CONSTRUCTIONS IN $R\left[x_{1}, \ldots, x_{n}\right]$. APPLICATIONS TO
 K-THEORY

JESÚS GAGO-VARGAS

Abstract

A classical result in K-Theory about polynomial rings like the Quillen-Suslin theorem admits an algorithmic approach when the ring of coefficients has some computational properties, associated with Gröbner bases. There are several algorithms when we work in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right], \mathbb{K}$ a field. In this paper we compute a free basis of a finitely generated projective module over $R\left[x_{1}, \ldots, x_{n}\right], R$ a principal ideal domain with additional properties, test the freeness for projective modules over $D\left[x_{1}, \ldots, x_{n}\right]$, with D a Dedekind domain like $\mathbb{Z}[\sqrt{-5}]$ and for the one variable case compute a free basis if there exists any.

1. Introduction

The Quillen-Suslin theorem asserts that if $A=D\left[x_{1}, \ldots, x_{n}\right]$ is a polynomial ring over a Dedekind domain D then every finitely generated projective A-module is extended from $D([21,22])$. When D is a principal ideal domain every finitely generated projective A-module is free. This is equivalent to say that if R is a principal ideal domain and $\mathbf{f}=\left(f_{1}, \ldots, f_{m}\right)$ is a unimodular row of $R\left[x_{1}, \ldots, x_{n}\right]^{m}$ then there exists a matrix $U \in \operatorname{GL}\left(m, R\left[x_{1}, \ldots, x_{n}\right]\right)$ such that $\mathbf{f} \cdot U=(1,0, \ldots, 0)$, or that we can complete \mathbf{f} to an invertible matrix. An algorithm for the Quillen-Suslin theorem produces such matrix, and we call it a QS-algorithm. The last $m-1$ columns of the matrix U form a free basis of the module defined by $\operatorname{ker}(\mathbf{f}) \subset R\left[x_{1}, \ldots, x_{n}\right]^{m}$. There are several algorithms when R is a field ($[16,6,14,15]$, [20] as a corollary). The main tool in the procedure is the algorithm to compute Gröbner bases, which we can find in other rings like \mathbb{Z}.
In Section 2 we give some algorithmic results over the ring $R\left[x_{1}, \ldots, x_{n}\right]$ that we need later, namely, the construction of a maximal ideal that contains an ideal of $R\left[x_{1}, \ldots, x_{n}\right]$ and how to compute in $S^{-1} R[x]$ and $R\left[x_{1}, \ldots, x_{n}\right]_{\mathcal{M}}$, rings obtained from $R\left[x_{1}, \ldots, x_{n}\right]$.
In Section 3 we present two QS-algorithms for $R\left[x_{1}, \ldots, x_{n}\right]$, that avoid the normalization step used in [7]. The first one follows [14, 15] and the second one [19, 17]. Our starting point is a projective module P given as kernel of a unimodular row or as a submodule of a free module. Then we can generalize the results in [14] to monoid rings $R[M]$, because the induction step reduces the problem to a free monoid, where we have solved the problem. In a similar way the QS-algorithm

[^0]for quotients of polynomial rings by monomial ideals, that is, rings of the form $R\left[x_{1}, \ldots, x_{n}\right] / I$, with I a monomial ideal and R a PID, is easily extended, such as appears in [13].
In Section 4 we consider D the ring of integers of a number field, a Dedekind domain in which it is possible to compute. First we give a new algorithm using Gröbner bases to get the factorization of an ideal of D as product of prime ideals, and we apply it to find a free basis of a projective module over D, if there exists one. The next step is to study the freeness of a projective module P over $D\left[x_{1}, \ldots, x_{n}\right]$. We can do it by reducing the problem to a module over D, and for one variable, we give an algorithm to compute a free basis when there exists one.

2. Preliminary algorithmse

Let R be a ring. We recall that linear equations are solvable in R if we have an algorithm to decide the membership problem of a element with respect to an ideal and we can compute a set of generators of the module $\operatorname{Syz}\left(a_{1}, \ldots, a_{m}\right)$, with $a_{1}, \ldots, a_{m} \in R$. With these conditions we can build Gröbner bases in the ring $R\left[x_{1}, \ldots, x_{n}\right]$ ([1, chapter 4]). We need to add another one.

Definition 1. Let R be a ring. We say that R is an MC-ring if we can solve linear equations in R and, given $I \subset R$ a proper ideal, it is possible to compute a set of generators of a maximal ideal that contains I.

For example, $\mathbb{Z}, \mathbb{Z}[\sqrt{-5}]$ are MC-rings. Additionally, we need the factorization of polynomials in $(R /\langle p\rangle)[x], p \in R$ a prime element, and $Q(R)[x], Q(R)$ the field of fractions of R.

Definition 2. Let R be a ring. We say that R has effective coset representatives if given J an ideal of R it is possible to find a complete set \mathcal{C} of coset representatives of R / J, and there is a procedure to find, for all $a \in R$, an element $c \in \mathcal{C}$ such that $a \equiv c(\bmod J)$.

This definition appears in [1, p. 226], and we need this property in R to compute the normal form of a polynomial with respect to an ideal.
We include here the algorithm described in [7] to compute a set of generators of a maximal ideal of $R\left[x_{1}, \ldots, x_{n}\right], R$ an MC-PID, that contains an ideal.

Algorithm 1. Input: $F=\left\{f_{1}, \ldots, f_{r}\right\}$ set of generators of an ideal I of $R\left[x_{1}, \ldots, x_{n}\right]$. Output: $H=\left\{g_{1}, \ldots, g_{m}\right\}$ set of generators of a maximal ideal $\mathcal{M} \subset R\left[x_{1}, \ldots, x_{n}\right]$ that contains I.
(1) Compute $\langle s\rangle=\langle F\rangle \cap R$.
(2) If $s \neq 0$, let $p \in R$ be a prime element such that p divides s.
(a) Compute $\bar{g}_{1}, \ldots, \bar{g}_{k} \in(R /\langle p\rangle)\left[x_{1}, \ldots, x_{n}\right]$ generators of a maximal ideal $\overline{\mathcal{M}}$ that contains \bar{I} in $(R /\langle p\rangle)\left[x_{1}, \ldots, x_{n}\right]$.
(b) Lift to $g_{1}, \ldots, g_{k} \in R\left[x_{1}, \ldots, x_{n}\right]$ and let $H=\left\{p, g_{1}, \ldots, g_{k}\right\}$. STOP.
(3) If $s=0$, compute $d \in R, d \neq 0$ such that $I=(I, d) \cap I^{e c}$, where $I^{e c}=$ $I Q(R)\left[x_{1}, \ldots, x_{n}\right] \cap R\left[x_{1}, \ldots, x_{n}\right] \quad([9])$.
(4) If $(I, d) \neq R$, set $F \leftarrow F \cup\{d\}$, and go to step 1 . Otherwise, compute $\tilde{g}_{1}, \ldots, \tilde{g}_{k} \in Q(R)\left[x_{1}, \ldots, x_{n}\right]$ generators of a maximal ideal $\widetilde{\mathcal{M}}$ that contains \tilde{I} in $Q(R)\left[x_{1}, \ldots, x_{n}\right]$.
(5) Let J be ideal of $R\left[x_{1}, \ldots, x_{n}\right]$ such that $J^{e}=\widetilde{\mathcal{M}}$. Compute r the least common multiple of the coefficients of a Gröbner basis of J. Let $p \in R$ be a prime element that does not divide r. Set $F \leftarrow F \cup\{p\}$, and go to step 1 .

Example 1. Let $I=\langle x y+1\rangle$ be ideal of $\mathbb{Z}[x, y]$. Then $I \cap \mathbb{Z}=0$, so there exists $d \in$ $R, d \neq 0$ such that $I=(I, d) \cap I^{e c}$. In this case, $d=1$. The ideal $\widetilde{\mathcal{M}}=\langle x-1, y+1\rangle$ is a maximal ideal in $\mathbb{Q}[x, y]$ that contains I^{e}. Set $J_{1}=\langle x-1, y+1\rangle \subset \mathbb{Z}[x, y]$, and $s=1$. Take $p=2$ and set $I^{\prime}=\left(J_{1}, 2\right) \supset I$. Applying the algorithm to I^{\prime}, we get $\mathcal{M}=\langle 2, x-1, y-1\rangle$ maximal ideal of $\mathbb{Z}[x, y]$ that contains I.

Let S be the set of monic polynomials of $R[x]$, and write $R^{\prime}=S^{-1} R[x]$. When R is a field, the ring R^{\prime} is the field of rational functions over $R[x]$.

Lemma 1. Let R be a principal ideal domain where we can divide and compute the greatest common divisor and $I=\langle f, g\rangle \subset R^{\prime}$ be an ideal of R^{\prime}. Then it is possible to compute $h, f^{\prime}, g^{\prime} \in R^{\prime}$ such that $I=\langle h\rangle, f=f^{\prime} h$ and $g=g^{\prime} h$.
Proof. By [11, p. 117], we know that R^{\prime} is a principal ideal domain. Then $I=$ $\left\langle h^{\prime}\right\rangle$, where h^{\prime} is the greatest common divisor of f and g in R^{\prime}. We can assume $f, g \in R[x]$ taking off denominators and compute $h=\operatorname{gcd}(f, g)$ in $R[x]$ with the pseudo-division algorithm ([4, algorithms 3.2.10, 3.1.2]). Every irreducible element of $R[x]$ is irreducible or a unit of R^{\prime}. Then $I=\langle h\rangle$, and by division we obtain $f^{\prime}, g^{\prime} \in R[x]$ such that $f=f^{\prime} h, g=g^{\prime} h$.
Remark 1. In [2] it is shown that if R is an euclidean domain, then $S^{-1} R[x]$ is an euclidean domain too. However, the division algorithm passes through a formal power serie.

Corollary 1. Let R be an MC-PID. Then R^{\prime} is an MC-PID.
Proof. Given $I=\left\langle f_{1}, \ldots, f_{n}\right\rangle \subset R^{\prime}$ ideal of R^{\prime}, by iterative applications of Lemma 1 , we compute h a generator of I. If $f \in R^{\prime}$, we can check whether $f \in I$ by reducing to $R[x]$ and making the division by h. If $f \in I$, we obtain $f^{\prime} \in R^{\prime}$ with $f=f^{\prime} h$. The syzygy module of a set f_{1}, \ldots, f_{m} in R^{\prime} is easily reduced to a computation of a syzygy module in $R[x]$.
Let I be a proper ideal of R^{\prime}. By Lemma 1, we find a not monic polynomial $f(x) \in R[x]$ such that $I=\langle f(x)\rangle R^{\prime}$. We get $f_{1}(x) \in R[x]$ an irreducible and not monic polynomial that divides $f(x)$ in $R[x]$, by factoring in $Q(R)[x]$ and Gauss's Lemma. Then $I \subset\left\langle f_{1}(x)\right\rangle R^{\prime}$, maximal ideal in R^{\prime}.

Proposition 1. Let R be an MC-ring. If \mathcal{M} is a maximal ideal of $R\left[x_{1}, \ldots, x_{n}\right]$ then $R\left[x_{1}, \ldots, x_{n}\right]_{\mathcal{M}}$ is an $M C$-ring.
Proof. The construction of a maximal ideal that contains a given ideal is trivial, because $R\left[x_{1}, \ldots, x_{n}\right]_{\mathcal{M}}$ is local. We have to check the conditions about linear equations. Note that through Gröbner bases in $R\left[x_{1}, \ldots, x_{n}\right]$ we can check if a polynomial f belongs to an ideal I, and if so, express it as linear combination of generators, and this procedure is valid in $R\left[x_{1}, \ldots, x_{n}\right]_{\mathcal{M}}$. Let $I_{\mathcal{M}}=\left\langle f_{1}, \ldots, f_{m}\right\rangle$ be an ideal in $R\left[x_{1}, \ldots, x_{n}\right]_{\mathcal{M}}$, and $f \in R\left[x_{1}, \ldots, x_{n}\right]_{\mathcal{M}}$. We can suppose $f, f_{1}, \ldots, f_{m} \in$ $R\left[x_{1}, \ldots, x_{n}\right]$. If any f_{i} is not in \mathcal{M}, then $I_{\mathcal{M}}=R\left[x_{1}, \ldots, x_{n}\right]_{\mathcal{M}}$, and we are done. Then assume that $I \subset \mathcal{M}$, and $f \in \mathcal{M}$. We have that $f \in I_{\mathcal{M}}$ if and only if there exists $s \notin \mathcal{M}$ such that $s \cdot f \in I$, i.e., $s \in(I: f)$. We can compute $c_{1}, \ldots, c_{m} \in R\left[x_{1}, \ldots, x_{n}\right]$ a set of generators of $(I: f)$. If every c_{i} is in \mathcal{M} then
$f \notin I_{\mathcal{M}}$. If, for example, $c_{1} \notin \mathcal{M}$, then $c_{1} \cdot f \in I$, and we can express f as a linear combination of the generators of $I_{\mathcal{M}}$ with coefficients in $R\left[x_{1}, \ldots, x_{n}\right]_{\mathcal{M}}$.
In a similar way to Corollary 1, we can get a set of generators of the module $\operatorname{Syz}\left(f_{1}, \ldots, f_{m}\right)$ wit $f_{1}, \ldots, f_{m} \in R\left[x_{1}, \ldots, x_{n}\right]_{\mathcal{M}}$.

Remark 2. If R has effective coset representatives then, for a given $I_{\mathcal{M}}$ proper ideal of $R\left[x_{1}, \ldots, x_{n}\right]_{\mathcal{M}}$, we can compute the cosets of $R\left[x_{1}, \ldots, x_{n}\right] / I$ and the same set is valid for $R\left[x_{1}, \ldots, x_{n}\right]_{\mathcal{M}} / I_{\mathcal{M}}$.

3. QS-ALGORITHMS in $R\left[x_{1}, \ldots, x_{n}\right]$

Let R be an MC-PID, $\mathbf{f}=\left(f_{1}, \ldots, f_{m}\right)$ a unimodular row in $R\left[x_{1}, \ldots, x_{n}\right]^{m}$ and $P=\operatorname{ker}(\mathbf{f})$. Then P is a projective module, and we want to get a free basis of it. The process described in [7] uses the primary decomposition of an ideal of $R\left[x_{1}, \ldots, x_{n}\right]$. To avoid it, we give two new QS-algorithms. The procedures are by induction on n, the number of variables. If $n=0$ we have a projective module over an MC-PID, and we can compute the Smith normal form. Assume that $n \geq 0$ and that we have an algorithm for rings of polynomials with n variables and coefficients in an MC-PID. Now consider the polynomial ring $R\left[x_{1}, \ldots, x_{n}\right][y]$ in $n+1$ variables. The first step is reducing the problem to find a free basis of the modules $P_{\mathcal{M}}$ over the rings $R\left[x_{1}, \ldots, x_{n}\right]_{\mathcal{M}}[y]$ for a finite set of maximal ideals \mathcal{M} of $R\left[x_{1}, \ldots, x_{n}\right]$. Here we need Algorithm 1 to compute a maximal ideal that contains an ideal in $R\left[x_{1}, \ldots, x_{n}\right]$. These free bases are patched together to obtain a basis of the module P, as shown in [16], so the problem is reduced to give an algorithmic proof of Horrocks' theorem ([17, p. 28]).

3.1. First QS-algorithm in $R\left[x_{1}, \ldots, x_{n}\right]$.

Theorem 1. Let P be a projective module over $R\left[x_{1}, \ldots, x_{n}\right][y]$, defined as the kernel of a unimodular row $\mathbf{f}=\left(f_{1}, \ldots, f_{m}\right)$, and \mathcal{M} a maximal ideal of $R\left[x_{1}, \ldots, x_{n}\right]$. Then there exists a $m \times m$-invertible matrix U with entries in $R\left[x_{1}, \ldots, x_{n}\right]_{\mathcal{M}}[y]$ such that $\mathbf{f} \cdot U=(1,0, \ldots, 0)$. The last $m-1$ columns of U form a free basis of $P_{\mathcal{M}}$.

Proof. Write $A=R\left[x_{1}, \ldots, x_{n}\right]_{\mathcal{M}}[y]$. Let S be the multiplicative set of monic polynomials of A, and $S_{0} \subset R[y]$ the set of monic polynomials. As \mathbf{f} is a unimodular row, we can compute a column \mathbf{g} such that $\mathbf{f} \cdot \mathbf{g}=1$, and $M=I-\mathbf{g} \cdot \mathbf{f}$ is a matrix whose columns form a set of generators of the $R\left[x_{1}, \ldots, x_{n}\right][y]$-module $\operatorname{Syz}(\mathbf{f})$. From the commutative diagram

$$
\begin{array}{cccc}
R\left[x_{1}, \ldots, x_{n}\right][y] & \rightarrow & \left(S_{0}^{-1} R[y]\right)\left[x_{1}, \ldots, x_{n}\right] \\
\downarrow & & \downarrow \\
R\left[x_{1}, \ldots, x_{n}\right]_{\mathcal{M}}[y] & \rightarrow & A_{S}
\end{array}
$$

we see that the module $S^{-1} P_{\mathcal{M}}$ is extended from $S_{0}^{-1} P$. By Corollary $1, S_{0}^{-1} R[y]$ is an MC-PID, and by the induction hypothesis and extension we compute a matrix $U_{S} \in \operatorname{GL}\left(m, S^{-1} R[y]\right)$ such that $\mathbf{f} \cdot U_{S}=(1,0, \ldots, 0)$. Let $v_{1}, \ldots, v_{m-1} \in P_{\mathcal{M}}$ be the last $m-1$ columns of U_{S}. These vectors form a free basis of $S^{-1} P_{\mathcal{M}}$ in A_{S}. Let $k=R\left[x_{1}, \ldots, x_{n}\right] / \mathcal{M}, \bar{A}=A / \mathcal{M} A=k[y]$ and $\bar{A}_{S}=k(y)$. Compute a matrix $\bar{U} \in \mathrm{GL}(m, k[y])$ such that $\mathbf{f} \cdot \bar{U}=(1,0, \ldots, 0)$ and let $\bar{e}_{1}, \ldots, \bar{e}_{m-1}$ be the last $m-1$ columns of \bar{U}. This set is a free basis of $\overline{P_{\mathcal{M}}}$. Take $a_{1}, \ldots, a_{m-1} \in A$ such that $\bar{a}_{i}=\bar{e}_{i}, i=1, \ldots, m-1$. Then $e_{i}=a_{i}-\mathbf{g} \cdot \mathbf{f} \cdot a_{i}, i=1, \ldots, m-1$,
are elements of $P_{\mathcal{M}}$ that go over $\bar{e}_{1}, \ldots, \bar{e}_{m-1}$. By solving a linear system, we get $\bar{W} \in \mathrm{GL}((m-1), k(y))$ such that

$$
\left(\bar{v}_{1}, \ldots, \bar{v}_{m-1}\right) \bar{W}=\left(\bar{e}_{1}, \ldots, \bar{e}_{m-1}\right)
$$

because $\bar{v}_{1}, \ldots, \bar{v}_{m-1}$ and $\bar{e}_{1}, \ldots, \bar{e}_{m-1}$ are bases of the vector space \bar{P}_{S} over the field $k(y)$. As pointed in $[3,14]$, we can take $W \in \mathrm{GL}\left(m-1, A_{S}\right)$ that lifts to \bar{W}. Change the basis v_{1}, \ldots, v_{m-1} of $S^{-1} P_{\mathcal{M}}$ by the basis $\left(v_{1}, \ldots, v_{m-1}\right) \cdot W$. Then

$$
e_{i}=v_{i}+h_{i}, \quad h_{i} \in \mathcal{M} S^{-1} P_{\mathcal{M}}, \quad i=1, \ldots, m-1
$$

Following [12, 3], if C is the subring of $S^{-1} R[y]$ formed by f / g, with $g \in S$ and $\operatorname{deg}(f) \leq \operatorname{deg}(g)$, then $\mathcal{M} S^{-1} P_{\mathcal{M}}=\mathcal{M} P_{\mathcal{M}}+\mathcal{M} Q$, where $Q=\bigoplus v_{i} y^{-1} C$. By the division algorithm, decompose $h_{i}=g_{i}+g_{i}^{\prime}$, where $g_{i} \in A^{m}$, and the degree of the denominators of g_{i}^{\prime} are greater than the degree of numerators. Compute z_{i} the normal form of g_{i} with respect the module $\mathcal{M} P_{\mathcal{M}}$ over the ring A. Then, by [12, 3], the elements $v_{i}^{\prime}=v_{i}+z_{i}+g_{i}^{\prime}, i=1, \ldots, m-1$ form a basis of $P_{\mathcal{M}}$.
Remark 3. The algorithm described in [14, algorithm 4] is incomplete, because to extract the component in $\mathcal{M} P_{\mathcal{M}}$ we need normal forms, and not only quotients. An analogous remark is applied to [14, p. 418].
Example 2. Consider the polynomial ring $\mathbb{Z}[x]$, the unimodular row $\mathbf{f}=\left(13, x^{2}-\right.$ $1,2 x-3)$ and P the projective module defined by $\operatorname{ker}(\mathbf{f})$. We can compute $\mathbf{g}=$ $(2,-20,10 x+15)^{t}$ with $\mathbf{f} \cdot \mathbf{g}=1$. A basis of $S^{-1} P$ over $S^{-1} \mathbb{Z}[x]$ is formed by the vectors

$$
v_{1}=\left(1,-\frac{13}{x^{2}-1}, 0\right)^{t}, v_{2}=\left(0,-\frac{2 x-3}{x^{2}-1}, 1\right)^{t}
$$

For every maximal ideal \mathcal{M} in \mathbb{Z}, a basis of the module $S^{-1} P_{\mathcal{M}}$ is obtained by extension. Let $\mathcal{M}=\langle 2\rangle$ maximal ideal of \mathbb{Z}, and $\bar{A}=(\mathbb{Z} / \mathcal{M})[x]$. By Euclidean algorithm in \bar{A}, we get a basis of $\bar{P}_{\mathcal{M}}$ with elements $\bar{e}_{1}=\left(-x^{2}+1,1,0\right)^{t}, \bar{e}_{2}=$ $(1,0,1)^{t}$. Then

$$
\bar{W}=\left(\begin{array}{cc}
-x^{2}+1 & 1 \\
0 & 1
\end{array}\right) \in \mathrm{GL}\left(2, \bar{A}_{S}\right)
$$

is a matrix with

$$
\left(\bar{v}_{1} \mid \bar{v}_{2}\right) \bar{W}=\left(\bar{e}_{1} \mid \bar{e}_{2}\right) .
$$

Lift to

$$
W=\left(\begin{array}{cc}
-x^{2}+1 & 1 \\
0 & 1
\end{array}\right) \in \mathrm{GL}\left(2, A_{S}\right)
$$

and a new basis of $S^{-1} P_{\mathcal{M}}$ is

$$
v_{1}=\left(-x^{2}+1,13,0\right)^{t}, v_{2}=\left(1,-\frac{2(5+x)}{x^{2}-1}, 1\right)^{t}
$$

We can compute elements $e_{1}=\bar{e}_{1}-\mathbf{g} \cdot \mathbf{f} \cdot \bar{e}_{1}, e_{2}=\bar{e}_{2}-\mathbf{g} \cdot \mathbf{f} \cdot \bar{e}_{2} \in P_{\mathcal{M}}$ such that they apply over \bar{e}_{1}, \bar{e}_{2}. Let $h_{1}=e_{1}-v_{1}=g_{1}+g_{1}^{\prime}, h_{2}=e_{2}-v_{2}=g_{2}+g_{2}^{\prime}$, where $g_{1}=h_{1}, g_{1}^{\prime}=0$, and

$$
g_{2}=\left(-20-4 x, 200+40 x,-150-130 x-20 x^{2}\right)^{t}, \quad g_{2}^{\prime}=\left(0,2 \frac{x+5}{x^{2}-1}, 0\right)^{t}
$$

The respective normal forms of g_{1}, g_{2} with respect to $\mathcal{M} P_{\mathcal{M}}$ are

$$
z_{1}=(0,0,0)^{t}, z_{2}=\left(\frac{-4 x^{2}+x^{3}+4 x-1}{x^{3}-2 x^{2}-1},-\frac{(x-1) x^{2}\left(x^{2}-3 x+1\right)}{x^{3}-2 x^{2}-1}, 0\right)^{t}
$$

Then $v_{1}^{\prime}=v_{1}, v_{2}^{\prime}=\left(0,2 x-3,-x^{2}+1\right)^{t}$ form a free basis of $P_{\mathcal{M}}$. If $U=\left(\mathbf{g}\left|v_{1}^{\prime}\right| v_{2}^{\prime}\right)$, then $\operatorname{det}(U)=-13$ is a unit in $\mathbb{Z}_{\mathcal{M}}$. To obtain a matrix with determinant 1 , we consider $U_{1}=\left(\mathbf{g}\left|-\frac{1}{13} v_{1}^{\prime}\right| v_{2}^{\prime}\right)$. Let $r_{1}=13$.
We repeat the process for $\mathcal{M}_{2}=\langle 13\rangle$, and obtain the matrix

$$
U_{2}=\left(\begin{array}{ccc}
2 & 1 & 0 \\
-20 & -\frac{52}{5} & 2 x-3 \\
10 x+15 & \frac{26}{5} x+\frac{39}{5} & -x^{2}+1
\end{array}\right) .
$$

In this case, $r_{2}=5$, and $\left\langle r_{1}, r_{2}\right\rangle=\mathbb{Z}$. By patching together the solutions as described in [16], we get

$$
V=\left(\begin{array}{ccc}
-128 x^{2}+60 x^{3}+60 x & 1+1144 x^{2}-780 x^{3} & -144 x^{2}+100 x^{3}-4 x \\
-1-30 x & 13+390 x & -50 x-3 \\
270 x-375 x^{2} & -130 x+4875 x^{2} & 1-625 x^{2}
\end{array}\right)
$$

with $\operatorname{det}(V)=1$ and $\mathbf{f} \cdot V=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)$.
3.2. Second QS-algorithm in $R\left[x_{1}, \ldots, x_{n}\right]$. The algorithm described in the previous section uses the normal form of a vector with respect to a module. We give another method, based on $[19,17]$, where is not needed. We begin with an easy lemma.

Lemma 2. ([17, Lemma 3.2.5].) Let R be an $M C$-PID and M a free R-module. Let v be a nonzero element of M. Then M has a basis v_{1}, \ldots, v_{r} such that $v=\alpha v_{1}$ for some $\alpha \in R$.

The following algorithm solves the local step, i.e., compute a basis of the $R\left[x_{1}, \ldots, x_{n}\right]_{\mathcal{M}^{-}}$ module $P_{\mathcal{M}}$. Our starting point is a set of generators of $P_{\mathcal{M}}$ as a submodule of a free module, and proceed by induction over $\operatorname{rank}(P)=m$. We build a set of generators of a projective module P^{\prime} with rank $m-1$. Remember that if P^{\prime} is projective then it is torsion free, so it is isomorphic to a submodule of a free module of finite rank ([10, Prop. 10.11]). This isomorphism can be computed, because the relations between the generators of P^{\prime} can be found by solving a linear system in the field $Q(R)$. Then we apply the induction hypothesis.

Theorem 2. ([17, Thm. 3.2.1] Let P be a projective $R\left[x_{1}, \ldots, x_{n}\right][y]$-module, generated by a set of vectors of $R\left[x_{1}, \ldots, x_{n}\right][y]^{s}$, and \mathcal{M} a maximal ideal of $R\left[x_{1}, \ldots, x_{n}\right]$. Then we can find a free basis of $P_{\mathcal{M}}$.
Proof. Let M be a matrix whose columns are the generators of P, and $m=\operatorname{rank}(P)$.
(1) If $m=1$ then P is isomorphic to an ideal of $R\left[x_{1}, \ldots, x_{n}\right][y]$. Then $S_{0}^{-1} P$ is a projective ideal of $\left(S_{0}^{-1} R[y]\right)\left[x_{1}, \ldots, x_{n}\right]$, so it is free, hence principal. Using a Gröbner basis we can find its generator, that is a basis.
(2) If $m \geq 2$, let v_{1}, \ldots, v_{m} a basis of $S_{0}^{-1} P_{\mathcal{M}}$, that we can compute because $S_{0}^{-1}\left(R\left[x_{1}, \ldots, x_{n}\right][y]\right)=\left(S_{0}^{-1} R[y]\right)\left[x_{1}, \ldots, x_{n}\right]$. Choose $v_{i} \in P_{\mathcal{M}}$ taking off denominators.
(3) Let $\bar{e}_{1}, \ldots, \bar{e}_{m}$ be a basis of $\bar{P}_{\mathcal{M}}$ over $k[y]$, with $k=R\left[x_{1}, \ldots, x_{n}\right] / \mathcal{M}$.
(4) Compute a basis $\bar{q}_{1}, \ldots, \bar{q}_{m}$ of $\bar{P}_{\mathcal{M}}$ with $\bar{v}_{1}=\alpha \bar{q}_{2}$ (Lemma 2). Let \bar{V} be a change basis matrix and V a lifting with entries in A.
(5) Lift q_{1} to $P_{\mathcal{M}}$ through $M \cdot V$.
(6) By solving a linear system, let $q_{1}=\sum_{i=1}^{m} a_{i}^{\prime} v_{i}$ in $S^{-1} A$, so we can find $s \in A$ such that $s q_{1}=\sum_{i=1}^{m} a_{i} v_{i}, a_{i} \in A$.
(7) Take k such that $a_{1}+s y^{k}$ is a monic polynomial in the variable y.
(8) Let $p=q_{1}+y^{k} v_{1}$, and $P^{\prime}=P / p A$. Then P^{\prime} is projective and $\operatorname{rank}\left(P^{\prime}\right)=$ $m-1([17,19])$, so is torsion free, and we can compute a set of generators. Set $P \leftarrow P^{\prime}$, and go to step 1 .

Example 3. Consider Example 2, and let $\mathcal{M}=\langle 2\rangle \subset \mathbb{Z}$. We want to compute a free basis of the $A=\mathbb{Z}_{\mathcal{M}}[x]$-module $P_{\mathcal{M}}$. A set of generators of P is formed by the columns s_{1}, s_{2}, s_{3} of $M=I-\mathbf{g} \cdot \mathbf{f}$. It is easy to see that $\operatorname{rank}(P)=2$. As $S_{0}^{-1} \mathbb{Z}[x]$ is an MC-PID, we can find the Smith normal form of the module $S_{0}^{-1} P_{\mathcal{M}}$. Then

$$
\left(\begin{array}{ccc}
10 & 1 & 0 \\
10 x+15 & 0 & -2 \\
13 & x^{2}-1 & 2 x-3
\end{array}\right) M\left(\begin{array}{ccc}
0 & 1 & 2 \\
1 & -10 & -20 \\
0 & 5 x+7 & 10 x+15
\end{array}\right)=V_{1} M V_{2}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

The nonzero columns $\left\{v_{1}, v_{2}\right\}$ of $M \cdot V_{2}$ form a basis of $S_{0}^{-1} P$. Now it is easy to see that the vectors $\bar{e}_{1}=(-1,0,-1)^{t}, \bar{e}_{2}=\left(0,-1,-x^{2}+1\right)^{t}$ are a basis of the module $\bar{P}_{\mathcal{M}}$. As $\bar{v}_{1}=\bar{e}_{2}$, we take $\bar{q}_{1}=\bar{e}_{1}, \bar{q}_{2}=\bar{e}_{2}$, and $q_{1}=(-25,260,-130 x-195)^{t} \in$ $P_{\mathcal{M}}$ goes over \bar{q}_{1}. Then $s q_{1}=a_{1} v_{1}+a_{2} v_{2}$ with $a_{1}=10, s=1$ and $a_{1}+s x$ is monic in x, so

$$
\begin{aligned}
& p=q_{1}+x v_{1}= \\
& \left(-25-2 x^{3}+2 x, 260-19 x+20 x^{3},-115 x-195-10 x^{4}+10 x^{2}-15 x^{3}\right)^{t}
\end{aligned}
$$

We know that $P^{\prime}=P_{\mathcal{M}} / p A$ is a projective A-module with rank equal to 1 . Now we have to compute a free basis $w+\langle p\rangle$ of P^{\prime}, which is generated by $s_{1}+\langle p\rangle, s_{2}+$ $\langle p\rangle, s_{3}+\langle p\rangle$. The first step is to find $d_{2}, d_{3} \in A$ such that $d_{2}\left(s_{2}+\langle p\rangle\right)=\lambda_{2}\left(s_{1}+\right.$ $\langle p\rangle), d_{3}\left(s_{3}+\langle p\rangle\right)=\lambda_{3}\left(s_{1}+\langle p\rangle\right)$, so we solve the system

$$
\left(\begin{array}{lll}
s_{2} & \mid & s_{3}
\end{array}\right)=\left(\begin{array}{lll}
p & \mid & s_{1}
\end{array}\right)\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

in the field of fractions of A. Let $d=5 x(2 x+3), \lambda_{2}=-5(2 x+3), \lambda_{3}=-2(10+x)$, and consider the morphism between A-modules $\varphi: P^{\prime} \rightarrow\left(s_{1}+\langle p\rangle\right) A$ defined by $\varphi(v)=d \cdot v$. Then φ is injective, and $P^{\prime} \simeq \varphi\left(P^{\prime}\right) \subset\left(s_{1}+\langle p\rangle\right) A$. Since $\varphi\left(P^{\prime}\right)$ is generated by only one element, it must be a multiple of $s_{1}+\langle p\rangle$. Then consider the ideal $J=\left\langle d, \lambda_{2}, \lambda_{3}\right\rangle A$. By computing a Gröbner basis in A we obtain $u=85=$ $0 \cdot d+\lambda_{2}-5 \lambda_{3}$, a unit in A, so P^{\prime} is generated by $\varphi^{-1}\left(s_{1}+\langle p\rangle\right)=u^{-1}\left(s_{2}-5 s_{3}\right)+\langle p\rangle$. Let

$$
\begin{aligned}
& w=u^{-1}\left(s_{2}-5 s_{3}\right)= \\
& \frac{1}{85}\left(-2 x^{2}+20 x-28,20 x^{2}-200 x+281,-10 x^{3}+85 x^{2}+10 x-215\right)^{t}
\end{aligned}
$$

Then $\{p, w\}$ is a free basis of $P_{\mathcal{M}}$.
Remark 4. These algorithms allow us to extend the results in [14] to find bases of projective modules over a monoid ring $R[M]$, because all we need are the constructions in $S^{-1} R[x]$ described in Section 2 and the Quillen-Suslin algorithm in $R\left[x_{1}, \ldots, x_{n}\right]$ ([8]). In the same way, we have a QS-algorithm for quotients of the form $R\left[x_{1}, \ldots, x_{n}\right] / I$, with I a monomial ideal, extending [13].

4. QS-ALGORITHM IN $D[x]$

4.1. Ideal factorization in a Dedekind domain. Let D be the ring of integers of a number field, and I an ideal of D. Then D is a Dedekind domain, and there is an algorithm ([5, algorithm 2.3.22]) to compute the factorization of I as product of prime ideals of D. We present here another algorithm based in Gröbner bases. We know that D is a free \mathbb{Z}-module of finite rank, and we can find $\omega_{0}=1, \omega_{1}, \ldots, \omega_{n}$ a free basis ([4, algorithm 6.1.8]). Then $\omega_{i} \omega_{j}=\sum_{k=0}^{n} a_{i, j, k} \omega_{k}, i, j \in\{0,1, \ldots, n\}$ for some $a_{i, j, k} \in \mathbb{Z}$. Let $s_{i j}=x_{i} x_{j}-\sum_{k=0}^{n} a_{i, j, k} x_{k}$ be polynomials in $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$, and call J the ideal generated by them.

Lemma 3. (1) $D \simeq \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] / J$.
(2) There is a primality testing algorithm for ideals of D.
(3) Let I be a proper ideal of D. Then there exists an algorithm to find a set of generators of a maximal ideal \mathcal{M} of D that contains I.
(4) Let \mathcal{M} be a maximal ideal of D. Then it is possible to compute a set of generators of the D-module \mathcal{M}^{-1}.

Proof. (1) Let $p \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial such that $p\left(\omega_{1}, \ldots, \omega_{n}\right)=0$. By reducing p by the polynomials $s_{i j}$, we have that $p \equiv q \quad(\bmod \quad J)$, where $q\left(x_{1}, \ldots, x_{n}\right)=a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}, a_{i} \in \mathbb{Z}$. Since $p\left(\omega_{1}, \ldots, \omega_{n}\right)=0$, then $q\left(\omega_{1}, \ldots, \omega_{n}\right)=0$, so $a_{0}=a_{1}=\ldots=a_{n}=0$, because of linear independence of ω_{i} in \mathbb{Z}, and then $p \in J$. If I is an ideal of D, we note \tilde{I} the lifted ideal of $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$.
(2) I is a prime ideal of D if and only if \tilde{I} is a prime ideal of $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$, and by [9, prop. 4.3] we have an algorithm to test the primality of \tilde{I}.
(3) Apply Algorithm 1 to \tilde{I}.
(4) Follow [4, p. 199]. Observe that we can always find $p \in \mathbb{Z} \cap \mathcal{M}$ a prime element through $\widetilde{\mathcal{M}} \cap \mathbb{Z}$.

Proposition 2. Let I be a proper ideal of D. Then we can find prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ of D such that $I=\mathfrak{p}_{1} \cdot \ldots \cdot \mathfrak{p}_{r}$.

Proof. If I is prime, we are done. Otherwise, let \mathfrak{p}_{1} be a maximal ideal that contains I. Let $I_{1}=\mathfrak{p}_{1}^{-1} I$. Then I_{1} is an integer ideal and $I \subsetneq I_{1}([18])$. We apply again the process to the ideal I_{1}, and we obtain an ascending chain of ideals $I \subset I_{1} \subset \ldots \subset I_{r}$ that becomes stationary because D is a noetherian ring. If $I_{r}=I_{r+1}$, we know that $I_{r+1}=\mathfrak{p}^{-1} I_{r}$, where \mathfrak{p} is a maximal ideal of D that contains I_{r}. Then $I_{r}=\mathfrak{p}^{-1} I_{r}$ and this would imply that $\mathfrak{p}=D$. So I_{r} is a maximal ideal, the algorithm stops and we obtain the expression $I=\mathfrak{p}_{1} \cdot \ldots \cdot \mathfrak{p}_{r}$.
Example 4. Let $I=\langle 6\rangle$ be ideal of $D=\mathbb{Z}[\omega]$, with $\omega=\sqrt{-5}$. An integral basis of D is $\{1, \omega\}$. Now consider $\tilde{I}=\left\langle 6, t^{2}+5\right\rangle$ ideal of $\mathbb{Z}[t]$. Then \tilde{I} is not prime, because $\langle 6\rangle \mathbb{Z}=\tilde{I} \cap \mathbb{Z}$ is not a prime ideal of \mathbb{Z}. Let $p_{1}=2$ be a prime number that divides 6 , and consider the ideal $\tilde{I}^{\prime}=\left\langle p_{1}, t^{2}+5\right\rangle$, that contains \tilde{I}. We compute $\overline{\mathcal{M}}_{1}=\langle t+1\rangle$, a maximal ideal of $\left(\mathbb{Z} / p_{1}\right)[t]$ that contains the polynomial $t^{2}+\overline{5}$. Then $\mathfrak{p}_{1}=\langle 2,1+\omega\rangle$ is a maximal ideal that contains I and $\mathfrak{p}_{1}^{-1}=D+\frac{1+\omega}{2} D$. Hence we obtain $I_{1}=\mathfrak{p}_{1}^{-1} I=\langle 6,3+3 \omega\rangle$.
Again, I_{1} is not a prime ideal, so we apply the process to it. It is contained in the maximal ideal $\mathfrak{p}_{2}=\langle 2,1+\omega\rangle$, so we define $I_{2}=\mathfrak{p}_{2}^{-1} I_{1}=\langle 3\rangle$. The ideal I_{2} is not
prime, because $t^{2}+\overline{5}$ is reducible in $(\mathbb{Z} / 3)[t]$. A maximal ideal that contains I_{2} is $\mathfrak{p}_{3}=\langle 3,1+\omega\rangle$, and $\mathfrak{p}_{3}^{-1}=D+\frac{1-\omega}{3} D$. Now $I_{3}=\mathfrak{p}_{3}^{-1} I_{2}=\langle 3,1-\omega\rangle$, that it is prime. Putting $\mathfrak{p}_{4}=I_{3}$ we get $I=\mathfrak{p}_{1}^{2} \mathfrak{p}_{3} \mathfrak{p}_{4}$.
4.2. Projective modules over $D[x]$. Let M be a finitely generated D-module. Then M is projective if and only if M is torsion free. In this case, if $\operatorname{rank}(M)=r$, then $M \simeq D^{r-1} \oplus \mathfrak{a}$ where \mathfrak{a} is an ideal of $D . M$ is free if and only if \mathfrak{a} is principal ([5, Thm. 1.2.23]). This decomposition can be computed when D is the ring of integers of a number field ([5, Thm. 1.2.19]), and the crucial step is the following lemma.

Lemma 4. If I and J are fractional ideals of D then $I \oplus J \simeq D \oplus I J$ as D-modules.
A way to obtain this isomorphism is through the prime decomposition of ideals in D (see [5, Prop. 1.3.12]) or applying [5, Algorithm 1.3.16]. Then, if we have determined the freeness of a torsion free module M we can compute a basis using this isomorphism.
If \mathcal{M} is a maximal ideal in D then the local ring $D_{\mathcal{M}}$ is a discrete valuation ring, so a PID. If $P(x)$ is a projective module over $D[x]$, then for each maximal ideal \mathcal{M} of D, the module $P(x)_{\mathcal{M}}$ is projective over $D_{\mathcal{M}}[x]$, and by the Quillen-Suslin theorem $P(x)_{\mathcal{M}}$ is free. Then $P(x)$ is extended from $P(0)$ ([21]). When D is the ring of integers of a number field, we have an algorithm for the previous result analogous to [14]. This shows us that for checking the freeness of $P(x)$ over $D[x]$ is enough to test $P(0)$ over D. The problem is reduced to compute a free basis of the module $P(x)_{\mathcal{M}}$ over $D_{\mathcal{M}}[x]$ for a maximal ideal \mathcal{M} of D. But $D_{\mathcal{M}}$ is an MC-PID, and by sections 3.1, 3.2 we have two algorithms to get a free basis.

Example 5. In $D=\mathbb{Z}[\omega], \omega=\sqrt{-5}$ consider $\mathbf{f}(x)=\left(\begin{array}{lll}f_{1}(x) & f_{2}(x) & f_{3}(x)\end{array}\right)$ the unimodular row in $D[x]^{3}$ where

$$
f_{1}(x)=-5 x^{2}-2 \omega x+2 x+\omega-2, f_{2}(x)=x^{2}-x, f_{3}(x)=\omega x-\omega+1 .
$$

Let $P(x)$ be the projective module defined by $\operatorname{ker}(\mathbf{f}(x))$, whose generators in $D[x]^{3}$ are given by the columns of the matrix $M(x)=I_{3}-\mathbf{g}(x) \mathbf{f}(x)$, where $\mathbf{g}(x)=$ $(x-1,5 x-2,2 x-1)^{t}$. To check the freeness of $P(x)$ we consider the D-module $P(0)$ generated by the columns of $M(0)$. We can see that $P(0) \simeq D \oplus J$, where $J=\langle 2-\omega\rangle$. Then $P(0)$ is free, so $P(x)$. Let $\mathcal{M}=\langle 2,1+\omega\rangle$ be maximal ideal of D. Applying Theorem 2 to $P_{\mathcal{M}}$ we get the matrix

$$
\begin{aligned}
& {\left[x-1,-5 x^{4}+6 x^{3}+\omega x^{2}-3 x^{2}+\omega x-\omega x^{4}-\omega+1,-(x-1)(10086662778 x\right.} \\
& +20424937041 \omega-6861175910 \omega x-27394274848 x^{2}+8528154248 \omega x^{3} \\
& \left.\left.-5214150542 \omega x^{2}-45243672650 x^{3}+28030914183\right) / \beta\right] \\
& {\left[5 x-2,-25 x^{4}-2 \omega x^{3}+14 x^{3}+2 \omega x^{2}-12 x^{2}+5 \omega x-x-6 \omega x^{4}-2 \omega+2,\right.} \\
& -\left(144679169033 x-61623674056 \omega+99695086617 \omega x+120872168654 x^{2}\right. \\
& -36583582778 \omega x^{3}-17235547982 \omega x^{2}+36521518173 \omega x^{4}-44295714782 x^{3} \\
& \left.\left.-240865770565 x^{4}-18225840353\right) / \beta\right] \\
& {\left[2 x-1,2-4 x^{2}-11 x^{4}-\omega x^{3}+7 x^{3}+\omega x^{2}+2 \omega x-2 \omega x^{4}-\omega+x^{5},\right.} \\
& \left(-65754728708 x+28500912245 \omega-41229027211 \omega x-52828252348 x^{2}\right. \\
& -6119253067 x^{5}+15325343098 \omega x^{3}+13191112346 \omega x^{2}-18717821941 \omega x^{4} \\
& \left.\left.+14918939512 x^{3}+94101342265 x^{4}+2929481463 x^{5} \omega+15681952346\right) / \beta\right], \\
& \text { with } \beta=(-37835988013+20773799974 \omega) .
\end{aligned}
$$

References

[1] W.W. Adams and P. Loustaunau, An Introduction to Gröbner Bases, Graduate Studies in Mathematics, vol. 3, (Amer. Math. Soc., Providence, RI 1994).
[2] D.D. Anderson, D.F. Anderson and R. Markanda, The Rings $R(X)$ and $R\langle X\rangle$, J. Algebra, 95 (1985), 96-115.
[3] V.A. Artamonov, Serre's quantum problem, Russian Math. Surveys, 53:4, (1998), 657-730.
[4] H. Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics, vol. 138, (Springer, Berlin, 1993).
[5] H. Cohen, Advanced Topics in Computational Number Theory, Graduate Texts in Mathematics, vol. 193, (Springer, New York, 2000).
[6] N. Fitchas and A. Galligo, Nullstellensatz effectif et conjecture de Serre (Théorème de QuillenSuslin) pour le calcul formel, Math. Nachr., 149 (1990), 231-253.
[7] J. Gago-Vargas, On Suslin's Stability Theorem for $R\left[x_{1}, \ldots, x_{m}\right]$, in Ring Theory and Algebraic Geometry, Lecture Notes in Pure and Applied Mathematics, vol. 221, 203-210, (Marcel Dekker, New York, 2001).
[8] J. Gago-Vargas, Algoritmo para el teorema de Quillen-Suslin en $R[M]$, Comunicación en EACA-2000, Barcelona (2000).
[9] P. Gianni, B. Trager and G. Zacharias, Gröbner bases and primary decomposition of polynomial ideals, J. Symbolic Comput., 6 (1988), 149-167.
[10] N. Jacobson, Basic Algebra II, (W.H. Freeman and Co., San Francisco, 1980).
[11] E. Kunz, Introduction to Commutative Algebra and Algebraic Geometry, (Birkhäuser, Boston, 1985).
[12] T.Y. Lam, Serre's Conjecture, Lecture Notes in Math., vol. 635, (Springer, New York, 1978).
[13] R. Laubenbacher and K. Schlauch, An algorithm for the Quillen-Suslin theorem for quotients of polynomial rings by monomial ideals, J. Symbolic Comput, 30 (2000), no. 5, 555-571.
[14] R. Laubenbacher and C. Woodburn, An algorithm for the Quillen-Suslin theorem for monoid rings, J. Pure Appl. Algebra, 117-118 (1997), 395-429.
[15] R. Laubenbacher and C. Woodburn, A new algorithm for the Quillen-Suslin theorem, Beiträge Algebra Geom., 41 (2000), 23-31.
[16] A. Logar and B. Sturmfels, Algorithms for the Quillen-Suslin theorem, J. Algebra, 145 (1992), 231-239.
[17] S. Mandal, Projective modules and Complete Intersections, Lecture Notes in Math., vol. 1672, (Springer, Berlin, 1997).
[18] M.P. Malliavin, Algèbre commutative. Applications en géométrie et théorie des nombres, (Masson, Paris, 1985).
[19] B. Nashier and W. Nichols, Ideals containing monics, Proc. Amer. Math. Soc., 99 (1987), 634-636.
[20] H. Park and C. Woodburn, An algorithmic proof of Suslin's stability theorem for polynomial rings, J. Algebra, 178 (1995), 277-298.
[21] D. Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976), 167-171.
[22] A.A. Suslin, Projective modules over polynomial rings are free, Soviet Math. Dokl. 17 (1976), no. 4, 1160-1164.

Dpto. de Álgebra, Universidad de Sevilla, Apdo. 1160, 41080 Sevilla, España
E-mail address: gago@algebra.us.es.

[^0]: 2000 Mathematics Subject Classification. Primary: 13C10, 13P10, 19A49, 68W30. Secondary: 15A33.

 Key words and phrases. Serre Conjecture, Quillen-Suslin Theorem, Gröbner bases, Dedekind domains, projective modules.

 Partially supported by DGICYT PB97-0723 and Junta de Andalucía FQM-218.
 This is a preliminary version of this article.

