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.ABSTRACT 
Fully parallel stochastic neural network implementations can be realized nowdays. How- 

ever, in these implementations most of the silicon area is consumed in the stochastic pulse 
sequence generation circuits. In order to improve their efficiency in terms of consumed silicon 
area, new techniques must be developped. This is specially important in applications where 
a large number of synaptic weights are needed. In this paper we present a new approach that 
can significantly increase the efficiency osf the 

1. Introduction 

Stochastic logic systems realize pseudoanalog oper- 
ations using stochastically coded pulse sequences, 
[l], [2]. In stochastic systems, the terms that are 
to be processed are synchronous pulse sequences. 
Information is codified as the probability, at a 
given clock cycle, of the pulse taking "high" value. 
Stochastic pulse sequences are generated in such a 
way that all pulse streams are stochastically inde- 
pendent. 

Consider now a set of n pulse streams whose 
probabilities, at a given clock cycle, of being at 
"high" level are p l ,  p2 ,  ..., p, .  These probabilities 
are mutually independent. If these sequences are 
the inputs of a n-input AND gate, the probability 
of the gate output, at a given clock cycle, of be- 
ing at "high" level is equal to n::: pi. It is clear 
that the product operation is achieved by means of 
simple AND gates, that is, by a extremely low area 
consuming circuit. 

Stochastic summation is a much more difficult 
operation to perform, specially if the terms to be 
added are signed. Two types of circuits have been 
described in the bibliography. One is the OR gate 
and the other is the up-down counter. 

The up-down counter technique, althouglh is 
widely used in neural network implementation, [3]- 
[5],  has a very important drawback. Pulses coming 
from other neurons have to be multiplexed in time 
(i.e. serialized) leading to high computation times. 

If two pulse sequences are the inputs of an OR 
gate and the pulse sequences to be added do not 
overlap, the output firing probability is equal to the 
addition of both firing probabilities. This OR-based 
add function is thus distorted by pulse overlap. In 

technique that has been used up to now. 
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Fig. 1: Stochastic architecture. 

order to achieve a guasy linear behaviour pulse den- 
sities should stay very low, specially if many terms 
are to be added. This technique does not permit the 
integration of neurons with a very high number of 
synaptic connections as it would lead to extremely 
low maximum pulse density, [6]. It should be taken 
into account that the addition of two numbers that 
take values ranging from 0 to 1 may take a value 
bigger than one, which can not be represented by a 
probability. 

In previous papers we have proposed a fully par- 
allel stochastic computation architecture suitable 
for neural network implementation, [7], [8]. It cir- 
cumvents one of the main drawbacks of stochastic 
computation architectures that have been used up 
to now: the absence of a space-efficient technique of 
adding weighted input signals in parallel. However 
still remains an important problem to be solved: to 
find a simple circuit that generates the stochastic 
signals. 
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2. Stochastic Pulse Generation 

A hardware implementation of a multilayer neural 
network based on this stochastic architecture was 
presented in a previous paper, [9]. This purely 
digital architecture is expandable, and the circuit 
was designed so that any multilayer network could 
be implemented by adding an appropriate number 
of 1.C.s. However most of the silicon area of 
this implementation is consumed in circuits 
involved in stochastic pulse generation of the 
synaptic weights (block M of Fig.(l)). 

In this implementation, stochastic streams of 
pulses are generated using a well known technique 
that has been broadly used and described in the 
technical literature: Digital codifications of these 
weights are digitally stored and then compared 
with uncorrelated random numbers producing un- 
correlated stochastic signals, [2]-[5]. Therefore load 
registers, digital comparators and a pseudorandom 
generator are necessary. 

Fig. 2: Pulse sequence correlation. 

To improve space efficiency we proposed a new 
technique to produce the random pulse sequences 
that codify the synaptic weights, [lo]. The basic 
stochastic cell of this technique is a high frequency 
oscillator whose T~ rate can be controlled, and a 
lower frequency sampling circuit. The % rate is 
fixed equal to the synaptic weight that is meant to 
be stochastically codified. If the oscillator’s in- 
put capacitor has a small value, the oscillator 
will be very sensitive to noise. Consequently, 
there is a certain degree of uncertainty about the 
voltage at oscilator’s input, producing time uncer- 
tainty about the moment in which the oscilator 
switches from either the on state to the off state 
or from the off state to the on state. It follows 
that oscillator’s phase cannot be predicted after it 
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Fig. 3: Phase noise. 

has switched several times. In Fig.(2) it is shown 
the autocorrelation of the pulse sequence, (A), as 
a fuction of the noise intensity and the oscillation- 
sampling frequencies ratio (f/fs). This figure has 
been obtained by simulation considering that the 
noise is white and gaussian. If the oscilator’s output 
is sampled with a flip flop at a slow enough rate, 
the sampled signal will be random. The probability 
of this signal taking the ’’high’’ level will be equal 

In order to produce complete spatial (between 
different pulse sequences) and time (in each pulse 
sequence) randomness, phase uncertainty must be 
greater or equal to 27r. Following these ideas, we 
designed test board using discrete components. 
Naturally the maximum oscillating frequency was 
rather modest, but the measured cross-correlation 
between different sampled oscillators and the auto- 
correlation were very encouraging. In Fig.(3) we 
show how noise acumulates producing phase uncer- 
tainty. We decided to face the VLSI implementa- 
tion of the proposed circuit as we intend to develop 
applications including a large number of neurons 
and synaptic weights per neuron. 

to +. 

3. VLSI Implementation 

The oscillator consists on five consecutive C-mos in- 
verters. The output of the fifth inverter is conected 
to the first inverter’s input, leading to an unstable 
circuit that oscilates at a high frequency. VI and 
V, are voltage signals that are used to fix the To, 
and Tof f  values. The output is conected to a flip- 
flop that samples it. The flip-flop clock signal is 
suplied via an input digital pad. The whole circuit 
is plotted in Fig.(4). 

The two voltages could be either internally fixed 
in applications where learning is not an esential fea- 
ture, or could also be adjusted by additional hard- 
ware if learning is to be included in the considered 
application. 

The overall design consists on: 
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Fig. 4: Basic cell. 

Fig. 5: Oscillator’s layout. 

1. An oscillator whose VI and Vz voltages can be 
externally fixed. I t  permits to generate pulse 
streams in a wide range of densities. The size 
of this oscillator is 129 x 80 microns. The 
size of the flip-flop is 180 x 100microns. The 
oscillator’s layout can be seen in Fig.(5). 

2. Three oscillator whose VI and V, are fixed by 
a Mos transistor voltage divider. 

3. Eight equal1 oscillators have been included in 
this design. In these oscillators VI voltage is 
fixed to 5V, yielding a 2.5ns To, time. V2 volt- 
ages are conected to eight analog pads so that 
the eight Tof f  times can be fixed externally. 

All oscillator cells have guard rings in order to 
prevent, or, at least, minimize, coupling between 
the different circuits. The circuit has been designed 
using ES2 1.5pm technology and the software pack- 
age was MAGIC. The size of the whole circuit, in- 
cluding the sampling flip-flops, is 743 x 736 microns. 

4. Experimental Results. 

Fig. ( 6 )  shows the existing relationship between 
the control voltage Vz and the ratio. VI has 
been fixed to OV. Notice that takes only values 
ranging from 0 to 0.5 because 0.5 to 1 ratios can be 
obtained by means of an inverter gate. 

In order to find out whether spatial proximity 
of the basic cells is related to high cross-correlation 
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Fig. 6: regulation plot. 

numbers, we have calculated the cross-correlation 
between the sampled stream of pulses of one of the 
basic cells and the rest of them. The obtained 
values are shown in Tab.(4). These calculations 
have been carried out three times (columns a,  b 
and c). The sample frequency is 100kHz, the pulse 
sequence length is 1000 and the ratio is 0.5. It 
can be seen that stochastically independent pulse 
sequences can be obtained provided that the basic 
cells are not placed too closed from each other. The 
whole layout is shown in Fig.(7). The ’0’ cell is 
placed in the upper-left corner of the layout, ’l’, ’2’ 
and ’3’ cells are placed below. The ’4’, ’5’’ ’6’ and 
’7’ cells are placed at  the right side of them. An 
increase of the sampling frequency does not lead to 
higher cross-correlation values. However the time- 
correlation numbers increase as the switching fre- 
quency becomes higher. In Fig. (8) it is shown the 
time-correlation of pulse sequences sampled from 
the ’0’ and ’5’ basic cells. 

0-6 

0- 7 

~~~ 

-0.605882 I -0.424706 I -0.4082351 

I I J 

-0.010588 0.010588 -0.005882 

Table: 1: Cross-correlation results (fsample = 100kHz). 

stochastic applica- 
tions time-uncorrelation is not an essential feature 
(if two streams are to be multiplied by means of an 

In many 
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Fig. 8: Time-correlation results (fsample = 100kHz).  

5. Conclusions and Further Work 

In this paper we have presented a new technique to 
generate stochastic pulse sequences that is suitable 
for VLSI implementation purposes. The basic cell 
consists on a high frequency oscillator and a sam- 
pling flip-flop. The consumed silicon area is very 
small, specially if it is compared with the strictly 
digital approach that has been considered up to 
now. The spatial correlation values of different 
pulse sequences are quite satisfactory. However the 
time-correlation behavior should be improved. In 
order to achieve this goal, we are going to include 

a noise source in the ring oscillator and use higher 
scales of integration which will lead to smaller input 
capacitors. 
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Fig. 7: Circuit layout 

AND gate only spatial correlation is needed). In 
such cases this technique may be used leading to 
space-efficient implementations. We are currently 
improving the temporal statistical behavior of the 
pulse streams. 
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