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Abstract. Let f1, . . . , fp be polynomials in C[x1, . . . , xn] and let D = Dn

be the n-th Weyl algebra. We provide upper bounds for the complexity of

computing the annihilating ideal of fs = fs1
1 · · · fsp

p in D[s] = D[s1, . . . , sp].

These bounds provide an initial explanation on the differences between the
running times of the two methods known to obtain the so-called Bernstein-

Sato ideals.

1. Introduction

Fix two integers n ≥ 1, p ≥ 1 and two sets of variables (x1, . . . , xn) and (s1, . . . , sp).
Let us consider f1, . . . , fp ∈ C[x] = C[x1, . . . , xn] and let D = Dn be the n-th Weyl
algebra. A polynomial b(s) ∈ C[s] = C[s1, . . . , sp] is said to be a Bernstein-Sato
polynomial associated to f1, . . . , fp if the following functional equation holds for a
certain P (s) ∈ D[s]:

b(s)fs = P (s)fs+1,

where fs = fs11 · · · f
sp
p and 1 = (1, . . . , 1). These polynomials form an ideal called

the Bernstein-Sato ideal, noted Bf or simply B if no confusion arises. Analogous
functional equations with respect to vectors different from 1 yield other versions of
Bernstein-Sato ideals (see for example [Bahloul(2001)]).

In [Lichtin(1988)] it is proved that B is not zero. This fact is a generaliza-
tion of the classical proof of Bernstein ([Bernstein(1972)]) in the algebraic setting
for the case p = 1, in which B is generated by the so-called Bernstein-Sato poly-
nomial noted bf (s). The analytical case was covered in [Björk(1973)] for p = 1
and [Sabbah(1987a)] and [Sabbah(1987b)] for p > 1 (an interesting new proof
using the Gröbner fan has been given in [Bahloul(2005)]). The roots of bf (s) en-
code important algebro-geometrical data (see [Malgrange(1974)], [Hamm(1975)] or
[Budur-Saito(2003)] to mention only a few) and a complete understanding of all
roots for a general f is open. The case p > 1 seems to be much more complex and
there are conjectures on the primary decomposition of B, on the conditions over f
for B to be principal, etc. (see for example [Maynadier(1996)]).

Until [Oaku(1997)] there were no algorithms to find the Bernstein-Sato polyno-
mial. Since then, alternative methods have been proposed to obtain B in the general
case (see [Oaku and Takayama(1999)], [Bahloul(2001)] and [Briançon and Maisonobe(2002)]).
These methods have a feature in common: their first step is the computation of the
annihilating ideal of fs in D[s], AnnD[s]f

s. In [Castro-Ucha(2004)] some experi-
mental evidences were given in favor of the method of Briançon-Maisonobe (BM)
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to compute AnnD[s]f
s with respect to the method of Oaku-Takayama (OT), but

no clues about which facts support this advantage were provided.
Our work is a first step in order to compare theoretically both methods. We give

upper bounds for the complexity of computing AnnD[s]f
s, the previous requirement

for both algorithms. To obtain these bounds we use the techniques and results of
[Grigoriev(1990)] on the complexity of solving systems of linear equations over
rings of differential operators. These extend the classical polynomial case treated
in [Seidenberg(1974)]. In particular, we show that Grigoriev’s construction can
not be directly generalized to the algebra proposed by Briançon-Maisonobe. We
prove that the complexity of computing AnnD[s]f

s using the method BM is that
of the calculation of a Gröbner basis in the n-th Weyl algebra with some extra p
commutative variables, so 2n+ p variables at most. On the other hand, in the case
of the method OT the calculation of such a basis is made in a (n + p)-th Weyl
algebra with some extra 2p variables, so 2n+ 4p variables altogether.

It is an open problem to know whether the bound proposed in this work is
reached à la Mayr-Meyer ([Mayr-Meyer(1982)]), that is to say, whether an example
with this worst complexity can be explicitly obtained. Such an example would
mean a complete answer to the question of which is the complexity of computing
AnnD[s]f

s, proposed by Professor N. Takayama.

2. Preliminaries

In this section we just remind briefly some details of the methods of Briançon-
Maisonobe and Oaku-Takayama.

2.1. Method of Briançon-Maisonobe. In this case the computations are made
in the non-commutative algebra1

R = D[s, t] = D[s1, . . . , sp, t1, . . . , tp],

an extension of the n-th Weyl algebra D in which the new variables s, t satisfy the
relations [si, tj ] = δijti. It is a Poincaré-Birkhoff-Witt (PBW) algebra:

Definition 1. A PBW algebra R over a ring k is an associative algebra generated
by finitely many elements x1, . . . , xn verifying the relations

Q = {xjxi = qjixixj + pji, 1 ≤ i < j ≤ n},
where each pji is a finite k-linear combination of standard terms xα = xα1

1 · · ·xαn
n

and each qji ∈ k verifying the two following conditions:

(1) There is an admissible2 ordering ≺ on Nn such that exp(pji) ≺ exp(xjxi)
for every 1 ≤ i < j ≤ n.

(2) The standard terms xα, with α ∈ Nn, form a k-basis of R as a vector space.

It is possible to compute Gröbner bases in PBW algebras. The book [Bueso et al.(2003)]
is a good introduction to the subject of effective calculus in this fairly general family.

The following algorithm computes B, starting from

I := AnnR(fs) = 〈sj + fjtj , ∂i +
∑
j

∂fj
∂xi

tj , 1 ≤ i ≤ n, 1 ≤ j ≤ p〉.

1It is, in fact, the ring introduced in classical works by Malgrange and Kashiwara for p = 1.
2Here admissible means a total ordering among the elements of Nn with 0 as smallest element.
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Algorithm 2.1. (1) Obtain J = AnnDn[s]f
s = 〈G1 ∩ Dn[s]〉 where G1 is a

Gröbner basis of I with respect to any term ordering where variables tj are
greater than the others (that is, an elimination ordering for the tj .)

(2) B = (〈G2〉 + 〈f1, . . . , fp〉) ∩ C[s]〉, where G2 is a Gröbner basis of J with
respect to any term ordering with xi, ∂j greater than sl, for all i, j, l.

2.2. Method of Oaku-Takayama. All the computations are made in Weyl alge-
bras. More precisely, we start from

I ′ = 〈tj − fj ,
p∑
j=1

∂fj
∂xi

∂tj + ∂i, i = 1, . . . , n, j = 1, . . . , p〉

Algorithm 2.2. (1) Obtain J ′ = I ′
⋂

C[t1∂t1 , . . . , tn∂tn ]〈x, ∂x〉.
(2) J = AnnDn[s](f

s) = J ′′, where J ′′ denotes the ideal generated by the
generators of J ′ after replacing each ti∂ti by −si − 1.

(3) B = (〈G2〉 + 〈f1, . . . , fp〉) ∩ C[s]〉, where G2 is a Gröbner basis of J with
respect to any term ordering with xi, ∂j greater than sl, for all i, j, l..

Remark 1. The second step above is, as in Algorithm 2.1, the elimination of all the
variables but (s1, . . . , sp). Often the bottleneck to obtain the Bernstein-Sato ideal
is this step. As far as we know, the example for p = 2 with f1 = x2+y3, f2 = x3+y2

is intractable for the available computer algebra systems.

The computation of

I ′ ∩C[t1∂t1 , . . . , tn∂tn ]〈x, ∂x〉
uses 2n + 4p variables, as new variables uj , vj for 1 ≤ j ≤ p are introduced. More
precisely, the main calculation is an elimination of these new variables for the ideal

〈tj − ujfj ,
p∑
j=1

∂fj
∂xi

uj∂tj + ∂i, 1− ujvj , 1 ≤ i ≤ n, 1 ≤ j ≤ p, 〉.

3. Complexity

In [Grigoriev(1990)] a bound for the degree of the solutions of a general system of
linear equations over the Weyl algebra is given, with a procedure somewhat similar
to the one of [Seidenberg(1974)]. In this section we shall see how much of the work
of Grigoriev is applicable to our PBW algebra R of 2.1.

The construction has two different steps. In the first, the given system is reduced
to another system in a diagonal form. In the second, it is shown how to normalize
the new system in order to eliminate, successively, the variables.

We need a technical lemma to reduce the system to a diagonal form. This lemma
comes from Grigoriev’s paper (see [Grigoriev(1990), Lemma 1]), but we will write
it in a more general way. Here deg means the total degree of a term, that is, the
sum of the exponents of all of its variables.

Lemma 1. Let A be a (m−1)×m matrix with entries in a Poincaré-Birkhoff-Witt
algebra S with a basis of p elements. If deg(aij) ≤ d, there exists a nonzero-vector
f = (f1, . . . , fm) ∈ Sm such that Af = 0 and deg(f) ≤ 2p(m− 1)d = N .

Proof. Consider the linear space T ⊂ Sm of vectors c = (c1, . . . , cm) ∈ Sm such

that deg(c) ≤ N . We have dim(T ) =

(
N + p
p

)
m. For any vector c ∈ T it
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is clear that deg(Ac) ≤ N + d. If we consider now the vector space γ of vec-
tors e = (e1, . . . , em−1) ∈ Sm−1 such that deg(e) ≤ N + d, we have dim(γ) =(
N + d+ p

p

)
(m− 1). We prove that dim(γ) < dim(T ).(

N + d+ p
p

)
/

(
N + p
p

)
=

N + d+ p

N + p

N + d+ p− 1

N + p− 1
· · · N + d+ 1

N + 1
≤
(
N + d+ 1

N + 1

)p
.

It is enough to see (N+d+1
N+1 )p < 1 + 1

m−1 . This inequality follows from:(
1 +

1

m− 1

) 1
p

> 1 +
1

p(m− 1)
+

1

2

1

p

(
1

p
− 1

)(
1

m− 1

)2

>

> 1 +
1

2p(m− 1)
> 1 +

d

N + 1

�

If we work in a noetherian domain (not necessarily commutative), we can always
define the rank of a finite module as in [Stafford(1978)]. Given a square matrix in
a Poincaré-Birkhoff-Witt algebra we say that it is non-singular if it has maximal
rank. In this case we can obtain a left quasi-inverse with the previous lemma:

Lemma 2. Given a m ×m non-singular matrix B over a PBW algebra S as in
Lemma 1, it has a left quasi-inverse matrix G over S, such that deg(G) ≤ N .

Proof. There is no vector b 6= 0, in Rm such that bB = 0. If we consider the matrix
B(i) obtained from B deleting its i-th column, using Lemma 1 we obtain a vector
gi 6= 0 such that giB

(i) = 0 and deg(gi) ≤ N , so the matrix G which has gi as its
i-th row, for i = 1, . . . ,m, is a left quasi-inverse of B. �

Lemma 3. Given a system of linear equations over a PBW algebra defined by a
m× s matrix A of rank r with its elements deg(aij) ≤ d, we can always construct
a matrix C that defines an equivalent system, and such that

(1) CA =

(
C1 0
C2 E

)
A =


a1 0

. . .

0 ar

?

0 0


where E is the identity matrix.

Proof. C1 is the left quasi-inverse of the submatrix of A of maximal rank r (after
reordering the rows or columns of A if it were necessary). C2 is constructed with
the requirement on the left lower corner to be zero. The right lower corner is zero
by the definition of rank. �

Thanks to this lemma, we can assume that our system is equivalent to a system
in diagonal form:

akVk +
∑

r+1≤l≤s

ak,lVl = bk, 1 ≤ k ≤ r, deg(ak),deg(ak,l),deg(bk) ≤ 2pmd.
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Once the system is in diagonal form, we need to normalize it. To do this, we
construct some syzygies, applying Lemma 1 to the submatrix of the first r columns

and the column l > r. There always exist h(l), h
(l)
1 , . . . , h

(l)
r such that:

akh
(l)
k + ak,lh

(l) = 0, 1 ≤ k ≤ r deg(h(l)),deg(h
(l)
i ) ≤ 4p2m2d

The result that gives the normalization in the Weyl algebra is the following one:

Lemma 4 ([Grigoriev(1990)], Lemma 4). Given g1, . . . , gt ∈ D a family of ele-
ments, there is a nonsingular linear transformation of 2n-dimensional space with
basis x1, . . . , xn, ∂1, . . . , ∂n under which:

xi → Γxi
=

n∑
j=1

γ
(1,1)
i,j xj +

n∑
j=1

γ
(1,2)
i,j ∂j ;

∂i → Γ∂i =

n∑
j=1

γ
(2,1)
i,j xj +

n∑
j=1

γ
(2,2)
i,j ∂j

such that the following relations hold:

Γxi
Γ∂i = Γ∂iΓxi

− 1; Γxi
Γxj

= Γxj
Γxi

;

Γ∂iΓ∂j = Γ∂jΓ∂i ; Γ∂iΓxj
= Γxj

Γ∂i , i 6= j,

and if we denote by Γgi the transformed of gi with the indicated linear transforma-

tion, we have Γgi = ∂
deg(gi)
n + Γ̃gi .

Remark 2. The main fact in the proof of Lemma 4 is that the matrices of the linear
transformations defined by the relations in the Weyl algebra are a transitive group.
Let us see why we can not assure the existence of such a normalization lemma to
every PBW algebra.

If we consider the PBW algebra defined by Briançon and Maisonobe for p = 1,
that is

R = C[s, t, x1, . . . , xn, ∂1, . . . , ∂n],

a general linear transformation as the one appearing in Lemma 4 has the form:

s → Γs = α1s+ β1t +
∑n
j=1 γ

(s,1)
j xj +

∑n
j=1 γ

(s,2)
j ∂j

t → Γt = α2s+ β2t +
∑n
j=1 γ

(t,1)
j xj +

∑n
j=1 γ

(t,2)
j ∂j

xi → Γxi
= α

(1)
i s+ β

(1)
i t +

∑n
j=1 γ

(1,1)
i,j xj +

∑n
j=1 γ

(1,2)
i,j ∂j

∂i → Γ∂i = α
(2)
i s+ β

(2)
i t +

∑n
j=1 γ

(2,1)
i,j xj +

∑n
j=1 γ

(2,2)
i,j ∂j

and it has to verify the following relations:

(1) ΓsΓt = ΓtΓs + Γt; (2) ΓsΓxi = ΓxiΓs; (3) ΓsΓ∂i = Γ∂iΓs;
(4) ΓtΓxi = ΓxiΓt; (5) ΓtΓ∂i = Γ∂iΓt; (6) ΓxiΓ∂i = Γ∂iΓxi − 1;

(7) Γxi
Γxj

= Γxj
Γxi

; (8) Γ∂iΓ∂j = Γ∂jΓ∂i ; (9) Γxi
Γ∂j = Γ∂jΓxi

From relation (1), we obtain α2 = γ
(t,1)
j = γ

(t,2)
j = 0 for all j, so Γt = β2t. The

transformation must be nonsingular, so we must have β2 6= 0, and again using (1)

we deduce that α1 = 1. Using (4), we obtain that α
(1)
i = 0 for all i. This, together

with (5) implies that α
(2)
i = 0 for all i.
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From relation (2) (Γs commutes with Γxi
) we have β

(1)
i = 0, and relation (3)

gives β
(2)
i = 0. Due to relations (6) to (9) (between Γxi

and Γ∂j ) we have that the
submatrix (

γ
(1,1)
i,j γ

(1,2)
i,j

γ
(2,1)
i,j γ

(2,2)
i,j

)
verifies the relations of Lemma 4, and in addition, from the relations with Γs it
verifies ∑

γ
(s,1)
i γ

(1,2)
i,i =

∑
γ

(s,2)
i γ

(1,1)
i,i

∑
γ

(s,1)
i γ

(2,2)
i,i =

∑
γ

(s,2)
i γ

(2,1)
i,i .

So it is clear that we can not normalize with respect to the variables in R. Thus
we can not repeat the second step of the process to a general PBW algebra in the
way that it appears in [Grigoriev(1990)].

It is an open problem to obtain a general bound for the solutions of a general
linear system over any PBW algebra or, at least, to give such a bound for R. We
give up on this general problem at this point: with the aim of obtaining a bound for
the complexity of the annihilating ideal of fs, we will treat only the particular case
of one equation of the type produced by the definition of the ideal I in section 2.1
or I ′ in section 2.2. In both cases we want to measure the complexity of computing
Gröbner bases (in different rings) and we will do it by considering the equivalent
problem of computing the syzygies of the generators of our respective ideals.

Remark 3. In OT algorithm the calculations are computed in a Weyl algebra
of 2n + 4p variables, or more precisely in a commutative polynomial ring with
n+ 3p, (x, u, v, t) commutative variables extended with n+ p, (∂x, ∂t) “differential”
variables. Let us denote by A this algebra. The complexity of computing the anni-
hilating ideal of fs is bounded by the complexity of computing a Gröbner basis in
A.

Recall that the complexity in the Weyl algebra is given by the following theorem:

Theorem 1 (Th. 6,[Grigoriev(1990)]). Given a solvable system in the Weyl algebra
Dn: ∑

1≤l≤s

uk,lVl = wk, 1 ≤ k ≤ m

with deg(uk,l),deg(wk) ≤ d. There exists a solution with deg(Vl) < (md)2O(n)

As we said before in the Briançon-Maisonobe ring R we can not construct a
similar algorithm to bound the degree of a solution for a system in general. But in
our very special case, our problem is equivalent to computing the solutions of the
equation:

(s1 + f1t1)V1 + . . .+ (sp + fptp)Vp+

(∂1 +
∑
j

∂fj
∂x1

tj)Vp+1 + . . .+ (∂n +
∑
j

∂fj
∂xn

tj)Vp+n = 0

To simplify notation we write the precedent equation as
∑
lQlVl = 0.

Theorem 2. Given f = (f1, . . . , fp), the computation of the annhilating ideal of fs

in the Briançon-Maisonobe algebra R = D[s1, . . . , sp, t1, . . . , tp] can be reduced to

the computation of the syzygies of the generators ∂i +
∑
j
∂fj
∂xi

tj in the Weyl algebra

D[t1, . . . , tp].
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Proof. Trying to repeat Grigoriev’s ideas, the first step is the reduction of the
system to one in diagonal form. Due to the fact that we have only one equation

this step is done. Then, we need to compute h
(l)
1 , h(l) for 2 ≤ l ≤ n+ p such that:

(s1 + f1t1)h
(2)
1 + (s2 + f2t2)h(2) = 0

...

(s1 + f1t1)h
(p)
1 + (sp + fptp)h

(p) = 0

(s1 + f1t1)h
(p+1)
1 + (∂1 +

∑
j
∂fj
∂x1

tj)h
(p+1) = 0

...

(s1 + f1t1)h
(p+n)
1 + (∂n +

∑
j
∂fj
∂xn

tj)h
(p+n) = 0

It is easy to see that

[si + fiti, sj + fjtj ] = 0

[si + fiti, ∂j +
∑
l

∂fl
∂xj

tl] = si(
∑
l

∂fl
∂xj

tl) + fiti∂j − ∂jfiti − (
∑
l

∂fl
∂xj

tl)si =

= tisi
∂fi
∂xj

+ ti
∂fi
∂xj

+
∑
l 6=i

tlsi
∂fl
∂xj

+ tifi∂j − tifi∂j − ti
∂fi
∂xj
−
∑
l

∂fl
∂xj

tlsi = 0

and we obtain h(l) = s1 + f1t1 for all l ≥ 2.
These are the elements we need to normalize, and they are almost in normal form

with respect to the variable s1. This form is required to make the division of the
solutions Vl, l ≥ 2 by h(l) with respect to a lexicographical ordering with leading
term s1. We obtain a remainder V̄l such that degs1(V̄l) < degs1(h(l)) = 1, so s1 does

not appear in V̄l. So Vl = h(l) ¯̄Vl + V̄l, and adding the relation Q1h
(l)
1 + Qlh

(l) = 0

multiplied by − ¯̄Vl to our initial equation, we obtain:

Q1V̄1 +Q2V̄2 + · · ·+Qn+pV̄n+p = 0

withQi, V̄i without s1 for i ≥ 2, so V̄1 = 0, where V̄1 = V1−h(2)
1

¯̄V2−· · ·−h(n+p)
1

¯̄Vn+p.
We have then the new equation:

Q2V̄2 + · · ·+Qn+pV̄n+p = 0

in a Briançon-Maisonobe algebra C[s2, . . . , sp, t1, . . . , tp, x, ∂].
Repeating the process for Q2, . . . , Qp, we reduce our problem to solving:

(∂1 +
∑
j

∂fj
∂x1

tj)Vp+1 + . . .+ (∂n +
∑
j

∂fj
∂xn

tj)Vp+n = 0

in the Weyl algebra D[t1, . . . , tp]. �

Remark 4. As a consequence of Theorem 2, the bound for the complexity of com-
puting the annihilating ideal of fs in R is bounded by the complexity of computing
a Gröbner basis in a Weyl algebra with 3p variables less that the one required by
OT method. Although the complexity of computing these objects in any case is
known to be double exponential (with respect to the number of variables and the
total degree of the generators of the ideal) by Theorem 1, it is clear that the re-
duction of 3p variables in BM method is a significant advantage, both theoretically
and in practice as it is shown in the examples (see [Castro-Ucha(2004)]).
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Table 1. CPU times for the computation of Annfs

f Briançon-Maisonobe’s method Oaku-Takayama’s method
x3 + xy2 + z2 < 0.01s 0.39s
x4 + y3 + z2 < 0.01s 0.39s
yx3 + y3 + z2 0.06s 3.97s

x3 + y2 + z2 < 0.01s 0.02s
x5 + y2 + z2 < 0.01s 4.66s
x7 + y2 + z2 < 0.01s 298.56s

x4 + y5 + xy4 0.56s E (> 12h)

Table 2. CPU times for the computation of Annfs11 fs22

f1 f2 Briançon-Maisonobe’s method Oaku-Takayama’s method
x3 + y2 x2 + y3 0.72s 6363.97s
x5 + y3 x3 + y5 3.53s E (> 6h)
x7 + y5 x5 + y7 11.84s E (> 6h)

x3 + y2 xz + y < 0.01s 9.73s
x5 + y2 xz + y < 0.01s 1568.59 s
x11 + y5 xz + y 3s E (> 6h)

Table 3. CPU times for the computation of Annfs11 · · · f
sp
p

f1 f2 f3 Briançon-Maisonobe’s method Oaku-Takayama’s method
x+ y x− y x2 + y < 0.01s 29.46s
x+ y x2 + y x+ y2 2.64s E

x+ y x2 + y x2 + y3 116.24s E

x+ y x2 + y x3 + y2 1728.41s E

4. Appendix: Experimental Data

In the tables we give some examples for which it is clear the superiority of
Briançon-Maisonobe’s method. They have been tested3 using Singular::Plural
2.1 (see [Greuel et al.(2003)]) in a PC Pentium IV, 1Gb RAM and 3.06GHz running
under Windows XP.

Singular::Plural 2.1 is a system for non-commutative general purpose, so
the calculations in our algebras are not supposed to be optimal. We present the
following data only for the sake of comparing both methods in the same system.
In the case of [Briançon and Maisonobe(2002)] method we have used a pure lex-
icographical ordering, while for [Oaku and Takayama(1999)] we have used typical
elimination ordering. These are the orderings with best results for each case.
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