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Abstract

This paper focuses onto a situation arising in most real-life manufacturing en-

vironments when scheduling has to be performed periodically. In such scenario,

different scheduling policies can be adopted, being perhaps the most common to as-

sume that, once a set of jobs has been scheduled, their schedule cannot be modified

(‘frozen’ schedule). This implies that, when the next set of jobs is to be sched-

uled, the resources may not be fully available. Another option is assuming that the

schedule of the previously scheduled jobs can be modified as long as it does not

violate their due date, which has been already possibly committed to the customer.

This policy leads to a so-called multi-agent scheduling problem. The goal of this

paper is to discern when each policy is more suitable for the case of a permutation

flowshop with common due dates. To do so, we carry out an extensive computa-

tional study in a testbed specifically designed to control the main factors affecting

the policies, so we analyze the solution space of the underlying scheduling problems.

The results indicate that, when the due date of the committed jobs is tight, the

multi-agent approach does not pay off in view of the difficulty of finding feasible
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solutions. Moreover, in such cases, the policy of ‘freezing’ the schedule of the jobs

leads to a very simple scheduling problem with many good/acceptable solutions. In

contrast, when the due date has a medium/high slack, the multi-agent approach is

substantially better. Nevertheless, in this latter case, in order to perceive the full

advantage of this policy, powerful solution procedures have to be designed, as the

structure of the solution space of the latter problem makes extremely hard to find

optimal/good solutions.

1 Introduction

In this paper, we address the problem of scheduling jobs on a permutation flowshop in a

cyclic manner. More specifically, a set of jobs has been scheduled in a previous decision

interval when a new set of jobs has to be scheduled in the current decision interval. In

this situation, two main scheduling policies can be adopted. The first policy is to assume

that the schedule of the jobs in the first set cannot be modified (i.e. the jobs in the first

set are said to be ‘frozen’), so in order to schedule the jobs in the second set it has to be

assumed that not all resources are available from the beginning of the scheduling interval,

as some of them may be busy with jobs belonging to the first set. Thus, the scheduling

problem that corresponds to this policy is denoted Availability Scheduling Problem (ASP

in the following), see e.g. Lee (1997); Perez-Gonzalez and Framinan (2009).

A second scheduling policy is to assume that the schedule of the first set can be modified

as long as it does not violate their already established due date, and therefore jobs in both

sets are scheduled together, although the objective is different for each set. In such case,

the corresponding scheduling problem is a Multi-agent Scheduling Problem (MSP in the

following), see e.g. Agnetis et al. (2014).

Clearly, both policies have their advantages: while the second policy may lead to a bet-

ter utilization of resources and a potentially higher performance, the greater computational

burden to solve these scheduling problems may not pay off, also taking into account that,

from a practical viewpoint, changing an existing schedule introduces a higher nervousness

in the shop floor that might have negative implications.
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Therefore, the aim of our research is to establish the relative advantages of each policy,

both in terms of the performance of the schedule, and of the solution procedures for each

one of the resulting scheduling problems. More specifically, we wish to investigate the

conditions that makes more convenient to address the scheduling of existing jobs in a

multi-agent context instead of ‘freezing’ their schedule. The problem addressed here is

related to order management in production companies, and to the quality of the service

offered to the customer, since it considers different sets of jobs (for example different orders

belonging to different customers) each one with its own objective (see Agnetis et al., 2014;

Perez-Gonzalez and Framinan, 2014).

The decision problem considered may appear in a great diversity of productive layouts.

Here we focus onto the permutation flowshop layout, as it is a popular setting both in

practise and research. The flowshop implies a natural ordering of the machines in the

shop in such a way that the jobs go through the same machines in the same order. In

general, there are (n!)m schedules to be considered, with n the number of jobs and m the

number of machines. However, there is a simplified version of the problem applicable to

many situations in which it can be assumed that the processing sequence of the jobs is the

same for all machines (i.e. permutation flowshop) and hence only (n!) schedules have to

be considered. In addition, we also consider that the jobs in the first set have a common

due date.

Also let us note that, in theory, there is (at least) a third scheduling policy at hand,

i.e. not to start processing the second set of jobs until the jobs in first one have been

completed. Although this might seem unrealistic, this policy represents indeed the classical

assumption of most scheduling literature, in which all resources are free from the beginning

of the scheduling interval. In our paper we will also investigate this policy (which leads

to the Classical Scheduling Problem, denoted in the following as CSP ) in order to have a

base case to compare the other policies.

It is clear that, when adopting the multi-agent approach, the common due date for

the jobs in the first set is a parameter that may influence the analysis of the problems, as

a tighter common due date implies a higher number of unfeasible schedules for the jobs

in the second set. Therefore, we analyze existing methods in the literature for setting a
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common due date and propose a new one that will allow us to control the slack in the due

dates so to perform an exhaustive analysis of the different problems. With this method, a

design of the experiments is conducted. The results show that, when the slack of the jobs

in the first set is sufficiently small, the multi-agent approach does not pay off. Indeed, in

such cases, the ASP approach may be very interesting also because the solution space is

rather ‘flat’ and most schedules are of good quality, thus making this decision problem

very easy. In contrast, higher slacks make the MSP approach more convenient, although

the solution space of this problem is such that extremely good algorithms are required to

fully grasp their advantages.

The remainder of the paper is as follows: The policies and their corresponding schedul-

ing problems are presented in Section 2 together with the notation employed. Section 3

reviews existing methods for common due date generation, and explains the common due

date generation method used in the experiments. Section 4 analyzes the structure of solu-

tions of the problems in order to compare them, and finally, conclusions are summarized

in Section 5.

2 Problem statement

In our problem, we consider a permutation flowshop where jobs must be scheduled in a

periodical manner, i.e.: at time T , the Decision Maker should schedule orders (jobs) that

entered the system from T − H to T , being H the decision period. This procedure is

repeated every H periods. Note that H does not have to be fixed and may be different

for each decision interval. For each period, there are new jobs entering into the system.

We model a situation in which the jobs belong to a single customer, or are produced in a

single batch, distinguishing two sets of jobs: the old jobs belong to previously scheduled

orders, denoted as the set JO with nO jobs, and a set of new jobs, JN , with nN jobs.

As already discussed in Section 1, different scheduling policies can be considered:

• To set the starting times of jobs in JN once all jobs in JO are processed, so all

machines are available because there are not jobs in JO scheduled and the system is

empty.
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• To start scheduling jobs in JN as soon as possible, so some jobs in JO are not

completed and machines may be busy processing these jobs. In this case at least

two options can be considered:

– The schedule of jobs in JO cannot change. We denote this option as ‘frozen’

jobs, since their schedule remains the same (see e.g. Akkan, 1997, and Frederix,

2001). Machine i is then not available until the availability instant ai, i ∈

{1, . . . ,m}, defined by the completion times of jobs in JO on each machine.

– The schedule of jobs in JO can change and these jobs can be merged and

scheduled together with the new set of jobs. In this case, the set J = JO
∪

JN

with n = nO + nN jobs is scheduled.

The adoption of each scheduling policy leads to different scheduling scenarios. Their

features are summarised in Table 1.

Machines Processing of JO Scheduling policy Scenario

Available Finished ⇒ Empty Classical Scheduling

Unavailable Unfinished ⇒ Frozen Availability Scheduling

⇒ Modifiable Multi-agent Scheduling

Table 1: Identified scenarios depending on the scheduling policies

The three scenarios identified in Table 1 lead to the need to solve three problems.

For each scenario, we consider a classical objective for the jobs in the second set, i.e.

the minimization of the makespan or maximum completion time and, depending on the

scheduling policy, not to violate the already established due date of jobs in the first

set. More specifically, the objective considered is to minimize the makespan of jobs in

JN , denoted as CJN
max (in order to provide a tight due date for these jobs), and that the

common due date of jobs in JO cannot be violated (according to the delivery reliability).

This consideration implies that the completion times of jobs in JO should be lesser or equal

than their common due date. This is equivalent, for example, to state that the maximum

tardiness for jobs in JO should be zero, i.e T JO
max = max{T JO

j } = 0 with T JO
j = max{0, CJO

j −
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d} the tardiness of the job j ∈ JO, and CJO
j the completion time of the job j ∈ JO in the

last machine. Note that it is also equivalent to state that the total tardiness for jobs in

JO is zero, i.e. T JO =
∑

j∈JO T JO
j = 0. The scheduling problems corresponding to each

scenario are summarised in Table 2, indicating the scheduling scenario, the influence of

the common due date of the old jobs, the set of jobs to be scheduled, the objective of

the problem as consequence of each scenario, and the corresponding notation according to

Graham et al. (1979).

Scenario Due date

of JO

Jobs to

schedule

Objective Identified problem

Classical Sch. × JN CJN
max CSP : Fm|prmu|Cmax

Availability Sch. × JN CJN
max ASP : Fm|prmu, ai|Cmax

Multi-Agent Sch. Deadline JO
∪
JN CJN

max/T
JO
max = 0 MSP : Fm|prmu, dj = d|0(CJN

max/T
JO
max)

Table 2: Problems identified for the three scenarios

The classical scheduling scenario, where the old jobs have been processed (JO is

considered as empty), corresponds to the classical permutation flowshop problem or

Fm|prmu|Cmax, denoted as CSP in this paper. This well-known problem has been inten-

sively addressed during the last 50 years (see e.g. Gupta and Stafford, 2006). It is solvable

to optimality in polynomial time when there are two machines by Johnson’s Algorithm

(JA), or three machines under specific constraints on job processing times (Johnson, 1954).

However, it is NP-complete in the strong sense when there are more than two machines

(Garey et al., 1976), so the search for an optimal solution is of more theoretical than

practical importance (Nagano et al., 2008). CSP has been analysed in many references

(some recent works are Ribas et al., 2010; Tzeng and Chen, 2012; Fernandez-Viagas and

Framinan, 2014).

In the availability scheduling scenario, jobs in JO are scheduled, and their sched-

ule is considered as frozen. Then we have a machine availability constraint problem or

Fm|prmu, ai|Cmax, denoted as ASP , where ai is the availability instant for each machine

i ∈ {1, . . . ,m} given by the completion times of jobs in JO on each machine. As jobs in

JO are frozen, their common due date is fulfilled and it does not have influence on the
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objective. This problem is also solvable in polynomial time by JA for two machines (Lee,

1997). The case for more than two machines is shown to be strongly NP-hard and it has

been analyzed by Perez-Gonzalez and Framinan (2009), where fast heuristic methods were

proposed to solve it.

Finally, if the schedule of jobs in JO can be changed, then we have a multi-agent

scheduling problem. The problem Fm|prmu, dj = d|0(CJN
max/T

JO
max), denotedMSP , follows

the notation by T’kindt and Billaut (2002) for multi-criteria problems, where dj = d

specifies the use of the common due date. This problem is strongly NP-hard for more

than two machines, since if we consider JO = ∅, then it is reduced to the CSP , which

is known to be strongly NP-hard. For the case with two machines it is NP-hard too (see

Luo et al 2012). Other works considering multi-agent scheduling problems in permutation

flowshop are Huynh-Tuong and Soukhal (2009); Khelifati and Bouzid-Sitayeb (2011a,b);

Lee et al. (2011); Luo et al. (2011); Mor and Mosheiov (2014); Xu and Lei (2014).

Since the common due date of jobs in JO is a key parameter for MSP , Section 3

analyses the different methods available in the literature to generate the common due

date of jobs in JO, in order to provide a realistic due date for our problem.

3 Common due date generation

As mentioned before, in order to analyse and compare CSP , ASP and MSP we need a

realistic common due date for jobs in JO for MSP , since in our problem formulation, the

due date is considered a parameter. Thus, we investigate different methods to provide a

suitable common due date for jobs in JO. A tight common due date with respect to the

makespan of JO will not allow rescheduling them together with JN , so the problem would

be more similar to ASP than to MSP . On the other hand, a loose common due date

for JO would not be realistic, and the due date will be verified for any schedule, so the

problem will turn into a classical permutation flowshop problem CSP .

As a consequence, we need realistic common due dates generation methods in order to

provide due date reasonableness, which is defined as a measure of the due date performance

reflected on the capability of the system to achieve successfully an arbitrary set of due dates
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(Vig and Dooley, 1991). Achieving reasonableness of due dates is not a trivial issue. In

the order capture process (Framinan and Leisten, 2010), it is possible to identify different

ways to obtain due dates. On one hand, they can be set by the customer; and, on the other

hand, they can be determined according to different mechanism: a) taking into account

scheduling decisions (due date assignment and scheduling); or b) considering certain job-

and workload related parameters (due date assignment). In our problem, a due date

lower than the optimal makespan is no suitable, since it will be violated for any schedule.

Therefore, we opt for obtaining realistic common due dates by due date assignment and

scheduling, setting due dates taking into account the makespan value obtained by solving

the CSP for the jobs in JO. As the CSP is NP-hard when the number of machines is

greater or equal than three, we cannot obtain optimal values in all the cases. In order to

guarantee feasibility, the makespan value may be either the optimal makespan or the best

value determined by a given algorithm applied to the jobs in JO. For this reason, we will

consider due dates higher than the optimal/best makespan obtained as realistic due dates.

In the literature about flowshop scheduling problems with due date related objectives,

we have identified a number of methods to generate due dates in order to use them as

parameters for our problem. The methods available to set a common due date in the

flowshop scheduling literature are due to Blazewicz et al. (2004, 2008); Sarper (1995);

Sakuraba et al. (2009) and Della Croce et al. (2000). Among them, we will not consider

the proposals by Blazewicz et al. (2004, 2008) and Della Croce et al. (2000), since these

methods provide due dates lower than the makespan of the considered jobs. Therefore, the

method SAR proposed by Sarper (1995) for loose common due date and SRS by Sakuraba

et al. (2009) for unrestricted common due date will be tested, in order to determine if

they will be useful for our problem or the due dates are too loose. In addition, Framinan

and Leisten (2008) review different procedures for establishing due dates in permutation

flowshop. These methods are: AR by Armentano and Ronconi (1999), GS by Gelders and

Sambandam (1978) and HR by Hasija and Rajendran (2004). Note that these methods do

not generate a common due date, but they can be adapted in a straightforward manner.

More specifically:

• The method AR proposed by Armentano and Ronconi (1999) is based on the uniform
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distribution U [P · (1−T − r
2
), P · (1−T + r

2
)]. The tardiness factor T is a constant in

the original method that has been eliminated in our experiments since tardiness is

not allowed for our problem. Moreover, the factor P which depends on the processing

times has been replaced by the makespan of jobs in JO in order to provide due dates

closer to the makespan value of jobs in JO as mentioned before. With the original

lower bound (1 − r
2
) we would obtain values lower than the makespan, so it has

been replaced by (1 + r
4
), which provides values higher than the makespan when

multiplied by CJO
max. Then, as the due date does not depend on the jobs j, the

distribution obtained can be applied for the common due date case, being drawn

from a U [CJO
max(1 +

r
4
), CJO

max(1 +
r
2
)] distribution. We have selected the same values

for r than in Armentano and Ronconi (1999), i.e.: r = 0.6 and r = 1.2.

• The method proposed by Gelders and Sambandam (1978) is dj ∼

U [
∑m

i=1 pij,
∑m

i=1 pij + 0.5· pm,•] with pm,• the mean processing time of jobs in

the machine m. The sum of the processing times for each job has been replaced in

order to provide a due date closer to the makespan of jobs in JO. Therefore, the

due date is generated according to the distribution U [CJO
max, C

JO
max + 0, 5· pm,•].

• Finally, in the proposal by Hasija and Rajendran (2004), dj = [1 + 3u] ·
∑m

i=1 pij

with u ∼ U [0, 1]. In our adaptation, the sum of the processing times for each job

has been replaced in the same way that in the previous case. As [1 + 3u] provides

values between 1 and 4, this factor multiplied by CJO
max provides values in the interval

[CJO
max, 4 · CJO

max], being too loose. Therefore, the factor 3 multiplying to the random

number u has been replaced by 1, resulting [1 + u]CJO
max. This distribution is more

realistic since it provides values in the interval [CJO
max, 2 · CJO

max].

Finally, a new method is proposed based on the idea suggested by Unal et al. (1997)

of multiplying the completion time of the job in the revised schedule by a slack factor

greater than one, thus providing a time of reaction in the case that unforeseen disruptions

in the production process, and to allow rescheduling the jobs on the case of new order

arrival. This slack-depending method, labelled SD, is also similar to the one proposed

by Della Croce et al. (2000) and to the adaptation of AR, having a uniform distribution
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depending on the factor r with r = 0.2, 0.4, 0.6, 0.8, 1.

Summarizing, the considered methods are:

• SAR from Sarper (1995): d ∼ U
[∑n

j=1 p1j,
∑n

j=1

∑m
i=1 pij

]
• SRS from Sakuraba et al. (2009): d =

∑n
j=1

∑m
i=1 pij

• AR adapted from Armentano and Ronconi (1999), for r = 0.6 and r = 1.2: d ∼

U [CJO
max(1 +

r
4
), CJO

max(1 +
r
2
)]

• GS adapted from Gelders and Sambandam (1978): d ∼ U [CJO
max, C

JO
max + 0, 5· pm,•]

• HR adapted from Hasija and Rajendran (2004): d = [1 + u]CJO
max

• SD for r = 0.2, 0.4, 0.6, 0.8, 1: d ∼ U [CJO
max, C

JO
max(1 + r)]

To select the most suitable method to generate realistic common due dates, we compute

the relative deviation (in percentage) of the due dates from the makespan of old jobs CJO
max.

The objective is to determines if a common due date is tight or loose. The relative deviation

RD is compute as follows:

RD =
duedate− CJO

max

CJO
max

· 100

Then, if this percentage is too small, then the due date is very tight and it will not allow

to apply rescheduling. However, if the percentage deviation is too large, then the due date

is loose and it would not be realistic.

Since the previously presented methods (except SRS) use the uniform distribution, the

RD is computed using the expected due date for these cases. The expected due date of

the methods AR, GS, HR and SD depends on CJO
max, so in these cases RD is the same

regardless CJO
max. However, for SRS and SAR we generate common due dates according

to these methods and compare them with the makespan value obtained for each problem

instance.

Then, we test all methods using Taillard’s test-bed (Taillard, 1993) considering all jobs

belonging to JO. Taillard’s test-bed consists of 120 instances of various sizes n×m, with
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n m SAR SRS GS HR AR SD

r 0.6 1.2 0.2 0.4 0.6 0.8 1

20 5 180.52 316.47 1.16 287.95 21.69 43.18 7.71 22.48 27.41 43.86 49.55

10 196.52 550.42 0.77 287.96 22.91 45.68 7.56 24.90 38.70 41.39 58.17

20 367.24 788.99 0.57 287.98 21.02 41.44 11.70 25.69 28.05 46.45 49.22

50 5 260.18 356.19 0.50 287.98 21.78 43.37 9.49 13.40 29.71 37.96 56.07

10 184.11 733.56 0.51 287.98 22.74 47.16 11.02 23.12 33.41 47.69 65.77

20 728.28 1.238.31 0.46 287.99 20.06 43.45 10.19 16.25 38.60 44.80 40.31

100 5 152.01 376.48 0.28 291.59 23.15 48.32 10.82 20.93 25.12 53.34 66.47

10 492.59 791.56 0.28 296.99 22.60 44.76 10.18 16.36 24.51 24.74 28.16

20 429.05 1483.90 0.25 296.99 20.90 41.66 10.12 10.20 30.36 50.52 71.43

200 10 260.42 838.24 0.10 297.00 21.08 46.46 7.70 25.76 25.87 25.96 78.33

20 241.60 1673.21 0.15 64.20 26.68 41.56 11.77 11.86 11.95 12.06 63.77

500 20 102.92 1795.70 0.07 12.00 17.47 47.41 7.50 27.54 47.59 27.63 12.64

Average 299.62 911.92 0.42 248.88 21.84 44.54 9.65 19.87 30.11 38.03 53.32

Table 3: Comparison between methods for generating common due dates: RD from Taillard’s bounds

10 instances for each considered size and n ∈ {20, 50, 100, 200, 500} and m ∈ {5, 10, 20},

and processing times uniformly generated in [1,99].

The makespan, CJO
max, is obtained by using the best solution (best-known) from the

literature for these problems, i.e. the upper bounds provided by Taillard (2014). In fact,

92 of these 120 upper bounds are known to be optimal, and, for the remaining 28, the

average gap between the best known solution and the highest known lower bound is just

0.94% (Vallada et al., 2015).

The results are presented in Table 3, indicating the average RD for each problem size.

Additionally, the average RD are shown graphically in Figure 1. As it can be observed,

the due dates provided by SAR, SRS and HR are too loose, with very high RD values.

Note that the due date obtained by these methods does not depend on the makespan. In

comparison with SAR, SRS and HR, the results provided by GS, AR and SD are tighter,

implying more realistic due dates.

Figure 2 shows the means and confidence intervals (LSD intervals) for the methods

providing tighter results, i.e. GS, AR and SD. In Table 3, as well as in Figure 2, it can be

seen that the results for GS are too tight, with values lower than 1% for each size. The
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Figure 1: Average RD for common due date methods

common due dates provided by GS do not consider possible disruptions, thus increasing the

possibility of violating the due date in case of disruption. Results for AR and SD provide

more reasonable percentages for our purpose. They are controlled by the parameter r

and depend on the makespan value employed. Between them, the most useful can be the

SD method since the values of r give us an upper bound of the slack in a intuitive and

easier-to-control manner.

Therefore, in the following section, where we analyse the scenarios identified in Section

1, we build a test bed for which the common due dates for JO are generated by the SD

method. Using this method, we obtain different (tight and loose) common due dates which

represents more or less realistic problems for the multi-agent scheduling scenario, which is

compared to the classical and availability scheduling scenarios.

4 Analysis of the scenarios

As commented in Section 1, we have identified two main scenarios according to the schedul-

ing policy adopted when two sets of jobs, JO and JN compete for the resources: In the first
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Figure 2: Means and 95% LSD intervals for GS, AR and SD methods

scenario, JO is considered as frozen, and JN are scheduled considering a machine avail-

ability constraint (ASP ). In the second scenario, JO and JN are scheduled together, each

set with its own objective (MSP ). In this Section we compare both policies in order to

provide a decision tool according to the slack of the common due date of jobs in JO, which

must not be violated. Additionally, we consider the base case (CSP ) where the option is

to wait until JO finishes and JN is scheduled with the resources completely available, see

Table 1 in Section 2. As mentioned earlier, this scenario does not seem realistic, but it

provides a reference for the comparison.

It is clear that, for any sequence, the makespan value obtained for the new jobs by

the CSP will be greater than or equal to the makespan provided by the ASP . Moreover,

any solution provided by the ASP is obviously included in the set of solutions of the

MSP , so we can conclude that the multi-agent scheduling scenario dominates the other

two scenarios. However, this is not sufficient to state that this is the best scenario: On

one hand, we do not know if there are significant differences among the makespan values

obtained by this scenario and the others. On the other hand, we do not know the difficulty

degree of the problem MSP as compared to CSP and ASP , and this is a key aspect in
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order to determine the methods which will be applied to solve it.

Taking into account these observations, the analysis presented in this section has the

following objectives:

• To identify the advantages and disadvantages of the three scenarios previously pre-

sented in Table 1 in Section 2.

• To check the differences between the problems identified in Table 2 in Section 2

according to the structure of solutions, and to the objective function values. If MSP

is similar to CSP or ASP , then existing methods to solve the latter problems could

be applied to MSP . Otherwise it would be necessary to develop specific solution

methods for MSP .

• To determine the difficulty degree of the three problems. For instance, if MSP is

statistically more difficult than CSP and than ASP , then it will be necessary to

develop sophisticated algorithms in order to solve it. Otherwise, fast methods and

existing constructive heuristics would be sufficient to obtain good solutions for the

problem.

In order to answer these questions and to achieve these objectives, we have adopted

two approaches:

• A design of experiments, presented in Subsection 4.1, which will allow us to determine

the similarity between specific factors of each problem.

• In practice, there are instances of some NP-hard scheduling problems for which is

easy to find a good or even the optimal solution, since most solutions yield values

close to the optimum and thus even a random solution would be a ‘good’ solution.

An analysis of the structure of the space of solution is presented in Subsection 4.2, by

using the concept of “empirical distribution” which allows to study the difficulty of

finding a good solution for each problem. The empirical distribution is obtained by

considering the frequencies of the values of the objective function for each possible

sequence for each instance, in terms of their percentage deviation from the optimal
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value. The structures of solutions of CSP and ASP have been analyzed using this

concept by Taillard (1990) and by Perez-Gonzalez and Framinan (2009) respectively.

To compare the structures of solutions, including the empirical distributions for

different problems MSP , we will consider different values of the slack of the common

due date of the jobs in JO as presented in the previous section.

4.1 Design of experiments

The aim of the design of experiments is to analyse the different factors influencing the

structure of the space of solutions in problem MSP , solving to optimality different in-

stances of the problem. Therefore, for each instance of the problem, all possible feasible

schedules are evaluated, i.e. for all sequences SJ formed by jobs belonging to J = JO
∪

JN

verifying that T JO
max(SJ) = 0, their makespan is computed so the optimal sequence S∗

J and

the optimal makespan CJN
max(S

∗
J) of the instance are obtained.

The factors that can affect the structure of the space of solutions are: the number of

old jobs (factor nO), the number of new jobs (factor nN), the number of machines (factor

m) and the slack of the due date with respect to the makespan of the problem (factor r).

Regarding the number of jobs and the number of machines, they should be restricted to

small values in order to obtain all possible schedules and makespan values in a reasonable

time. We will schedule n = nO+nN jobs, so nO and nN cannot be too large. Therefore, the

levels selected are nO = {3, 4, 5}, nN = {3, 4, 5}, and m = {5, 10}. Moreover, r controls

the width of the interval where the due date will be generated. According to Section 3,

the due date will be drawn from the U [CJO
max, C

JO
max(1+ r)] distribution, with r the slack of

the common due date. Furthermore, for factor r we have selected the levels evaluated in

Section 3, i.e.:

• r = 0: in this case the due date for JO is equal to the optimal makespan of this set of

jobs, so the old jobs cannot be rescheduled since a change would imply a tardy job.

This includes two problems, CSP and ASP depending on the option considered.

• r ∈ {0.2, 0.4, 0.6, 0.8, 1}: these levels represent different slacks for the due date with

respect to the makespan, so it is possible to reschedule the jobs in JO, implying
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different cases of MSP .

We have developed a full factorial design, which is efficient for evaluating the effects and

possible interactions of aforementioned factors (independent variables). An equireplicate

design is carried out with 100 runs for each treatment, i.e. 100 problem instances (with

the processing times U [1, 99]) are generated for each combination. The dependent variable

is the optimal makespan obtained after solving each problem instance. Thus we have

3× 3× 2× 7 = 126 combinations of the levels of all factors with 100 runs, i.e. 12,600 runs

in total. Following the convention in most research works, the significance level employed

for all statistical tests is 0.05, i.e. there is a 5% chance of rejecting the null hypothesis,

even if it is true.

The null hypotheses for the analysis of variance (see e.g. Montgomery, 2005) is HO:

‘There are not differences between the means of the samples’. The two main assumptions

to carry out this test (i.e. independency and normality) are verified since each data is

the optimal makespan obtained from the resolution of a problem generated independently,

and we replicate each treatment with 100 runs, guaranteeing the verification of the central

limit theorem. To check the third condition (homoscedasticity) it is necessary to carry

out the Levene test. The p-values obtained from Levene test are lower than 0.05 for

all cases, except for nN , so we reject the null hypotheses about homogeneity of variance.

Therefore, applying analysis of variance is not suitable and we must consider an alternative

non-parametric test.

The Kruskal-Wallis test determines the equality between the levels of the factors. The

results indicate that the mean ranks of makespan per run are significantly different among

the four factors, since all p-values obtained are lower than 0.05. Moreover, the Mann-

Whitney test allows us to study the differences between levels for factors with more than

two levels: nO, nN and r. For factors nO and nN , there are three possible pairs (3−4, 3−5

and 4− 5). Furthermore, the significance must be divided by the number of possible pairs

(Bonferroni’s correction), i.e. 0.05/3 ≃ 0.016. In both cases the p-values are lower than

0.016, implying that the problem is different for each level of the number of jobs. Finally,

the analysis of the differences between the levels of the factor r implies 21 possible pairs,

and all p-values obtained are lower than 0.05/21 ≃ 0.002, implying differences among all

16



Figure 3: Means and 95% LSD intervals for factor r

levels. Figure 3 shows the means and confidence intervals (LSD intervals) for the levels of

the factor r, being the differences between all levels statistically significant.

Table 4 shows the results for each level of r (averaged across all instance sizes). As

it can be observed, the optimal makespan for JN decreases as the value of the factor r

increases, i.e. while the slack for the due date for JO is greater, the makespan for the new

jobs decreases, the worst result being obtained for the cases r = 0, i.e. CSP and ASP .

This is an expected result, since increasing the due date of jobs in JO allows a higher level

of rescheduling, increasing also the number of feasible sequences and the likelihood to find

a better solution. Although the design of experiments concludes that there are differences

between the levels of each factor, the behaviour is similar for all values of nO, and the

results according to nN are similar since the estimated marginal means decrease as factor

r increases.

As a conclusion, the design of experiments reveals that all factors have influence on

the variable (the optimal makespan) and that there are differences between the levels for

each factor. The worst results for the optimal makespan are obtained for CSP , which

means that the worst option is to wait until jobs in JO have finished their processing.

As mentioned earlier, this was a foreseeable result. To schedule the new jobs taking into
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CSP ASP MSP

m nN nO 0.0 0.0 0.2 0.4 0.6 0.8 1.0

5 3 3 770.42 588.14 568.00 539.89 510.48 432.17 399.24

4 832.41 932.38 897.13 838.68 785.23 739.50 707.92

5 887.49 649.90 624.88 616.18 591.25 510.45 478.32

4 3 831.41 997.33 958.37 926.20 873.75 817.31 774.54

4 889.76 702.38 677.12 669.94 657.02 593.66 553.72

5 933.96 1056.38 1020.48 994.58 948.56 887.88 838.70

5 3 886.70 651.71 627.24 581.52 532.92 481.60 439.80

4 936.19 998.50 943.36 851.43 784.48 766.50 711.39

5 988.22 706.64 681.11 655.07 620.80 577.73 521.25

10 3 3 1360.63 1062.16 1018.89 943.09 884.57 852.33 785.80

4 1416.42 753.06 727.83 714.67 693.06 646.26 637.79

5 1475.72 1124.56 1082.23 1034.38 973.00 941.51 920.24

4 3 1420.32 713.34 682.01 619.95 550.41 501.12 488.33

4 1483.48 1059.22 1000.76 847.00 779.42 802.17 735.66

5 1553.12 760.65 733.41 702.63 649.73 589.97 566.51

5 3 1479.64 1125.39 1076.06 965.81 891.94 913.78 823.48

4 1554.72 815.54 789.08 772.94 741.76 686.59 641.50

5 1612.70 1182.57 1138.48 1068.32 976.39 997.59 902.34

Average 1184.07 882.21 847.02 796.79 746.93 707.67 662.59

Table 4: Optimal makespan values averaged across instance sizes for levels of r
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account that the machines are busy (ASP ) is not a good option either, being the MSP

the option providing the best results. On average, as r increases around 10%, the optimal

makespan decreases approximately a 22%. This is an important result that highlights the

interest of the multi-agent scheduling scenario, since we can satisfy the due date of old

jobs and to achieve a big improvement in the makespan of the new jobs (which implies

the ability to set a tight due date for them), even for tight due dates of jobs in JO.

4.2 Distribution of the space of solutions

The distribution of the space of solutions has been generated for the problems studied in

the design of experiment, obtaining all possible makespan values by complete enumeration

(i.e. evaluating the n! sequences for a problem with n jobs, checking the feasibility for

each schedule, and discarding those unfeasible schedules). It has been applied to 100

problems combining the levels of the factors previously presented. The structure of the

space of solutions is given with respect to the optimal solution, i.e. we calculate the

relative makespan RM for each feasible solution SJ as follows:

RM =
CJN

max(SJ)

CJN
max(S∗

J)
− 1

RM is thus an indicator of the distance of each feasible solution SJ to the optimal solution

for each problem instance, S∗
J .

Figure 4 shows the “empirical distribution” for the case nO × nN × m = 5 × 5 × 10,

including CSP , ASP and MPS for all values of r. The rest of the cases provide similar

results. This figure represents the empirical frequencies of RM for the feasible solutions.

It can be seen that the ASP is the problem with the solutions closest to the optimal,

followed by the case r = 0.2 of MSP , then CSP , and finally the rest of the cases of MSP

for r ≥ 0.4. The figure shows the high difficulty degree of the multi-agent scheduling

problem in comparison to the other problems, although the feasible solutions of MSP for

the special case r = 0.2 are closer to the optimal than in the classical problem.

In order to provide more information, and taking into account that Figure 4 considers

only feasible solutions, we try to determine the difficulty degree for each problem by the

mean of RM and the 95-percentile of RM , indicating the percentage of feasible solutions
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Figure 4: Distribution of feasible solutions for small problems: case 5× 5× 10

3× 3× 5 4× 4× 5 5× 5× 10

r Mean 95% % feas. Mean 95% % feas. Mean 95% % feas.

CSP 0 11.76 32 100 14.62 35 100 13.51 28 100

ASP 0 4.49 14 100 6.07 15 100 6.28 13 100

MSP 0.2 12.68 48 4.84 12.63 25 1.15 12.99 22 0.35

0.4 28.18 88 12.83 30.13 85 5.08 41.04 82 5.28

0.6 46.99 98 23.76 48.51 98 12.35 55.19 83 14.48

0.8 53.92 98 59.58 59.73 98 27.72 52.37 85 27.16

1 56.15 98 78.68 60.99 98 52.32 54.27 85 52.56

Table 5: Mean and percentile 95 of RM and percentage of feasible solutions
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for each problem (number of feasible solutions evaluated by complete enumeration divided

by n!). Table 5 shows the degree of difficulty for some cases combining nO × nN × m,

particularly the cases 3 × 3 × 5, 4 × 4 × 5 and 5 × 5 × 10 representing small, medium

and large problem sizes. It can be observed that the percentages of feasible solutions for

CSP and ASP are 100%, while there are different percentages for MSP according to the

value of r (since MSP is a constrained problem). Results show that the easiest problem is

ASP , where the 95-percentile is close to 15 in all cases, and the mean is around to 6. For

CSP , the values of the mean are less than 15 while the values of 95-percentile are around

30. The case r = 0.2 of MSP shows that the 95-percentile is lower than 25 for the cases

4×4×5 and 5×5×10, being worst (i.e. more difficult) for the smaller case. Moreover, the

values of the mean for r = 0.2 are around 12, being this case easier than CPS. However,

the percentage of feasible solutions is very small for r = 0.2, and decreases with the size

of the problem. The difficulty degree increases with r in MSP according to the values of

the mean and 95-percentiles, and, although the percentage of feasible solutions increases

with r, it is lower than 55% even for the bigger sizes and r = 1.

Taking into account the results from Subsection 4.1, CSP and ASP do not provide

the best values for the makespan of JN , but the difficulty of the problem is, in general,

lower than MSP according to the distribution of feasible solutions. However, for MSP

we can state that we obtain better values of the optimal makespan while r increases, but

the difficulty degree of the problem increases too, according to the percentages of feasible

solutions, and their distances to the optimal solution. Therefore, the main issue in this

problem is not only to find solutions close to the optimal, but to find any feasible solution.

5 Conclusions

This paper compares different scenarios depending on the scheduling policy considered

when two sets of jobs (old and new jobs) are competing for the same resources in a

permutation flowshop with different objectives. Old jobs have a common due date which

must not be violated, and the makespan of the new jobs must be minimized. On one

hand, the first policy consists on ‘freezing’ the set of old jobs, which leads to solving an
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availability scheduling problem (ASP ). Another policy is to schedule together old and new

jobs, which implies solving a multi-agent scheduling problem (MSP ). Finally, the policy

of waiting until the old jobs have finished their processing, and machines are available

–although it is not realistic– is also considered as a base case (CSP ).

In order to compare the scenarios for a permutation flowshop problem with a common

due date, we study the differences and structure of the solution space of ASP , MSP and

CSP from the viewpoint of order management, i.e. guaranteeing delivery reliability and

speed of the orders. We consider makespan minimization as the criteria for the new jobs,

whereas the old jobs cannot violate their tardiness with respect to the common due date.

To carry out the experiments, we first analyze different methods to generate common

due dates of the old jobs, as it is a key parameter in our experiments since the number

of feasible schedules of the multi-agent problem depends on the slack of the due date.

Thus, an analysis of the existing methods in the literature for setting a common due date,

including a new method, has been carried out. Results show that the new method allows

an easy manner of generate common due date for the old jobs with different slacks.

Then, in order to compare the scenarios previously proposed, a design of experiment

has been carried out to check the influence of a number of factors on the structure of

solutions of the problems. The number of machines and jobs have been considered to

control the size of the problems. Moreover, the slack of the common due date of old jobs

allows to distinguish different cases of the multi-agent scheduling problem MSP . From

the analysis, we observe that the optimal makespan of the new jobs is better for the MSP

than for CSP and for ASP . In addition, together with the size of the problem, the slack

of the due date with respect to the makespan of the old jobs has a great influence on the

structure of solutions of MSP , since as the slack factor increases around 10%, the optimal

makespan of the new jobs decreases by more than 20% for all cases.

Furthermore, the distribution of the space of solutions gives us an important result

about the difficulty degree of the MSP for different values of factor r, as compared to the

ASP and the CSP . The feasible solutions for the MPS with r = 0.2 are closer to the

optimal than the CSP for the larger sizes. However, the number of feasible solutions is too

small, so in this case the difficulty may be to find these feasible solutions. Moreover, for
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the rest of values of r, the percentage of feasible solutions for MSP increases as expected,

but it is lower than 55% even for r = 1, and the distances to the optimal solutions increases

making the problem more difficult.

In summary, considering the multi-agent scheduling scenario provides good makespan

values of the new jobs when the slack of common due date for the old jobs is medium/high.

However, this scenario implies a longer due date for the old jobs, reflecting a lower service

level (Birman and Mosheiov, 2004). When the slack is low, perhaps the multi-agent

approach does not pay off, since the improvement of the makespan for the new jobs may

not compensate the difficulty of the problem to find feasible solutions, being the ASP

approach more appropriated according to the good quality of most schedules obtained

when solving this problem. However, this would change if we had a solution procedure

able to find feasible solutions. This makes the multi-agent scenario to be the best policy,

also taking into account that any feasible solution found by the method is close to the

optimal.

The problem addressed in this paper presents some interesting implications to both

practitioners and researchers. For the former, it gives some evidence to support the ad-

vantages of ’freezing’ the schedules of existing jobs in the shop floor, a commonly used

practice that finds justification not only from a managerial viewpoint (simplicity, min-

imization of disruptions, low nervousness, ...), but also from a performance viewpoint.

For researchers, the challenge posed by the structure of the solution space of multi-agent

scheduling problems may foster the investigations towards more accurate/near optimal

methods, since substantial performance improvements can be found if these methods are

available.

Finally, a future research line is to relax the MSP problem, allowing some tardiness

for the old jobs, i.e. considering the problem Fm|prmu|ϵ(CJN
max/T

JO
max) and to perform the

analysis for different values of ϵ.
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