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Abstract—In this paper, a folded stepped impedance resonator (SIR),
modified by adding an inner quasi-lumped SIR stub, is used as a
basis block for a new implementation of dual-band bandpass filters.
The main advantage of the proposed filter is to make it possible to
independently control the electrical features of the first and second
bands. The behavior of the first band basically depends on the
geometry of the outer folded SIR. The second band, however, is
strongly influenced by the presence of the inner stub. Additional
design flexibility is achieved by allowing the inner stub to be located
at an arbitrary position along the high impedance line section of the
main SIR. The position of the tapped input and output lines can be
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optimized in order to reach a reasonable matching of the filter at the
central frequencies of both passbands. Some designs are reported to
illustrate the possibilities of the proposed structure. Experimental
verification has been included.

1. INTRODUCTION

Modern dual-band operation electronic devices require the develop-
ment of efficient and compact dual-band filters. Indeed, the devel-
opment of dual-band and multi-band filters is a very active research
field nowadays [1–9]. Since microstrip implementation of dual-band
filters is preferable for many applications, most of the cited papers
deal with that technology. A variety of design techniques have been
proposed in the literature to implement dual-band filters, and most of
which can be accomplished in printed circuit technology. The compo-
sition of two simple band pass filters [10], the cascade connection of a
large bandwidth bandpass filter with a stop-band filter [7, 11], filters
built making use of two different types of resonators [12], filters in-
corporating defected ground structures [4], or filters based on the use
of stepped-impedance resonators [9] are just a few examples of very
different strategies followed by a number of researchers. The main dis-
advantage of some of the cited design methods is that they yield large
size filters compared with implementations based on the use of small,
intrinsically dual-band, resonators. In order to reduce the overall size
of dual-band filters, a design based on the use of a double-layered sub-
strate was proposed in [8]. Even so, nowadays, the trend is the design of
filters whose individual components have a double bandpass response
per se (see, for instance, [13]). Some of the filters of this class that have
been studied during the last few years are made up of lines loaded with
stubs [9, 14–16] (distributed circuit operation). More compact layouts
are based on coupled resonators (of different types) designed in such a
way that the two first resonance frequencies of the resonators coincide
with the central frequencies of the two passbands [17–21].

Following the general rationale based on the use of intrinsically
dual-band resonators, the authors have recently proposed a new
compact resonator whose resonance frequencies can be separately
selected [22]. The symmetrical version of such resonator was
simultaneously proposed by J.-S. Hong [23]. This resonator is
a modified version of the conventional folded stepped impedance
resonator, or slow-wave resonator, described, for instance, in [24, chap.
11]. The modification consists in the introduction of a quasi-lumped
SIR-type stub at the center of the high characteristic impedance section
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of the original folded SIR. A drawing of such resonator can be seen
in Fig. 1(a). In this structure, the first resonance frequency only
depends on the dimensions of the external folded SIR, whereas the
second resonance frequency is determined by both the external SIR and
the quasi-lumped SIR-like stub. This fact allows for the independent
tuning of the two operation frequencies. This is in contrast with what
happens with conventional SIR’s, where any change of their dimensions
has an important impact on both frequencies. A similar concept has
recently been applied in a couple of papers [25, 26] but, in those cases,
open loop resonators loaded with open end microsinternaltrip stubs
were used. The difference with our proposal lies on the fact that open
loops work under λ/2 operation. This causes the size of the designs to
be appreciably larger than those based on our new alternative. Since
the size of folded SIR’s is much smaller than that of open loops, the
tuning element has to be chosen small enough due to space restrictions.
For this reason, the tuning stub in our design is also a miniaturized
SIR element, which provides the required reactance with smaller size
than simple uniform stubs.

The present paper extends our previous work in [22] and provides
more details of the working principle of the proposed resonators and
about the design methodology. In particular, the influence of the
substrate thickness on the coupling level between resonators is studied,
as well as the possibility of designing higher order filters. It will be
shown that filters based on coupled symmetric resonators allow fine
tuning of the central frequencies of the two passbands, but once the
bandwidth of one of the bands is established, the bandwidth of the
other band is fixed. However, asymmetric versions of the stub loaded
folded SIR are shown to provide control on the features of the second
passband. The working principle is explained in detail and the method
is used to design three different filters using symmetric and asymmetric
pairs of resonators and a three resonators implementation of a higher
order filter. Simulated and measured results agree reasonably well and
are close to the behavior predicted by the original prototype.

2. CHARACTERIZATION OF THE RESONATORS

2.1. Symmetrical Structure

The layout of a modified symmetrical folded SIR, with a quasi-lumped
stub connected to the central position of the high impedance line, is
shown in Fig. 1(a). This configuration can be analyzed in terms of even
and odd excitations (the AA′ plane behaves as an electric/magnetic
wall for odd/even excitation). For odd excitation, the centered tuning
stub has no influence on the electrical response. This can be seen from
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Figure 1. (a) Symmetric and (b) asymmetric modified folded SIR’s
used as basic resonators in this paper (figure from [22]).
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Figure 2. Approximate transmission line circuit model of the
symmetrical SIR in Fig. 1(a) Odd excitation; (b) Even excitation
(figure from [22]).

its equivalent circuit shown in Fig. 2(a) [25]. However, this stub is
relevant under even excitation conditions. The equivalent circuit in
Fig. 2(b) obviously accounts for its presence. Referring to Fig. 1(a),
Zs and θs denote the impedance and electrical length of the high
impedance microstrip line section of the main folded SIR (length ls and
width ws). Zo,e and θo,e are the modal (odd and even) impedances and
electrical lengths of the two low impedance coupled lines appearing
in the folded SIR (length lc and width wc). Finally, Zi and θi are
the characteristic impedances and electrical lengths of the sections of
length li and width wi (i = 1, 2) of the inner SIR stub. The separation
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between the low impedance coupled lines in the SIR has been kept equal
to the minimum achievable slot width (≈ 100 µm for the fabrication
process used in our laboratory). The following resonance frequencies
for the odd and even excitations can be separately extracted from
condition Yin = 0:

a) Odd excitation resonance condition:

tan θs tan θo = Ro (1)

b) Even excitation resonance condition:

1
2R1

[
1 +

tan θe tan θ1

Re

] [
tan θ1

R1
+

tan θ2

R2

]

+
[
tan θs +

tan θe

Re

] [
1

R1
+

tan θ1 tan θ2

R2

]
= 0 (2)

where it has been introduced the dimensionless ratios Ro,e = Zo,e/Zs

and Ri = Zi/Zs (i = 1, 2).
As expected from Fig. 2 and Eqs. (1) and (2), the resonance

frequencies for odd excitations exclusively depend on the outer
folded SIR geometry, whereas those of even excitations depend on
both, the external SIR and the inner stub. This fact makes it
possible to design dual-band filters with independent control of the
passband central frequencies. Thus, the first band (associated with
the first odd resonance) is adjusted by varying the dimensions of
the external resonator. Once this frequency has been obtained, the
central frequency of the second band (corresponding to the first even
resonance) can be tuned by a proper choice of the dimensions of the
inner stub. This adjustment does not affect the frequency of the first
resonance. As an example, we have obtained the four first resonances
of a symmetrical resonator such as that shown in Fig. 1(a). In Fig. 3,
these frequencies have been plotted as a function of the width w2 using
l2 as parameter, while the total length of the tuning stub (l1+l2) is kept
constant. We have distinguished between those resonance frequencies
corresponding to odd excitation, fo

1 and fo
2 (they do not depend on the

stub dimensions), and those corresponding to even excitation, fe
1 and

fe
2 (they are sensitive to the presence of the stub). When designing the

corresponding dual-band filter, from Fig. 3 we can extract the range
of values within which it is possible to tune the central frequency of
the second band (fe

1 ). The third resonance frequency (fo
2 or fe

2 ) gives
information about the behavior of the filter beyond the second band.
As mentioned above, we must vary the external SIR dimensions to
tune the first resonance frequency, fo

1 . For instance, in Fig. 4, we show
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Figure 3. Behavior of the first four resonance frequencies of a
symmetric resonator as a function of w2 (l2 is used as a parameter).
Dimensions: ls = 8.35mm, ws = 0.37mm, lc = 4.3 mm, wc = 4.3mm,
w1 = 0.2mm, l1 + l2 = 3 mm. The resonator is printed on a substrate
with nominal permittivity εr = 9.9 and thickness h = 0.635mm (data
from [22]).
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Figure 4. Behavior of the first two resonance frequencies of a
symmetric resonator versus lc (lc + ls = 12.65 mm in all cases, thus
the physical size of the resonator is always the same). Dimensions:
ws = 0.37mm, wc = 4.3mm, w1 = 0.2mm, w2 = 3 mm, l1 + l2 = 3mm
(solid lines) and 4mm (dashed lines). The resonator is printed on the
same substrate used for data in Fig. 3.



Progress In Electromagnetics Research, PIER 102, 2010 113

the dependence of fo
1 on the length of the coupled lines, lc, when the

physical size of the resonator (the length ls + lc) remains invariable. As
expected, the bigger the value of lc, the smaller the value of fo

1 , since
the resonator is electrically smaller and smaller. Similarly to Fig. 3,
in Fig. 4, we have also included the values of the second resonance
frequency, fe

1 , obtained for two stub lengths and different values of l2.

2.2. Asymmetrical Structure

Higher design flexibility is achieved by allowing the stub to shift along
the high impedance line section (see Fig. 1(b)). When this happens,
the structure is no longer symmetrical and the analysis in terms of
even/odd excitations cannot be applied. The analysis has now to be
carried out by using the equivalent circuit in Fig. 5. This circuit can be
seen as a parallel connection of the open-ended coupled lines (modal
impedances Ze and Zo) and the T-circuit composed of two transmission
lines of impedance Zs and the open SIR stub (impedances Z1 and
Z2). The resonance frequencies can be obtained following the rationale
in [28], for instance. It will be shown later that the distance, s, between
the middle of the inner stub and the axis AA′ plays an essential role
to determine the coupling between resonators at the second resonance.
Our aim is to use s to control that coupling, for which it would be
desirable that the two first resonance frequencies keep almost constant
as s varies. This is approximately satisfied provided that the electrical
length of the stub is small up to the second resonance frequency. The
first four resonance frequencies of an example case have been tabulated
in Table 1. Since the electrical length of the stub increases with
frequency, the higher the resonance frequency order, the stronger its
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Figure 5. Transmission line model of the asymmetric resonator (figure
from [22].
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Table 1. Values of the four first resonance frequencies (in GHz) of an
asymmetric resonator for different values of s. Referring to Fig. 1(b),
ls1 + s = 8.35 mm, w0 = 0.37 mm, lc = wc = 4.3 mm, w1 = 0.2 mm,
l1 = 0.6 mm, w2 = 2.55 mm, and l2 = 2.55 mm. The substrate is the
same as in Fig. 3.

s (mm) f1 f2 f3 f4

0 1.218 2.686 6.742 7.053
0.5 1.217 2.691 6.556 7.257
1 1.216 2.704 6.314 7.591

1.5 1.214 2.727 6.073 7.965
2 1.212 2.760 5.850 8.369

2.5 1.209 2.804 5.644 8.782

Table 2. Values of the resonance frequencies of the structure (inGHz)
of Table 1 after adjusting w2.

s (mm) w2 (mm) f1 f2 f3 f4

0 2.55 1.218 2.686 6.742 7.053
0.5 2.57 1.217 2.687 6.563 7.256
1 2.64 1.216 2.687 6.302 7.585

1.5 2.75 1.215 2.688 6.048 7.951
2 2.93 1.211 2.688 5.807 8.344

2.5 3.20 1.209 2.685 5.575 8.740

dependence with s. But for the first two resonances (electrically small
stub), the dependence of f1 with s is negligible whereas f2 changes
around 4%. In order to compensate for this change, the stub has been
adjusted so that both the first and the second resonance frequencies
remain the same for all the stub positions (we have slightly modified
the value of w2 for each value of s). After this process, the frequency
values of Table 1 have been recalculated and shown in Table 2. It
is worth emphasizing the practical importance of the asymmetric
structure. Changing the position of the inner stud allows the designer
to independently control the coupling level between adjacent resonators
for each of the two passbands. Symmetric resonators allow independent
tuning of the central frequencies, but once the bandwidth and ripple
of the first band are specificied, the second band can not be tuned
because coupling between resonators was optimized for the first band.
The use of asymmetric resonators add flexibility because independent
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tuning of coupling level for each band can be achieved. This makes
it possible independent specification of the bandwidths for each of the
passbands within a certain range of values. This will be experimentally
shown in the forthcoming section.

3. DESIGN METHODOLOGY FOR FILTERS BASED ON
MODIFIED SIR

3.1. Symmetric Configuration

The design methodology for dual-band filters based on the proposed
resonators is close to the procedure in [24] for filters with a single
passband and direct coupling. If the resonator of Fig. 1(a) is used,
the first step is to adjust the dimensions of the external SIR so
that its first resonance frequency is the central frequency of the first
passband, f1. Then, the inner stub must be designed so that the
second resonance fits f2 (i.e., the central frequency of the second
band). The dimensions of the outer SIR and those of the inner
stub have been obtained from the model in Fig. 2 (note that it is
possible to choose among several geometries that have the same two
first resonance frequencies, f1 and f2). The next step is to obtain
the coupling coefficients, Mi at fi (i = 1, 2), from the specs of the
first passband (fractional bandwidth, ∆i, and ripple, rpi (i = 1, 2))
as a function of the coupling distance, d. This task has been carried
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Figure 6. Coupling coefficients M1 (dashed lines) and M2 (solid
lines) as functions of the distance between symmetrical resonators for
different substrate thicknesses. Resonator dimensions are given in the
main text.
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out by using the commercial electromagnetic solver Ensemble. The
coupling coefficients of a pair of symmetric resonators as a function
of d are shown in Fig. 6 for three different substrate thicknesses, h
(substrate permittivity: εr = 9.9). The dimensions of the resonator
have been calculated in such a way that they have the same two first
resonance frequencies: for h = 0.635mm, dimensions are the same
as those in Fig. 3 (w2 = 2.55 mm); for h = 0.254 mm, we have
obtained ws = 0.37mm, wc = 3.57mm, ls = 7.04mm, lc = 4.3mm,
w1 = 0.2mm, w2 = 2.42mm, l1 = 0.5 mm, and l2 = 2.12 mm; and for
h = 0.127 mm, ws = 0.37mm, wc = 3.01mm, ls = 6.48mm, lc = 4.3
mm, w1 = 0.2mm, w2 = 2.12mm, l1 = 0.41 mm and l2 = 2.12 mm. As
can be seen from Fig. 6, the coupling factors are strongly influenced
by the substrate thickness, so this parameter can be conveniently used
to achieve the required values of M1 and M2. Anyway, adjustment of
both, the dimensions of the outer SIR and the inner stub (keeping the
same values of f1 and f2), for each substrate thickness, it is another
method to get values of M1 and M2 different from those extracted from
Fig. 6. Note that, once the couplings have been chosen for the first
band, the second band is determined. The bandwidth of this second
band can not be tuned using the symmetric resonators.

3.2. Asymmetric Configuration

When using the asymmetric resonator in Fig. 1(b) to design a dual-
band filter, the procedure is very similar to that described for the
symmetric case, but with an interesting advantage. In Fig. 7, we have
plotted the coupling coefficients M1 and M2 versus t (which stands for
the position of the inner stub) using the distance between resonators,
d, as parameter. It should be noted that, for each value of t, the
inner stub has been adjusted in order to keep invariable the two first
resonance frequencies of the resonator. The dimensions and substrate
are the same as in the symmetric case (h = 0.635 mm). As it can
be seen in Fig. 7, the coupling factor in the first band, M1, does
not meaningfully depend on the position of the stub, whereas the
coupling factor of the second band, M2, strongly depends on that
position. In other words, by means of a simple stub shift, we can
control the coupling factor of the second band without modifying the
coupling factor of the first band. Therefore, without any change of the
outer SIR dimensions, the range of the M1 and M2 values (and the
possibilities for the fractional bandwidths ∆1 and ∆2) is much greater
in the asymmetric configuration than in the symmetric one. Similar
conclusions can be extracted from Fig. 8, where we have plotted the
coupling factor between a symmetric resonator and an asymmetric one
as a function of the position t of the inner stub, for different values of
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Figure 7. Coupling coefficients M1 (dashed lines) and M2 (solid lines)
between two asymmetrical resonators, as a function of the internal shift
of the stub (t) using the distance d as parameter.
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Figure 8. Coupling coefficients M1 (dashed lines) and M2 (solid
lines) between a symmetrical resonator and an asymmetrical one as
a function of the internal shift of the stub using the distance d as
parameter.

the distance d. This coupling configuration is useful in the design of
filters using an odd number of resonators. In such cases the central
resonators must be symmetrical, while the surrounding resonators are
asymmetrical. In all the examples, the last step of the design consists in
matching the two passbands simultaneously. This goal can be achieved
by following a procedure similar to that described in [18]. However, in
order to avoid dual frequency transforms (which can enlarge the size
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of the filter), we have employed the electromagnetic simulator to find
the optimal dimensions and position of tapped lines. The position of
the feeding lines has been modified looking for acceptable matching at
the two passbands.

4. EXAMPLES OF DESIGN

In order to illustrate the previously introduced concepts, we have
designed three dual-band filters with the bands centered at f1 =
1.21GHz and f2 = 2.65GHz using both symmetric and asymmetric
resonators (central frequencies have been arbitrarily chosen; they do
not correspond to any specific application). Photographies of the
fabricated and measured filters are shown in Fig. 9. The dimensions of
the resonators are exactly the same as those employed in the theoretical
study. The specifications of filter (A) (based on the use of symmetric
resonators) for the first band are: order N = 2, ripple, rp1 = 0.1 dB,
∆1 = 3.3%. From these values, using the curves in Fig. 6, we extract
the distance d = 0.15 mm. This value enforces the second band
specifications to be: rp2 = 0.15 dB and ∆2 = 10%. The simulated
and measured responses of filter (A) are shown in Fig. 10. The
agreement between simulation and measurement is quite good in the
whole explored frequency band. It is important to emphasize that, in
the optimization process of the dimensions and position of the tapped
lines, we achieve a transmission zero between the two passbands. This
fact improves the filter selectivity. Fig. 10 includes details of the two
passbands.

Figure 9. Photographs of the fabricated and measured filters: (A)
filter based on two identical symmetric resonators; (B) filter based
on two coupled asymmetric resonators allowing independent tuning of
the second pass band; (C) higher order filter using two asymmetric
resonators and one central symmetric resonator.
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Figure 10. Simulated (dashed lines) and measured (solid lines)
response of filter A designed using symmetrical resonators. Grey
lines correspond to S11 and black lines correspond to S12. Bottom
figures show details of the two passbands (including group delay; dots
correspond to group delay.

In the case of filter (B), with order N = 2, the asymmetric version
of the resonators is used. This allows us to establish the specs of the
two passbands: for the first band, rp1 = 0.1 dB and ∆1 = 3.5%; for
the second band, rp2 = 0.1 dB and ∆2 = 4%. For these values, we can
obtain, from Fig. 7, the distances d = 0.15mm and t = 6.45 mm. In
Fig. 11 the simulated and measured responses of the designed filter are
shown. Again, a reasonable agreement has been found between both
results. Note that, in this case, the specs of the second band have
been independently established. In the previos example, filter (A), the
bandwidth of the second band was fixed once the first band had been
specified. It is worth mentioning that the high frequency behavior
of the filters (A) and (B) in the out of band region is quite different
because asymmetruc resonators have more resonance frequencies than
the symmetric ones. The designer must be careful with higher order
resonances.

Finally, let us design a higher order filter to demonstrate the
possibility of applying the new resonators to dual band filters of
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superior order. In particular, we have implemented a filter of order
N = 3, filter (C) in Fig. 9, with the following specs: for the first
band, Butterworth response (rp1 = 0) and ∆1 = 4.3%; for the second
band, rp2 = 0.1 dB and ∆2 = 6%. In such a filter, direct couplings
are between the central symmetrical resonator and the asymmetrical
ones at the input and output ports. Thus we have used the curves in
Fig. 8 to extract the distances t = 6.65 mm and d = 0.33mm for the
specs values. Measured and simulated filter responses are provided in
Fig. 12. As in the previous designs, the agreement between measured
and simulated results is reasonably good (discrepancies are attributed
to dimensional tolerances). It should be noted that the out-of-band
rejection level of the third order implementation is much better than
that of the second order one (in particular in the low end of the
spectrum). As expected, losses in the passbands are worse than in
the case of lower order filters. However, the out-of-band rejection level
is much better in the high order filter.
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Figure 12. Simulated (dashed lines) and measured (solid lines)
response of filter C designed on the basis of the combination of
symmetrical and asymmetrical resonators. Grey lines correspond to
S11 and black lines correspond to S12. Bottom figures show the two
passbands details, including group delay. Dots correspond to group
delay.

5. CONCLUSION

This paper has presented a new planar and compact resonator based on
a simple modification of the conventional folded SIR. The modification
consists in adding an inner SIR type stub connected to the high
impedance line of the main resonator. The possibility of using
symmetric and asymmetric versions of the new resonators to design
dual-band filters has been investigated. We have found that, in the
case of the asymmetric resonator, the filter design is much more flexible
because we can separately design the specifications of the two bands
without modifying the geometry of the external SIR: the fractional
bandwidth of the first band can be controlled by means of the distance
between resonators and the fractional bandwidth of the second band
by means of the inner stub position. Three filters have been designed,
built and measured, finding in all designs good agreement between
simulated and measured filter responses.



122 Velázquez-Ahumada et al.

ACKNOWLEDGMENT

This work has been funded by the Spanish Ministerio de Ciencia e
Innovación (project no. TEC2007-65376) and by the Spanish Junta de
Andaluca (project TIC-4595 and grant TIC-112).

REFERENCES

1. He, Z. N., X. L. Wang, S. H. Han, T. Lin, and Z. Liu, “The
synthesis and design for new classic dual-band waveguide band-
stop filters,” Journal of Electromagnetic Waves and Applications,
Vol. 22, No. 1, 119–130, 2008.

2. Dai, X.-W., C.-H. Liang, B. Wu, and J.-W. Fan, “Novel dual-band
bandpass filter design using microstrip open-loop resonators,”
Journal of Electromagnetic Waves and Applications, Vol. 22,
No. 2/3, 219–225, 2008.

3. Li, G., B. Wu, X.-W. Dai, and C.-H. Liang, “Design techniques
for asymmetric dual-passband filters,” Journal of Electromagnetic
Waves and Applications, Vol. 22, No. 2/3, 375–383, 2008.

4. Wang, J. P., B. Z. Wang, Y. X. Wang, and Y. X. Guo,
“Dual-band microstrip stepped-impedance bandpass filter with
defected ground structure,” Journal of Electromagnetic Waves
and Applications, Vol. 22, No. 4, 463–470, 2008.

5. Dai, X.-W., C.-H. Liang, G. Li, and Z.-X. Chen, “Novel dual-
mode dual-band bandpass filter using microstrip meander-loop
resonators,” Journal of Electromagnetic Waves and Applications,
Vol. 22, No. 4, 573–580, 2008.

6. Hsu, C.-Y., H.-R. Chuang, and C.-Y. Chen, “Compact microstrip
UWB dual-band bandpass with tunable rejection band,” Journal
of Electromagnetic Waves and Applications, Vol. 23, No. 5/6, 617–
626, 2009.

7. Abu-Hudrouss, A. M. and M. J. Lancaster, “Design of multiple-
band microwave filters using cascaded filter elements,” Journal of
Electromagnetic Waves and Applications, Vol. 23, No. 10, 2109–
2118, 2009.

8. Weng, R. M. and P. Y. Hsiao, “Double-layered quad-band
bandpass filter for multi-band wireless systems,” Journal of
Electromagnetic Waves and Applications, Vol. 23, No. 3, 2153–
2161, No. 16, 2009.

9. Alkanhal, M. A. S., “Dual-band bandpass filters using inverted
stepped-impedance resonators,” Journal of Electromagnetic
Waves and Applications, Vol. 23, No. 8/9, 1211–1220, 2009.



Progress In Electromagnetics Research, PIER 102, 2010 123

10. Myyake, H., S. Kitazawa, T. Ishizaki, T. Yamada, and
Y. Nagatomi, “A miniaturized monolithic dual band filter using
ceramic lamination technique for dual mode portable telephones,”
IEEE-MTT-S International Microw. Symp. Dig, Vol. 2, 789–792,
1997.

11. Tsai, L. C. and C. W. Huse, “Dual-band bandpass filters
using equal length coupled-serial-shunted lines and Z-transform
techniques,” IEEE Trans. on Microwave Theory and Tech.,
Vol. 52, No. 4, 1111–1117, Apr. 2004.

12. Chen, C. Y. and C. Y. Hsu, “A simple and effective method for
microstrip dual band design,” IEEE Microw. Wireless Compon.
Lett., Vol. 16, No. 3, 246–258, May 2006.

13. Garćıa-Lampérez, A. and M. Salazar-Palma, “Dual band filter
with split-ring resonators,” IEEE MTT-S International Microw.
Symp. Dig., 519–522, 2006.

14. Quendo, C., E. Rius, and C. Person, “An original topology of dual-
band filter with transmission zeros,” IEEE-MTT-S International
Microw. Symp. Dig., Vol. 2, 1093–1096, 2003.

15. Tsai, C. M., H. M. Lee, and C. C. Tsai, “Planar filter design with
fully controllable second passband,” IEEE Trans. on Microwave
Theory and Tech., Vol. 53, No. 11, 3429–3439, Nov. 2005.

16. Chin, K. S., J. H. Yeh, and S. H. Chao, “Compact dual-
Band bandstop filters using stepped-impedance resonators,” IEEE
Microw. Wireless Compon. Lett., Vol. 17, No. 12, 849–851,
Dec. 2007.

17. Kuo, J. T. and H. S. Cheng, “Design of quasi-elliptic function
filters with a dual-passband response,” IEEE Microw. Wireless
Compon. Lett., Vol. 14, No. 10, 472–475, Oct. 2004.

18. Kuo, J. T., T. H. Yeh, and C. C. Yeh, “Design of microstrip
bandpass filters with a dual-passband responds,” IEEE Trans.
on Microwave Theory and Tech., Vol. 53, No. 4, 1331–1337,
Apr. 2005.

19. Sun, S. and L. Zhu, “Compact dualband microstrip bandpass filter
without external feed,” IEEE Microw. Wireless Compon. Lett.,
Vol. 15, No. 10, 644–646, Oct. 2005.

20. Zhang, Y. P. and M. Sun, “Dual-band microstrip passband filter
using stepped-impedance resonators with new coupling scheme,”
IEEE Trans. on Microwave Theory and Tech., Vol. 54, No. 10,
3779–3785, Oct. 2006.

21. Weng, M. H., H. W. Wu, and Y. K. Su, “Compact and low
loss dual-band bandpass filter using pseudo-interdigital stepped



124 Velázquez-Ahumada et al.

impedance resonators for WLANs,” IEEE Microw. Wireless
Compon. Lett., Vol. 17, No. 3, 187–189, Mar. 2007.

22. Velázquez-Ahumada, M. C., J. Martel, F. Medina, and F. Mesa,
“Design of a dual band-pass filter using modified folded stepped-
impedance resonators,” IEEE-MTT-S International Microw.
Symp. Dig., 857–860, 2009.

23. Hong, J.-S. and W. Tang, “Dual-band filter based on non-
degenerate dual-mode slow-wave open-loop resonators,” IEEE-
MTT-S International Microw. Symp. Dig., 861–864, 2009.

24. Hong, J. S. and M. J. Lancaster, Microstrip Filters for
RF/Microwave Applications, Wiley Inter-Science, New York,
2001.

25. Zhang, X. Y., J.-X. Chen, Q. Xue, and S. M. Li, “Dual-band
bandpass filters using stub-loaded resonators,” IEEE Microw.
Wireless Compon. Lett., Vol. 17, No. 8, 583–585, Aug. 2007.

26. Mondal, P. and M. K. Mandal, “Design of dual-band passband
filters using stub-loaded open-loop resonators,” IEEE Trans. on
Microwave Theory and Tech., Vol. 56, No. 1, 150–155, Jan. 2008.

27. Sagawa, M., M. Makimoto, and S. Yamashita, “Geometrical
structures and fundamental characteristics of microwave stepped-
impedance resonators,” IEEE Trans. on Microwave Theory and
Tech., Vol. 45, No. 7, 1078–1085, Jul. 1997.

28. Makimoto, M. and S. Yamashita, Microwave Resonators and
Filters for Wireless Communications, Springer Series in Advanced
Microelectronics, Berlin, 2001.


