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Abstract. We study the maximal spaces of strong continuity on BMOA and the Bloch space
B for semigroups of composition operators. Characterizations are given for the cases when these
maximal spaces are V MOA or the little Bloch B0. These characterizations are in terms of the
weak compactness of the resolvent function or in terms of a specially chosen symbol g of an integral
operator Tg. For the second characterization we prove and use an independent result, namely that
the operators Tg are weakly compact on the above mentioned spaces if and only if they are compact.

1. Introduction

Let H(D) be the Fréchet space of all analytic functions in the unit disk endowed
with the topology of uniform convergence on compact subsets of D. We say that a
Banach space X is a Banach space of analytic functions if consists of functions of
H(D) such that the inclusion i(f) = f : X → H(D) is continuous.

A (one-parameter) semigroup of analytic functions is any continuous homomor-
phism Φ: t 7→ Φ(t) = ϕt from the additive semigroup of nonnegative real numbers
into the composition semigroup of all analytic functions which map D into D. In
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other words, Φ = (ϕt) consists of analytic functions on D with ϕt(D) ⊂ D and for
which the following three conditions hold:

(1) ϕ0 is the identity in D,
(2) ϕt+s = ϕt ◦ ϕs, for all t, s ≥ 0,
(3) ϕt → ϕ0, as t → 0, uniformly on compact subsets of D.
It is well known that condition (3) above can be replaced by
(3′) For each z ∈ D, ϕt(z) → z, as t → 0.
Each such semigroup gives rise to a semigroup (Ct) consisting of composition

operators on H(D),
Ct(f) := f ◦ ϕt, f ∈ H(D).

We are going to be interested in the restriction of (Ct) to certain linear subspaces
H(D). Given a Banach space of analytic functions and a semigroup (ϕt), we say
that (ϕt) generates a semigroup of operators on X if (Ct) is a well-defined strongly
continuous semigroup of bounded operators in X. This exactly means that for every
f ∈ X, we have Ct(f) ∈ X for all t ≥ 0 and

lim
t→0+

‖Ct(f)− f‖X = 0.

Thus the crucial step to show that (ϕt) generates a semigroup of operators in X is to
pass from the pointwise convergence limt→0+ f ◦ϕt(z) = f(z) on D to the convergence
in the norm of X.

This connection between composition operators and operator semigroups opens
the possibility of studying spectral properties, operator ideal properties or dynamical
properties of the semigroup of operators (Ct) in terms of the theory of functions. The
paper [3] can be considered as the starting point in this direction.

Classical choices of X treated in the literature are the Hardy spaces Hp, the
disk algebra A(D), the Bergman spaces Ap, the Dirichlet space D and the chain of
spaces Qp and Qp,0 which have been introduced recently and which include the spaces
BMOA, Bloch as well as their “little oh” analogues. See [26] and [28] for definitions
and basic facts of the spaces and [22], [23] and [25] for composition semigroups on
these spaces.

Very briefly, the state of the art is the following: (i) Every semigroup of analytic
functions generates a semigroup of operators on the Hardy spaces Hp (1 ≤ p < ∞),
the Bergman spaces Ap (1 ≤ p < ∞), the Dirichlet space, and on the spaces VMOA
and little Bloch. (ii) No non-trivial semigroup generates a semigroup of operators in
the space H∞ of bounded analytic functions. (iii) There are plenty of semigroups
(but not all) which generate semigroups of operators in the disk algebra. Indeed,
they can be well characterized in different analytical terms [6].

Recently, in [4], the study of semigroups of composition operators in the frame-
work of the space BMOA was initiated. The present paper can be considered as a
sequel of [4]. In section 3 we state some general facts about the maximal subspace
of strong continuity [ϕt, X] for the composition semigroup induced by (ϕt) on an ab-
stract Banach space X of analytic functions satisfying certain conditions. In section
4 we consider the maximal subspaces [ϕt, BMOA] and [ϕt,B]. In particular, for the
case of the Bloch space we show that no non-trivial composition semigroup is strongly
continuous on the whole space B thus [ϕt,B] is strictly contained in B. We also show
that that the equality [ϕt, BMOA] = V MOA or [ϕt,B] = B0 is equivalent to the
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weak compactness of the resolvent operator R(λ, Γ) for the composition semigroup
{Ct} acting on V MOA (respectively on B0). Here Γ denotes the infinitesimal gener-
ator of {Ct} and for each λ in the resolvent set of Γ, R(λ, Γ) denotes the (bounded)
resolvent operator

R(λ, Γ) = (λ− Γ)−1.

In section 5 we study an integral operator Tg on BMOA and B and we show in
particular that its compactness and weak compactness are equivalent (Theorem 6).
This result for the case of BMOA was also obtained independently by different
methods in [13]. In section 6 we apply these results for Tg for a special choice of
the symbol g = γ (defined later in Definition 4) to obtain a characterization of the
cases of equality [ϕt, BMOA] = V MOA and [ϕt,B] = B0 in terms of γ (Corollary 2).
In the final section 7 we make some additional observations concerning the Koenigs
function of the semigroup in relation to space of strong continuity, and state some
related open questions.

2. Background

If (ϕt) is a semigroup, then each map ϕt is univalent. The infinitesimal generator
of (ϕt) is the function

G(z) = lim
t→0+

ϕt(z)− z

t
, z ∈ D.

This convergence holds uniformly on compact subsets of D so G ∈ H(D). Moreover
G satisfies

(1) G(ϕt(z)) =
∂ϕt(z)

∂t
= G(z)

∂ϕt(z)

∂z
, z ∈ D, t ≥ 0.

Further G has a representation

(2) G(z) = (bz − 1)(z − b)P (z), z ∈ D,

where b ∈ D and P ∈ H(D) with Re P (z) ≥ 0 for all z ∈ D. If G is not identically
null, the couple (b, P ) is uniquely determined from (ϕt) and the point b is called the
Denjoy–Wolff point of the semigroup. We want to mention that this point plays a
crucial role in the dynamical behavior of the semigroup (see [23, 7]).

Recall also the notion of Koenigs function associated with a semigroup. For every
non-trivial semigroup (ϕt) with generator G, there exists a unique univalent function
h : D → C, called the Koenigs function of (ϕt), such that

1. If the Denjoy–Wolff point b of (ϕt) is in D then h(b) = 0, h′(b) = 1 and

(3) h(ϕt(z)) = eG′(b)th(z) for all z ∈ D and t ≥ 0.

Moreover,

(4) h′(z)G(z) = G′(b)h(z), z ∈ D.

2. If the Denjoy–Wolff point b of (ϕt) is on ∂D then h(0) = 0 and

(5) h(ϕt(z)) = h(z) + t for all z ∈ D and t ≥ 0.

Moreover,

(6) h′(z)G(z) = 1, z ∈ D.
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For the sake of completeness and to fix notations, we present a quick review of
basic properties of BMOA, V MOA, the Bloch space B, and the little Bloch space
B0.

BMOA is the Banach space of all analytic functions in the Hardy space H2 whose
boundary values have bounded mean oscillation. There are many characterizations
of this space but we will use the one in terms of Carleson measures (see [28, 12]).
Namely, a function f ∈ H2 belongs to BMOA if and only if there exists a constant
C > 0 such that ˆ

R(I)

|f ′(z)|2(1− |z|2) dA(z) ≤ C|I|,

for any arc I ⊂ ∂D, where R(I) is the Carleson rectangle determined by I, that is,

R(I) :=

{
reiθ ∈ D : 1− |I|

2π
< r < 1 and eiθ ∈ I

}
.

As usual, |I| denotes the length of I and dA(z) the normalized Lebesgue measure on
D. The corresponding BMOA norm is

‖f‖BMOA := |f(0)|+ sup
I⊂∂D

(
1

|I|
ˆ

R(I)

|f ′(z)|2(1− |z|2) dA(z)

)1/2

.

Trivially, each polynomial belongs to BMOA. The closure of all polynomials in
BMOA is denoted by V MOA. Alternatively, V MOA is the subspace of BMOA
formed by those f ∈ BMOA such that

lim
|I|→0

1

|I|
ˆ

R(I)

|f ′(z)|2(1− |z|2) dA(z) = 0.

Particular and quite interesting examples of members of V MOA are provided by
functions in the Dirichlet space D, which is the space of those functions f ∈ H(D)
such that f ′ ∈ L2(D, dA) with norm ‖f‖D = |f(0)|2 + ‖f ′‖2

L2(D, dA). In fact, for every
f ∈ D,

1

|I|
ˆ

R(I)

|f ′(z)|2(1− |z|2) dA(z) ≤ 2

ˆ

R(I)

|f ′(z)|2 dA(z) → 0,

as |I| → 0, so D is contained in V MOA. This last inequality also implies that there
is an absolute constant C such that

(7) ‖f‖BMOA ≤ C‖f‖D
for each f ∈ D.

A holomorphic function f ∈ H(D) is said to belong to the Bloch space B whenever
supz∈D

(
1− |z|2) |f ′(z)| < ∞. It is well-known that B is a Banach space when it is

endowed with the norm

‖f‖B = |f(0)|+ sup
z∈D

(
1− |z|2) |f ′(z)| .

The closure of the polynomials in B is called the little Bloch space and it is denoted
by B0. It is also well-known that f ∈ B0 if and only if

lim
|z|→1

(
1− |z|2) |f ′(z)| = 0.

For more information on these Banach spaces, we refer the reader to the excellent
monographs [12] or [28].
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Finally at this point we would like to mention some information about univalent
functions that will be needed later. Let h : D → C be univalent. Then h ∈ BMOA
if and only if h ∈ B, and h ∈ V MOA if and only if h ∈ B0. Further h ∈ B if and only
if the discs that can be inscribed in the range of h have bounded radii and h ∈ B0 if
and only if the radii of these discs tend to 0 as their center moves to∞. In addition if
h : D → C is univalent and non-vanishing then log(h(z)) ∈ BMOA, while if h(b) = 0

for some b ∈ D then log h(z)
z−b

∈ BMOA. Additional information can be found in [17].

3. The space [ϕt, X]

Given a semigroup of analytic functions (ϕt) and a Banach space X of analytic
functions on the unit disk, we are interested on the maximal closed subspace of X,
denoted by [ϕt, X], on which (ϕt) generates a strongly continuous semigroup (Ct)
of composition operators. The existence of such a maximal subspace, as well as
analytical descriptions of it, will be discussed in this section.

The next result for a Banach space X of analytic functions is contained, for the
special case X = BMOA, in [4]. The proof follows the same lines as the one in [4],
and for this reason we omit the details.

Proposition 1. Let (ϕt) be a semigroup of analytic functions and X a Banach
space of analytic functions such that Ct : X → X are bounded for all t ≥ 0 and
supt∈[0,1] ‖Ct‖X = M < ∞. Then there exists a closed subspace Y of X such that
(ϕt) generates a semigroup of operators on Y and such that any other subspace of
X with this property is contained in Y .

Definition 1. We denote by [ϕt, X] the maximal subspace consisting of functions
f ∈ X such that limt→0+ ‖f ◦ ϕt − f‖X = 0.

It is easy to see that if Z is any closed subspace of [ϕt, X] which is invariant under
(Ct) (i.e. Ct(Z) ⊂ Z for every t ≥ 0) then (ϕt) generates a semigroup of operators
on Z.

Definition 2. Given a semigroup (ϕt) with generator G and a Banach space of
analytic functions X we define

D(ϕt, X) := {f ∈ X : Gf ′ ∈ X}.
Clearly D(ϕt, X) is a linear subspace of X.

Theorem 1. Let (ϕt) be a semigroup with generator G and X a Banach space
of analytic functions which contains the constant functions and such that M =
supt∈[0,1] ‖Ct‖X < ∞. Then,

[ϕt, X] = D(ϕt, X).

Proof. Let us show first [ϕt, X] ⊆ D(ϕt, X). We may assume that (ϕt) is not
trivial. Denote by Γ the infinitesimal generator of the operator semigroup (Ct) acting
on the Banach space [ϕt, X], and by D(Γ) its domain. We will show that if f ∈ D(Γ)
then Gf ′ ∈ X. Indeed if f ∈ D(Γ) then Γ(f) ∈ [ϕt, X] ⊆ X and

lim
t→0+

∥∥∥∥
1

t
(Ct(f)− f)− Γ(f)

∥∥∥∥
X

= 0.
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Since convergence in the norm of X implies uniform convergence on compact subsets
of D and therefore in particular pointwise convergence, for each z ∈ D we have

Γ(f)(z) = lim
t→0+

f(ϕt(z))− f(z)

t
= lim

t→0+

f(ϕt(z))− f(ϕ0(z))

t

=
∂f ◦ ϕt(z)

∂t

∣∣∣∣
t=0

= f ′(ϕ0(z))
∂ϕt(z)

∂t

∣∣∣∣
t=0

= f ′(z)G(z),

that is, Gf ′ = Γ(f) ∈ X, and thus D(Γ) ⊂ {f ∈ X : Gf ′ ∈ X}. Taking closures and
bearing in mind the fact from the general theory of operator semigroups that D(Γ) is
dense in [ϕt, X] (see for example [10, Lemma 8, p. 620]) we get the desired inclusion.

For the converse inclusion let f ∈ D(ϕt, X) and write m(z) = G(z)f ′(z) ∈ X.
The argument in the proof of the converse of [4, Theorem 2.2] can be repeated here
to show

(f ◦ ϕt)
′(z)− f ′(z) =

ˆ t

0

(m ◦ ϕt)
′(z) ds, t ≥ 0, z ∈ D,

from which we obtain

(f ◦ ϕt)(z)− f(z) = f(ϕt(0))− f(0) +

ˆ z

0

ˆ t

0

(m ◦ ϕs)
′(ζ) ds dζ

= f(ϕt(0))− f(0) +

ˆ t

0

ˆ z

0

(m ◦ ϕs)
′(ζ) dζ ds

= f(ϕt(0))− f(0) +

ˆ t

0

[(m ◦ ϕs)(z)−m(ϕs(0))] ds.

It follows that for t < 1 we have

‖f ◦ ϕt − f‖X ≤ C|f(ϕt(0))− f(0)|+
ˆ t

0

‖m ◦ ϕs −m(ϕs(0))‖X ds

≤ C|f(ϕt(0))− f(0)|+
ˆ t

0

‖m ◦ ϕs‖Xds + C

ˆ t

0

|m(ϕs(0))| ds

≤ C|f(ϕt(0))− f(0)|+
(

M‖m‖X + C sup
|z|≤ρ

|m(z)|
)

t,

where C = ‖1‖X and ρ = sups∈[0,1] |ϕs(0)| < 1. Taking t → 0 we obtain ‖f ◦ ϕt −
f‖X → 0, therefore D(ϕt, X) ⊂ [ϕt, X]. Taking closures we get the desired inclusion
and this finishes the proof. ¤

Theorem 2. Let (ϕt) be a semigroup with generator G and X a Banach space of
analytic functions such that (Ct) is strongly continuous on X. Then the infinitesimal
generator Γ of (Ct) is given by Γ(f)(z) = G(z)f ′(z) with domain D(Γ) = D(ϕt, X).

Proof. An argument similar to the one in the first part of the proof of Theorem 1
shows that if f ∈ D(Γ) then Γ(f)(z) = G(z)f ′(z) ∈ X so that D(Γ) ⊂ D(ϕt, X).

On the other hand for λ in the resolvent set ρ(Γ) of Γ we have

D(ϕt, X) = {f ∈ X : Gf ′ ∈ X} = {f ∈ X : Gf ′ − λf ∈ X}
= {f ∈ X : there is m ∈ X such that m = Gf ′ − λf}
= {f ∈ X : there is m ∈ X such that f = R(λ, Γ)(m)}
= R(λ, Γ)(X).
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Since R(λ, Γ)(X) ⊆ D(Γ) this gives the conclusion. ¤

4. The maximal subspace for BMOA and B
For any given semigroup (ϕt), the induced operator semigroup (Ct) is known to

be strongly continuous on the little Bloch space B0 and on V MOA. A proof for both
spaces is contained in [25, Theorem 4.1] and an alternative proof for V MOA can be
found in [4, Theorem 2.4]. For the sake of completeness we recount a short proof of
the strong continuity on these two spaces. Since the polynomials are dense in B0 and
in V MOA and since sup0≤t≤1 ‖Ct‖X→X < ∞ for X = B0 and X = V MOA, by a use
of the triangle inequality, the strong continuity requirement limt→0 ‖f ◦ϕt− f‖X = 0
for f ∈ X reduces to the same requirement for f a polynomial. Now if f is a
polynomial then f ◦ ϕt − f is a function in the Dirichlet space D and we have from
(7) and [17, p. 592],

‖f ◦ ϕt − f‖B ≤ C1‖f ◦ ϕt − f‖BMOA ≤ C2‖f ◦ ϕt − f‖D,

with C1 and C2 absolute constants. But composition semigroups are strongly con-
tinuous on D, [22, Theorem 1], so limt→0 ‖f ◦ϕt− f‖X = 0 for f polynomial and the
argument is complete.

Thus we have [ϕt,B0] = B0 and [ϕt, V MOA] = V MOA so that for every semi-
group (ϕt),

B0 ⊆ [ϕt,B] ⊆ B,

and
V MOA ⊆ [ϕt, BMOA] ⊆ BMOA.

The question arises whether there are cases of semigroups for which equality holds
at one or the other end of these inclusions. In the case of BMOA it was proved by
Sarason [19] that for each of the semigroups ϕt(z) = eitz or ϕt(z) = e−tz we have
V MOA = [ϕt, BMOA]. In [4] a whole class of semigroups was identified for which
this equality holds. It is easy to see that for the above semigroups of Sarason we also
have B0 = [ϕt,B].

For the right hand side equalities it is unknown if there are semigroups such that
BMOA = [ϕt, BMOA]. For the Bloch space however we show below that there are
no non-trivial semigroups such that [ϕt,B] = B, answering a relevant question from
[23, page 237].

We state the result for the more general class of Bloch spaces Bα, α > 0, defined
by

Bα =

{
f ∈ H(D) : sup

z∈D

(
1− |z|2)α |f ′(z)| < ∞

}
,

endowed with the norm ‖f‖Bα
= |f(0)|+ supz∈D

(
1− |z|2)α |f ′(z)|. The basic prop-

erties of these spaces can be found in [29].

Theorem 3. Suppose α > 0 and (ϕt) is a non-trivial semigroup of analytic
functions. Then [ϕt,Bα]  Bα.

Proof. The result will be proved in two steps. First we show that any strongly
continuous operator semigroup in Bα is uniformly continuous, therefore its infinites-
imal generator is a bounded operator. In the second step we show that for composi-
tion semigroups (Ct), this implies that the infinitesimal generator is the null function
hence the semigroup must be the trivial one.
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Step 1. Each strongly continuous operator semigroup in Bα is uniformly continu-
ous. We are going to use a theorem of Lotz [14, Theorem 3] which says that if X is a
Grothendieck space with the Dunford-Pettis property, then each strongly continuous
semigroup of operators on X is in fact uniformly continuous (for the terminology see
the above cited work). On the other hand it is well-known that Bα is isomorphic to
the space

Hα =

{
f ∈ H(D) : sup

z∈D

(
1− |z|2)α |f(z)| < ∞

}
,

and this last space is isomorphic to the space l∞ of all bounded sequences of complex
numbers (see [15]). Therefore Bα is isomorphic to l∞ for all positive α, and it is well
known that l∞ is a Grothendieck space with the Dunford–Pettis property (see [9,
Chapter VII, Exercises 1 and 12]). It follows that Bα is a Grothendieck space with
the Dunford–Pettis property and the theorem of Lotz applies.

Step 2. If (ϕt) is a semigroup with generator G and the induced semigroup of
composition operators (Ct) is strongly continuous on Bα, then G ≡ 0. To prove
this let Γ: Bα → Bα denote the infinitesimal generator of (Ct). From Step 1, Γ
is a bounded operator. Now for each f ∈ Bα we have Γ(f) = limt→0

f◦ϕt−f
t

, the
convergence being in the norm of Bα. But it is easy to see that convergence in
Bα implies uniform convergence on compact subsets of the disc and in particular it
implies pointwise convergence for each z ∈ D. Thus for z ∈ D,

Γ(f)(z) = lim
t→0

f(ϕt(z))− f(z)

t
=

∂f(ϕt(z))

∂t
|t=0 = G(z)f ′(z),

therefore Γ(f) = Gf ′ for each f ∈ Bα.
Suppose that G 6= 0 and recall that G(z) = (bz− 1)(z− b)P (z) where P ∈ H(D)

with Re P (z) ≥ 0. Since P (z) has boundary values almost everywhere on the unit
circle (this for example follows from the fact that such a function P belongs to the
Hardy spaces Hp for all p < 1) we can find a point ξ ∈ ∂D such that G∗ (ξ) =
limr→1 G (rξ) exists and is finite and different from zero.

Now we distinguish three cases depending on α. If 0 < α < 1, take f(z) =
(1− ξz)1−α, a function in Bα. Thus

Γ(f)(z) = G(z)f ′(z) = G(z)(α− 1)ξ(1− ξz)−α

is a function in Bα and therefore bounded on D because for these values of α, Bα is
contained in the disc algebra [29, Proposition 9]. On the other hand taking z = rξ,
0 < r < 1, we have

lim
r→1

G (rξ) f ′ (rξ) = (α− 1)ξ lim
r→1

G(rξ)(1− r)−α = ∞,

a contradiction.
If α = 1 then take f(z) = log( 1

1−ξz
), a function in the Bloch space B = B1. Thus

the function

Γ(f)(z) = G(z)
ξ

1− ξz

belongs to B, and so it must satisfy the growth estimate [28, p. 82] for Bloch functions,
that is for some constant C,

|G(z)| 1

|1− ξz| ≤ |G(0)|+ C log
1

1− |z| , z ∈ D.
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In particular for z = rξ we obtain

|G(rξ)| ≤ (1− r)|G(0)|+ C(1− r) log
1

1− |r|
and taking r → 1 this implies G∗(ξ) = 0, a contradiction.

Finally if α > 1 let f(z) =
(
1− ξz

)1−α, a function in Bα. Thus the function

Γ(f)(z) = G(z)(α− 1)ξ(1− ξz)−α

belongs to Bα and hence it satisfies the estimate

|Γ(f)(z)| ≤ |Γ(f)(0)|+ C(1− |z|)1−α, z ∈ D,

for some constant C, see [29, Theorem 18 and p. 1162]. We then obtain for z = rξ

(α− 1)|G(rξ)| ≤ (α− 1)|G(0)|(1− r)α + C(1− r),

and letting r → 1 this implies G∗(ξ) = limr→1 G(rξ) = 0, a contradiction. This
completes the proof. ¤

Suppose now that X is either V MOA or the little Bloch space B0 so that the
second dual X∗∗ is BMOA or B respectively. Let (ϕt) be a semigroup on D and let
(Ct) be the induced semigroup of composition operators on X∗∗. Since each ϕt is
univalent each Ct is maps X into itself, and the restriction St = Ct|X , is a strongly
continuous semigroup on X.

Lemma 1. Using the preceding notation for the semigroups (St) and (Ct) on X
and X∗∗ respectively we have

S∗∗t = Ct

for each t ≥ 0.

Proof. By the definition of the adjoint operator,

S∗∗t |X = St = Ct|X .

But X is weak∗ dense in X∗∗ and the conclusion follows. ¤

Theorem 4. Let (ϕt) be a semigroup and X be one of the spaces V MOA or
B0. Denote by Γ the generator of the induced composition semigroup (St) on X and
let λ ∈ ρ(Γ). Then the following are equivalent.

(1) [ϕt, X
∗∗] = X;

(2) R(λ, Γ) is weakly compact on X;
(3) R(λ, Γ)∗∗(X∗∗) ⊂ X.

Proof. Conditions (2) and (3) are well known to be equivalent for every bounded
operator on every Banach space X, [10, Theorem VI.4.2]. We proceed to show that
(1) and (3) are equivalent.

(1) ⇒ (3). Take λ ∈ ρ(Γ) a big real number and f ∈ X. Writing the resolvent
as a Laplace transform [10, Theorem 11, p. 622],

R(λ, Γ)(f) =

ˆ ∞

0

e−λuSu(f) du,

we have

St ◦ R(λ, Γ)(f) =

ˆ ∞

0

e−λuSt+u(f) du = eλt

ˆ ∞

t

e−λuSu(f) du.
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From this we obtain

St ◦ R(λ, Γ)(f)−R(λ, Γ)(f) = (eλt − 1)

ˆ ∞

t

e−λuSu(f) du−
ˆ t

0

e−λuSu(f) du,

thus

‖St ◦ R(λ, Γ)(f)−R(λ, Γ)(f)‖ ≤
(
|eλt − 1|

ˆ ∞

t

e−λu‖Su‖ du +

ˆ t

0

e−λu‖Su‖ du

)
‖f‖,

see [10, Corollary 5, p. 619] for justification of the finiteness of the integrals. Conse-
quently

lim
t→0

||St ◦ R(λ, Γ)−R(λ, Γ)|| = 0

and so, recalling that S∗∗t = Ct and that St commutes with R(λ, Γ) we have

lim
t→0

||Ct ◦ R(λ, Γ)∗∗ −R(λ, Γ)∗∗|| = 0.

Thus if f ∈ X∗∗, for the function F = R(λ, Γ)∗∗(f) we have

lim
t→0

||Ct(F )− F || = 0,

which says that R(λ, Γ)∗∗(f) = F ∈ [ϕt, X
∗∗] = X, i.e. R(λ, Γ)∗∗(X∗∗) ⊂ X. This

gives the result for big real values of λ and the resolvent equation gives the inclusion
for any other λ ∈ ρ(Γ).

(3) ⇒ (1). To show this put Y = [ϕt, X
∗∗] then X ⊆ Y ⊆ X∗∗. The restriction

of (Ct) on Y is a strongly continuous semigroup with generator

∆(f) = Gf ′, D(∆) = {f ∈ Y : Gf ′ ∈ Y }.
It is clear that D(Γ) ⊂ D(∆) so that ∆ is an extension of Γ. Let λ be a big real
number such that λ ∈ ρ(Γ) ∩ ρ(∆). An argument similar to the one in the proof of
Lemma 1 shows that

R(λ, Γ)∗∗|X = R(λ, Γ), R(λ, Γ)∗∗|Y = R(λ, ∆)

We have

D(∆) = R(λ, ∆)(Y ) = R(λ, Γ)∗∗|Y (Y ) ⊂ R(λ, Γ)∗∗(X∗∗) ⊂ X.

Recalling that D(∆) is dense in Y we have [ϕt, X
∗∗] = Y = D(∆) ⊂ X, and this

finishes the proof. ¤

Corollary 1. Let (ϕt) be a semigroup of functions in D, let Γ be the generator
of (Ct) on the space V MOA or on the space B0 and let λ ∈ ρ(Γ). Then

(1) [ϕt, BMOA] = V MOA if and only if R(λ, Γ) is weakly compact on V MOA.
(2) [ϕt,B] = B0 if and only if R(λ, Γ) is weakly compact on B0.

5. The integral operator Tg

We are going to use a certain integral operator Tg defined on analytic functions
by

Tg(f)(z) =

ˆ z

0

f(ξ)g′(ξ)dξ, f ∈ H(D),

where its symbol g is an analytic function on D. This operator (also called in
the literature the Volterra operator or the generalized Cesàro operator) was first
considered by Pommerenke [17] and has been widely studied in several recent papers
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[2, 1, 24, 27]. We will use properties of this operator for a particular choice of the
symbol g in order to better describe information for the maximal space of strong
continuity in various cases. Before doing so we present some facts for Tg acting on
the spaces of our concern.

To describe the symbols g for which the integral operator Tg is bounded or com-
pact on spaces like BMOA or B we need to consider the logarithmically weighted
versions of those spaces. They are defined as follows.

Definition 3. Let f : D → C an analytic function.
(1) We say that f belongs to BMOAlog if

‖f‖2
∗∗ := sup

I∈∂D





(
log 2

|I|

)2

|I|
ˆ

R(I)

|f ′(z)|2(1− |z|2) dA(z)





< ∞.

The subspace V MOAlog of BMOAlog contains by definition all the functions
f such that

lim
|I|→0





(
log 2

|I|

)2

|I|
ˆ

R(I)

|f ′(z)|2(1− |z|2) dA(z)





= 0.

(2) We say that f belongs to the weighted Bloch space Blog if

sup
z∈D

(1− |z|2) log

(
1

1− |z|2
)
|f ′(z)| < ∞.

The subspace Blog, 0 contains all functions f that satisfy

lim
|z|→1

(1− |z|2) log

(
1

1− |z|2
)
|f ′(z)| = 0.

It is clear that BMOAlog ⊂ V MOA and Blog ⊂ B0. The following theorem
characterizes boundedness of the operators Tg on BMOA and Bloch spaces.

Theorem 5. Let X = V MOA or respectively, X = B0. Then the following are
equivalent:

(1) Tg is bounded on X;
(2) Tg is bounded on X∗∗;
(3) g ∈ BMOAlog, respectively g ∈ Blog.

Proof. For the space V MOA, this result is contained in [24, Corollary 3.3]. For
the space B0, the proof is almost contained in [27, Theorem 2.1]. The only thing we
have to check is that if g ∈ Blog, then Tg is bounded on B0. To show this recall that
if f ∈ B0 then, [28, p. 102],

lim
|z|→1

f(z)

log
(

1
1−|z|2

) = 0.

Write

M = sup
z∈D

(1− |z|2) log

(
1

1− |z|2
)
|g′(z)|.
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Then

(1− |z|2)|Tg(f)′(z)| = (1− |z|2)|f(z)||g′(z)|

= (1− |z|2) log

(
1

1− |z|2
)
|g′(z)| |f(z)|

log
(

1
1−|z|2

)

≤ M
|f(z)|

log
(

1
1−|z|2

) −→ 0 as |z| → 1.

That is Tg(f) is also in B0. ¤
The next theorem is about the compactness and weak compactness of Tg on the

spaces of our interest. The case X = BMOA, V MOA of it was obtained by different
methods in [13].

Theorem 6. Let X = V MOA or respectively X = B0. Suppose that Tg is
bounded on X, that is, g ∈ BMOAlog, respectively g ∈ Blog. Then the following are
equivalent:

(1) Tg is weakly compact on X;
(2) Tg is compact on X;
(3) Tg is weakly compact on X∗∗;
(4) Tg is compact on X∗∗;
(5) Tg(X

∗∗) ⊂ X;
(6) g ∈ V MOAlog, respectively g ∈ Blog, 0.

Proof. For the little Bloch space, this result follows from general theory of weakly
compact operators, the fact that B0 is isomorphic to c0 and [27, Theorem 2.3].

We have to address the case X = V MOA. The equivalence between statements
(2), (4), and (6) is included in [24, Theorem 3.6 and p. 310]. From general theory
of weakly compact operators we know that (1), (3), and (5) are equivalent and (2)
implies (1). Therefore we only have to prove that (5) implies (6).

To do this suppose that Tg(BMOA) ⊂ V MOA and g /∈ V MOAlog. This implies
that there is some δ > 0 and some sequence In of intervals in ∂D such that |In| → 0
and

log2 4π
|In|

|In|
ˆ

R(In)

|g′(z)|2 dA(z) ≥ δ

for all n. Now let zIn denote the point in the middle of the internal side of R(In) and
take f ∈ BMOA. Clearly, for every z ∈ D,

Tg(f)′(z)− f(zIn)g′(z) = (f(z)− f(zIn))g′(z).

Then, integrating and following literally the argument in [16, p. 581, lines 7–14 from
above], we deduce that, for some constant c,

1

|In|
ˆ

R(In)

|Tg(f)′(z)− f(zIn)g′(z)|2 dA(z) ≤ c

log2 4π
|In|
‖f‖2

BMOA‖g‖2
∗∗.
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These estimates imply that
1

|In|
ˆ

R(In)

|Tg(f)′(z)|2 dA(z)

≥ 1

2
|f(zIn)|2 1

|In|
ˆ

R(In)

|g′(z)|2 dA(z)− c

log2 4π
|In|
‖f‖2

BMOA‖g‖2
∗∗

≥ 1

2

|f(zIn)|2
log2 4π

|In|
δ − c

log2 4π
|In|
‖f‖2

BMOA‖g‖2
∗∗.

Now, we notice that if we are able to construct some f ∈ BMOA such that

lim sup
n→∞

|f(zIn)|
log 4π

|In|
> 0,

this would imply that

lim sup
n→∞

1

|In|
ˆ

R(In)

|Tg(f)′(z)|2 dA(z) > 0

and, hence, Tg(f) /∈ V MOA obtaining in this way a contradiction. The rest of the
proof is devoted to the construction of such function f .

Taking a subsequence, we may assume that the intervals In accumulate to some
point of ∂D and, without loss of generality, we may take this point to be the point
1. Consider the function

p(z) = log
(1− z)2

(1 + z)2 + (1− z)2

which is the conformal mapping of the unit disc D onto the open set E = {w : |Im(w)|
< π} \ {w : Re(w) ≥ 0, Im(w) = 0}. It is easy to prove the following properties of p:

• |p(z)| ≤ c|z + 1|2 whenever |z + 1| ≤ 1, z ∈ D;
• |p(z)| ≥ c log 2

|z−1| whenever |z − 1| ≤ 1, z ∈ D;
• Im(p(ζ)) = ±π whenever 0 < | arg ζ| < π

2
, ζ ∈ ∂D;

• Im(p(ζ)) = 0 whenever π
2

< | arg ζ| < π, ζ ∈ ∂D.
We write

zn = zIn

and
δn = 1− |zn| ³ |In|, zn = |zn|eiθn , |θn| < π.

By our assumption, we have that

δn → 0, θn → 0.

There are exactly two cases.

Case 1. There is some positive constant c and a subsequence of (zn) such that

δn ≥ cθ2
n.

In this case, and restricting to this subsequence, we have |1−zn| ≤ c(δn + |θn|) ≤
c
√

δn and, hence,

|p(zn)| ≥ c log
2

|zn − 1| ≥ c log
1

δn

≥ c log
4π

|In| .
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Since p has bounded imaginary part, it belongs to BMOA and we are done just taking
f = p.

Case 2. The case δn

θ2
n
→ 0.

We now consider

un = (1−
√

δn)
zn

|zn| , δn = 1− |zn|, λn =
1 + un

1 + un

and construct the functions

pn(z) = p

(
λn

z − un

1− unz

)
.

Observe that arg un = arg zn = θn and that 1 − |un| =
√

δn =
√

1− |zn|. Also, the
function λn

z−un

1−unz
maps un to 0 and −1 to −1. Furthermore, there is an interval Jn

of ∂D of length |Jn| ³ 1 − |un| =
√

δn which is centered at a point eiφn such that
|φn − θn| ≤ cδn with the property

Im(pn(ζ)) = ±π, ζ ∈ Jn,

Im(pn(ζ)) = 0, ζ ∈ T \ Jn.

Since |Jn|
θn

→ 0, by taking a subsequence, we may assume that the intervals Jn

are disjoint, that Jn+1 is closer to 1 than Jn and that
∞∑

k=1

δk

θ2
k

< +∞.

Note that

(8) λn
z − un

1− ūnz
+ 1 =

1 + z

1 + un

1− |un|2
1− ūnz

.

This shows that

|λn
z − un

1− ūnz
+ 1| ≤ C

√
δn

1− |z|
and hence |pn(z)| ≤ C

√
δn

(1−|z|)2 and we can define the analytic function in the unit disc
given by

f(z) =
∞∑

n=1

pn(z).

Notice that we have that the boundary values of the harmonic function Imf(z) are
absolutely bounded by π and, hence, that f belongs to BMOA.

A calculation shows that

λn
zn − un

1− unzn

=
1

1 +
√

δn − δn

(
1− 2

√
δn − δn

1 + un

)
.

Therefore ∣∣∣∣λn
zn − un

1− unzn

− 1

∣∣∣∣ ≤ c
√

δn

and, hence,

|pn(zn)| ≥ c log
1

δn

≥ c log
4π

|Jn| .
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On the other hand, using

|1− ukzn| ≥ ||1− zn| − |1− uk||,
and

|1− zn| ³ |θn|, |1− uk| ³ |θk|,
one easily gets from (8) that

∣∣∣∣λk
zn − uk

1− ukzn

+ 1

∣∣∣∣ ≤ c
1− |uk|
|1− ukzn| ≤

{
c
√

δk

θk
, k < n,

c
√

δk

θn
, k > n,

and, hence,

|pk(zn)| ≤
{

c δk

θ2
k
, k < n,

c δk

θ2
n
, k > n.

From these estimates we get

|f(zn)| ≥ |pn(zn)| −
∑

k<n

|pk(zn)| −
∑

k>n

|pk(zn)|

≥ c log
4π

|In| − c
∑

k<n

δk

θ2
k

− c
∑

k>n

δk

θ2
n

≥ c log
4π

|In| − c
∑

k 6=n

δk

θ2
k

≥ c log
4π

|In|
and this finishes the proof. ¤

The above result and in particular the implication (5) ⇒ (6) answers in the
negative a question from [24] where it was asked if there are functions g such that Tg

is weakly compact but not compact in V MOA.

6. Applications

We are going now to apply these properties of Tg for a special choice of the symbol
g.

Definition 4. Given a semigroup (ϕt) with generator G and Denjoy–Wollf point
b, we define the function γ(z) : D → C as follows

(1) If b ∈ D, let

γ(z) =

ˆ z

b

ξ − b

G(ξ)
dξ,

(2) If b ∈ ∂D, let

γ(z) =

ˆ z

0

1

G(ξ)
dξ.

Notice that γ(z) is analytic on D and that when b ∈ ∂D then γ(z) = h(z), the
Koenigs function for (ϕt). We call γ(z) the associated g-symbol of (ϕt). The following
proposition shows the connection between [ϕt, X] and integral operators.

Proposition 2. Let (ϕt) be a semigroup with associated g-symbol γ(z). Let
also X be a Banach space of analytic functions with the properties:

(i) X contains the constant functions,
(ii) For each b ∈ D, f ∈ X ⇐⇒ f(z)−f(b)

z−b
∈ X,

(iii) If (Ct) is the induced semigroup on X then supt∈[0,1] ‖Ct‖X < ∞.
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Then
[ϕt, X] = X ∩ (Tγ(X)⊕C).

Proof. Let G be the generator of (ϕt). First observe that

{f ∈ X : Gf ′ ∈ X} = {f ∈ X :
f ′

γ′
∈ X}.

This is clear in the case b ∈ ∂D because then Gγ′ = Gh′ = 1. In the case b ∈ D we
have G(b) = 0 and the assumption (ii) on X gives

G(z)f ′(z) ∈ X ⇐⇒ G(z)

z − b
f ′(z) =

f ′(z)

γ′(z)
∈ X.

Now write m(z) = f ′(z)
γ′(z)

∈ X, then

f(z) =

ˆ z

0

m(ξ)γ′(ξ) dξ + c = Tγ(m)(z) + c,

where c ∈ C. Thus

D(ϕt, X) = {f ∈ X : Gf ′ ∈ X} = {f ∈ X :
f ′

γ′
= m for some m ∈ X}

= {f ∈ X : f ′ = mγ′ for some m ∈ X}

= {f ∈ X : f(z) =

ˆ z

0

m(ξ)γ′(ξ) dξ + c for some m ∈ X and c ∈ C}
= X ∩ (Tγ(X)⊕C),

and the conclusion follows by taking closures and using Theorem 1. ¤
In view of the Proposition 2 it would be desirable to have the operator Tγ bounded

on X. The following proposition says that this is not always the case.

Proposition 3. Let X = BMOA or X = B, and (ϕt) be a semigroup with
Denjoy–Wolff point on ∂D and associated g-symbol γ. Then Tγ is not bounded on
X.

Proof. Denote by h the Koenigs function of (ϕt). Then h is a univalent function
on D with h(0) = 0 and such that the range of h has the following geometrical
property:

w ∈ h(D) =⇒ w + t ∈ h(D), for all t ≥ 0.

Recall that a univalent function belongs to B0 if and only if it belongs to V MOA and
that such a function belongs B0 if and only if whenever D(w, r) are discs contained
in its range with the centers w moving to the boundary of the range, then the radii
tend to zero. It follows from above geometric property of the range of h that h is not
in B0 and therefore also it is not in V MOA.

On the other hand the associated g-symbol of the semigroup is γ(z) = h(z).
Assume Tγ is bounded on BMOA, then γ = h ∈ BMOAlog ⊂ V MOA and this is
a contradiction. Similarly if we assume Tγ is bounded on B then γ = h ∈ Blog ⊂ B0

and we obtain again a contradiction. ¤
Remark 1. If the Denjoy–Wolff point of (ϕt) is inside D and there is a regular

boundary fixed point for some (and then for all) ϕt, then we can show a similar
result on B. Recall that a regular boundary fixed point is a point a ∈ ∂D such that



Semigroups of composition operators and integral operators in spaces of analytic functions 83

ϕs(a) = a and ϕ′s(a) 6= ∞ for some s > 0 in the sense of angular limits and angular
derivative. It then follows that there is a β ∈ (0,∞) such that

ϕt(a) = a and ϕ′t(a) = eβt

for all t, and that for the generator G of (ϕt) we have

lim
z→a

G(z) = 0 and lim
z→a

G(z)

z − a
= β,

where the limits are taken non-tangentially, see [8]. In particular taking r < 1 real
we obtain limr→1

G(ra)
(r−1)a

= β.
Let γ be the associated g-symbol for (ϕt), then γ′(z) = z−b

G(z)
where b ∈ D is the

Denjoy–Wolff point. We have,

sup
z∈D

(1− |z|2) log(
1

1− |z|2 )|γ′(z)| ≥ sup
r∈(0,1)

(1− |r|2) log(
1

1− |r|2 )

∣∣∣∣
ra− b

G(ra)

∣∣∣∣

= sup
r∈(0,1)

|ra− b|(1 + r) log(
1

1− |r|2 )

∣∣∣∣
1− r

G(ra)

∣∣∣∣ = ∞,

therefore Tγ is not bounded on B.
Undoubtedly, the above proposition and remark are a handicap for our appli-

cations because the boundedness of Tγ is desired. However, in many families of
examples our techniques work to give a description of the maximal space of strong
continuity.

Corollary 2. Let X = V MOA, or respectively X = B0. Suppose (ϕt) is a
semigroup with associated g-symbol γ(z) and suppose γ ∈ BMOAlog, respectively
γ ∈ Blog. Then [ϕt, X

∗∗] = X if and only if γ ∈ V MOAlog, respectively γ ∈ Blog, 0.

Proof. If γ ∈ V MOAlog, respectively γ ∈ Blog, 0, then by Theorem 6 we have
Tγ(X

∗∗) ⊂ X. It then follows from Proposition 2 that

[ϕt, X
∗∗] = X∗∗ ∩ (Tγ(X∗∗)⊕C) ⊂ X∗∗ ∩X = X

and we have equality because X ⊂ [ϕt, X
∗∗].

Conversely suppose [ϕt, X
∗∗] = X. Then from Proposition 2 we must have

X∗∗ ∩ (Tγ(X∗∗)⊕C) = X and in particular

(9) X∗∗ ∩ (Tγ(X
∗∗)⊕C) ⊂ X.

The hypothesis on γ implies that Tγ is bounded on X∗∗ and X∗∗ contains the con-
stants therefore Tγ(X

∗∗) ⊕C ⊂ X∗∗. This in view of (9) implies Tγ(X
∗∗) ⊕C ⊂ X

and then Tγ(X
∗∗) ⊂ X because X contains the constants. Using Theorem 6 again

we conclude γ ∈ V MOAlog, respectively γ ∈ Blog, 0. ¤

Corollary 3. (see [4, Theorem 3.1]) Let (ϕt) be a semigroup with generator
G(z). Assume that for some 0 < α < 1,

(1− |z|)α

G(z)
= O(1), |z| → 1.

Then
[ϕt, BMOA] = V MOA and [ϕt,B] = B0.
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Proof. Let γ be the associated g-symbol for (ϕt). The assumption implies that
there is a constant C such that (1 − |z|)α|γ′(z)| ≤ C for z ∈ D. Therefore γ
has boundary values (1 − α)-Hölder continuous, in particular γ ∈ V MOAlog and
γ ∈ Blog,0. The conclusion follows by applying Corollary 2. ¤

7. Final remarks and open questions

In this section we obtain some additional information, mostly on the Koenigs
function and the maximal space of strong continuity for semigroups acting on BMOA
or on B. We also present some questions which we could not answer in this article.

Recall that for any semigroup (ϕt) with generator

G(z) = (bz − 1)(z − b)P (z),

the associated g-symbol γ is a univalent function when b ∈ ∂D because it coincides
with the Koenigs map h. We observe that γ is also univalent when b ∈ D. The
easiest way to see this is to show that γ is in this case a close-to-convex function (see
[18, p. 68] for the definition). Indeed the function g(z) = (1/b̄) log(1− b̄z) is a convex
univalent function for b ∈ D and it can be checked easily that Re(γ′

g′ ) = Re( 1
P
) ≥ 0.

We are going to consider also the function

(10) ψ(z) =

ˆ z

0

1

P (ξ)
dξ, z ∈ D.

Since Re(1/P ) ≥ 0 this is a univalent function [11, Theorem 2.16]. The growth
estimate |1/P (z)| ≤ C 1+|z|

1−|z| for z ∈ D for the function 1/P of non-negative real part
says that (1 − |z|)|ψ′(z)| ≤ 2C so ψ ∈ B and since ψ is univalent it follows that
ψ ∈ BMOA.

Proposition 4. Let X = BMOA or X = B and let (ϕt) be a semigroup with
generator G(z) = (bz− 1)(z− b)P (z), Koenigs function h and associated g-symbol γ
and let ψ(z) be given by (10). Then the following hold:

(1) ψ(z), γ(z) ∈ D(ϕt, X),
(2) If h ∈ X, then h ∈ D(ϕt, X).
(3) (i) If b ∈ D, then (z − b) log h(z)

z−b
∈ [ϕt, X]. Moreover, log h(z)

z−b
∈ D(ϕt, X) if

and only if G(z) ∈ X,
(ii) If b ∈ ∂D, then z log h(z)

z
∈ [ϕt, X]. Moreover, log h(z)

z
∈ D(ϕt, X) if and

only if G(z) ∈ X,
(4) If C \h(D) has nonempty interior, then log(h(z)− c) belongs to D(ϕt, X) for

each c in the interior of C \ h(D).

Proof. (1) We have G(z)ψ′(z) = (bz−1)(z−b) ∈ X, therefore ψ ∈ D(ϕt, X). For
γ(z), since G(z)γ′(z) = 1 if b ∈ ∂D while G(z)γ′(z) = z − b if b ∈ D, the conclusion
follows.

(2) Since G(z)h′(z) = 1 if b ∈ ∂D and G(z)h′(z) = G′(b)h(z) if b ∈ D, the
assertion is clear.

(3)(i) We observe that

G′(b)γ(z) =

ˆ z

b

G′(b)(ξ − b)

G(ξ)
dξ =

ˆ z

b

(ξ − b)h′(ξ)
h(ξ)

dξ
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=

ˆ z

b

[
1 + (ξ − b)

(
log

h(ξ)

ξ − b

)′]
dξ

= z − b + (z − b) log
h(z)

z − b
−
ˆ z

b

log
h(ξ)

ξ − b
dξ.

Now log h(z)
z−b

belongs to BMOA (and to B) so the function
´ z

b
log h(ξ)

ξ−b
dξ is continuous

on D, hence it belongs to V MOA (and to B0). Since

(z − b) log
h(z)

z − b
= G′(b)γ(z)− (z − b) +

ˆ z

b

log
h(ξ)

ξ − b
dξ,

with γ ∈ D(ϕt, X) ⊂ [ϕt, X] we conclude that (z − b) log h(z)
z−b

∈ [ϕt, X].
Finally, let q(z) = log h(z)

z−b
and observe that

G(z)q′(z) = G(z)

(
h′(z)

h(z)
− 1

z − b

)
= G′(b)− G(z)

z − b
= G′(b)− (b̄z − 1)P (z).

This says that q(z) ∈ D(ϕt, X) if and only if (b̄z− 1)P (z) ∈ X and this is equivalent
to G(z) = (z − b)(b̄z − 1)P (z) ∈ X.

(3)(ii) Let m(z) = z
h(z)

. This is a bounded function on D hence it belongs to
BMOA and to B. Observe that

Tγ(m)(z) =

ˆ z

0

ξh′(ξ)
h(ξ)

dξ.

A calculation similar to the one in (3)(i) gives

Tγ(m)(z) = z log
h(z)

z
+ z −

ˆ z

0

log
h(ξ)

ξ
dξ,

and the three terms in the right hand side are elements of X. Thus Tγ(m)(z) ∈ X
with m(z) ∈ X, and Proposition 2 implies that Tγ(m)(z) ∈ [ϕt, X]. By the argument
of (3)(i), z−´ z

0
log h(ξ)

ξ
dξ is in V MOA (and in B0) and we conclude z log h(z)

z
∈ [ϕt, X].

To show the last assertion let q(z) = log h(z)
z
. Then

zG(z)q′(z) = zG(z)

(
h′(z)

h(z)
− 1

z

)
=

zG(z)h′(z)

h(z)
−G(z) =

z

h(z)
−G(z).

Now G(z)q′(z) ∈ X is equivalent to zG(z)q′(z) ∈ X. Thus q ∈ D(ϕt, X) if and only
if z

h(z)
−G(z) ∈ X and since z

h(z)
is a function in X we obtain the desired conclusion.

(4) Observe that q(z) = log(h(z) − c) belongs to BMOA (and to B). By the
hypothesis there is a δ > 0 such that |h(z)− c| > δ for z ∈ D, so for the case b ∈ ∂D,

G(z)q′(z) = G(z)
h′(z)

h(z)− c
=

1

h(z)− c
,

is a bounded function so it is in BMOA and the conclusion follows in this case.
Finally if b ∈ D then

G(z)q′(z) = G(z)
h′(z)

h(z)− c
= G′(b)

h(z)

h(z)− c
,

which is also bounded on D so the result follows. ¤
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Corollary 4. (see [4, Theorem 3.3]) If (ϕt) is a semigroup with generator G(z)
and Denjoy–Wolff b ∈ D and either [ϕt, BMOA] = V MOA or [ϕt,B] = B0, then

(11) lim
|z|→1

1− |z|
G(z)

= 0.

Proof. By Proposition 4 and our hypothesis, we have (z − b) log h(z)
z−b

∈ V MOA

or respectively (z − b) log h(z)
z−b

∈ B0. This implies log h(z)
z−b

∈ V MOA ⊂ B0, therefore

0 = lim
|z|→1

(1− |z|)
(

log
h(z)

z − b

)′
= lim

|z|→1
(1− |z|)

(
h′(z)

h(z)
− 1

z

)

= lim
|z|→1

(1− |z|)h
′(z)

h(z)
= lim

|z|→1

G′(b)(1− |z|)
G(z)

,

and since G′(b) 6= 0 the conclusion follows. ¤
If F (z) is analytic with ReF (z) ≥ 0 on D, the Herglotz theorem says that there

is a nonnegative Borel measure µ on ∂D such that

F (z) =

ˆ 2π

0

eiθ + z

eiθ − z
dµ(θ) + iImF (0).

The following proposition says that the presence of point masses for the measure µ
associated with 1/P implies automatically that [ϕt, BMOA] is strictly larger than
V MOA.

Corollary 5. Let X = BMOA or X = B and let (ϕt) be a semigroup with
generator G(z) = (z−b)(b̄z−1)P (z) such that [ϕt, BMOA] = V MOA or [ϕt,B] = B0.
Then the Herglotz measure for 1/P (z) has no point masses on ∂D.

Proof. From Proposition 4 and the hypothesis we have that the function ψ(z) =´ z

0
1

P (ξ)
dξ belongs to V MOA in the first case or to B0 in the second case. Since this

function is univalent it belongs to V MOA in both cases. But then the operator

Tψ(f)(z) =

ˆ z

0

f(ξ)ψ′(ξ)dξ =

ˆ z

0

f(ξ)
1

P (ξ)
dξ

is a compact operator on the Hardy space H2, see [1]. It follows then by [21, Theorem
4] that µ has no point masses on ∂D. ¤

Corollary 6. Let (ϕt) be a semigroup with Denjoy-Wolff point b ∈ ∂D and
Koenigs function h. If either [ϕt, BMOA] = V MOA or [ϕt,B] = B0 then h ∈
(∩p<∞Hp) \BMOA.

Proof. First observe that the Koenigs function cannot belong to BMOA. Oth-
erwise from Proposition 4(2), we would have

h ∈ D(ϕt, BMOA) ⊂ [ϕt, BMOA]

so h ∈ V MOA by our assumption, which is impossible in view of the geometric
property of the range of h. On the other hand again from Proposition 4(3)(ii) and
our assumption we have z log h(z)

z
∈ V MOA so in particular log h(z)

z
∈ V MOA. This

implies elog
h(z)

z ∈ Hp for all p < ∞, [17, p. 596], so h ∈ Hp for all p < ∞.
The argument for the Bloch case is similar and is omitted. ¤
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Remark 2. One could expect, for the case of Denjoy–Wolff point on the bound-
ary, to obtain a result similar to (11) for the generator G(z), under the assumption
[ϕt, BMOA] = V MOA or [ϕt,B] = B0. In this case, using Proposition 4 one obtains
log h(z)

z
∈ B0 which means

lim
|z|→1

(1− |z|)h
′(z)

h(z)
= 0,

and in terms of G(z),

lim
|z|→1

1− |z|
G(z)

1´ z

0
1

G(ξ)
dξ

= 0.

Note that
´ z

0
1

G(ξ)
dξ = h(z) is never bounded, and finer analysis is required. We can

however obtain a substitute of (11) if we consider integral averages of 1/G(z).

Corollary 7. Let (ϕt) be a semigroup with generator G(z) and Denjoy–Wolff
point b ∈ ∂D. If either [ϕt, BMOA] = V MOA or [ϕt,B] = B0 then for every
0 < p < ∞,

lim
r→1

(1− r)

(ˆ 2π

0

1

|G(reit)|p dt

)1/p

= 0.

Proof. As observed in the previous Remark, we have lim|z|→1(1 − |z|)h′(z)
h(z)

= 0.
Since from Corollary 6 the function h belongs to all Hardy spaces we have

ˆ 2π

0

(1− r)p

|G(reit)|p dt =

ˆ 2π

0

(1− r)p|h′(reit)|p
|h(reit)|p |h(reit)|p dt

≤ sup
|z|=r

(
(1− |z|)p|h′(z)|p

|h(z)|p
)
‖h‖p,

and the right hand side goes to 0 as r → 1. ¤
We now present some open questions. On the basis of Theorem 3 which says that

no non-trivial semigroup (ϕt) induces a strongly continuous composition operator
semigroup (Ct) on the Bloch space, it is natural to expect that the same is true for
BMOA. The space BMOA however does not posses the Dunford–Pettis property
(see [5]) and the method of proof for the Bloch space does not work.

Question 1. Is it true that for every non-trivial semigroup (ϕt) the space
[ϕt, BMOA] is strictly smaller than BMOA?

Suppose now (ϕt) has its Denjoy–Wolff point on the boundary so its generator
can be written G(z) = b̄(b − z)2P (z) with Re(P (z)) ≥ 0. This generator cannot
satisfy the condition

(1− |z|)α

G(z)
= O(1), as |z| → 1,

for 0 < α < 1, of Corollary 3 which implies [ϕt, BMOA] = V MOA. Indeed for
z = rb we have

(1− |z|)α

G(z)
=

(1− |r|)α

b(1− r)2P (rb)
=

b̄

(1− r)2−αP (rb)
,

and the growth estimate |P (z)| ≤ C 1+|z|
1−|z| for the function P of non-negative real part

implies (1− r)2−αP (rb) → 0 as r → 1 for 0 < α < 1.
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In addition in all examples we can work it turns out that for this case the space
[ϕt, BMOA] is strictly larger than V MOA. This leads to

Question 2. Suppose (ϕt) is a semigroup with Denjoy–Wolff point on the bound-
ary. Is it true in this case that [ϕt, BMOA] is strictly larger than V MOA and [ϕt,B]
is strictly larger than B0?
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