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In this contribution we present the formalism of a recently proposed procedure of continuum discretization for the description of the scattering
of weakly bound nuclei. Convergence checks are presented for some relevant sum rules, using as a representative example the deuteron.
Finally, we apply the method to the case of deuteron elastic scattering and breakup, comparing the results with those of the standard method
of coupled channels continuum discretization.
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En esta contribucién presentamos el formalismo de un procedimiento propuesto recientemente de discretizacién del continuo para la dis-

persién de niicleos poco ligados. Se presentan asimismo varios tests de convergencia para algunas reglas de suma relevantes, usando como
ejemplo representativo el deuterén. Finalmente, aplicamos el método al caso de dispersién elastica y de fragmentacién de deuterio, compa-

rando los resultados con los obtenidos a partir del método standard de discretizacién del continuo (CDCC).

Descriptores: Discretizacién del continuo; dispersidn; nicleos débilmente ligados

PACS: 24.10.Eq; 25.10.+s; 25.45.De; 25.60.Gc

1. Introduction

In recent years, many of the efforts in Nuclear Physics have
been devoted to the experimental and theoretical study of nu-
clei close to the drip lines. For these nuclei new structures are
being observed challenging the established nuclear structure
models. Nowadays, our main source of information of these
exotic nuclei is through scattering experiments in which ac-
celerated beams of radioactive nuclei are collided with stable
targets. An important consideration of these experiments is
that exotic nuclei are often very weakly bound systems and,
consequently, they present a high probability of breakup in
the Coulomb and nuclear fields of the target nucleus. Thus,
in order to extract reliable information on nuclear structure
from reaction experiments it is essential to include in the for-
malisms the coupling to continuum states.

Of special interest are the so called halo nuclei, which are
very weakly bound systems with one or two outer particles
with a high probability of exploring the classically forbidden
region.

Reaction calculations where breakup couplings are inclu-
ded have the additional complication that breakup states are
not square-normalizable. This problem is frequently overco-
me by replacing the states in the continuum by a finite set

of normalized states. Convergence checks with respect to the
number of states considered or the parameters characterizing
these stales are required in order to make the method reliable.

Several methods have been developed to obtain a finite
basis of normalized states to describe the continuum. Proba-
bly, the most widely used of these approaches is the method
of continuum discretization coupled channels (CDCC) [1].
The method is based on the partition of the continuum into a
set of energy intervals (bins). Each bin is characterized by a
single radial wave function, which is obtained as an average
of the continuum wave functions over the bin. In this ave-
raged radial wave function, the oscillations of the different
components tend to cancel beyond a certain distance, and so
the bin radial wave function becomes normalizable. Then, for
each bin, a representative normalized square integrable rela-
tive motion wave function of the form

$1(r)

Piem(r) = TYlm('FL (1)

is defined. Its radial wave function is a superposition of the
scattering states ¢¢(k) within the bin defined by the interval
Ak; = k; — kij_,, with a certain weight function f;(k), i.e.,
ki

fi(k)e(k,r) dk, (2)
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with N; = [° | fi(k)|*dk. For a non-resonant continuum,

typically f;(k) = 1, in which case N; = Ak;. In general, the
integral (2) has to be solved numerically. This means that,
for each bin function, ¢(r), the CDCC method requires the
solution of the Schridinger equation for many values of k.

For the calculation of scattering observables it is also ne-
cessary to consider the coupling between the ground state and
the continuum bins, and between the bins themselves, due
to the nuclear and Coulomb potential. In practice, this com-
monly leads to a set of coupled equations for all the values
of 7 and £. In order to make the number of equations finite,
it is necessary to perform a double truncation in both angular
and linear momentum. Thus, the continuum is restricted to
the subspace 0 < £ < €max and 0 < £ < kmax. To demons-
trate convergence in a CDCC calculation it is necessary to
check that the calculated scattering magnitudes are not mo-
dified when increasing maximum energy (Kmax) and angular
momentum (£max) Or when decreasing the bin widths, Ak;.

Despite the limitations cited above, the CDCC has been
successfully applied to a large number of nuclear reactions
and it is one of the most reliable approaches to the study of
reactions involving binary composite systems. The aim of the
Transformed Harmonic Oscillator (THO) method is to cons-
truct a finite set of normalized and orthogonal states which
can be used as an alternative representation of the continuum
spectrum of a weakly bound nucleus and that overcomes or,
at least, reduce some of the limitations of other discretization
procedures, such as the CDCC.

The present paper is structured as follows. In Sec. 2 the
basic ideas of the THO method are presented. Section 3 is
devoted to show results for some structure sum rules for tran-
sitions involving the bound state and the continuum for the
deuteron. In Sec. 4 we apply the method to describe some
scattering observables of the reaction d + *°*Pb at 50 MeV,
comparing the results with the standard CDCC method. Fi-
nally, Sec. 5 is left for conclusions.

2. The THO method

The THO presented here was first formulated and applied to
simple one dimensional problems [2]. Subsequently, it was
extended to the three dimensional case and successfully ap-
plied to describe global structure magnitudes related to the
coupling of the continuum [3] and scattering observables [4].
In the present work, we will concentrate on the formulation
of the method in the three dimensional case and its applica-
tion to deuteron structure and scattering.

In both the one- and three-dimensional cases, the stand-
point of the method is to define a local scale transformation
(LST) [5] which is such that converts the bound state wave
function of the weakly bound system, represented by ¢(r),
into a harmonic oscillator (HO) wave function. The function,
s(r) defining the LST is given by

ao(r) =\ 2 O[s(r)]. @)

Once the s(r) is known, a set of orthogonal wave func-
tions, the THO basis, is generated by applying the same LST
used for the ground state to the rest of HO wave functions,
Le.,

8510 (r) = 1/ 22 4H01s(r)]. @

Due to the simple analytical structure of the harmonic
oscillator wave functions, this is equivalent to multiply the
ground state function by the appropriate orthogonal polyno-
mials P, (s) (4]

OTHO (1) = Ppls(r)]¢s(r)- (5)

Notice that the new functions ¢.- ©(r) are orthogonal by
construction and constitute a complete set. Also, they decay
exponentially at large distance, thus reproducing the correct
asymptotic behavior of the bound wave functions. However,
in general, they are not eigenstates of the internal Hamilto-
nian. Then, one has to diagonalize the Hamiltonian using a
truncated THO basis. As a result of the diagonalization a
new set of functions, {¢Y (r); K = 0,... ,N}, with eigen-
values €g, ... ,€en are generated. Here, N <+ 1 is the number
of functions retained in the THO basis, £ = 0 standing for

the ground state. Thus ¢{’ (r) = ¢a 29 (r) = ¢s(r) and so
€o = €p, while the rest of eigenstates lie at positive energies
and they constitute our representation of the continuum.

3. Convergence of the method

In order to check the adequacy of the THO method, we eva-
luate in this section several sum rules which involve the cou-
pling of the ground state with the continuum wave functions.
In particular, we will focus in the case of the deuteron. For
the sake of simplicity, we consider a simple scenario in
which the deuteron ground state is assumed to be in a pure
£ = 0 state and only the s-wave continuum is considered.

The proton-neutron interaction is described by means of
the Poeschl-Teller potential,

1

Vi = cosh?(ar)’

(6)

with the depth (D) and range (a) adjusted to reproduce
the experimental binding energy and rms of the deuteron:
D = 102.73MeV and a = 0.9407 fm .

Once the ground state wave function is obtained, the set
of THO functions are calculated using Eq. (5). Finally, the
deuteron Hamiltonian is diagonalized in a truncated THO ba-
sis. The resulting eigenfunctions are represented n Fig. 1.
It is interesting to study the systematic of the eigenvalues
with respect to the basis dimension. This is illustrated in
Fig. 2, where the energy levels resulting from the diagonali-
zation are schematically represented versus the basis dimen-
sion M = N + 1. In the case of the deuteron (which is also
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FIGURE 1. Radial part of the functions: ¢§ (r), k = 0,... ,5 that
result from the diagonalization of the deuteron Hamiltonian (using
a Poeschl-Teller potential) in the THO basis. The parameters of the
potential are adjusted to give to binding energy and rms of the deu-
teron.
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FIGURE 2. Energy levels resulting from the diagonalization of the

deuteron Hamiltonian in the a truncated THO basis versus the basis

dimension.

the case of other interesting systems, such as many halo nu-
clei) there is only one bound state. Accordingly, the diagona-
lization of the Hamiltonian in the THO basis gives rise to a
cigenstate with eigenvalue ¢g = ¢ = —2.22MeV (actually,
the deuteron ground state) and a set of positive eigenvalues,
which are taken as a representation of the continuum. Anot-
her interesting property is that the positive eigenvalues do not
appear uniformly distributed along the continuum, but con-
centrated above the threshold. As we shall see in the next sec-
tion, this property has notable consequences when the met-
hod is applied to scattering problems.

As a first check to evaluate the reliability of the THO ba-
sis to represent the continuum, we have calculated the follo-
wing sum rules which depend on the coupling between the
ground state and the continuum states for a given operator O:

o Total Strength (TS): TS(O; N) = 3, (N i|O|N 0))?

¢ Energy Weighted Sum Rule (EW): EW(O;N) =
(€ — en)|(N4|O|NV 0)[?

e Polarizability (PO): PO(O; N)

= Z:‘ (Efv ==
&)~ |(N|0|N 0)[2 .

TABLE 1. Convergence of the total strength (TS), energy weigh-
ted sum rule (EW) and polarizability (PO) for the local operator
O(r) = r as a function of the size of the THO basis, M =
N + 1. Lengths are given in units of o~ ! and energies in units

of (h*a® /2u).
M TS(O; N) EW(O; N) PO(O; N)
4 12.9070 0.9586 35.6318
6 12.9075 0.9713 35.7034
8 12.9078 0.9819 35.7081
10 12.9080 0.9880 35.7083
Exact 12.9082 1.0000 35.7083

TABLE II. The same as in Table I, but for the short range operator
O(r)=V(r).

M TS(O; N) EW(O;N)  PO(O;N)
3 0.4252 0.1126 0.551771

6 0.4883 0.4676 0.551867

9 04978 0.6906 0.551868
12 0.5012 0.7737 0.551869
14 0.50142 0.7925 0.551869
Exact 0.501464 0.803147 0.551869

The summations run from 0 to N. We have used the abbre-
viated notation: |N ¢) = |¢). Two different operators have
been considered: a long range operator, O(r) = r, to descri-
be effects of long-range external fields, such as the Coulomb
potential, and a short-range potential, O(r) = V(r), to des-
cribe couplings associated with the nuclear interaction.

In Tables I and IT we present the calculated sum rules
for different values of N, along with the exact results for
N — 00. The latter were obtained from the expressions:

¢ TS(O) = TS(O; N = 00) = [ dr|O(r)és(r)|?

2

dOo(r)
dr

e EW(0) =EW(O;N = ) = fdr‘ @s(r)

¢ PO(O) = PO(O;N - ) = %%(éa(t)lﬁ’ -
Ebl%(t»?

where |@o(t)) represents the ground state for a perturbed Ha-
miltonian H (t) = H + tO(r).

Comparing the exact values with those for finite N we
find that the convergence of the method is very satisfactory.
It remains to assess the adequacy of the THO basis to repre-
sent properly the continuum in the description of scattering
processes. It is important to note that these processes invol-
ve not only ground state to continuum transitions but also
continuum-continuum couplings.
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FIGURE 3. Elastic scattering differential cross sections (as ratio to
Rutherford cross section) for the reaction d+ 2°*Pb at 50 MeV. The
dotted line is the Watanabe folding potential. The solid line is the
CDCC calculation. The dotted-dashed and dashed lines represent
the THO calculation with N = 2 and N = 10 states, respectively.

4. Application to deuteron scattering

In this section we apply the THO formalism to the reaction
d+ 298Pb at 50 MeV for which standard CDCC calculations
revealed that the deuteron continuum is relevant.

We used the same binding potential as in the previous sec-
tion. The proton-target and neutron-target interactions were
described in terms of optical potentials, using the Becchetti-
Greenless parameterization [6], evaluated at half of the deu-
teron incident energy. Only the coupling to s-wave breakup
states was considered. Moreover, we neglect Coulomb brea-
kup and thus we assume that the Coulomb interaction betwe-
en the projectile and target has only a monopole part. Due to
these restrictions, we will compare our results with those of
the CDCC calculations, instead of experimental data.

Using the set of wave functions {¢§' (r); k=1,... ,N}
as a representation of the continuum, the scattering calcu-
lation is equivalent to a standard coupled channels calcula-
tion for bound states. In both cases, namely the THO and
CDCC methods, we have solved the coupled channels equa-
tions using the computer code FRESCO (7). In order to achie-
ve convergence of the CDCC, a maximum excitation energy
of €max = 30 MeV was considered. This energy interval was
divided in 10 bins of uniform width in k.

In Fig. 3 we present the differential elastic cross section
angular distribution. The dotted line corresponds to the cal-
culation with the Watanabe folding potential. This is obtained
by folding the proton-target and neutron-target potentials in
the ground state of the deuteron and, therefore, ignores com-
pletely the deuteron continuum. The solid line is the conver-
ged CDCC calculation. The differences with the folding cal-
culations give an insight of the importance of the continuum
at the different angles. The dashed line corresponds to the
THO calculation with N = 10 continuum states, for whi-
ch convergence was achieved. It is noticeable the excellent
agreement between the THO and the CDCC. We present also
a THO calculation with N = 2 continuum states, which gives
already a very reasonable description of this observable.
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FIGURE 4. Breakup cross section as a function of the excitation
energy of the deuteron, e, for the reaction d + *°*Pb at 50 MeV,
and three different values of the deuteron binding energy: e, =
0.556 MeV (upper panel), ¢ = 2.226 MeV (middle panel) and
€y = 4.45 MeV (bottom panel), the second one corresponding to
the physical value. The histograms corresponds to the CDCC cal-
culations and the dots to the THO with IV = 10.

In Fig. 4 the breakup cross scction as a function of the
excitation energy of the deuteron is depicted for the CDCC
and THO approaches. In the CDCC case, this distribution is
obtained dividing the cross section for each bin by the width
of the bin. In the THO case, it is obtained dividing the cross
section of each continuum state, corresponding to an energy
€;, by an energy width which is given by (€i41 —€;—1)/2. The
THO calculations were performed with N' = 10 states. The
calculations of the central panel were carried out with the ex-
perimental value, €5 = —2.22 MeV. It is noticeable that the
eigenvalues associated with the THO states tend to concen-
trate within the continuum region where the breakup results
are more important and vary more abruptly. This distinctive
feature permits an adequate description of the breakup dis-
tribution with a relatively small number of continuum states,
without the need of adjusting by hand the bins widths, as in a
typical CDCC calculation.

In order to check the generality of this result, we have
performed test calculations in which the binding energy of
the deuteron is artificially reduced or increased with respect
to its experimental value. In the first case (upper panel), the-
re is an increment in the breakup probability, and the maxi-
mum of the distribution approximates to the breakup thres-
hold. This behavior is perfectly accounted for by the distri-
bution of THO states. On the other side, when the binding
energy is incremented (lower panel), the breakup probabi-
lity decreases and the distribution becomes smoother. Again,
the THO states distribute according to this behavior, giving a
very reasonable description of the breakup distribution.
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5. Conclusions

In conclusion, we have shown in this contribution that the
continuum discretization developed in Refs. 2-4 and discus-
sed here is a reliable alternative to other methods of conti-
nuum discretization.

An attractive feature of this method is its simplicity. The
construction of the continuum basis only requires the kno-
wledge of the ground state, either analytically or numeri-
cally. Then, the THO basis is obtained just by multiplying
this ground statc by the appropriate set of orthogonal poly-
nomials. Finally, the wave functions that represent the conti-
nuum are obtained by diagonalization of the Hamiltonian in
the THO basis. Thus, the calculation does not require the in-
tegration of the Schrédinger equation to obtain the continuum
states. Moreover, the convergence of the method is contro-
lled by only one integer parameter, the basis dimension. This

is in contrast with the CDCC method, for which convergen-
ce with respect to several parameters has to be checked. The
tests performed in the case of the deuteron structure and scat-
tering suggest that the present method can be considered as a
reliable tool to model the scattering involving loosely bound
nuclei.
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