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SUMMARY

This paper presents a complete solution to the problem of swinging-up and stabilization of the inverted

pendulum on a cart, with a single control law. The resulting law has two parts: first, an energy-shaping

law is able to swing and maintain the pendulum up. Then, the second part introduces additional control

to stop the cart and it is based on forwarding control with bounded input. The resulting control law

is the sum of both parts and does not commute between different laws although there exist switches

inside the controller. Copyright c© 2008 John Wiley & Sons, Ltd.

key words: Control of pendulums, Swing up, Stabilization methods, Energy control, Stability

analysis.

∗Correspondence to: Francisco Gordillo, Escuela Superior de Ingenieros, Camino de los Descubrimientos s/n.

41092 - Sevilla, Spain.

Contract/grant sponsor: MEC-FEDER; contract/grant number: DPI2006-07338

Copyright c© 2008 John Wiley & Sons, Ltd.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51387163?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1608 F. GORDILLO, J. ARACIL

1. Introduction

The inverted pendulum is an interesting device that has attracted the attention of the nonlinear

control community for many years (see [2, 8, 9, 16, 22, 23, 26, 27, 28], to mention only a

few references). It is a simple underactuated system that serves as a benchmark for nonlinear

control techniques. The control problems associated with it can be found in many applications,

such as attitude control of a space booster on takeoff and the stability of walking robots.

Two are the main problems that are usually considered: 1) swing the pendulum up from the

downward position (or, even, any arbitrary initial position and velocity); and 2) stabilization

around the upper vertical position once the pendulum is in a neighborhood of it. The second

problem can be easily solved by means of linear methods since only small perturbations are

considered. For the swing-up problem several control strategies have been presented [7, 10, 16].

Nevertheless, these solutions are not able to simultaneously solve the second problem: they

maintain the saddle nature of the desired equilibrium and what they achieve is asymptotic

stabilization of its stable manifold. Hence, in order to solve the full problem, an hybrid control

strategy is implemented: the swing-up law is committed to carrying the pendulum to the

neighborhood of the desired position (global law) and, then, the control law is switched into a

stabilizing one (local law). This hybrid control works quite well in experimental frameworks.

However, it has been a main theoretical challenge in nonlinear control to merge both control

laws into a single one. In [19] an interesting approach is presented, which merges smoothly

both local and global solutions to the problem, guarantying the stability of the resultant

system. In [22] a single controller is also proposed but it requires a strategy for commutation

of the reference value. The problem addressed in [18] is similar but as the pendulum swing-up

controller does not guarantee stability, the techniques presented in that paper are not directly
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A NEW CONTROLLER FOR THE INVERTED PENDULUM ON A CART 1609

applicable.

In this paper, we present a new control law that it is not the combination of different laws

designed for solving the two subproblems separately. Instead, the new law solves simultaneously

both problems. It is based on energy-shaping methods [17] but instead of just introducing

damping, a combination of damping and energy injection (pumping) is needed giving rise to a

pumping-damping [6] strategy. The resultant control law drives the pendulum to the desired

upright position from any initial position and/or at any velocity (except a set of zero measure),

and it is able to stabilize it. Previous results have been reported in [11, 3, 4]. A similar idea is

used in [6].

Furthermore, in a second part of the paper, the carrying element of the pendulum is also

taken into account and the full pendulum-on-a-cart system is considered. A new objective

is added: the cart is desired to stop once the pendulum reaches the upright position. This

problem is solved by means of the addition to the previous control law, a new term based

on forwarding-with-bounded-input techniques [12, 14, 13, 24, 25]. For this, it is very useful

to start with the (local) Lyapunov function provided in the first stage of the design. The

resulting control law is the sum of both parts and avoids any commutation between different

sub-controllers.

The rest of the paper is organized as follows. In Section 2 the problem of the pendulum on a

cart is solved in two steps. This approach is based on dealing first with the simple pendulum,

disregarding the cart for the moment. A controller is proposed that swings up the pendulum

and stabilizes it at the upright position. In Section 3 this controller is enlarged to use in the

full system in such a way that the cart is also stopped. The paper closes with a Section of

conclusions.
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1610 F. GORDILLO, J. ARACIL

2. Control of the pendulum subsystem

The model of the pendulum on a cart after partial linearization and normalization [21] is

ẋ1 = x2

ẋ2 = sinx1 − cosx1u

ẋ3 = u,

(1)

where x1 is the angular position of the pendulum with the origin at the upright position, and

x2 and x3 are the velocities of the pendulum and the cart respectively and u is the force applied

to the cart. Therefore, the system is defined on a cylindrical state space: (x1, x2, x3) ∈ S×R
2.

If only the pendulum is considered, the equations (1) reduce to

ẋ1 = x2

ẋ2 = sinx1 − cosx1u.

(2)
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Figure 1. Shape of the energy for the simple pendulum.

In the absence of forcing u the only stable equilibrium point is the hanging position. The

upright position is a saddle point. This fact can be illustrated using energy considerations. The
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energy of the pendulum subsystem with u = 0, represented in Fig. 1, is the sum of potential

and kinetic energies:

H(x1, x2) = cosx1 − 1 +
x2

2

2
.

Our goal is to design a controller that is able to swing up the pendulum from (almost) all

initial conditions and to maintain the pendulum at the upright position. We will base the

derivation on the potential energy shaping method, choosing as desired Hamiltonian functions

of the form

Hd(x1, x2) = Vd(x1) +
x2

2

2
, (3)

where the desired potential energy Vd should have a single minimum at the desired upright

position. A generalized Hamiltonian target system with Hd as a Hamiltonian function is




ẋ1

ẋ2


 =




0 1

−1 −ka







Dx1
Hd

Dx2
Hd


 , (4)

where ka is a damping coefficient (or even it can be a function of x1 and x2). With Hd as given

by (3), (4) yields

ẋ1 = x2

ẋ2 = −V ′

d
(x1)− kax2.

(5)

It is well known that the problem with choosing an appropriate Vd(x1) function is related to

the term cosx1, affecting to the control signal, u, in the second equation of (2). For instance, the

most elementary choice is Vd = − cosx1, which has an appropriate shape (a single minimum at

the desired upright position), but it leads to the control law u = 2 tanx1 (for the case ka = 0)

which cannot be implemented in the full range |x1| ≤ π because for x1 = ±π/2 the feedback

law is unbounded.

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2008; 18:1607–1621

Prepared using rncauth.cls



1612 F. GORDILLO, J. ARACIL

To solve the matching problem of the open (2) and closed (5) loop behaviors, and in order

to avoid the division by cosx1, a good choice of V ′

d
is

V ′

d
= − sinx1 + cosx1β(x1), (6)

and then, for ka = 0, u = β(x1) (the case ka 6= 0 will be discussed latter). Some additional

conditions should be imposed on β(·). First, β(0) = 0 to guarantee that the origin (0, 0) is

an equilibrium of the closed-loop system. Just as the pendulum behaves in a cylindrical state

space, the closed-loop system should display some periodicity. Then, it is reasonable to make

β(x1) = sinx1β̄(cosx1). This choice facilitates the integration of (6) to get Vd. We must also

impose that Vd(x1) = Vd(−x1) and, therefore, V
′

d
(x1) = −V ′

d
(−x1).

A family of functions, Vd, that fulfill these conditions is given by

Vd = a0 + cosx1 − a2 cos
2 x1 − a3 cos

3 x1 − · · · , (7)

which yields

V ′

d
= Dx1

Vd = − sinx1 + 2a2 sinx1 cosx1 + 3a3 sinx1 cos
2 x1 + ...

= − sinx1 + sinx1 cosx1(2a2 + 3a3 cosx1 + ...),

(8)

which clearly allows us to determine β(x1) to match this last expression with (6). Therefore,

we have a family of functions, Vd, which solves the matching problem for the pendulum.

The simplest case of this family is obtained by taking a0 = a−1, a2 = a and ak = 0, ∀k > 2,

which leads to

Vd(x1) = cosx1 − a cos2 x1 + a− 1. (9)

Other choices can be found in [5]. Figure 2 shows that Vd has a minimum at the origin. It can

be easily shown that this happens for a > 0.5.

With this Vd we obtain

V ′

d = − sinx1 + 2a cosx1 sinx1,
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Figure 2. Shape of Vd for a = 5.

and then with the feedback law

u = 2a sinx1, (10)

which is defined everywhere, the matching of the open and closed loop systems is solved.

Another interesting case [11] is obtained with

Vd(x1) = −
cos 3x1

3
+

1

3
, (11)

which yields

V ′

d = − sinx1 + 4 cos2 x1 sinx1,

and the feedback law

u = 4 cosx1 sinx1 = 2 sin 2x1. (12)

Many other Vd belonging to the same family can be conceived. However, and for the sake of

simplicity, in the sequel we will be only concerned with the desired potential Vd given by (9).

Nevertheless, most of the results developed here can be extended to other Vd belonging to

family (7), such as (11).
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1614 F. GORDILLO, J. ARACIL

As it is shown in Fig. 2, function Vd given by (9) has other minima, which are undesirable.

The same happens with every function of class (7). To overcome this problem, we begin

adopting a damping term for the desired closed loop of the form −kx2 cosx1 (that is, in Eq.

(5) ka = k cosx1). With this term, for values of x1 such that π/2 < |x1| < π, and due to the

sign of cosx1, energy injection is produced instead of damping. With the injection of energy

the pendulum tends towards the region above the horizontal. In that region, there is only a

single minimum for Vd, the desired upright position. Therefore, the term −kx2 cosx1 causes

the equilibrium at the bottom of the additional minima to change from stable to unstable.

It should be noted that ka does not have a definite sign and, consequently, the closed-loop

system loses the generalized Hamiltonian structure and the stability of the system has to be

analyzed by other methods.

In summary, for the moment we propose a target system with the structure:


ẋ1

ẋ2


 =




0 1

−1 −k cosx1







Dx1
Hd

Dx2
Hd


 , (13)

that is,

ẋ1 = x2

ẋ2 = −V ′

d
(x1)− kx2 cosx1,

(14)

where, if Hd is given by

Hd(x1, x2) = cosx1 − a cos2 x1 +
x2

2

2
, (15)

the target system is

ẋ1 = x2

ẋ2 = sinx1 − 2a cosx1 sinx1 − kx2 cosx1,

(16)

which can clearly be matched to system (2) with the control law

u = 2a sinx1 + kx2. (17)
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The local stability achieved with this control law can be proved using (15) as Lyapunov

function.

Law (17) has been also proposed in [9], but without justification; as reported there, its actual

application requires careful analysis as parameters a and k vary.

We can distinguish between two versions of the swing up problem. The first is the strict one,

where only the transition from the hanging position (that is, for initial conditions x1 ≈ π and

x2 = 0) is considered. This problem is solved with controller (17) as can be shown by means of

simulations. There is a more complex version of the swing up problem, the global one, where

almost any initial condition is taken into account. For this second version, controller (17) has

a big drawback. It injects energy in any case when the pendulum is below the horizontal. This

means that even in the case when the pendulum has enough energy to rotate, and then to go

above the horizontal, we are still injecting more energy. In such a case, the energy injection

can lead the system to a rotating limit cycle [1]. This is a very interesting phenomenon that

deserves thorough analysis, but that is outside of the scope of this paper.

When a trajectory is in the basin of an undesirable minimum, we need to inject energy to

force the trajectory to leave it. This means that we have to inject energy only when the energy

of the pendulum is not great enough to leave this region. Recalling that Vd has the shape of

Fig. 2, this undesirable well can be visualized as enclosed by the curve represented in Fig. 3.

This curve is the Hd−level curve corresponding to Hd = H∗
△
= 1

4a
+ a − 1. But when the

system is outside this region we must damp it. To that end, we define the following function:

ϕ(x1, x2)
△
=





−k if Hd(x1, x2) ≤ H∗ and cosx1 < 1

2a

k elsewhere,

(18)

where k > 0 is a tuning parameter. That is, ϕ(x1, x2) is negative only inside the regions where
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Figure 3. Curve Hd = H
∗.

energy must be injected, and positive elsewhere. As it will be seen below, function ϕ(x1, x2) will

determine the sign of damping. Therefore, a pumping-damping energy law will be obtained.

With definition (18), the following target system is proposed:

ẋ1 = x2

ẋ2 = sinx1 − 2a cosx1 sinx1 − ϕ(x1, x2)x2 cos
2 x1.

(19)

The control law that matches system (2) with target system (19) is

u = 2a sinx1 + ϕ(x1, x2)x2 cosx1. (20)

This control law is valid in the whole cylindrical state space. Energy is injected inside the

undesirable wells whiles the system is damped elsewhere.

Let us study the behavior of system (19). First, the equilibrium points are easily determined:

(0, 0), (± arccos(1/2a), 0) and (±π, 0). If a > 0.5 the origin is stable and the equilibrium points

at x1 = ±π are unstable. The stability of the other equilibrium points is more difficult to study

since the switching curve passes through them. It will be analyzed below.
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It is easy to see that

Ḣd = −ϕ(x1, x2)x
2

2 cos
2 x1,

which means that as the sign of ϕ changes, injection of energy or damping is produced. A

Lyapunov function candidate –strictly speaking, this is not a true Lyapunov function because

it is not positive definite; nevertheless, the following analysis is valid since (21) is bounded

from below– is

V = ϕ(x1, x2)(Hd −H∗) = ϕ(x1, x2)

(
cosx1 − a cos2 x1 +

x2
2

2
−H∗

)
. (21)

It must be taken into account that at the switching curve –that is {(x1, x2)|Hd(x1, x2) =

H∗, cosx1 < 1/(2a)}– function V is not differentiable. Outside this switching curve we have

the convenient relation

V̇ = −ϕ2x2

2 cos
2 x1 ≤ 0.

The behavior around the switching curve can be analyzed using energy considerations: as this

curve is (part of) a level curve and the energy increases when the energy is lower that the one

corresponding to this level, and it decreases when the energy is higher, it can be deduced that

the curve is attractive. Since commutations occur at this curve, a sliding motion is produced

along it. The direction of motion is determined by the equation ẋ1 = x2. Therefore, we can see

that the sliding motion makes the equilibrium points at x1 = ± arccos(1/2a) to be attractive

since the sliding manifold directs the motion towards them. This fact is undesirable and we

can conclude that controller (20) does not work properly. In the following, two modifications of

this control law are proposed in order to improve the behavior of the closed-loop system: first,

the stability of the undesirable equilibrium points is removed and then, the sliding motion is

avoided.
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2.1. Achieving almost-global stability

In order to avoid the attractiveness of the undesirable equilibrium points x1 = ± arccos(1/2a),

the switching curve is changed from Hd = H∗ to Hd = H∗ + ε with 0 < ε ≪ 1. This change

is performed substituting the switching function ϕ by

ϕε(x1, x2)
△
=





−k if Hd(x1, x2) ≤ H∗ + ε and cosx1 < 1

2a

k elsewhere.

The control law is now:

u = 2a sinx1︸ ︷︷ ︸
uc

+ϕε(x1, x2)x2 cosx1︸ ︷︷ ︸
ud

. (22)

Now, the same analysis can be performed with the Lyapunov function candidate

V = ϕε(x1, x2) (Hd −H∗ − ε) (23)

The behavior of the system can now be explained with the help of Fig. 4. In this figure the

level curves corresponding to Hd = H∗ and Hd = H∗ + ε are plotted. The sliding motion

is now along the latter of these curves. It can be shown that the undesirable equilibrium

points (± arccos(1/2a), 0) are outside the sliding manifold. The stability of these points

can be analyzed studying the system linearization concluding that they are non-hyperbolic

saddles. Therefore, they do not preclude the almost-global stability property. Nevertheless,

this property is not proved yet. Notice that with the choice (23), the Lyapunov function

candidate is continuous along the new switching curve (the dashed curve of Fig. 4). However,

function (23) is not continuous along the segments AB and CD in Fig. 4. Therefore, the

stability analysis must be performed carefully.

In the following, it will be proved that, for small enough ε, when the system reaches the

points of discontinuity for (23), the trajectory evolves towards the origin. Due to the symmetry
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of the problem only the case of x2 > 0 will be considered. The reasoning will start at the upper

half of segment AB that, as it will be seen below, is a worse case than starting at the upper half

segment CD. As x2 > 0 the system will evolve towards the right. In this region Ḣd > 0 and the

system will evolve towards the sliding curve (the dashed curve of the figure). After reaching

x1 = π it will continue through the sliding curve from x1 = −π towards x1 = − arccos(1/2a).

Therefore, the upper half of segment CD (with x2 > 0) will eventually be reached. The value

of the energy function at this point will be close to H∗ + ε. When the system starts on this

segment as x2 > 0 it will evolve towards the right but, in this region, Ḣd < 0. If ε is small

enough the level curve Hd = H∗ (the solid curve) will be reached before reaching segment AB

(notice that the damping does not depend on ε. Once this level curve is reached and crossed

the system can not go out of the compact set {x : Hd(x) < H∗} where V̇ ≤ 0 and asymptotic

stability is guaranteed.

Since no other points of discontinuity exist, the following proposition can be stated:

Proposition 1. The origin of system (2) with control law (22) is almost GAS.

2.2. Avoiding the sliding mode

In many control applications sliding modes are not admissible due to the chattering

phenomena. The control law proposed in the previous section presents sliding motions due

to the discontinuity along the level curve Hd = H∗ + ε. One way of solving this problem is

proposed in this section. The idea is to modify the switching function in such a way that it

is equal to zero at both sides of the switching curve. Thus, the switching function will be

continuous at the switching curve and no sliding motions can occur. This can be accomplished
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Figure 4. Level curves Hd = H
∗ (solid) and Hd = H

∗ + ε (dotted).

multiplying function ϕε by |Hd(x1, x2) − H∗ − ε| when cosx1 < 1/(2a). In this way ud will

be equal to zero at the level curve Hd = H∗ + ε avoiding the sliding motion. In this way, the

system will tend asymptotically to this level curve. Since at x ∈ [−π/2, π/2] it is desired that

the trajectories cross the level curve, function ϕε should not change at this interval. All this

results in the new switching function:

ϕ̃ε(x1, x2)
△
=





k
(
Hd(x1, x2)−H∗ − ε

)
if cosx1 < 1

2a

k elsewhere

The resulting control law is

u = 2a sinx1︸ ︷︷ ︸
uc

+ ϕ̃ε(x1, x2)x2 cosx1︸ ︷︷ ︸
ud

, (24)

where uc can be interpreted as a conservative control law and ud a dissipation/injection term.

The same previous analysis could be performed to the system with control law (22)
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A NEW CONTROLLER FOR THE INVERTED PENDULUM ON A CART 1621

substituting the sliding motion by an asymptotic motion to the switching line. In order to

compute V̇ now, it must be taken into account that ϕ̃ε depends on x1 and x2. It is easily

seen that V̇ = −2ϕ̃2

εx
2

2 cos
2 x1 when cosx1 < 1/2a. Therefore, using the previous ideas, the

following proposition can be proved:

Proposition 2. The origin of system (2) with control law (24) is almost GAS.

The behavioral difference with respect to the previous law is that the control law does not

present sliding motions. The cost of this nice nature is that the energy injection/damping near

the switching curve is very small and, thus, the system will be slower. Another drawback of

this approach is that, now, commutation between different control laws instead of between

different values of a tuning parameter takes place. Nevertheless, the commuting control laws

have been derived using an only idea trying to solve both the swing-up and the stabilization

problems.

Figures 5 and 6 show the behavior of the system for different values of parameter k. Figure

7 illustrates how the trajectory starting at x1 = π and x2 = 0 leaves the undesirable well and

falls into the desired one.

3. Stopping the cart

As we saw in the previous section, control law (22) solves the swing up problem for the

pendulum subsystem without considering the cart. To cope with the cart, we add a new term,

v, to the control law (24)

u = 2a sinx1 + ϕ̃εx2 cosx1 + v. (25)
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Figure 5. Results of a simulation with a = 1, ε = .25 and k = 0.2. Initial conditions: hanging position

at rest.
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Figure 6. Results of a simulation with a = 1, ε = .25 and k = 0.6. Initial conditions: hanging position

at rest.
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Figure 7. Trajectory leaving the point x1 = π and x2 = 0 and reaching the up-right position, for

k = 0.2.

When this control law is applied to system (1), we obtain

ẋ1 = x2 (26)

ẋ2 = sinx1 − 2a sinx1 cosx1 − ϕ̃εx2 cos
2 x1 − cosx1v (27)

ẋ3 = 2a sinx1 + ϕ̃εx2 cosx1 + v. (28)

The need for term v is clear because, without it, variable x3 is not fed back and it would evolve

without control, driven by the motions of x1 and x2 produced while the pendulum is reaching

the upright position. Once the pendulum has reached the inverted position, then x1 = x2 = 0,

but x3 6= 0. In effect,

x3 =

∫
(2a sinx1 + ϕ̃εx2 cosx1)dt 6= 0

and, therefore, as x3 is not equal to zero, the cart suffers a drift which leaves its motion

unbounded.

System (26)–(28) is a cascade with feedforward structure. In effect, making [x1 x2]
T = ξ
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and x3 = z, system (26)–(28) can be written in the standard feedforward form

ż = h(ξ) + g1(ξ)v

ξ̇ = f(ξ) + g2(ξ)v,

(29)

where the equations have been reordered as it is usual. The upper equation in (29) is the one

of the cart, and the lower one corresponds to the pendulum. Moreover, it should be noted that

ξ̇ = f(ξ) is almost GAS, with a Lyapunov function obtained in the previous section.

The problem now is to determine a feedback v(x1, x2, x3) such that the speed of the cart is

controlled at the same time that the upright position of the pendulum maintains its stability.

The feedforward form of system (26)–(28) suggests applying conventional forwarding to get

the control law v(x1, x2, x3). Unfortunately, the application of this method in this case leads

to a partial differential equation that it is hard to solve.

One way to overcome this difficulty is to use saturation functions in the forwarding design

method [24, 25]. Here we use the approach proposed by Astolfi and Kaliora [12, 14, 13].

Furthermore, it has the advantage of having a meaningful physical interpretation. Following

Astolfi and Kaliora’s suggestion, we consider the control law

v = −ε2σ

(
λx3

ε2

)
, (30)

where σ is the saturating function σ(y) = sgn(y)min{|y|, 1}, λ is a design parameter, and

ε2 is a small positive constant. Here we use ε2 to distinguish it from the ε introduced in the

previous section when the switching function ϕ̃ε was defined. Therefore,

u = 2a sinx1 + ϕ̃εx2 cosx1 − ε2σ

(
λx3

ε2

)
. (31)

The purpose of the new term v is explained in the following. Notice that all the nonlinearities of

the closed-loop system, except the saturation that appears in v, do not depend on x3. First of
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all, consider the case when the pendulum is near the upright position with small velocity –i.e.

x1 and x2 are close to zero– with any value of the cart speed x3. In this situation, and due to

the former fact, the system can be linearized around (x1, x2) = (0, 0) resulting a linear system

combined with a saturation. This kind of system is well-known (it belongs to the class known

as Lure’s systems) and, thus, parameter λ can be tuned in order to stabilize this system. Then,

if the pendulum reaches a neighborhood of (x1, x2) = (0, 0) and it remains there, the cart will

eventually stop. The problem now is to see if there is any guarantee that the pendulum will

eventually arrive at this neighborhood and that it will stay there. Notice that with v = 0 this

is true and notice also that |v| ≤ ε2 so it can be very small by design. Law (31) will work if the

behavior of the pendulum for small values of v is similar to the one corresponding to v = 0.

Fortunately, this question has been rigourously formulated fifteen years ago (see [20]). This

desired characteristic of the pendulum subsystem is fulfilled if it is input to state stable (ISS).

There exist nice and powerful Lyapunov-like results that help us to guarantee that system

(26)–(27) is ISS (with restrictions) as stated the following proposition.

Proposition 3. System (26)–(27) is locally ISS for ||x|| < 0.095π.

Sketch of the proof: Choose as Lyapunov function candidate the function

V (x1, x2) = cosx1 − a cos2 x1 +
x2

2

2
+ a− 1 + εvx1x2.

It is straightforward to see that it fulfills the conditions of Theorem 5.2 in [15] for ||x|| < 0.095π.

As we are interested in a global law that is even able to swing up the pendulum, we have to

include another discontinuity: we choose v = 0 in order to reach the region for which system

(26)–(27) is locally ISS. Once this region is reached, we use control law (31) in order to also
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stabilize (28) according to the procedure proposed in [13].

In summary, the resultant control law is given by:

u = ue + v

where ue is given in (25) and v is given by

v =






0 for ||x|| ≥ 0.095π

ε2σ
(

λx3

ε2

)
for ||x|| < 0.095π

(32)

Since ue introduces a discontinuity, the final control signal will have two points of

discontinuity: the first one when cosx1 = 1/(2a) (due to the discontinuity of ϕ̃ε) and the

second one when ||x|| = 0.095π (due to the discontinuity introduced in v). Notice that the gap

of both discontinuities can be made arbitrarily small reducing ε and ε2. However, making ε2

small deteriorates the performance of the system, in the sense that it may take a long time

to stop the cart. In any case, this discontinuity can be avoided modulating (30) by a function

that goes to zero when ‖x‖ is larger than a certain value.

It should be realized that the ideas of [14] can be recursively applied and, thus, the position

of the cart could also be controlled in a further step. Nevertheless, for simplicity, this step is

omitted here.

The performance of the proposed strategy can be observed in the simulation that appears

in Fig. 8 which corresponds to the values x(0) = (0.99π, 0, 0), a = 1, ε = 0.5, k = 0.5, ε2 = 0.1

and λ = 0.1. The top left graph shows the projection of the trajectory into the (x1, x2) plane. It

can be seen that the trajectory tends to the origin of this plane. The time evolutions of x1 and

x3 are plotted in the top-right and the bottom-left graphs respectively. It can be seen these

two variables (and, consequently, also x2) eventually tend to zero. The bottom right graph
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shows the evolution of u. The vertical dotted lines represent the instant when the switch in

ϕ̃ε occurs (left line) and when the ISS region is entered (right line).
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Figure 8. Simulation results for the full controller.

As it was expected, the pendulum evolves towards a neighborhood of the desired position

and, then, the cart slowly decelerates (so the pendulum does not fall) until it eventually stops.

This two-time-scale behavior can be regarded as a natural solution of the problem considered.

4. Conclusions

In this paper, we have presented a single controller able to swing up the pendulum on a cart

from the hanging position to the upright position in an inverted pendulum. A design procedure
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with two main steps has been introduced. In the first one, a control law has been obtained that

drives the pendulum to the desired upright position, disregarding the cart for the moment.

This control law belongs to the family of the energy shaping methods. The proposed control

law includes a pumping-damping term in such a way that instead of adding positive damping

in all the state space, negative damping (that is, energy injection) will be added inside some

undesirable regions. In this way, the system tends to leave these regions and carried on to

the region where the desired equilibrium point stands. In the second step, this control law is

extended to take into account the cart. To accomplish this, forwarding design via saturation

functions has been used. Thus, a full controller has been obtained that is able to control both

the pendulum and the cart.
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7. K.J. Åström and K. Furuta. Swinging up a pendulum by energy control. Automatica, 36:287–295, 2000.

8. A. M. Bloch, N. E. Leonard, and J. E. Marsden. Stabilization of the pendulum on a rotor arm by the

method of controlled Lagrangians. In Proc. of the 1999 IEEE ICRA, pages 500 –505, 1999.

9. K. Furuta. Control of pendulum: From super mechano-system to human adaptive mechatronics. In

Proceedings of the 42nd IEEE CDC, pages 1498–1507, 2003.

10. F. Gordillo, J.A. Acosta, and J. Aracil. A new swing-up law for the Furuta pendulum. International

Journal of Control, 76(8):836–844, 2003.

11. F. Gordillo, J. Aracil, and J.A. Acosta. A control strategy for the cart-pendulum system. In Proceedings

of the Sixth CONTROLO, pages 214–219, 2004.

12. G. Kaliora and A. Astolfi. A simple design for the stabilization of a class of cascaded nonlinear systems

with bounded control. In Proceedings of the 40th IEEE Conference on Decision and Control, pages

3784–3789, 2001.

13. G. Kaliora and A. Astolfi. Nonlinear control of feedforward systems with bounded control. IEEE Trans.

on Automatic Control, 49(11):1975–1990, November 2004.

14. Georgia Kaliora. Control of nonlinear systems with bounded signals. PhD thesis, Imperial College of

Sicnece, Technology and Medicine, London, 2002.

15. H. K. Khalil. Nonlinear Systems. Prentice Hall, second edition, 1996.

16. R. Lozano, I. Fantoni, and D.J. Block. Stabilization of the inverted pendulum around its homoclinic orbit.

Systems and Control Letters, 40(3):197–204, 2000.

17. R. Ortega, A. J. Van Der Schaft, I. Mareels, and B. Maschke. Putting energy back in control. IEEE

Control Systems Magazine, 21(1):18–33, April 2001.

18. C. Prieur and L. Praly. Uniting local and global controllers. Decision and Control, 1999. Proceedings of

the 38th IEEE Conference on, 2, 1999.

19. A. Rantzer and F. Ceragioli. Smooth blending of nonlinear controllers using density functions. In

Proceedings of European Control Conference, 2001.

20. E. D. Sontag. On the input-to-state stability property. European J. Control, 1:24–36, 1995.

21. M.W. Spong. Energy based control of a class of underatuated mechanical systems. In 13th IFAC World

Congress, pages 431–435, 1996.

22. B. Srinivasan, P. Huguenin, K. Guemghar, and D. Bonvin. A global stabilization strategy for an inverted

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2008; 18:1607–1621

Prepared using rncauth.cls



1630 F. GORDILLO, J. ARACIL

pendulum. In 15th IFAC World Congress, 2002.

23. S. Suzuki, K. Furuta, A. Sugiki, and S. Hatakeyama. Nonlinear optimal internal forces control and

application to swing-up and stabilization of pendulum. Journal of Dynamic Systems, Measurement, and

Control, 126(3):568–573, 2004.

24. A. R. Teel. Feedback stabilization: Nonlinear solutions to inherently nonlinear problems. PhD thesis,

University of California at Berkeley, 1992.

25. A. R. Teel. Global stabilization and restricted tracking for multiple integrators with bounded control.

Systems and Control Letters, 18(3):165–171, 1992.

26. V.I. Utkin, D.S. Chen, and H.C. Chang. Block control principle for mechanical systems. Journal of

Dynamic Systems, Measurement and Control, 122:1–10, 2000.
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