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Abstract: In this work we report the polymerization behaviour of natural clays 
(montmorillonites, MMT) as activating supports. These materials have been modified by 
treatment with different aluminium compounds in order to obtain enriched aluminium 
clays and to modify the global Brönsted/Lewis acidity. As a consequence, the intrinsic 
structural properties of the starting materials have been changed. These changes were 
studied and these new materials used for ethylene polymerization using a zirconocene 
complex as catalyst. All the systems were shown to be active in ethylene polymerization. 
The catalyst activity and the dependence on acid strength and textural properties have been 
also studied. The behaviour of an artificial silica (SBA 15) modified with an aluminium 
compound to obtain a silicoaluminate has been studied, but no ethylene polymerization 
activity has been found yet. 
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1. Introduction  

Currently, polymer and plastics based on polyolefin materials play an important role in the 
materials industry and in society. Usually, the chemical systems used for α-olefin polymerization 
catalysis in the synthesis of the polyolefin materials combine a metal complex as a precatalyst system 
with a Lewis acid species as cocatalyst. The most studied precatalyst systems for this purpose are 
generally formed by group IV metal compounds, which are transformed into the catalytically active 
species in the presence of a cocatalyst [1–3]. Methylaluminoxane (MAO) is obtained by partial 
hydrolysis of trimethylaluminium (TMA) [4–6] and constitutes the industrial base of cocatalyst 
products for activation of metallocene precatalysts in olefin polymerization. Due to its Lewis acidity, 
MAO can produce ligand exchange from the precatalysts and subsequent ligand abstraction from the 
metallocene complex to form a cationic complex as the active species for the polymerization reaction. 
However, the exact role of MAO has not yet been fully elucidated, due in part to its complex structure 
[7–10]. Different cocatalysts have been developed to control the activity, selectivity, molecular weight 
and other olefin polymerization catalytic features [10]. In recent years, clay minerals [11] or zeolite-
supports [7–9,12–15] have received attention as alternative cocatalysts [16,17] in olefin 
polymerization reactions. 

Another approach has focused on natural 2:1 phyllosilicates which have been used as adsorbents, 
ion exchangers, solid catalysts or supports in heterogeneous processes [18–21]. Recent publications 
have shown that modifications to the structure or the acidic properties of the supports make them good 
cocatalysts in different chemical processes [16,22–24].  

Herein we propose the use of an acid-treated commercial montmorillonite (MMT), which, after 
modification with conventional trialkylaluminium derivatives AlR3 [R = Me (TMA), Et (TEA)], 
provides a new material which can act simultaneously as cocatalyst (like MAO) and as carrier when 
combined with a metallocene type complex ZrCp*Cp’Cl2 [where Cp* = C5Me5;  
Cp’ = C5H4(SiMe2CH2CH=CH2)] to give species active in olefin polymerization. Clay minerals used 
as cocatalyst and simultaneously as catalyst support have been considered as support activators [23]. 

Many advantages in combining the two fields could be highlighted, for example, the development 
of systems without an expensive organoaluminoxane compound (i.e., MAO free) but with high 
catalytic activity and low cost would be a desirable objective. To get a better knowledge of the nature 
of the active species and the possible activation mechanism, we have studied the acidity and  
textural properties of these materials in order to correlate them with their activity in the  
polymerization reaction.  

Alternatively, a mesostructured silica has been synthesized in the laboratory (SBA 15) [25] and 
modified with aluminium to give an “aluminosilicate” material. The behaviour of this mesostructured 
material used as support activator for ethylene polymerization with a zirconium complex acting as 
precatalyst has been also studied. 

 

 

 



Materials 2010, 3              
 

 

1017

2. Results and Discussion  

2.1. Characterization of Support Activators 

The properties of two commercial acid-treated clays of the K series (K10, K30) have been studied 
by μXRF analysis and are listed in Table 1. The results are in accordance with analogous studies 
described in the literature [11,26] and show that acid treatment of the clay replaces the initial interlayer 
cations with protons (the pH of K10 and K30 is between 3–4) and causes disaggregation of the sheets, 
giving rise to a delaminated structure accompanied by silica formation [27–29]. 

Table 1. Chemical analysis (%) of commercial acid treated MMT clays. 

 K10 K30 
SiO2 82.39 80.34 
Al2O3 13.84 15.44 
MgO 1.41 1.41 
Fe2O3 0.42 0.63 
TiO2 0.13 0.16 
Na2O 0.94 0.90 
K2O 0.71 1.00 
CaO 0.16 0.12 

 
The XRD patterns of K10 and K30 are shown in Figure 1. For both samples, the reflection of the 

diffractograms match with the diffraction pattern of a mica, phengite-2M1 (PDF 76-0928), with a basal 
space of 9.92 Å, which is typical of collapsed 2:1 phyllosilicates. At 5.82° 2θ, a wide 001 reflection 
corresponding to remaining montmorillonite (PDF 3-0015, marked with m in Figure 1) is observed, 
reflecting a quite disordered stacking in the layers with a basal space of 15.17 Å.  

Figure 1. XRD of acid treated montmorillonites: (a) K10; (b) K30. m = montmorillonite 
(PDF 3-0015); p = phengite 2M1 (PDF 76-0928); a = albite (PDF=41-1480); q = quartz 
(PDF 78-2315). 

 
 

Additionally, some reflections that match with the diffraction patterns of albite (PDF 41-1480, 
marked with a in Figure 1) and quartz (PDF 78-2315, marked with q in Figure 1) are observed, this 
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structural behaviour is more evident in K10 than in K30. Finally, the XRD patterns exhibit a 
prominent background between 20° and 30° 2θ, corresponding to amorphous phases [26].  

The analysis of the samples by scanning electron microscopy reveals that the majority of the 
particles have a lamellar morphology (Figure 2) with a composition compatible with 2:1 phyllosilicate 
with K+ as interlayer cation, and they must correspond with the mica phase observed by XRD. 
Additionally, some small block particles with a heterogeneous chemical composition, but with a Si 
content higher than those shown by the lamellar particles, are observed. 

Figure 2. SEM microphotographs and EDX spectra of acid treated montmorillonites 
lamellar particles (a), (c): K10; (b), (d): K30. 

 
Short-range analysis of the initial montmorillonites using 29Si- and 27Al-MAS-NMR (Figure 3) has 

been performed. The 29Si spectra (Figure 3, left) are characterized by five deconvoluted signals 
ranging between -60 and -150 ppm which correspond to Si environment Q3 and Q4, following the 
Liebau classification [30]. The signal at ca. -85 ppm corresponds to the Q3(3Al) environment of the 
mica [31,32] and contributes 5.2% and 6.5%, for K10 and K30 respectively, to the total spectrum. 
Notably, the signal shifts from -84.4 ppm for K10 to -85.1 ppm for K30, possibly due to different layer 
charges in each mica structure [33]; as the layer charge of smectite increases the signal shifts to higher 
frequency. The signal at ca. -108 ppm corresponds to quartz [34] and the contribution is greater in K10 
(7.8%) than in K30 (0.9%) as previously reported by XRD. Finally, the three signals at ca. -111 ppm,  
-102 ppm and -93 ppm correspond to Q4(4OSi), Q4(3OSi,OH) and Q4(2OSi,2OH) environments [34]. 
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The signal at ca. -93 ppm is consistent with overlapping Q4(2OSi,2OH) and Q3(0Si) environments of 
the montmorillonite [33,35].  

The 27Al-MAS-NMR spectra (Figure 3, right) show three signals at ca. 0 ppm, due to octahedral 
coordination, with the other two signals in the range between 70 an 50 ppm, due to tetrahedral 
coordination [36–38]. The signal at ca. 0 ppm and at ca. 70 ppm (q3) is typical of aluminium in 
dioctahedral 2:1 phyllosilicates (montmorillonite and mica phases) and the signal at 55 ppm (q4) 
results from the tetrahedral aluminium in feldspars [34]. The intensity of the q4 signal vs. the q3 signal 
is higher in montmorillonite K10. 

Figure 3. 29Si- (left) and 27Al- (right) MAS-NMR spectra of acid treated montmorillonites 
(a): K10; (b): K30. 

 
 

These commercial MMT have been later modified by treatment with aluminium compounds  
(AlR3:TMA and TEA) to obtain the support activator material and to understand the role of the R alkyl 
group. The AlR3 compound has different functions; as a consequence of aluminium incorporation, the 
Brönsted and Lewis acidity of the original clay might be modified; in addition, it prevents the catalytic 
sites from being poisoned by adventitious water or by hydroxyl groups present in the clay. Finally, 
when using a non-alkylated zirconocene compound such as ZrCp*Cp’Cl2 even if the acidity of the 
support enables the formation of cationic species, in order to obtain the active species, the starting 
complex must be alkylated. 

The aluminium compounds were attached to MMT by alkane elimination through reaction with the 
hydroxyl groups of the clay or with the protons of the cations in the interlayers; gas evolution is 
observed during the process. Because an excess amount of AlR3 compound was used in the 
preparation, the solid obtained was washed three times (see Experimental section) and vacuum dried. 
The resulting solid was stored at low temperature in a dry box. Evidence of reaction is shown in the 
FT-IR spectra which show in all cases a significant decrease in the intensity of the bands at 3,440 cm-1 
and 1,639 cm-1 for the water of hydration and the appearance of a signal at 2,900 cm-1 assigned to the 
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C-H vibrations due to the alkyl groups of the attached aluminium compound [16,39]. µXRF analysis 
(Table 2) also demonstrates that aluminium was efficiently incorporated into the silicate material 
during this process, and this observation was further confirmed by MAS-NMR analysis (Figure 5). 
The treatment of montmorillonites with the aluminium compound, AlR3 do not provoke great changes 
at long-range as demonstrated by XRD at dry ambient temperature (Figure 4). In general, changes in 
the basal space of mica phase have not been detected, indicating that the aluminium complex is not 
placed in the interlayer space. However, the treatment causes a disorder in the layer as demonstrated 
by the intensity decrease of the 9.5° 2θ reflection of the montmorillonites treated with AlEt3 (Figure 4c 
and 4f); this decrease is absent in K30/TMA (Figure 4e). After the treatment, the reflections of 
impurities (quartz and albite) decrease and a new reflection is observed in K10/TMA corresponding to 
Al2O3 (PDF 26-0031).  

Figure 4. XRD in inert atmosphere of acid treated montmorillonites (a) K10;  
(b) K10/TMA; (c): K10/TEA; (d) K30; (e) K30/TMA; (f) K30/TEA; a = albite; q = quartz. 

 
 

The short-range order analysis of 29Si and 27Al nuclei (Figure 5) reveals that there is no significant 
difference in the 29Si-NMR profiles (Figure 5, top), which are characterized by the same set of signals 
centred at the same frequencies but with a different relative intensity. The montmorillonites treated 
with the AlR3 complex cause a decrease in the Si of mica (more significant after treatment with the 
TEA complex than with the TMA complex) and an increase of the Si of quartz (more significant in the 
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treatment with TMA complex than with the TEA complex). The 27Al-NMR spectra (Figure 5, bottom) 
reveal the presence of a new signal at ca. 30 ppm due to pentacoordinate aluminium [34] which could 
result from the interaction of the AlR3 with the hydroxyl group of silicate surface thorough Lewis acid 
sites. The pentacoordinate aluminium signal is more prominent in K30 than in K10. 

The amount of AlR3 adsorbed onto the silicate surface has been evaluated thorough µXRF and the 
results are summarized in Table 2. The amount of aluminium absorbed is higher in K30 than in K10 
and, in general, the TEA complex is more easily adsorbed than TMA complex. These results support 
the presence of the new aluminium signal in the 27Al-NMR spectra. 

Figure 5. 29Si- (top) and 27Al- (bottom) MAS-NMR spectra of acid treated 
montmorillonites (a) K10; (b) K10/TMA; (c) K10/TEA; (d) K30; (e) K30/ TMA; (f) 
K30/TEA. 

 
 

Table 2. Aluminium attached on the commercial MMT obtained by µXRF. 

 †g(Al2O3)compl./100g K10 ††g(Al2O3)compl./100g K30 
Initial -- -- 
TMA 17.63 25.85 
TEA 18.02 29.95 
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2.2. Ethylene Polymerization 

These support activators combined with the zirconium compound ZrCp*Cp’Cl2 gave catalytic 
activity for ethylene polymerization (Table 3). Potential complicated effects (e.g., catalyst 
autosupportation) are not detected by using the pending allyl group bounded to the cyclopentadienyl 
ring. Studies with other metallocene derivatives are in progress. It is important to point out that before 
the polymerization experiment, the mixture of support activator and zirconium complex was washed 
twice to ensure that the possible complexes in the homogeneous phase of the supernatant have been 
eliminated and that they are not the species responsible for the catalytic activity. This activity reveals 
that organic aluminium compounds anchored on MMT generate some species effective as activators of 
the zirconocene compound for ethylene polymerization. The system based on K10/TMA/ZrCp*Cp’Cl2 
shows the higher activity, whereas the system based on K30/TMA/ZrCp*Cp’Cl2 is the less active. In 
view of these preliminary results, we suggest that the amount of aluminium retained in the matrix 
(evaluated by μXRF analysis) seems not to be the only parameter determining activity, but the 
environment and the acidity (see discussion below) of these atoms must also influence their behaviour 
when they act as cocatalysts. 

DSC measurements were conducted for the polymers obtained (Table 3). A single peak (about  
134 °C) was observed for all samples in the DSC profiles suggesting HDPE.  

Table 3. Ethylene polymerization using modified MMT as support activators. 

Entries Support-Activator Activity Tm(°C) 
1 K10/TMA 19,143 133.7 
2 K10/TEA 7,143 133.4 
3 K30/TMA 3,857 134.0 
4 K30/TEA 15,000 134.5 

a Polymerization conditions: catalyst ZrCp*Cp’Cl2: 7.10-5 moles, 2.5 g of support-activator,  
temperature = 50 °C; 1 mL TIBA, 50 mL of toluene; 1 atm. of ethylene pressure; time = 60 min.; b Activity 
for ethylene polymerization, gPE/mmol Zr·h·atm; c Determined by DSC. 

 
Under the same conditions, polymerization of ethylene was carried out using a post-synthesis 

alumination SBA15 [40] as support activator. The procedure of alumination was carried out using 
TMA, although when the resulting solid was combined with ZrCp*Cp’Cl2, the system was inactive in 
ethylene polymerization. 

2.3. Studies on the Nature of Catalytically Active Species 

In order to gain a better knowledge of the nature of the active species in these polymerization 
reactions, we examined the behaviour of montmorillonites as support activators for olefin 
polymerization in the presence of ZrCp*Cp’Cl2. However, the activation mechanism in these systems 
remains unclear. One interesting question therefore arises: what type of interaction can occur between 
the precatalyst and the support activator in order to generate the active centre? 

Recent investigations on supported metallocene catalysts based on smectite supports have been 
reported [23,24]. It is known that the acidic properties of these materials may influence the type of 
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interaction with the metallocene complex and its activation process, with consequent effects on overall 
productivity [41–43]. These clay materials have Lewis and Brönsted acidic sites and their actuation to 
generate the active species could be argued in two ways, similar to the homogeneous systems. It is 
well known that the Lewis acidity of MAO arising from aluminium centres can produce ligand 
exchange and subsequent alkyl/halide abstraction in activating metal complexes (organo-Lewis-acidic 
cocatalyst). This type of activation process could be applied to clay material as cocatalysts. In this 
case, the clay materials should be considered, initially, as a modified MAO (or analogous 
alkylaluminoxane) [13,14,17,44,45], which are formed by the reaction of the alkylaluminium 
compound with residual water molecules or with the hydroxyl surface groups on MMT (Scheme 1a).  

For homogeneous catalysis, an alternative activation process involves protonolysis of the M-R 
bonds, in non-coordinating solvents, of the precatalyst using a Brönsted-acidic cocatalyst  
(e.g. trialkylammonium salts) to give finally a cationic derivative as active species [10]. In this sense, 
the catalytic behaviour of the clay should be understood due to the presence of protons located 
between the MMT silicate layers to balance the total charge deficiency of the clay or due to the 
hydroxyl groups in the surfaces of the clay. In this case, the metallocene can be immobilized on the 
material by a reaction consisting of protonolysis of the precatalyst M-R bonds to generate the highly 
electrophilic cationic species for polymerization (Scheme 1b). 

Scheme 1. Different activation pathways of precatalyst complexes considering the 
different nature of the acidic sites in the support activator. 

 
 

The common feature in these models is the generation of a cationic or cationic-like active species 
for the polymerization reaction. The Lewis and Brönsted acidities, for our catalytic systems based on 
commercial acid-treated clays of the K series (K10, K30), have been determined using pyridine as a 



Materials 2010, 3              
 

 

1024

probe molecule by monitoring the bands in the range of 1,350–1,600 cm-1. The characteristic 
adsorption band for pyridine absorbed on Brönsted acid sites (Bpy) appeared at 1,540 cm-1 and that 
due to Lewis acidity (Lpy) at 1,450 cm-1 [19,46]. The ratio between these two acidic sites is indicated 
by Bpy/Lpy (Figure 6). The experimental data permit us to clearly conclude that the main fraction of 
the acid sites, detected in our modified aluminium MMT system, is due to Lewis acidity. The FTIR 
spectra show that K30 has a larger peak area at 1,492 cm−1 than K10, indicating that K30 has more 
acid sites (or active sites) than K10. These results point to Lewis acidity being responsible for the 
activity of these MMT/Al species when they used as support activators for ethylene  
polymerization [47]. 

Figure 6. Evaluation of acidity from the IR/FT spectra of samples after pyridine sorption 
and degassed at 200 °C. 

 
 
Effectively, the studies of acidity on similar mesostructured materials, based on SBA15 [40] 

aluminated species, show fewer accessible Lewis sites [40,48–50]. This finding is consistent with the 
inactivity exhibited by these systems as support activators in our experimental ethylene polymerization 
studies. Textural properties might also affect catalytic activity. In this way, differences in the pore size 
and volume may cause problems with precatalyst anchoring or monomer diffusion, decreasing or even 
cancelling the catalytic activity of the SBA15 samples [51–53]. 

3. Experimental Section  

3.1. Reactants  

All chemicals were manipulated under an inert atmosphere using Schlenk techniques. Solvents 
were predried by standing over activated 4 Å molecular sieves and then purified by distillation under 
argon, employing the appropriate drying/deoxygenated agent, before use. K10, K30, solution of AlMe3 
in toluene, and solution of AlEt3 in hexane, were purchased from Aldrich or Fluka. 
Zr(C5Me5)[(C5H4)SiMe2(CH2CH=CH2)]Cl2 [54] was prepared according to literature procedures. 
Ethylene was polymerization grade and passed through a purifying cartridge (Alltech 81015)  
before use. 

3.2. Characterization 

3.2.1. Characterization of Zirconium Complex 
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NMR spectra were recorded at the University of Alcalá on a Bruker AV400 instrument. Resonances 
were measured relative to solvent peaks considering 1H and 13C TMS δ = 0 ppm at 400.13 (1H) and 
100.60 (13C) MHz. Elemental analyses were obtained on a Perkin-Elmer Series II 2400  
CHNS/O analyzer.  

3.2.2. Characterization of supports and support activators 

X-ray diffraction (XRD) patterns were obtained at the CITIUS X-ray laboratory (University of 
Sevilla) on a Bruker D8 Advance instrument equipped with a Cu Kα radiation source operating at  
40 kV and 40 mA. Diffractograms were obtained in the 2θ-range 3–70° with a step size of 0.05° and a 
time step of 3.0 s. The XRD diffraction pattern of the Montmorillonite complex was obtained on a 
Bruker D8 Advance instrument, at the CITIUS X-ray laboratory (University of Sevilla), fitted with an 
ambient camera (Anton Paar XRK 900, Austria) and a position-sensitive detector (Bruker Vantec PSD, 
Germany). Diffractograms were obtained in the 2θ-range 3–70° with a step size of 0.05° and a time 
step of 3.0 s. The micro X-ray fluorescence (µXRF) analysis was carried out in the Centro de 
Investigación, Tecnologías e Innovación of University of Sevilla (CITIUS). µXRF measurements were 
performed in an EAGLE III (EDAX) energy dispersive micro X-ray fluorescence spectrometer 
equipped with an Rh X-ray tube, 300 micron monocapillary optics, a CCD camera and an 80 mm2 Si 
(Li) detector. Surface scans of 0.5 cm2 were performed under vacuum with measurement times of 150 
seconds. Use of the fundamental parameter quantification made automated analyses routine. Single-
pulse (SP) MAS-NMR experiments were recorded by the Spectroscopy Service of ICMS (CSIC-US, 
Sevilla) using a Bruker DRX400 spectrometer equipped with a multinuclear probe. Powdered samples 
were packed in 4-mm zirconia rotors and spun at 10 kHz. 1H-MAS spectra were obtained using a 
typical π/2 pulse width of 4.1 μs and a pulse space of 5 s. 29Si-MAS-NMR spectra were acquired at a 
frequency of 79.49 MHz, using a pulse width of 2.7 μs (π/2 pulse length = 7.1 μs) and a delay time of 
3 s. 27Al-MAS-NMR spectra were recorded at 104.26 MHz, using a pulse of π/20 of 1.1 μs and a delay 
time of 0.5 s. The chemical shift values are reported in ppm with respect to tetramethylsilane for 1H 
and 29Si and to 0.1 M AlCl3 solution for 27Al. The morphology and chemical composition of the 
samples were analyzed by Scanning electron microscopy (SEM), at the Microscopy Service of the 
Instituto Ciencia de los Materiales de Sevilla (CSIC-US), with a Scanning Electron Microscope (JEOL 
JSM 5400) equipped with a LINK Pentafet probe and ATW windows for Energy Dispersive X-ray 
Analysis (EDX). The Lewis and Brönsted acidity have been determined using pyridine as a probe 
molecule by monitoring the bands in the range of 1,350–1,600 cm-1. FTIR spectra in the range  
1,400–1,700 cm−1 were recorded by the Spectroscopy Service of ICMS (CSIC-US, Sevilla) using a 
Nicolet spectrometer (model 510P) with a nominal resolution of 4 cm-1.  

3.2.3. Characterization of polymers 

The thermal properties of the samples were studied in a Perkin Elmer DSC 6 (University of Alcalá) 
instrument calibrated by measuring the melting point of indium. 5–10 mg each of the dried polymer 
were fused into standard aluminium pans and measured using the following temperature programme 
for polyethylene samples: first a heating phase (10 °C/min) from 50 to 200 °C, followed by a cooling 
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phase (–10 °C/min) to 50 °C. The peak maximum of the second heating curve was indicated as the 
melting point (Tm).  

3.3. Preparation of the Support Activator 

AlMe3 solution was added to a suspension of the desired MMT (relation 6.6 × 10-3 mol of 
aluminium compound/g of MMT) in aprox. 50 mL of toluene. Heat was generated and accompanied 
by the generation of a gas. After completing the dropwise addition, the reaction mixture was 
maintained at room temperature for three hours with vigorous stirring, then it was filtered and the 
resulting solid was washed twice with toluene (40 mL each time) and a third time with 40 mL of 
hexane. Finally the solid was dried and stored in the dry-box at low temperature. 

The same procedure was followed with AlEt3 but using hexane as solvent (50 mL) for the reaction 
rather than toluene. In this case the two first washes were made with hexane (40 mL each) and the 
third wash that was made with 40 mL of toluene. 

3.4. Polymerization procedure 

In a dry box, the desired amount of the support activator (2.5 g) was suspended in toluene and the 
catalyst (7 × 10-5 moles) was added via syringe. Then the mixture was allowed to react for one hour at 
room temperature. After this time the supernatant was filtered and the resulting solid was washed for 
30 min with toluene (20 mL). Again the supernatant was filtrated off and the dried solid was placed in 
the polymerization reactor charged with a magnetic stirrer, 50 mL of toluene and 1 mL of TIBA. This 
catalyst slurry was taken out of the dry box and put in an oil bath. When the desired temperature was 
reached, ethylene was introduced at 1 atm. and gas supply was constant during the process. At the end 
of the reaction time, the remaining ethylene was released and polymerization was stopped with 
EtOH/HCl. The polyethylene (PE) was recovered by filtration. The catalytic activity was calculated 
from the yield of PE and the amount of metallocene complex used. 

4. Conclusions  

Commercial MMT (K10 and K30) modified with alkyl aluminium compounds (AlMe3 or AlEt3) 
generate effective support activators when combined with a zirconium complex for ethylene 
polymerization. A systematic study of the structural parameters of the support activators and a 
correlation study of their activity have been carried out. The system K10/TMA/ZrCp*Cp’Cl2 showed 
the most catalytic activity. The important role of acidity in the support activator shows that activity for 
olefin polymerization is a complex balance of different factors, and the type of interaction of the AlR3 
with the surface plays a more important role than the global amount of the AlR3 absorbed. In 
summary, a successful application of a very inexpensive and “green” material based on MMT clays 
has been probed as a support activator system in olefin polymerization. We believe the most important 
achievement of this work is the development of a useful alternative α-olefin polymerization system  
to MAO. 
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