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Abstract. A general procedure is presented which permits the form of an
extended spin Hamiltonian to be established for a given magnetic solid and
the magnitude of its terms to be evaluated from spin polarized, Hartree–Fock
or density functional calculations carried out for periodic models. The
computational strategy makes use of a general mapping between the energy
of pertinent broken-symmetry solutions and the diagonal terms of the spin
Hamiltonian in a local representation. From this mapping it is possible to
determine not only the amplitude of the well-known two-body magnetic coupling
constants between near-neighbor sites, but also the amplitudes of four-body
cyclic exchange terms. A scrutiny of the on-site spin densities provides additional
information and control of the many broken-symmetry solutions which can be
found. The procedure is applied to the La2CuO4, Sr2CuO2F2, Sr2CuO2Cl2 and
Ca2CuO2Cl2 square lattices and the SrCu2O3 ladder compound. It is shown that
a proper description of the magnetic structure of these compounds requires that
two- and four-body terms are explicitly included in the spin Hamiltonian. The
implications for the interpretation of recent experiments are discussed.
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1. Introduction

The discovery of the anomalous properties of high-Tc superconducting cuprates (HTCSs) in
the late eighties has triggered a considerable interest in the crystal and electronic structure of
these compounds from both experimental and theoretical points of view [1]–[5]. An enormous
research effort on ceramic materials, mostly based on copper oxides, has been carried out
continuously to try to improve the properties of known structures and synthetic pathways and
has resulted in the synthesis of a wide variety of cuprates. The impressive richness of low-
dimensional magnetic behavior of the different copper compounds can be, to a large extent,
traced back to the stacking of the distorted CuX6 octahedra (or CuX5 pyramidal or CuX4 planar
units) in the lattice [4, 6]. Most of the cuprate based materials are formed by almost independent
CuO4 units with distant apical ligands to complete the strongly distorted CuO4X2 or CuO4X
units and, hence, the structure is dominated by the link between CuO4 units. Depending on
the nature of the counter ions and on the number of links between the different CuO4 units,
different structures can be formed ranging from the typical lamellar two-dimensional (2D)
structure of the HTCSs to many lower dimensional structures by different combinations of edge-
sharing and corner-sharing CuO4 plaquettes (or CuO4 units) that can give rise to spin ladders
(e.g. Srn−1CunO2n−1 series withn> 2 [7]–[9]), zigzag spin chains (e.g. SrCuO2 [10]) and
quasi-1D systems (e.g. A2CuO2 (A = Ca,Sr) [11, 12] or Li2CuO2 [13]) formed by edge-sharing
CuO4 units.

The electronic ground state of this kind of materials is usually described by the open
shell nature of the Cu2+ ions arranged in the CuO4 units in which the Cu(3d9) atomic
configuration gives rise to a dx2–y2 type hole with the lobes pointing towards the O ions.
The resulting Cu–O–Cu pathways range from∼ 90◦ to 180◦ and they are responsible for
the rich variety of low-dimensional magnetic structures dominated by moderate ferromagnetic
(FM) to strong antiferromagnetic (AFM) interactions. From the theoretical point of view, these
systems are strongly correlated in nature, making standard band theory techniques based on
density functional theory (DFT) unable to accurately describe either their valence or low energy
spectrum [14]. However, it has been shown that hybrid exchange-correlation functionals can
provide reliable descriptions of strongly correlated transition metal magnetic systems ([15] and
references therein).
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Most of the HTCS materials have a lamellar structure in which strong AFM interactions
take place along 180◦ Cu–O–Cu bonds in edge sharing Cu4O4 plaquettes leading to a 2D
network of effective spinS= 1/2 particles. These strong magnetic interactions observed in the
HTCS are thought to be fundamental ingredients of the high-Tc superconductivity microscopic
mechanism [5, 16]. Since these compounds may be regarded as effectiveS= 1/2 spin lattices,
their low energy spectrum and collective properties are assumed to be governed by a simplified
Heisenberg Hamiltonian as in equation (1)

Ĥ =

∑
〈i, j 〉

Ji j

(
Ŝi · Ŝj −

1

4

)
, (1)

which only accounts for the magnetic couplingJi j between nearest-neighbor (NN) centersi
andj. This is in agreement with the widely accepted general picture for HTC superconductivity
involving a ‘Heisenberg sea’ where holes or electrons are introduced by doping the perfect
structures. However, it has been claimed that to fully understand the magnetic excitations,
infrared and neutron scattering spectra of 2D [17]–[23] and spin ladder cuprates [24, 25] it
is necessary to extend the spin Hamiltonian as in equation (2)

Ĥ =

∑
i, j

Ji j

(
Ŝi · Ŝj −

1

4

)
+
∑
i, j,k,l

Jring

[(
Ŝi · Ŝj

) (
Ŝk · Ŝl

)
+
(
Ŝi · Ŝl

) (
Ŝj · Ŝk

)
−

(
Ŝi · Ŝk

) (
Ŝj · Ŝl

)
−

1

16

]
+ · · · . (2)

In this expression the constants 1/4 and 1/16 have been introduced to define the zero of energy
as that of the FM solution. In this spin model, the signs and amplitudes of the local intersite
magnetic interactions govern the collective properties of a spin lattice. They appear as the basic
ingredients of the effective spin Hamiltonian which in full generality involves not only the
two-body exchangeJi j but also other interactions, such as those represented by the four-body
cyclic termJring, or even higher-order terms.

The largest two-body couplings are expected to occur between NN sites although next-NN
(NNN) interactions may be non-negligible or even of the same order of magnitude (cf CuGeO3

system [26, 27]). Regarding the four-body operator terms, they may be important in Cu4O4

plaquettes since their origin lies in the cyclic circulation of electrons around the ring. Their
importance and that of analogous cyclic six-body effects have been pointed out in other types
of half-filled band systems such as theπ system of conjugated organic molecules [28]. Similar
four-body terms are crucial to describe the ground state properties of3He [29].

The direct determination of the amplitude of the many-body terms of an extended spin
Hamiltonian such as the one in equation (2) from experiment is, in general, impossible. Spin
ladders with a variety of intersite distances represent an especially difficult case. In general, the
experimental determination of the coupling constants is based on a series of hypotheses about
the negligibility of interactions between ‘remote’ sites. From these hypotheses, a given spin
model is assumed and validated only from a numerical fit of the thermodynamic or spectral
properties. It is customary to consider NN interactions only although this may be an excessive
simplification and eventually can lead to contradictory estimates of the dominant couplings.
This is precisely the case of the cuprate spin ladders for which conflicting values of theJrung/Jleg

ratios ranging from 0.5 to 1.0 were proposed. Interactions involving sites at a longer distance or
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involving various sites had to be invoked to rationalize the different experimental results arising
from different techniques. One may think for instance in inter-ladder interactions, diagonal
terms in the plaquettes or four-body cyclic effects. Indeed, several theoretical studies seem to
consistently indicate that four-body terms (Jring) are crucial [21]–[24]. Here, it is important
to point out that very recently Toaderet al [30] provided strong experimental evidence of
the importance of theJring term in La2CuO4 with Jring ≈ 0.5 J. This value is comparable to
the pairing energies and strongly suggests that the resulting circulating currents could have an
important role in the mechanism of superconductivity. This is in contrast with previous estimates
of Jring for 2D and spin ladder cuprates, obtained either from indirect measurements or from
numerical simulations with an extended Heisenberg model, which propose substantially smaller
amplitudes withJring ∼ 0.3 J [19, 21, 22, 24, 31]. The origin of these discrepancies relies on the
choice made by different authors for the magnitude of the other coupling constants in the spin
Hamiltonian of equation (2). Hence, theJring term as evaluated by Toaderet al relies on NN
and NNN coupling constants ofJ = 111.8 meV andJd = −11.4 meV, respectively, extracted
from one of the various fittings of the magnon spectrum [22]. However, it is important to
point out that this value forJ is smaller than another experimental estimate of 135± 6 meV
obtained with a NN Heisenberg Hamiltonian [32]. Moreover, one should note that the present
estimate of a FMJd differs from previous theoretical predictions [33] and from fitting to
experimental measurements on materials with similar exchange paths [34]. However, one should
also recognize that the theoretical study by Annettet al [33], takes only into account two-
electron processes to evaluate thisJd term while, as clearly explained by Toaderet al [30]
and references therein, the FM character ofJd arises precisely from three-electron exchange
processes around a plaquette, which are of the same order of magnitude as four-electron
exchange processes around the same plaquette and which are not taken into account in [33, 34].
The discussion above illustrates the difficulties faced by experimentalists when attempting to
extract the magnitude of the important terms and the need for independent accurate and unbiased
theoretical predictions. For the SrCu2O3 ladder compound a similar situation is encountered; the
recent Raman response experiments by Schmidtet alsuggestJrung = 140 meV,Jring/Jrung = 0.2
and Jleg/Jrung = 1.5 [35], in contrast with previous work indicating a more isotropic behavior
between rungs and legs [36].

From the preceding discussion it is clear that an accurate prediction of the various magnetic
interactions entering in the spin Hamiltonian as in equation (2) is not only highly desirable to
understand the ground state properties of this kind of systems but urgently needed. One could,
for instance, start from some approximate electronic Hamiltonian such as a single-band model
involving only the magnetic centers or a two-band model involving also the electrons of the
bridging ligands. However, this is likely to introduce even more problems since it is difficult
to assess the accuracy of such a multiparametric approach. An alternative and straightforward
way to an unbiased estimate is the direct evaluation of the amplitude of the relevant magnetic
interactions on a realistic model system treating all the electrons in a large enough basis set.
If practicable, this pragmatic approach will present the advantage of providing an independent,
unbiased and consistent prediction of the amplitude of relevant exchange parameters that can
solve the difficulties encountered by the usual fitting techniques used by experimentalists.

Unfortunately, the direct calculation of the important terms is not a simple task since it
also requires the use of a model for the solid. In a first approach, one may neglect translational
symmetry and define a properly embedded finite cluster, a fragment of the periodic lattice with
two, three or four magnetic sites with their coordination ligands and perform the bestab initio
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(using the exact Hamiltonian) explicitly correlated calculations. This strategy, in particular when
using the so-called difference dedicated configuration interaction (DDCI), has provided very
consistent and reliable evaluations of the two-body interactions in a large series of perovskites,
oxides and 2D cuprates [37]–[41]. However, this approach rapidly faces computational limits
due to the need for very large embedded cluster models. This is especially the case when
attempting to extract four-body terms in ladder compounds [42]–[45]. Alternatively, one may
exploit the periodic symmetry of the crystal but in this case explicitly correlated calculations
are not feasible and one must rely on spin-polarized mean-field type approaches. In such a case,
only the FM solution may be considered as a valid approximation of an eigenstate of the problem
with properly defined spin quantum numbers [46, 48]. The solutions with lower values of the
square of the total spin operatorS2 (lower magnetization) cannot be properly treated. Fixing
a priori different localized periodic spin distributions one may obtain a set of distinct self-
consistent solutions of different energies. However, these solutions are not eigenfunctions of the
S2 operator; they are (spin) broken-symmetry solutions. We will show that assigning the energy
of the broken-symmetry solutions to the expectation value of the corresponding spin distribution
of a Heisenberg Hamiltonian enables one to obtain estimates of the magnetic coupling constants.
Such approaches have been rather extensively used in the field of molecular magnetism and may
also be employed on embedded clusters to extract the two-body terms [48, 49]. The mean-field
calculations may use the exact Hamiltonian, and the corresponding information comes either
from unrestricted broken-symmetry Hartree–Fock (UHF) solutions or from the similar ones
obtained by means of DFT approaches. In the first case, the resulting evaluations of the AFM
couplings are severely underestimated [15], [50]–[52]. In the second one, the introduction of
electron correlation effects improves the result but the numerical values are highly sensitive to
the chosen exchange-correlation potentials. Notice that the local density approximation (LDA)
and the different generalized gradient approximations (GGA) in DFT frequently lead to metallic
solutions, closed shell in nature [15], which miss the main physical features of the low energy
states and cannot provide any information about the magnetic couplings. Actually, the best
results are obtained with hybrid functionals initially proposed by Becke [53, 54], for which
a percentage of Fock exchange is mixed with a given DFT exchange-correlation functional.
However, the results are again strongly dependent on the amount of Fock exchange included
in the exchange potential [55, 56]. Previous calculations have shown that the best percentage,
at least for NiO [15] and cuprates [57, 58], is around 35% Fock. Here, it is worth pointing
out that hybrid DFT calculations need to include the non-local Fock contribution which can be
accurately computed when the total density is expressed in terms of Gaussian type orbitals
(GTO) basis sets. Recently, however, it has been shown that a reasonable accuracy can be
reached employing plane waves as well [59].

In the present work, we report a generalization of the periodic symmetry-broken (UHF or
DFT) approach which permits one to obtain not only the various NN and NNN most important
two-body terms, as initially done for MF2 (M = Cu, Ni, Co, Fe, Mn) compounds [52, 60], but
to predict higher-order terms such as the four-body cyclic terms appearing in equation (2). To
this end broken-symmetry hybrid DF computations are carried out for the La2CuO4, Sr2CuO2F2,
Sr2CuO2Cl2 and Ca2CuO2Cl2 2D square lattices and the SrCu2O3 two-leg spin ladder. A general
theoretical framework is presented that permits one to extract accurate values for the many-body
terms of extended spin Hamiltonians from these periodic first-principle calculations. In addition,
it will be shown that these periodic calculations confirm the importance of the FM interladder
exchange and of the four-body intra-plaquette operator.
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This paper is organized as follows: in section2, we develop the relevant methodological
aspects to extract the amplitude of the parameters of a general spin Hamiltonian from periodic
all-electron calculations of the electronic structure of the systems. First, the logics leading to a
mapping between spin eigenfunctions and symmetry-broken solutions is developed in a general
scheme starting from the Hubbard model for a plaquette with few remarks on the calculated
solutions. Section3 describes the computational details of the calculations. The results obtained
for the planar cuprates and the ladder system are reported in section4 and, finally, in section5,
we present the conclusions of this investigation and further extensions of the theory.

2. Theoretical background and methodology

Let us assume that one may calculate a mean field single determinant description of the FM
state in a given unit cell. This wavefunction is usually expressed in terms of symmetry-adapted
(delocalized) Bloch functions. An appropriate localizing transformation of the singly occupied
functions will define atom-centered Wannier magnetic orbitals [61, 62]. The FM solution for
the system may be written as

ΦSz,max = |core· abc· · · n| , (3)

where core stands for the closed-shell part of the wavefunction anda, b, c, . . ., n represent the
magnetic orbitals localized on the different magnetic centers. In this picture there is one electron
per site and one can refer to the corresponding determinant as a valence bond (VB) neutral form
(see also the definition in [63]). In the following, the expectation energy〈ΦSz,max|Ĥ |ΦSz,max〉 =

E0 will be taken as energy origin (E0 = 0). Then electrons inn orbitals define a half-filled band
problem. Each of the possible distributions of the magnetic electrons in the magnetic orbitals
defines a determinant and the set of these determinants spans an orthogonal VB basis set. The
matrix elements of the exact Hamiltonian in this basis define a valence configuration interaction
matrix. In order to understand the physical effects arising from the interaction between theα and
β (or spin up and spin down) electrons, we shall consider first a finite set of neighbor sites, the
periodicity being introduced in a subsequent step. One must first recall that the lowest energy
determinants are the neutral ones (in the VB sense), for which any magnetic orbital is singly
occupied. The ionic determinants set, presenting positively and negatively charged sites, are of
higher energy. Let us consider a given VB neutral determinant as

ΦI =
∣∣core· a · · · hī jk l̄m · · · n

∣∣, (4)

built with the local magnetic orbitals of the FM solution and where the bars indicate, as usual,
beta spin electrons (hence,i is synonymous ofi α andī of iβ).

The expectation energy (within the exact non relativistic Hamiltonian) of such a
determinant is given by equation (5)

〈ΦI |Ĥ |ΦI 〉 − E0 =

∑
i ∈α(I )

∑
j ∈β(I )

K i j , (5)

whereα(I ) andβ(I ) are the set of spin orbitals ofα andβ spin inΦI and i α and jβ the
corresponding spin orbitals. This expectation energy is higher than that ofΦSz,max since it misses
the direct (positive) exchange integrals between theα andβ spin orbitals. It is reasonable to
assume that the nonzeroK i j integrals concern NN and NNN site pairs only. These integrals
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have been estimated in cuprates [42]–[45], [57, 64, 65] and play an important role in defining
the final value of the magnetic coupling constant. However, for the perturbative development
given below we consider that the difference among the differentK i j integrals is small enough to
be neglected in front of the excitation energies to the VB ionic determinant and a common zero-
order energyE0 will be kept for the VB neutral determinants in the perturbative developments.

The strategy will now consist of establishing a relation between the diagonal elements
of the Heisenberg Hamiltonian and the energies of symmetry-broken UHF solutions. This is
accomplished by means of suitable perturbation expansions.

The Heisenberg Hamiltonian is obtained from the exact one by considering the space of all
VB determinantsΦI as a model space [66] in the frame of the effective Hamiltonian theory of
Bloch or des Cloizeaux [67, 68]. Let us callP̂ the projector on this subspace of dimensionN

P̂=

∑
I =1,N

|ΦI 〉 〈ΦI |, (6)

the effective HamiltonianĤeff is defined by theN eigen equations

Ĥeff
|P̂9m〉 = Em|P̂9m〉, m = 1, N (7)

where the vectors|9m〉 are theN eigenvectors ofĤ

Ĥ |9m〉 = Em |9m〉 , m = 1, N, (8)

having the largest projections on the model space, andEm the corresponding eigenvalues. Since
all VB neutral determinants have the same spatial part, the effective Hamiltonian may be written
in terms of spin operators and, in principle, it will involve many-spin operators.

Due to the large energy gap between the neutral and VB ionic determinants the effective
Hamiltonian may be approached through the quasi-degenerate perturbation theory (QDPT). Let
us consider the diagonal matrix element associated with a determinantΦI . To the second-order

〈
ΦI

∣∣∣Ĥeff
∣∣∣ΦI

〉
=

〈
ΦI

∣∣∣Ĥ ∣∣∣ΦI

〉
+
∑

α∈ionic

〈
ΦI

∣∣∣Ĥ ∣∣∣Φα

〉 〈
Φα

∣∣∣Ĥ ∣∣∣ΦI

〉
E0 − E0

α

= E0 +
∑
i α, jβ

(
K i j −

2t2
i j

U

)
, (9)

where we have considered that the direct exchange integralsK i j are small in front of the energy
differences between the neutral and the VB ionic configurations in the evaluation of the second-
order corrections. The determinantΦI interacts with all the determinants obtained by charge
transfers betweenα andβ sites leading to ionic determinants of the form

Φi + j − I = a+
j aiΦI ;

〈
Φi + j − I

∣∣∣Ĥ ∣∣∣ΦI

〉
= ti j , (10)

and

Φi − j + I = a+
ī a j̄ΦI ;

〈
Φi − j + I

∣∣∣Ĥ ∣∣∣ΦI

〉
= ti j . (11)

The amplitude of the hopping integralti j rapidly decreases with the distance between sitesi and
j. Comparing〈ΦI |Ĥeff|ΦI 〉 with equation (2) one obtains

−Ji j = 2

(
K i j −

2t2
i j

U

)
, (12)
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which is a rather well-known relation. Let us suppose now that one tries to optimize the energy
of a symmetry-broken determinantΦ′

I obtained fromΦI by relaxing the spin orbitals. To the
first-order this optimization is equivalent to a CI betweenΦI and the singly excited determinants
leading to

9I =ΦI −

∑
i α, jβ

c(1)

i j

(
Φi + j − I +Φi − j + I

)
=ΦI −

∑
i α, jβ

ti j
U

(
Φi + j − I +Φi − j + I

)
, (13)

the spinorbital rotations

i ′
=i −

∑
jβ

ti j
U

j , (14)

j ′
= j −

∑
i α

ti j
U

i , (15)

giving delocalization tails to theα spin orbital on sitei on to the orbitals of the neighbor sites
occupied byβ spin electrons (or equivalently,c(1)

i j = ti j /U ). From9I one can define a UHF
single determinant

Φ′

I =
∣∣core· a′

· · · h′ ī ′ j ′k′l̄ ′m′
· · · n′

∣∣ , (16)

which only differs from9I by second-order effects

Φ′

I ≈ 9I + O(2) (17)

and its energy only differs from the second-order corrected energy associated with9I by third-
order terms 〈

Φ′

I

∣∣∣Ĥ ∣∣∣Φ′

I

〉
≈

〈
ΦI

∣∣∣Ĥ ∣∣∣ΦI

〉
−

∑
i α, jβ

2t2
i j

U
+ O(3). (18)

Hence,

EUHF
I ′ = 〈ΦI | Ĥeff

|ΦI 〉 + O(3) ≈ E0 −
1
2

∑
i α, jβ

Ji j . (19)

Equation (19) relates the calculated energy of theI’ broken symmetry solution for the exact
Hamiltonian, relative to the FM state, to the corresponding energy expression of the Heisenberg
Hamiltonian in equation (1) and it provides a first useful relationship to extract the relevant two-
body magnetic coupling constants from the different broken-symmetry solutions. Since this
relation is also valid whenΦI represents a periodic spin distribution, equation (19) provides a
practical way to extract these effective parameters from periodic calculations. This is precisely
the procedure followed in previous works [52, 60]. However, it is possible to use the perturbation
developments above to generalize the procedure in such a way that extraction of higher-order
terms in the spin Hamiltonian as in equation (2) becomes straightforward. Before continuing the
development a caveat is necessary since the Wannier functions as in equation (3) or (4) refer to
the whole crystal. In practice, one has to limit the number of spin distributions to a finite number
which is given by all possible spin permutations in a large enough supercell. Convergence of
the results with respect to the model chosen can be indeed verified by extending the supercell.
However, since the magnetic coupling constants are local parameters [37], the results are
not expected to vary significantly upon enlarging the supercell used to extract the relevant
parameters. Therefore, starting fromn non equivalent spin distributionsΦI , ΦJ, . . . ,ΦM , one
may, in principle, determinemquantitiesJi j and, of course, discriminate the leading terms from
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the negligible ones. As will be shown later on, it may happen that several spin distributions lead
to identical relationships between the calculated broken-symmetry energies and the set ofJi j

values. However, if one performs a large enough number of broken-symmetry calculations it
will be always possible to obtain a sufficiently large numberm of independent equations from
different guesses, and since one only looks forn < m spin couplings, it becomes also possible
to evaluate the consistence of the calculated set of magnetic coupling constants. The procedure
is not only general but allows an auto check of the obtained results.

In the forthcoming discussion, we will show how to obtain the higher order terms by
exploiting the perturbation development introduced above. However, before proceeding with
such a generalization, it is convenient to consider the on-site spin densities. In principle, an
approximate estimation of the spin density on sitei in spin mean-field solutionI, ρi (I ), can
be obtained from the first-order corrected wavefunction. Notice, however, that for simplicity
we are heretofore usingI to denoteΦI . Let us recall that this perturbation treatment—using
the Hubbard model Hamiltonian as zero-order Hamiltonian—gives, in an approximate way,
the effect of relaxing the orbitals from the FM reference to the self consistent orbitals for the
particular broken symmetryI solution, assuming that the relaxation comes from up to first-order
mixing neutral and VB singly ionic determinants. It can be shown thatρi (I ) is thence given by

ρi (I ) = ρi (Sz,max) − 2
∑

j

( t
i j

U

)2

. (20)

The second term in equation (20) reflects the impact of the VB singly ionic determinants in
the final spin density obtained with the relaxed orbitals. If the largestJ amplitudes concern NN
pairs of sites and they are of equal or of similar magnitude, one may expect that

ρi (I ) = ρi (Sz,max) − λnI
NNβ, (21)

whereλ = 2(ti j /U )2 and nI
NNβ is the number ofβ spin NN atoms of a givenα spin in the

distributionI. In some lattices the FM solution, which has been introduced above as the starting
vector defining the set of orthogonal magnetic orbitals, may have a very high energy, due to
the spatial vicinity of the magnetic centers. In such a case the energy minimization of the FM
determinant may produce irrelevant magnetic orbitals, with exceedingly large delocalization
on the ligands. The magnetic orbitals which are appropriate for the description of the low-
energy states keep a stronger metal character. A signature of this problem is observed when the
atomic spin densities at the highly frustrated, high-energy unrestricted solutions no longer obey
equation (21). Therefore, the obedience to this equation may be used as a criterion to retain the
guess distributionI as a valid member of the set. In practice, when the FM solution becomes
exceedingly high, it is convenient to express all energy differences with respect to the lowest
AF solution.

The mapping procedure above described can be extended to provide information
concerning the high-order terms of the spin Hamiltonian in equation (2) such as four-body cyclic
operator amplitudes. In a rigorous QDPT development starting from the Hubbard Hamiltonian
and using the set of VB neutral and singly ionic forms as model and outer spaces, respectively,
one may find that these four-body spin operators appear at fourth-order and imply a cyclic
circulation of the electrons around a plaquette. Such a circulation of the electrons is impossible
in a plaquette with all spins parallel (〈Sz〉 = ±2), but it generates off-diagonal and diagonal
corrections when the totalSz value for the plaquette is 0 or±1. It has been shown [28, 42] that
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for a plaquette withSz = ±1 the fourth-order diagonal corrections due to the cyclic circulation
of electrons is〈

i j̄ k̄l̄
∣∣ Ĥ (4)

∣∣i j̄ k̄l̄
〉
= −

4ti j t jktkl tli
U 3

= −4gi jkl . (22)

It reflects processes of two types, involving the major spin electrons

or the minor spin electrons

through clockwise or anticlockwise movements; hence the factor 4 in equation (22). It is now
possible to show that the variational symmetry-broken solutionsΦ′

I associated toΦI effectively
incorporate these effects. To the second-order the orbitali ′ may be expressed as

i ′
= i + c(1)

i j j + c(1)

i l l + c(2)

ik k (23)

with c(1)

i j = ti j /U and

c(2)

ik = c(1)

i j

t jk

U
+ c(1)

i l

tlk
U

, (24)

as represented by the corresponding diagrams, whereΦI is taken as the vacuum state
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and the unrestricted self consistent solution involves the fourth-order diagrams

which correspond to the minor spin circulation appearing in the last scheme of the plaquette. A
similar identification can be performed for the major spin electron movements,

k̄′
= k̄ + c(1)

k j j̄ + c(1)

kl l̄ + c(2)

ki ī (25)

and the corresponding wavefunction diagrams

and the corresponding fourth-order energy diagrams

For a Sz = 0 plaquette it has been shown from a QDPT expansion [28] that the fourth-order
corrections due to the cyclic circulations of spins result in a diagonal energy shift equal to

〈i j k̄l̄ |Ĥeff(4)
|i j k̄l̄ 〉 = 〈i j̄kl̄ |Ĥeff(4)

|i j̄kl̄ 〉 = −
8ti j t jktkl tli

U 3
= −8gi jkl . (26)

It is also possible to identify term by term the contributions such as
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which involves the circulation of theα spin electrons with a fourth-order correction included in
the variational treatment leading toΦ′

I .

The factor two with respect to theSz = 1 case comes from the time-ordering degree of freedom
between the second and third interactions and the sign change is due to the hole–hole interaction.

For the spin alternant distributioni j̄kl̄ in the plaquette the mechanisms involve doubly
ionic intermediate states fori j̄kl̄ as

There are 46 of such processes, each of them contributing byti j t jktkl tli /2U 3
= gi jkl /2. The

corresponding energy diagrams are of the type

and they involve the components of the UHF function on the doubly ionic determinants of the
form j j̄ l l̄ as

Φ′

I ≈ΦI −

∑
〈i α, jβ〉

c(1)

i j

(
a+

j aiΦI + a+
ī a j̄ΦI

)
+

∑
i α, jβ,kα,lβ

c(1)

ī j̄
c(1)

kl

(
a+

j ai a
+
l akΦI

)
(27)
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obtained at the second-order through the diagrams

Hence, the cyclic contributions to the energies of the symmetry-broken single determinantal
solutions are at the fourth-order at least, identical to the cyclic QDPT diagonal corrections
〈ΦI |Ĥeff(4)

|ΦI 〉. It has been shown by some of us [42, 43, 45] that these corrections may be
expressed in terms of four-spin operators (equation 2) as

Ji jkl 〈ΦI | Ŝzi Ŝz j ŜzkŜzl + Ŝzi Ŝzl Ŝz j Ŝzk − Ŝzi ŜzkŜz j Ŝzl −
1
16 |ΦI 〉 (28)

and, hence, the four-body corrections can be identified as the diagonal terms of the biquadratic
operator with amplitudes given by the average values of equation (28). In the following section
examples of the applications of this general formula will be given and discussed in detail.

3. Computational details

The calculation of the energy of each relevant magnetic solution has been carried out at the
experimental geometry4 and using different exchange-correlation potentials as implemented
in the CRYSTAL03 code [73]. These are the well known B3LYP hybrid method [74, 75]
and the Fock-35 scheme proposed by Moreiraet al to reach a balanced description of many
electronic structure properties of NiO [15], which gives satisfactory values of NN magnetic
coupling constants in molecular magnets and solid state magnetic cuprates [76, 77]. Crystalline
orbitals are built as linear combinations of Bloch functions which in turn are built from atomic
basis sets (AOs) optimized for the crystal environment. The AOs are contracted real spherical
harmonic Gaussian type functions (GTFs). Extended all-electron basis sets have been used
to describe the Cu and O atoms whereas effective core pseudopotentials have been used to
represent inner electrons of the remaining ions. These standard all-electron and pseudopotential
basis sets have been previously used by Moreira and Dovesi [58, 78] and Suet al [79]. They
correspond to the optimized basis sets for the corresponding ions and the outer isolated sp or sp
and d exponents are re-optimized for a given environment. Also, the basis sets can be obtained
from the CRYSTAL site (http://www.chimifm.unito.it/). Strict convergence criteria and a set of
105 points in the irreducible Brillouin zone have been used to ensure a numerical accuracy of
10−7 Hartree per formula unit.

4 For Sr2CuO2Cl2 and Ca2CuO2Cl2 the cell parameters used in the calculations are those reported by Miller
et al [69] and Argyriou et al [70], respectively. For Sr2CuO2F2 a tetragonal symmetrized cell derived from
orthorhombic Sr2CuO2F2.57 reported by Al-Mamouriet al [71] has been considered. Similarly, a tetragonal
symmetrized cell derived from the orthorhombic structure reported by Longo and Raccah [72] for La2CuO4 has
been considered.
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Figure 1. Schematic representation of the magnetic solutions calculated to
extractJ, Jd andJring in the 2D layered cuprates.

4. Results

In this section, we will discuss the application of the methodology and general procedure
described above to the case of 2D square lattices which are common to many cuprates which
may become superconducting under doping and to the case of ladder compounds which have a
more complex structure.

4.1. Spin Hamiltonian parameters for the 2D square lattices

For the cuprate planar square lattices which may be seen as constructed of adjacent plaquettes,
three interactions are expected to be important. These areJ between NN,Jd between NNN
through the main diagonal of a plaquette, and, finally,Jring which is the four-body ring
interaction in the plaquette.

The amplitudes ofJ, Jd and Jring have been estimated from the energy differences
corresponding to the magnetic solutions schematically shown in figure1. One of these solutions
corresponds to a FM alignment of all magnetic moments whereas the other three are symmetry-
broken AFM arrangements. Table1 reports the relationship between the above-described
effective parameters and the calculated energy for UHF and each of the two DF methods.
These energy differences univocally determine the amplitudes of the three parameters since,
in this case, the corresponding set of equations is linearly independent. The calculated values
of J, Jd and Jring for 2D cuprates are reported in table2. Concerning the leading NN spin
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Table 1. Energy expressions per Cu atom (relative to FM phase) for the magnetic
solutions in figure1 used to extractJ = Ji j (NN), Jd = Ji j (NNN) and Jring in
the 2D La2CuO4, Sr2CuO2F2, Sr2CuO2Cl2 and Ca2CuO2Cl2 layered cuprates.
The three entries for each magnetic phase show the corresponding calculated
values (in meV) for the Fock-35, (B3LYP), and [UHF] potentials.

Phase Energy expression La2CuO4 Sr2CuO2F2 Sr2CuO2Cl2 Ca2CuO2Cl2

140.1 153.7 130.8 146.7
AFM J (182.8) (214.6) (182.0) (196.6)

[31.0] [33.1] [26.2] [32.4]

78.9 84.7 70.1 79.1
AFM1 J/2 + Jd/2 + Jring/8 (102.5) (125.1) (103.1) (109.4)

[15.4] [16.9] [13.2] [16.3]

78.8 82.2 68.2 78.3
AFM2 J/2 + Jd (100.3) (118.1) (99.4) (105.5)

[15.1] [17.0] [13.3] [16.0]

0.0 0.0 0.0 0.0
FM 0 (0.0) (0.0) (0.0) (0.0)

[0.0] [0.0] [0.0] [0.0]

coupling amplitudes (J) it is worth noting that UHF largely underestimates them, as found
in many previous works [57, 76, 80]. Density functional calculated values generally represent
an improvement over UHF results although they exhibit the typical strong dependence on the
exchange-correlation functional already pointed out by Martin and Illas [55, 56]. Hence, B3LYP
overestimates theJ values by a factor close to 1.5 whereas the values predicted by the Fock-35
potential are close to experiment as also expected from previous work on similar systems [15,
76, 80]. Therefore, one can take the Fock-35 values as a reliable prediction. In all cases, the
NNN diagonal interaction is predicted to be small and of AFM character, in contrast to what
is suggested by some fits to experimental data [81]. However, the most important result of the
present work concerns the cyclic exchangeJring amplitude. The general procedure described in
detail in section2 has permitted the first direct estimate of the amplitude of theJring terms from
ab initio periodic calculations [82].

For La2CuO4, the outcome of the present periodic approach using the Fock-35
parameterization is in agreement with the other only available theoretical estimates for
this compound arising from cluster calculations performed by either explicitly correlated
wavefunctions [42, 43] or DFT based calculations [45, 76] and experimental estimations
of J [22, 32]. In addition, the present Fock-35 estimate ofJring ∼ 35.8 meV is in excellent
agreement with the indirect evaluations of Coldeaet al (Jring ∼ 38± 8 meV) [22] and the
simulations of Mizunoet al (Jring ∼ 40 meV) [31]. Notice, however, that theJring/J = 0.25 ratio
predicted here is smaller than that reported by Toaderet al [30], which is of 0.5, but in excellent
agreement with a more generally accepted ratioJring/J = 0.3 [21, 22, 31] for this compound.
Finally, we would like to point out that the experimental determination of this term is still under
discussion and even the existence and importance of four-body terms in La2CuO4 have raised
some controversy [83]. The present work provides unbiased first principles results that fully
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Table 2. Numerical values (in meV) for the two- and four-body exchange
amplitudes in La2CuO4, Sr2CuO2F2, Sr2CuO2Cl2 and Ca2CuO2Cl2 2D cuprates
obtained using the Fock-35, (B3LYP), and [UHF] potentials. Available
experimental data are discussed in sections1 and4.1.

System J Jd Jring Jring/J Tc(max)(K)

140.1 8.8 35.8 0.25
La2CuO4 (182.8) (8.9) (53.1) (0.29) 42a

[30.9] [−2.8] [0.7] [0.02]

153.7 5.4 41.1 0.27
Sr2CuO2F2 (214.6) (10.7) (99.5) (0.46) 46b

[33.1] [0.4] [1.4] [0.04]

130.0 2.8 26.4 0.20
Sr2CuO2Cl2 (182.0) (8.4) (62.8) (0.34) –

[26.2] [0.1] [0.2] [0.01]

146.7 4.9 26.3 0.18
Ca2CuO2Cl2 (196.6) (7.2) (60.0) (0.31) 28c

[32.4] [−0.2] [1.4] [0.04]

aFrom [87], b [71], c [88].

support the arguments of Toaderet al in their reply to Raymondet al [84]. It is also worth
pointing out that the Fock-35 calculations predicts an AFMJd ∼ 8.8 meV again consistent with
the values provided by embedded cluster calculations [42, 44, 77]. Hence, it will be of great
interest to repeat the fit in Toaderet al experiments [30] by using the present estimate of both
J and ofJd or, in a bottom up approach, use the present values for the three effective parameter
to check consistency with respect to experiment.

For Ca2CuO2Cl2, Sr2CuO2F2 and Sr2CuO2Cl2, there are not previous theoretical or
experimental values for the amplitude of the ring exchange term. Present calculations predict
values for Ca2CuO2Cl2 and Sr2CuO2Cl2 that are slightly smaller than the corresponding ones in
La2CuO4. This is consistent with larger NN and NNN distances in Ca2CuO2Cl2 and Sr2CuO2Cl2
compared to La2CuO4 (3.87 and 3.97 versus 3.81 Å, for NN and∼ 5.47 and∼ 5.62 versus
5.38 Å for NNN distances). For Sr2CuO2Cl2 the agreement between the estimate of the NN
interaction (J ∼ 130 meV) and the experimental value (J = 125± 6 meV [85, 86]) is excellent,
the Jd coupling is also predicted to be AFM and the estimatedJring/J ratio∼ 0.20 is somewhat
smaller than that for La2CuO4 but still in a realistic range. For Sr2CuO2F2 the results are closer
to La2CuO4 ones despite the differences in crystal structure (3.86 versus 3.81 Å, for NN and
∼ 5.45 and∼ 5.62 versus 5.38 Å for NNN distances).

Before closing this section it is interesting to note that the magnitude ofJ alone does
not discriminate Sr2CuO2F2 and Ca2CuO2Cl2 from La2CuO4 (stoichiometric Sr2CuO2Cl2
corresponds to a extremely stable structure and attempts to synthesize doped phases by cation
substitution of interstitial anion excess have been unsuccessful). Taking the reliable Fock-35
values, for La2CuO4 Tc = 42 K [87] and J = 140.1 meV and, similarly, Sr2CuO2F2Tc =

46 K [71] but J = 153.7 meV whereas for Ca2CuO2Cl2 Tc = 28 K [88] but J = 146.7 meV.
A larger J value does not correspond to a largerTc. However,Jring points towards a different
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behavior sinceJring = 35.8 meV for La2CuO4 and Jring = 41.1 meV for Sr2CuO2F2 whereas
Jring = 26.3 meV for Ca2CuO2Cl2. This is in line with the results of Toaderet al suggesting
that theJring plays an important role in defining the properties of the superconducting phase.
We would like to point out that this is also in line with previous results indicating that a linear
relationship exists betweenJ/t and Tc [41, 76]. This is because, a correct value ofJ/t also
indicates a correct value oft/U and hence ofJring/J(∼ (t/U )2, cf equation (22) and [45]).

4.2. Spin Hamiltonian parameters for theSrCu2O3 spin ladder compound

For the SrCu2O3 spin ladder, ten different magnetic solutions have been obtained from the spin
distributions shown in figure2. Due to an excessive spin frustration between the ladders, the FM
solution becomes exceedingly high in energy and indeed physically meaningless. The short-
range intra-ladder repulsion forces the unpaired electron to be excessively delocalized on the
oxygen atoms. Therefore, the AFMgs solution is used as energy origin. For the remaining nine
broken-symmetry solutions with different magnetic orders, we derived a set of nine equations
which are shown in table3. These equations have been derived assuming that only five magnetic
interactions may have non-negligible amplitudes: these are NN interactions along the legsJl,
or the rungsJr, the NNN Jd interactions in the plaquettes, the interaction between legs of
different laddersJi, and the four-body operatorJring amplitude. At variance from the above-
discussed cuprates, the resulting equations are linearly dependent, the system of equations is
overdetermined and a least-square procedure has been used to find the optimum set of values
for the five magnetic interactions considered. The optimum values are reported in table4. The
consistency of the set of equations is almost complete since the standard deviation between the
DF calculated energies and those obtained from the equations in table3 and the so-obtained set
of magnetic interactions is of 1.5 meV for the B3LYP results and even smaller for the Fock-35
set. This consistency indicates that all non-negligible interactions have been included in the spin
model Hamiltonian.

For all the methods the dominant interactions are the couplings across the rungs (Jr) and
along the legs (Jl) which all methods predict to be nearly equal in magnitude—i.e.(Jr/Jl) ≈ 1—
as expected from the similarity of the Cu–O–Cu exchange paths in agreement with previous two
magnetic sites cluster model calculations [36] although a moderate cluster size dependence
on the magnetic interaction along the leg has been observed [77]. Nevertheless, enlarging
the cluster model by introducing a third copper atom belonging to the very close neighbor
ladder results again inJr/Jl ≈ 1 [71]. In any case, this dependence evidences the difficulty
of embedding finite clusters for certain types of materials and supports the present periodic
approach that does not depend on the cluster design used to represent the real material.

The accuracy of the present calculations can be judged from the amplitude predicted
for Jr through the most realistic Fock-35 potential (∼ 155 meV) which is consistent with the
recent Raman response experiments [35]. The estimatedJd value is AFM as in the 2D cuprates
and a non-negligible interladder FM exchange (Ji ≈ −0.22Jl) is found and, consequently, one
should not consider this system as formed by non-interacting ladders. RegardingJring, both
its amplitude and theJring/Jr ratio are larger than for 2D cuprates (table2), but still close to
0.3 in agreement with various sets of experimental informations [21]–[24]. The agreement is
particularly good with the values reported by Schmidtet al [35] although these authors do not
considerJi. This neglect is probably the reason for the strong anisotropy in their fitting which
results in aJl/Jr = 1.5 ratio, a value which is difficult to accept from the Cu–O–Cu distances.
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Figure 2. Schematic representation of the magnetic solutions calculated to
extract Jl, Jr, Jd, Ji and Jring parameters in the ladder cuprate SrCu2O3.
Continuous (dashed) lines correspond to FM (AFM) alignments forJl and Jr

in the ladders. The gray zone defines the cell used for the symmetry-broken
solution.

Such large anisotropy betweenJl andJr is not supported from the present periodic calculations.
We also found that repeating the least square fitting of the energies in table2 but neglecting the
terms involvingJring results in a larger anisotropy in the thusJr andJl calculated values. These
results strongly suggest revising previous fittings using the present estimates as starting points.
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Table 3. Energy expressions per Cu atom (relative to AFMgs phase) for the
magnetic solutions calculated to extractJl, Jr, Jd, Ji and Jring in the SrCu2O3

ladder compound (for the definition of these interactions see section2). These
correspond to the magnetic solutions given schematically in figure2. The last
column shows the corresponding calculated energy values (in meV) for the
Fock-35, (B3LYP), and [UHF] potentials.

Phase Energy expression Values in SrCu2O3

AFM9 Jl/6 + Jr/6− 3Jd/2− 0.05Jring 44.98 (57.15) [10.79]
AFM8 Jl/4− Jd/4 + Ji/8 31.92 (48.85) [6.86]
AFM7 Jl/2− Jd/2 + Ji/4 67.38 (96.23) [14.23]
AFM6 Jl/2− Jd/2− Ji/4 83.78 (114.37) [18.53]
AFM5 Jl/4 + Jr/8− Jd/4− Ji/8− 0.075Jring 57.68 (75.75) [13.35]
AFM4 Jr/4− Jd/2 38.87 (50.22) [8.14]
AFM3 Jl/4 + Jr/8− Jd/4− 0.075Jring 53.43 (70.73) [12.24]
AFM2 Jr/8− Jd/4 16.20 (20.41) [4.07]
AFM1 Jl/8 + Jr/16− Jd/8− 0.0375Jring 26.68 (35.39) [6.15]
AFM gs 0 0.0 (0.0) [0.0]

Table 4. Numerical values (in meV) for the two- and four-body exchange
amplitudes in SrCu2O3 ladder compound obtained using the Fock-35, (B3LYP),
and [UHF] potentials. Available experimental data are discussed in sections1
and4.

System Jl Jr Jd Ji Jring Jring/Jr

153.1 155.6 2.7 −34.2 48.8 0.31
SrCu2O3 (216.3) (204.1) (5.4) (−36.0) (97.0) (0.47)

[32.7] [32.7] [0.1] [−8.8] [0.04] [ < 0.01]

4.3. Critical analysis of the results

Tables2 and 4 summarize the results for the effective spin Hamiltonian parameters of the
2D cuprates and the ladder compound, respectively, obtained by means of the UHF method,
B3LYP and Fock-35 hybrid potentials. Since the Fock-35 values are in agreement with available
experimental data it is clear that B3LYP values are overestimations. This result merits a further
deeper analysis. As well known, the NN magnetic couplingJ scales ast2/U (cf equation (12)).
Previous works have shown thatt values are not very sensitive to the exchange potential
[57, 77]. This suggests that the exceedingly largeJ value predicted by the B3LYP method
effectively implies a too smallU value and hence an insufficient on-site two-electron repulsion,
as discussed elsewhere [57, 80]. This incorrect description of electron–electron correlations in
the B3LYP functional has a much more dramatic consequence. In fact, it has been shown by
Malrieu and Maynau [28] that Jring scales ast4/U 3 (cf equation (22)) and, hence, a too smallU
value will result in an even larger overestimation ofJring as clearly shown in tables2 and4. This
interpretation is supported by the results obtained from the UHF method. In this case the values
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La2CuO4 Ca2CuO2Cl2

Sr2CuO2F2
Sr2CuO2Cl2

Figure 3. Representation of atomic spin densities on centeri(ρi(I )), defined
according to Mulliken population analysis, versus the number of opposed
spins on NN sites(nNNβ(I )) of the differentI magnetic ‘phases’ for the 2D
cuprates using UHF, Fock-35 and B3LYP methods. A linear fit, as suggested
by equation (21), is also shown.

of J are largely underestimated due to the lack of electronic correlation effects, a well-known
effect [39, 55, 56, 90, 91]. Therefore, one may conclude that UHF largely overestimates the
on site two-electron repulsion and, consequently,Jring obtained at this level of theory must be
very small. This is indeed the case, the UHF estimate ofJring is vanishingly small. These results
are manifestations of the sensitivity ofJring/J with respect to the|t/U | ratio; this is Jring/J
scaling as|t/U |

2. If J(calc)/J(exp) = λ, thenJring(calc)/Jring(exp) ≈ λ3. To conclude, the DFT
based approaches effectively include electronic correlation effects that lead to a decrease of
the effectiveU parameter which was severely overestimated by the mean-field Hartree–Fock
method. However, the B3LYP potential appears to lead to unphysical too lowU values with
important consequences in the resulting physical description.

Scrutiny of the atomic spin densities, defined according to Mulliken population analysis,
brings consistent additional information. In order to check the validity of equation (21), we
report in figure3 the dependence of the spin densities on the metal centers as a function of
the number of opposed spins on NN sites. Notice that this information is extracted from the
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various magnetic ‘phases’ for each compound. As suggested by equation (20), a good linear
dependence of the local spin density on the number of spin alternations is observed for each of
the Hamiltonians. This result evidences the different strengths of the electronic delocalization
in these three Hamiltonians and the slope of the correlation can be used to estimate thet/U
ratio. For La2CuO4, thet/U estimated ratios are 0.044, 0.093 and 0.110 for UHF, Fock-35 and
B3LYP, respectively. These results nicely compare with previous estimates of this ratio from
finite cluster calculations: 0.080 and 0.120 for Fock-35 and B3LYP [57]. Also, these results
confirm the general trend discussed above, namely an excessive localization in UHF, resulting
in a too large unscreened effectiveU, and a slightly too strong delocalization in B3LYP with
a concomitant underestimation of the effectiveU. In the ladder compound, the analysis of the
correlation with respect to the number of spin alternations is not univocal since the bonds are
not identical and, therefore, is not carried out.

As mentioned in section2, it is observed that some highly frustrated and high energy self-
consistent solutions provide local spin densities which deviate significantly from the behaviour
expected from equation (21). This is due to the physically meaningless strong metal-to-ligand
delocalization of the magnetic electrons. Hence, the spin density analysis provides a criterion
to eliminate these spurious solutions. This problem has been essentially observed in the ladder
where theJ values are larger as a result of the shorter Cu–Cu distances and, also, due to the FM
interladder interaction. As a consequence, the total spin frustration becomes exceedingly costly.
Accordingly, we strongly recommend using a sufficiently large set of low energy solutions in
the fitting procedure.

5. Summary, conclusions and possible extensions

The extraction of NN spin couplings in magnetic lattices from symmetry-broken mean-field
calculations has been frequently performed on molecular systems and solids (see [48] and
references therein). The present work uses the benefit of the large multiplicity of symmetry-
broken periodic solutions and proposes a new, general and unbiased scheme to predict
the amplitude of the parameters defining a general spin Hamiltonian from DFT periodic
calculations. An important property of the present procedure is that one does not need to
make any assumption on the relative amplitude of these terms. Instead, it relies on a mapping
approach between the energy of pertinent magnetic solutions and the diagonal terms of the spin
Hamiltonian in a local representation. In addition, the overdetermined set of equations provides
a test for the completeness of the interactions considered in the spin model. It has also been
shown that the spin densities of the symmetry-broken solutions may be rationalized and they
furnish additional information on thet/U ratio through equation (20). Hence, the analysis of the
spin density distributions of these various solutions provides useful and consistent information
on thet/U (or J/t) ratio and, hence, on the electronic delocalization. As a corollary one can
point out that the observed correlation betweenTc at optimal doping and theJ/t ratio [41,
76] can be formulated as well as a correlation witht/U ratio that brings in a more physically
intuitive description. Finally, this work also points out the extreme sensitivity of the four-body
operators amplitudes to the choice of the density functional and especially to the ratio of Fock
exchange. For the time being the use of a 35% ratio has led to consistent results for cuprates and
other transition metal compounds. The question of the transferability of this parametric quantity
to other magnetic ions remains open.
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A very important outcome of the present work concerns the prediction of the four-body
cyclic operators in the general spin Hamiltonian in equation (2). The application of the general
procedure discussed at length in section2 to a series of compounds provides an independent
confirmation of the importance of four-body terms in these materials. In particular, for La2CuO4

the present results provide further support to the conclusions by Toaderet al [30] based
on the analysis of neutron diffraction experiments. Moreover, we supply reliable values for
spin Hamiltonian parameters of other key compounds such as Ca2CuO2Cl2, Sr2CuO2F2 and
Sr2CuO2Cl2. These permit us to conclude that the importance of four-body terms is likely to be
similar for most of the HTCS related cuprates and even more important in ladder compounds,
in agreement with the recent experiments of Schmidtet al [35]. Likewise, it is also suggested
that the fit to neutron scattering data should be revised by considering alternative values for both
J andJd magnetic coupling terms. In addition, the present study provides further evidence that
the four-body term and the FM inter-ladder exchange introducing spin frustration between legs
in the SrCu2O3 ladder should not be neglected.

To conclude this study, it is worth mentioning some possible generalizations of the
procedure presented in section2. One may, for instance, wonder whether the six-body
spin operators would have significant amplitudes in such lattices. The cyclic circulation of
electrons in six-member rings—related to the so-called chemical aromaticity—is responsible
for the appearance of such operators at the sixth-order of perturbation theory. It has been
demonstrated [28] that while the four-body operator results in a coupling

= 40 t4/U3Ĥ

the six-body matrix element resulting in a rotation of six spins is given by

= 504 t6/U  .5Ĥ

The large prefactor is due to the huge number of processes leading to a full permutation of
spins in a six-membered ring. Now, notice that a set of two fused plaquettes defines such a six-
membered ring. It would be worth checking whether, despite the smallness of thet/U ratio,
such many-body operators are negligible in cuprate lattices. From the perturbative arguments
above, and in view of the calculatedt/U ratio, one expects the ratioJsix-ring/Jfour-ring ∼ 0.1.
Consequently, this question has not been addressed in the present study.

Yet another generalization would concern lattices withS> 1/2 magnetic sites such as
Ni(d8) ions, NiO being the paradigm of these materials. The same strategy is applicable
to evaluate not only the NN interactions but four-body exchange amplitudes as well. This
will be considered in further work which will also show that one may, in principle,
use symmetry-broken solutions to evaluate the possible importance of biquadratic spin
exchange terms.
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