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CONSTRUCTIONS IN R[zi,...,z,]. APPLICATIONS TO
K-THEORY

JESUS GAGO-VARGAS

ABSTRACT. A classical result in K-Theory about polynomial rings like the
Quillen-Suslin theorem admits an algorithmic approach when the ring of co-
efficients has some computational properties, associated with Grébner bases.
There are several algorithms when we work in K[z1,...,z»], K a field. In this
paper we compute a free basis of a finitely generated projective module over
R[z1,...,zn], R a principal ideal domain with additional properties, test the
freeness for projective modules over D[z1,...,zn], with D a Dedekind domain
like Z[+/—=5] and for the one variable case compute a free basis if there exists
any.

1. INTRODUCTION

The Quillen-Suslin theorem asserts that if A = D[zq,...,2,] is a polynomial
ring over a Dedekind domain D then every finitely generated projective A-module
is extended from D ([21, 22]). When D is a principal ideal domain every finitely gen-
erated projective A-module is free. This is equivalent to say that if R is a principal
ideal domain and f = (f1, ..., fin) is a unimodular row of R[z1,...,2,]™ then there
exists a matrix U € GL(m, R[z1,...,zy]) such that f-U = (1,0,...,0), or that we
can complete f to an invertible matrix. An algorithm for the Quillen-Suslin theo-
rem produces such matrix, and we call it a QS-algorithm. The last m — 1 columns
of the matrix U form a free basis of the module defined by ker(f) C Rlx1,...,z,]™.
There are several algorithms when R is a field ([16, 6, 14, 15], [20] as a corollary).
The main tool in the procedure is the algorithm to compute Grébner bases, which
we can find in other rings like Z.

In Section 2 we give some algorithmic results over the ring R[x1,...,x,] that we
need later, namely, the construction of a maximal ideal that contains an ideal of
R[z1,...,x,] and how to compute in S~!R[z] and R[x1,...,2,]am, rings obtained
from R[x1,..., %]

In Section 3 we present two QS-algorithms for R[z1,. .., z,], that avoid the normal-
ization step used in [7]. The first one follows [14, 15] and the second one [19, 17].
Our starting point is a projective module P given as kernel of a unimodular row
or as a submodule of a free module. Then we can generalize the results in [14]
to monoid rings R[M], because the induction step reduces the problem to a free
monoid, where we have solved the problem. In a similar way the QS-algorithm
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for quotients of polynomial rings by monomial ideals, that is, rings of the form
R[zq,...,2,]/I, with I a monomial ideal and R a PID, is easily extended, such as
appears in [13].

In Section 4 we consider D the ring of integers of a number field, a Dedekind domain
in which it is possible to compute. First we give a new algorithm using Grébner
bases to get the factorization of an ideal of D as product of prime ideals, and we
apply it to find a free basis of a projective module over D, if there exists one. The
next step is to study the freeness of a projective module P over D[zq,...,z,]. We
can do it by reducing the problem to a module over D, and for one variable, we
give an algorithm to compute a free basis when there exists one.

2. PRELIMINARY ALGORITHMSE

Let R be a ring. We recall that linear equations are solvable in R if we have
an algorithm to decide the membership problem of a element with respect to an
ideal and we can compute a set of generators of the module Syz(aq,...,an), with
ai, ... 0, € R. With these conditions we can build Grébner bases in the ring
Rlxy,...,zy] ([1, chapter 4]). We need to add another one.

Definition 1. Let R be a ring. We say that R is an MC-ring if we can solve linear
equations in R and, given I C R a proper ideal, it is possible to compute a set of
generators of a maximal ideal that contains 1.

For example, Z, Z[\/—5] are MC-rings. Additionally, we need the factorization
of polynomials in (R/(p))[x], p € R a prime element, and Q(R)[z], Q(R) the field
of fractions of R.

Definition 2. Let R be a ring. We say that R has effective coset representatives if
given J an ideal of R it is possible to find a complete set C of coset representatives
of R/J, and there is a procedure to find, for all a € R, an element ¢ € C such that
a=c (mod J).

This definition appears in [1, p. 226], and we need this property in R to compute
the normal form of a polynomial with respect to an ideal.
We include here the algorithm described in [7] to compute a set of generators of a
maximal ideal of R[x1,...,x,], R an MC-PID, that contains an ideal.

Algorithm 1. Input: F ={f1,..., f} set of generators of an ideal I of R[z1,...,x,].
Output: H ={g1,...,9m} set of generators of a mazimal ideal M C R[z1,...,x,]
that contains I.
(1) Compute (s) = (F)NR.
(2) If s#0, let p € R be a prime element such that p divides s.
(a) Compute g1,...,9k € (R/{(p))[x1,...,2n] generators of a mazimal
ideal M that contains I in (R/(p))[z1,...,2n]
(b) Lift to g1,...,9x € Rlz1,...,2,] and let H = {p,¢1,...,9x}. STOP.
(3) If s = 0, compute d € R,d # 0 such that I = (I,d) N I, where I°¢ =
IQ(R)[z1,...,zn] N R[z1, ..., z,] ([9]).
(4) If (I,d) # R, set F + F U{d}, and go to step 1. Otherwise, compute
g1, 0k € Q(R)[x1,...,x,] generators of a mazimal ideal M that con-
tains I in Q(R)[x1,...,2n].
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(5) Let J be ideal of R[x1,...,x,] such that J¢ = M. Compute 7 the least
common multiple of the coefficients of a Grébner basis of J. Let p € R be
a prime element that does not divide r. Set F' < F'U{p}, and go to step 1.

Ezample 1. Let I = (xy+ 1) be ideal of Z[z,y]. Then INZ = 0, so there exists d €
R,d # 0 such that I = (I,d)NI°. In this case, d = 1. The ideal M= (r—1,y+1)
is a maximal ideal in Q[z, y] that contains I¢. Set J; = (x — 1,y +1) C Z[z,y], and
s =1. Take p = 2 and set I’ = (J1,2) D I. Applying the algorithm to I’, we get
M = (2,2 — 1,y — 1) maximal ideal of Z[z,y| that contains I.

Let S be the set of monic polynomials of R[x], and write R’ = S~!R[z]. When
R is a field, the ring R’ is the field of rational functions over R[z].

Lemma 1. Let R be a principal ideal domain where we can divide and compute the
greatest common divisor and I = (f,g) C R’ be an ideal of R'. Then it is possible
to compute h, f',g' € R such that I = (h), f = f'h and g = ¢’h.

Proof. By [11, p. 117], we know that R’ is a principal ideal domain. Then I =
(h'y, where h' is the greatest common divisor of f and g in R’. We can assume
fyg € R[z] taking off denominators and compute h = ged(f,g) in R[z] with the
pseudo-division algorithm ([4, algorithms 3.2.10, 3.1.2]). Every irreducible element
of R[z] is irreducible or a unit of R’. Then I = (h), and by division we obtain
/', g € R|z] such that f = f'h,g = g'h. O

Remark 1. In [2] it is shown that if R is an euclidean domain, then S™!R[z] is
an euclidean domain too. However, the division algorithm passes through a formal
power serie.

Corollary 1. Let R be an MC-PID. Then R' is an MC-PID.

Proof. Given I = (f1,..., fn) C R’ ideal of R’, by iterative applications of Lemma
1, we compute h a generator of I. If f € R’, we can check whether f € I by reducing
to R[x] and making the division by h. If f € I, we obtain f’ € R’ with f = f’h.
The syzygy module of a set f1,..., f,, in R’ is easily reduced to a computation of
a syzygy module in R[z].

Let I be a proper ideal of R’. By Lemma 1, we find a not monic polynomial
f(z) € R[z] such that I = (f(z))R'. We get fi(x) € R[z] an irreducible and not
monic polynomial that divides f(z) in R[z], by factoring in Q(R)[z] and Gauss’s
Lemma. Then I C (fi(x))R/, maximal ideal in R'. O

Proposition 1. Let R be an MC-ring. If M is a mazimal ideal of R[z1,...,xy]
then R[x1,...,zp)m is an MC-ring.

Proof. The construction of a maximal ideal that contains a given ideal is trivial,
because R[z1,...,%n|m is local. We have to check the conditions about linear
equations. Note that through Grobner bases in R[zqy,...,x,] we can check if a
polynomial f belongs to an ideal I, and if so, express it as linear combination of gen-
erators, and this procedure is valid in R[z1, ..., zn]m. Let Iy = (f1,..., fm) be an
ideal in R[z1,...,2p]Mm, and f € R[z1,...,25)pm. We can suppose f, f1,..., fm €
Rlxy,...,z,]. If any f; is not in M, then Iry = Rlx1,...,2Zn]Mm, and we are
done. Then assume that I C M, and f € M. We have that f € Ix if and
only if there exists s ¢ M such that s- f € I, i.e., s € (I : f). We can compute
Cly..-yCm € R[z1,...,2,] a set of generators of (I : f). If every ¢; is in M then
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f ¢ In. If, for example, ¢; ¢ M, then ¢; - f € I, and we can express [ as a linear

combination of the generators of Iy, with coefficients in R[x1, ..., 2] -
In a similar way to Corollary 1, we can get a set of generators of the module
Syz(fiy.-oy fm) Wit f1,..., fm € R[z1,. .., Zn]Mm- O
Remark 2. If R has effective coset representatives then, for a given I proper ideal
of R[x1,...,2Zn]Mm, We can compute the cosets of R[z1,...,x,]/I and the same set
is valid for R[z1,...,2Zn]m/Inm-

3. QS-ALGORITHMS IN R[x1,...,Tp]

Let R be an MC-PID, f = (f1,..., fm) a unimodular row in R[xi,...,x,|™
and P = ker(f). Then P is a projective module, and we want to get a free basis
of it. The process described in [7] uses the primary decomposition of an ideal
of R[xy1,...,2,]. To avoid it, we give two new QS-algorithms. The procedures
are by induction on n, the number of variables. If n = 0 we have a projective
module over an MC-PID, and we can compute the Smith normal form. Assume
that n > 0 and that we have an algorithm for rings of polynomials with n variables
and coefficients in an MC-PID. Now consider the polynomial ring R[z1, ..., z,][y]
in n + 1 variables. The first step is reducing the problem to find a free basis of
the modules Py over the rings R[z1,...,z,]m[y] for a finite set of maximal ideals
M of Rlz1,...,x,]). Here we need Algorithm 1 to compute a maximal ideal that
contains an ideal in R[zq,...,x,]. These free bases are patched together to obtain
a basis of the module P, as shown in [16], so the problem is reduced to give an
algorithmic proof of Horrocks’ theorem ([17, p. 28]).

3.1. First QS-algorithm in R[x1,...,z,].

Theorem 1. Let P be a projective module over R[x1, ..., xy][y], defined as the ker-
nel of a unimodular row £ = (f1,..., fm), and M a mazimal ideal of R[x1, ..., 2ys)].
Then there exists a m X m-invertible matric U with entries in R[x1,...,ZTn]m[Y]
such that £-U = (1,0,...,0). The last m — 1 columns of U form a free basis of
Py

Proof. Write A = R[x1,...,Zn]m[y]. Let S be the multiplicative set of monic
polynomials of A, and Sy C R|[y| the set of monic polynomials. As f is a unimodular
row, we can compute a column g such that f-g =1, and M =1 —g-f is a matrix
whose columns form a set of generators of the R[x1, ..., z,][y]-module Syz(f). From
the commutative diagram

Rlzy, ..., x5y — (SalR[y])[xl,...wn]
{ 4

R[acl,...,a:n]M[y] — AS

we see that the module S~! Py is extended from Sy ' P. By Corollary 1, Sy * R[y] is
an MC-PID, and by the induction hypothesis and extension we compute a matrix
Us € GL(m,S™'R[y]) such that f-Us = (1,0,...,0). Let vi,...,vm_1 € Pp
be the last m — 1 columns of Ug. These vectors form a free basis of S~!Pu4 in
As. Let k = R[zy,...,2,]/M, A = A/JMA = k[y] and As = k(y). Compute a
matrix U € GL(m, k[y]) such that f - U = (1,0,...,0) and let €y,...,&,_1 be the
last m — 1 columns of U. This set is a free basis of Py. Take a1,...,am_1 € A
such that @; = ¢;,1 = 1,....m —1. Thene; =a; —g-f-a;,1 =1,...,m—1,
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are elements of Py that go over €y, ...,€,_1. By solving a linear system, we get
W e GL((m — 1), k(y)) such that

1, U)W = (€1, -+, Em_1)
because T1,...,0m_1 and €1,...,en_1 are bases of the vector space Pg over the

field k(y). As pointed in [3, 14], we can take W € GL(m — 1, Ag) that lifts to W.
Change the basis vq, ..., 0,1 of ST1Py by the basis (v1,...,v,-1) - W. Then
e; = v; + hy, hiEMS_IPM, 1=1,....m—1.

Following [12, 3], if C is the subring of S~!R[y] formed by f/g, with g € S and
deg(f) < deg(g), then MS~1Py = MPpr + MQ, where Q = @uv;y~'C. By
the division algorithm, decompose h; = g; + g;, where g; € A™, and the degree of
the denominators of ¢} are greater than the degree of numerators. Compute z; the
normal form of g; with respect the module M Py over the ring A. Then, by [12, 3],
the elements v, = v; + z; + g/,i =1,...,m — 1 form a basis of Py. O

Remark 3. The algorithm described in [14, algorithm 4] is incomplete, because to
extract the component in M Py, we need normal forms, and not only quotients.
An analogous remark is applied to [14, p. 418].

Example 2. Consider the polynomial ring Z[z], the unimodular row f = (13,22 —
1,22 — 3) and P the projective module defined by ker(f). We can compute g =
(2,—20,10x + 15)" with f - g = 1. A basis of S™!P over S™!Z[z] is formed by the

vectors . .
13 2 — 3
U1 = (1’902—1’0) V2 = <Oam2_171) :

For every maximal ideal M in Z, a basis of the module S~1Py, is obtained by
extension. Let M = (2) maximal ideal of Z, and A = (Z/M)[z]. By Euclidean

algorithm in A, we get a basis of Py, with elements &, = (—x2 +1, 1,0)t ,€y =
(1,0,1)". Then

_ 72 _
W:( ”30“ ' )eGL(?,AS)

is a matrix with

(01|02)W = (e1]e2).

2
W:( v+l > € GL(2, As)

Lift to

0 1
and a new basis of ST'P) is
¢ 26 +1z) .\
v = (=22 +1,13,0)" vy = (1,—M,1) .
We can compute elements ey =€, —g-f-€,e0 =¢y —g-f- e € Py such that
they apply over e1,e3. Let hy = e1 —v1 = g1 + g1, ha = ea — v2 = g2 + g5, where
g1 = hi1,97 =0, and

t
g2 = (—20 — 42,200 + 40z, —150 — 130z — 2022)", g4 = (o, 9-z+5 o) .

z2—1°
The respective normal forms of g1, go with respect to M Py, are

—A4x? + 23 +4r -1 (z—1)2%(2? -3z + 1) O)t

t
21:(05070) 722( 3 — 912 1 s 73— 922 — 1
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Then v = vy,vh = (0,2z — 3, —a? + 1)t form a free basis of Py If U = (g|v]|v}),
then det(U) = —13 is a unit in Zx. To obtain a matrix with determinant 1, we
consider Uy = (g| — t5v}|vh). Let ri = 13.

We repeat the process for Mo = (13), and obtain the matrix

2 1 0
Uy = —20 —22 2c -3
100 +15 Pz +32 2241

In this case, 1o = 5, and (r1,79) = Z. By patching together the solutions as
described in [16], we get

—12822 4+ 60z 4+ 60z 1+ 114422 — 7803 —1442? + 10023 — 4z
V = —1—30x 13 + 390x —50x — 3
270z — 3752 —130z + 487522 1 — 62522

with det(V)=1land f-V=(1 0 0).

3.2. Second QS-algorithm in R[z1,...,2,]. The algorithm described in the pre-
vious section uses the normal form of a vector with respect to a module. We give
another method, based on [19, 17], where is not needed. We begin with an easy
lemma.

Lemma 2. ([17, Lemma 3.2.5].) Let R be an MC-PID and M a free R-module.
Let v be a nonzero element of M. Then M has a basis vy,...,v, such that v = auvq
for some a € R.

The following algorithm solves the local step, i.e., compute a basis of the R[x1, ..., Zy| pm-

module Ppq. Our starting point is a set of generators of Py as a submodule of a
free module, and proceed by induction over rank(P) = m. We build a set of gener-
ators of a projective module P’ with rank m — 1. Remember that if P’ is projective
then it is torsion free, so it is isomorphic to a submodule of a free module of finite
rank ([10, Prop. 10.11]). This isomorphism can be computed, because the relations
between the generators of P’ can be found by solving a linear system in the field
Q(R). Then we apply the induction hypothesis.

Theorem 2. ([17, Thm. 3.2.1] Let P be a projective R[x1, ..., x,][y]-module, gen-
erated by a set of vectors of R[x1, ..., x,][y]®, and M a maximal ideal of R[x1, ..., x,).
Then we can find a free basis of Pay.

Proof. Let M be a matrix whose columns are the generators of P, and m = rank(P).

(1) If m = 1 then P is isomorphic to an ideal of R[z1,...,2,][y]. Then S;'P
is a projective ideal of (Sy ' R[y])[x1,...,2n], so it is free, hence principal.
Using a Grobner basis we can find its generator, that is a basis.

(2) If m > 2, let vy,...,v, a basis of So_lPM, that we can compute because
Sy (R[21, -, 2a]ly]) = (Sg "Ry])[z1,- .., x,]. Choose v; € Py taking off
denominators.

(3) Let €1,...,&y be a basis of Py over k[y], with k = R[zy,...,7,]/M.

(4) Compute a basis gy, ..., 3, of Paq with U7 = agy (Lemma 2). Let V be a

change basis matrix and V a lifting with entries in A.

) Lift ¢; to Py through M - V.

(6) By solving a linear system, let ¢ = >
s € A such that sq1 = >_1", a;v;,a; € A.

m
a’

i—1 Qv in S~1A, so we can find
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(7) Take k such that a; + sy* is a monic polynomial in the variable .

(8) Let p = q1 +%*v1, and P’ = P/pA. Then P’ is projective and rank(P’) =
m—1 ([17, 19]), so is torsion free, and we can compute a set of generators.
Set P + P’, and go to step 1.

O

Ezample 3. Consider Example 2, and let M = (2) C Z. We want to compute a
free basis of the A = Z[z]-module Ppy. A set of generators of P is formed by the
columns sy, 59,53 of M = I —g-f. Tt is easy to see that rank(P) = 2. As Sy 'Z[x]
is an MC-PID, we can find the Smith normal form of the module S(;IPM. Then

10 1 0 0 1 2 1 0 0
10z + 15 0 -2 M| 1 -10 —20 =ViMVoa=1 0 1 0
13 22 —1 22-3 0 Sx+7 10x+15 0 0 0

The nonzero columns {v1, vy} of M -V; form a basis of Sy ' P. Now it is easy to see
that the vectors e; = (—1,0, —1)t , € = (0, -1, —22 + 1)t are a basis of the module
P As Ty = &, we take G, = €1,7, = &2, and ¢ = (—25,260, —130z — 195)" €
Puq goes over q;. Then sq; = a1v1 + agva with a; = 10, s = 1 and a; + sz is monic
in x, so

P=q +zVv1 =
(=25 — 22° + 22,260 — 19z + 2023, —115z — 195 — 10z + 1022 — 15x3)t .

We know that P’ = Pa/pA is a projective A-module with rank equal to 1. Now
we have to compute a free basis w + (p) of P’, which is generated by s1 + (p), s2 +
(p), 83 + (p). The first step is to find do,ds € A such that da(s2 + (p)) = Aa(s1 +
(p)),ds(s3+ (p)) = A3(s1 + (p)), so we solve the system

in the field of fractions of A. Let d = 5x(2z+3), A2 = —5(2x+3), A3 = —2(10+z),
and consider the morphism between A-modules ¢ : P’ — (s1 + (p))A defined by
¢(v) = d-v. Then ¢ is injective, and P’ ~ ¢(P’) C (s1 + (p))A. Since ¢(P’) is
generated by only one element, it must be a multiple of s; + (p). Then consider
the ideal J = (d, A2, A3)A. By computing a Grébner basis in A we obtain v = 85 =
0-d+MX2—5A3, a unit in A, so P’ is generated by ¢~ (s1+(p)) = u=*(s2—5s3)+(p).
Let

w=1u"Y(sy — Hs3z) =
L (=222 + 202 — 28,2022 — 200z + 281, —102° + 8522 + 10z — 215)" .

Then {p,w} is a free basis of Pu.

Remark 4. These algorithms allow us to extend the results in [14] to find bases
of projective modules over a monoid ring R[M], because all we need are the con-
structions in ST!R[z] described in Section 2 and the Quillen-Suslin algorithm in
R[z1,...,zy] ([8]). In the same way, we have a QS-algorithm for quotients of the
form R[x1,...,2,]/I, with T a monomial ideal, extending [13].
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4. QS-ALGORITHM IN D|z]

4.1. Ideal factorization in a Dedekind domain. Let D be the ring of integers
of a number field, and I an ideal of D. Then D is a Dedekind domain, and there is
an algorithm ([5, algorithm 2.3.22]) to compute the factorization of I as product of
prime ideals of D. We present here another algorithm based in Grébner bases. We

know that D is a free Z-module of finite rank, and we can find wy = 1,w1,...,w,
a free basis ([4, algorithm 6.1.8]). Then w;w; = > p_q @i jkwk, 4,7 € {0,1,...,n}
for some a; ;1 € Z. Let s;5 = x;25 — ZZZO a; ; kTr be polynomials in Z[z1, ..., zy],

and call J the ideal generated by them.

Lemma 3. (1) D =Zlxy,...,z,]/J.
(2) There is a primality testing algorithm for ideals of D.
(3) Let I be a proper ideal of D. Then there exists an algorithm to find a set
of generators of a mazimal ideal M of D that contains I.
(4) Let M be a mazimal ideal of D. Then it is possible to compute a set of
generators of the D-module M™1.

Proof. (1) Let p € Z|x1,...,x,] be a polynomial such that p(wy,...,w,) = 0.
By reducing p by the polynomials s;;, we have that p = ¢ (mod J), where
q(x1,...,xy) = ap + a121 + ... + apxy,a; € Z. Since p(wy,...,wy) = 0,
then ¢(wi,...,wp) = 0,80 ap = a1 = ... = a, = 0, because of linear
independence of w; in Z, and then p € J.

If T is an ideal of D, we note I the lifted ideal of Zlxry,. .., xp).
(2) I is a prime ideal of D if and only if I is a prime ideal of Z[z1, ..., z,], and
by [9, prop. 4.3] we have an algorithm to test the primality of I.
(3) Apply Algorithm 1 to I.
(4) Follow [4, p. 199]. Observe that we can always find p € Z N M a prime
element through MNZ.
(I

Proposition 2. Let I be a proper ideal of D. Then we can find prime ideals
P1,-..,Pr of D such that I =p1-...p,.

Proof. If I is prime, we are done. Otherwise, let p; be a maximal ideal that contains
I. Let I; = p;*I. Then I, is an integer ideal and I C I; ([18]). We apply again the
process to the ideal I;, and we obtain an ascending chain of ideals I C I} C ... C I,
that becomes stationary because D is a noetherian ring. If I,. = I,.;1, we know that
Iy = p~1I,., where p is a maximal ideal of D that contains I,. Then I, = p~'I,
and this would imply that p = D. So I, is a maximal ideal, the algorithm stops
and we obtain the expression I =pq ... p,. |

Ezample 4. Let I = (6) be ideal of D = Z[w], with w = /—5. An integral basis
of D is {1,w}. Now consider I = (6,12 + 5) ideal of Z[t]. Then I is not prime,
because (6)Z = I N7 is not a prime ideal of Z. Let p; = 2 be a prime number that
divides 6, and consider the ideal I’ = (p;,t> + 5), that contains I. We compute
M; = (t + 1), a maximal ideal of (Z/p1)[t] that contains the polynomial #? + 5.
Then p; = (2,1 + w) is a maximal ideal that contains I and p;' = D + oD,
Hence we obtain I; = p; T = (6,3 4 3w).

Again, I; is not a prime ideal, so we apply the process to it. It is contained in the
maximal ideal py = (2,1 + w), so we define Iy = p;'I; = (3). The ideal I, is not
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prime, because t? + 5 is reducible in (Z/3)[t]. A maximal ideal that contains I is
ps = (3,1 +w), and p3;' = D+ 152D, Now I3 = p;'I, = (3,1 —w), that it is
prime. Putting py = I3 we get I = p?p3pa.

4.2. Projective modules over D[z]. Let M be a finitely generated D-module.
Then M is projective if and only if M is torsion free. In this case, if rank(M) = r,
then M ~ D"~! @ a where a is an ideal of D. M is free if and only if a is principal
([6, Thm. 1.2.23]). This decomposition can be computed when D is the ring of
integers of a number field ([5, Thm. 1.2.19]), and the crucial step is the following
lemma.

Lemma 4. IfI and J are fractional ideals of D then I®J ~ D®I1J as D-modules.

A way to obtain this isomorphism is through the prime decomposition of ideals

in D (see [5, Prop. 1.3.12]) or applying [5, Algorithm 1.3.16]. Then, if we have
determined the freeness of a torsion free module M we can compute a basis using
this isomorphism.
If M is a maximal ideal in D then the local ring D, is a discrete valuation ring, so
a PID. If P(x) is a projective module over D][z], then for each maximal ideal M of
D, the module P(x) a4 is projective over D aq[z], and by the Quillen-Suslin theorem
P(z)a is free. Then P(z) is extended from P(0) ([21]). When D is the ring of
integers of a number field, we have an algorithm for the previous result analogous
to [14]. This shows us that for checking the freeness of P(x) over D[z] is enough to
test P(0) over D. The problem is reduced to compute a free basis of the module
P(x) s over Dpg[z] for a maximal ideal M of D. But Dy is an MC-PID, and by
sections 3.1, 3.2 we have two algorithms to get a free basis.

Ezample 5. In D = Z[w],w = /=5 consider f(z) = (fi(z) f2(z) f3(z)) the
unimodular row in D[x]? where

fi(z) = =52 — 2wr + 2z +w — 2, fo(z) = 2% — z, f3(7) = wr —w + 1.

Let P(z) be the projective module defined by ker(f(z)), whose generators in D[z]?
are given by the columns of the matrix M(x) = I3 — g(x)f(x), where g(x) =
(x — 1,52 — 2,2z — 1)". To check the freeness of P(z) we consider the D-module
P(0) generated by the columns of M(0). We can see that P(0) ~ D & J, where
J = (2 —w). Then P(0) is free, so P(x). Let M = (2,1 + w) be maximal ideal of
D. Applying Theorem 2 to Pyq we get the matrix

[ — 1, —52% + 623 + wa? — 322 + wr —wr? —w+ 1, —(z — 1)(10086662778x
+20424937041w — 6861175910wx — 27394274848z + 8528154248wa®
—5214150542wz? — 4524367265023 + 28030914183) /4]

[5x — 2, -25x% — 2wa? + 1423 + 2wx? — 1222 + bwr — o — 6wt — 2w + 2,
— (144679169033 — 616236740560 + 9969508661 7w + 1208721686542
—36583582778wx® — 17235547982wz? + 36521518173wa* — 4429571478223
—24086577056521 — 18225840353) /3]

20 — 1,2 — 42? — 112* — wa® + 723 + wa? + 2w — 2wa* —w + 2®,
(—65754728708z + 28500912245w — 4122902721 1wz — 5282825234822
—61192530672° + 15325343098wa® + 13191112346wa? — 18717821941wz*
+1491893951223 + 941013422652 + 29294814632°w + 15681952346) /4] ,

with § = (—37835988013 + 20773799974 w).
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