears in Table 2. This correlation is also considered in [21].

Table 2. R0 = 0.90, rij ∈ [0.99, 0.998] (ordered), 30 instances

n k Iter. CPU (s) > 80000

10 2 0 0.0 0
10 3 0 0.0 0
10 5 0 0.0 0
15 2 155.8 0.6 0
15 3 6965 322.8 1
15 4 17629 571.1 13
17 2 6465 92.7 1

It is clear the increasing computational effort shown by rows n = 15, k = 3 and
n = 15, k = 4. Even if we increase the limit of iterations to 120000, there remain
9 instances in n = 15, k = 4 where we cannot ensure that we have reached the
optimum. The average CPU time for the instances that were solved to optimality
increases to 3442.1 seconds, and the average number of iterations to 34461. From
the above, we conclude that the computational experiments for this model should
be done with this additional hypothesis of correlation between cost and reliability
for each component.

We also note that the algorithm is very sensitive to changes in the value of the re-
liability parameters rij . For example, for less reliable components, rij ∈ [0.90, 0.99]
and the same value, R0 = 0.90, for the overall reliability, we have obtained the
results in Table 3. The reader may observe that the values for n and k that can



14 J. GAGO-VARGAS, M.I. HARTILLO-HERMOSO, J. PUERTO, AND J.M. UCHA-ENRÍQUEZ

Table 3. R0 = 0.90, rij ∈ [0.90,0.99] (ordered), 30 instances

n k Iter. CPU (s) > 80000

6 4 11 0 0
6 5 49 0.1 0
7 4 1775 3.1 0
7 5 6157 23.6 0
8 4 32728 593.5 7

be solved are smaller. However, we have to point out that an exact solution has
been found in almost all the instances. Although [21] does not give enough data
to do comparisons, we observe that the best time for n = 7, k = 5 in [21, Table X]
corresponding to a constant L = 104 is 105.29 CPU seconds, over 8 running tests.
In Table 3 we report 23.6 CPU seconds, with a sample of 30 instances.

In order to perform further comparisons with standard integer nonlinear solvers
as Baron ([18]) and Couenne ([3]), the problem (RP ) has been modeled in GAMS
format. This encoding has allowed us to launch our data sets in the Neos Server
([11, 14, 13]) under these solvers. We have chosen the 30 instances for systems
with n = 8, k = 4 from Table 3, because it contains a good assortment of cases.
The results are reported in Table 4. Under column Couenne, cells with xxx(yyy)
denote an error in the output of the program. In those data sets, Couenne gets
good bounds, namely yyy, but the returned value xxx is not the optimal value.
In Baron, cells in the form xxx(∗) denote that the program has not reached the
optimal value. The column “Minimum” in WB contains the certified minimum,
obtained with the Walk-Back procedure by extending the search. Entries marked
with “N/F” in the table indicate that the corresponding process has been stopped
because a limit of time or nodes has been reached. We can make the following
remarks:

• Comparison between Walk-Back and Couenne.
– WB is, in general, faster than Couenne. In average, WB is 1.7 times

faster than Couenne.
– WB does not certify optimality in 7 instances, and Couenne does not

do it in 9.
• Comparison between Walk-Back and Baron.

– Baron achieves better CPU times than WB. In average, Baron is
9.1 times faster than WB.

– Baron ends in all the cases. However there are 7 instances where
Baron returns a nonoptimal point, although it is very close to the
minimum cost (under 1% of optimality gap). Therefore, we conclude
that termination, in general, does not mean certification for optimality.

– One of the advantages of using Walk-Back is that it is an exact method,
and operates with integer arithmetic. As pointed in [17, 9], available
software packages to solve mixed integer programming problems use
floating-point arithmetic that can lead to calculation errors in the so-
lution of mathematical-programming relaxations and in the methods
used for creating cutting planes to improve these relaxations. These
issues result in a lack of certification of optimality for these software



EXACT COST MINIMIZATION 15

Table 4. R0 = 0.90, rij ∈ [0.90, 0.99], (ordered), 30 instances

Couenne Baron WB
CPU (s) Minimum CPU (s) Minimum CPU (s) Minimum

1 81.7 113 (134) 13.7 113 23.7 113
2 1082 120 40.6 120 627.8 120
3 366.5 116 37.6 116 542.2 116
4 N/F 34.1 120(*) 522.4 119
5 133 113 18.1 113 34.9 113
6 1982.9 118 27.5 118 541.1 118
7 2927 121 72.4 122(*) 1915 121
8 N/F 143.3 133(*) 2274.7 132
9 N/F 101.7 125 N/F 125
10 313.7 125 25.9 125 197.9 125
11 3596.8 123 172.0 124(*) N/F 123
12 N/F 155.4 113 N/F 113
13 N/F 105.3 123 1944.6 123
14 N/F 151.7 113 N/F 113
15 N/F 85.6 123 1108.7 123
16 1017.5 121 60.9 122(*) 920.4 121
17 649.6 122 20.9 122 216.9 122
18 247.8 113 29.7 113 88.9 113
19 68.6 114 9.7 114 20.6 114
20 N/F 144.2 131 N/F 131
21 139.7 123 15.6 123 38.2 123
22 N/F 126.5 134(*) N/F 133
23 63.1 109 12.1 110(*) 14.8 109
24 4340.3 111 109.7 111 N/F 111
25 499.8 114 (754) 23.5 114 212.6 114
26 1419.2 117 67.2 117 1359.1 117
27 159.8 115 23.2 115 150.3 115
28 255.5 123 32.1 123 127.3 123
29 1289.6 111 51.3 111 605.3 111
30 805.5 124 38.8 124 162.2 124

packages. As opposite to that, Walk-Back certifies optimality upon
termination because it is an exact method that operates in integer
arithmetic.

An interesting observation is that the elapsed time in the Walk-Back procedure
is significantly reduced if the algorithm is stopped with the first feasible point found
in the process. Obviously, this approach does not guarantee optimality but it gives
very accurate approximations. From this observation, we think that a promising
open field is the combination of this technique with heuristic methods to get good
approximated solutions.

7. Conclusion

We have presented in this paper an exact method for solving a nonlinear integer
programming problem arising from the design of series-parallel reliability systems.



16 J. GAGO-VARGAS, M.I. HARTILLO-HERMOSO, J. PUERTO, AND J.M. UCHA-ENRÍQUEZ

The method is based on the construction of a test set of an integer linear problem
through the theory of Gröbner bases. We provide an explicit formula of the test
set. Computational experiments show that this approach improves some existing
methods in the literature already applied for this problem.

This paper deepens the challenge given in [20] to yield efficient algorithms for
integer problems based on attractive bases.

Acknowledgments

This paper has been partially supported by Junta de Andalućıa under grant
FQM-5849, and Ministerio de Ciencia e Innovación MTM2010-19336, MTM2010-
19576 and FEDER.

References

4ti2 team(2008). 4ti2 team, 2008. 4ti2—a software package for algebraic, geometric and combi-
natorial problems on linear spaces. Available at www.4ti2.de.

1. W.W. Adams, P. Loustaunau, An introduction to Gröbner bases, Graduate Studies in Math-

ematics, vol. 3, American Mathematical Society, Providence, RI, 1994.
2. F. Ahmadizar, H. Soltanpanah, Reliability optimization of a series system whith multiple-

choice and budget constraints using an efficient ant colony approach, Expert systems with

Applications, 38, (2011), 3640–3646.
3. P. Belloti, in www.coin-or.org/Couenne/.

4. D. Bertsimas, R. Weismantel, Optimization over integers, Dynamic ideas, 2005.

5. F. Castro, J. Gago, I. Hartillo, J. Puerto, J.M. Ucha, An algebraic approach to integer portfolio
problems. European J. Oper. Res., 210, (2011), 647–659.

6. M.S. Chern, On the computational-complexity of reliability redundancy allocation in a series
system, Oper. Res. Lett., 11, (1992), 309–315.

7. D.W. Coit, A.E. Smith, Reliability optimization of series-parallel systems using a genetic

algorithm, IEEE Trans. Reliab., 45, (1996) 254–260.
8. P. Conti, C. Traverso, Buchberger algorithm and integer programming, in Applied Algebra,

Algebraic Algorithms and Error-Correcting Codes. Lecture Notes in Comput. Sci., 539, (1991),

130–139., second ed.
9. W. Cook, T. Koch, D.E. Steffy, D.E. and K. Wolter, An exact rational mixed-integer program-

ming solver, in IPCO2011: Integer Programming and Combinatorial Optimization, Lecture

Notes in Comput. Sci. 6655, (2011), 104–116.
10. D.A. Cox, J. Little, D. O’Shea, Using Algebraic Geometry, Graduate Texts in Mathematics,

vol. 185, Springer, New York, 2005.

11. J. Czyzyk, M.P. Mesnier, and J.J. Moré. The NEOS server. IEEE Computational Science and
Engineering, 5(3):68–75, 1998.

12. M. Djerdjour, K. Rekab, A branch and bound algorithm for designing reliable systems at a
minimum cost, Appl. Math. Comput, 118,(2001) 247–259.

13. E. Dolan. The NEOS server 4.0 administrative guide. Technical Report Technical Memoran-

dum ANL/MCS-TM-250, Mathematics and Computer Science Division, Argonne National
Laboratory, 2001.

14. W. Gropp and J.J. Moré. Optimization environments and the NEOS server, pages 167–182.
Approximation theory and optimization (Cambridge, 1996). Cambridge Univ. Press, Cam-
bridge, 1997.

15. M. Ouzineb, M. Nourelfath, M. Gendreau, Tabu search for the redundancy allocation problem

of homogenous series-parallel multi-state systems, Reliab. Eng. Syst. Saf., 93, (2008), 1257–
1272.

16. N. Ruan, XL. Sun, An exact algorithm for cost minimization in series reliability systems with
multiple component choices, Appl. Math. Comput., 181, (2006) 732–741.

17. D.E. Steffy, K. Wolter, Valid linear programming bounds for exact mixed-integer program-
ming, INFORMS J. Comput., 25(2), (2013), 271–284.

18. N.V. Sahinidis, BARON: A general purpose global optimization software package, Journal of
Global Optimization, 8(2), (1996), 201–205.



EXACT COST MINIMIZATION 17

19. B. Sturmfels, Gröbner Bases and Convex Polytopes, University Lecture Series, vol. 8, Amer-

ican Mathematical Society, Providence, Rhode Island, 1996.

20. S.R. Tayur, R.R. Thomas, N.R. Natraj, An algebraic geometry algorithm for scheduling in
presence of setups and correlated demands, Math. Program., 69, (1995) 369–401.

21. A. Yalaoui, E. Chatelet, C.B. Chu, A new dynamic programming method for reliability &

redundancy allocation in a parallel-series system, IEEE Trans. Reliab., 54, (2005), 254–261.

Depto. de Álgebra, Universidad de Sevilla. Apdo. 1160, E-41080 Sevilla (Spain)

E-mail address: gago@us.es

Dpto. de Matemática Aplicada I, E.T.S. de Ingenieŕıa Informática, Av. Reina Mer-

cedes, s/n, 41012 Sevilla, Spain

E-mail address: hartillo@us.es

Dpto. de Estad́ıstica e I.O., Facultad de Matemáticas, apdo. 1160, 41080 Sevilla,

Spain
E-mail address: puerto@us.es

Depto. de Álgebra, Universidad de Sevilla. Apdo. 1160, E-41080 Sevilla (Spain)

E-mail address: ucha@us.es


