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We show experimentally and numerically that an intrinsic localized mode (ILM) can be stably produced
(and experimentally observed) via subharmonic, spatially homogeneous driving in the context of a
nonlinear electrical lattice. The precise nonlinear spatial response of the system has been seen to depend
on the relative location in frequency between the driver frequency, w,, and the bottom of the linear
dispersion curve, wg. If w,/2 lies just below w,, then a single ILM can be generated in a 32-node lattice,
whereas, when w,/2 lies within the dispersion band, a spatially extended waveform resembling a train of
ILMs results. To our knowledge, and despite its apparently broad relevance, such an experimental
observation of subharmonically driven ILMs has not been previously reported.
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It is well known that a damped nonlinear oscillator can
respond at its intrinsic resonance frequency when it is
driven at a multiple of that frequency. A direct example
of such subharmonic driving is provided by the driven
Van der Pol oscillator, where the ratio of response to driver
frequency is exactly 1/3 [1,2]. Many other nonlinear os-
cillators exhibit similar subharmonic resonances (the
Duffing oscillator being another extensively studied ex-
ample). In fact, subharmonic response must be seen as a
fairly generic property of nonlinear oscillators.
Alternatively, a nonlinear oscillator with a parameter
modulated at a particular frequency can also respond at a
fraction of that frequency in what is called parametric
excitation.

What happens when such nonlinear oscillators are con-
nected to one another in a regular lattice? In nonlinear
lattices, an important generic phenomenon is the existence
of self-trapped localized modes, known as intrinsic local-
ized modes (ILMs) or discrete breathers. Such a mode
represents an excitation which is (typically exponentially)
spatially localized over a limited range of lattice nodes and
decays to zero far from these, and it is temporally periodic.
In this regard, it can be thought of as an analog of the
solitons of continuous media. However, the discreteness of
the lattice introduces interesting variations to the problem,
including, for instance, the fact that ILMs may be dynami-
cally stable in any dimension. This has made ILMs relevant
excitations for a wide array of applications, including
superconducting Josephson junctions [3], photonic crystals
[4], biopolymers [5], charge-transfer solids [6], antiferro-
magnets [7], and micromechanical cantilever arrays [8],
among others [9].
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Here, we blend these two broadly significant aspects of
nonlinear systems by addressing the following question:
can subharmonic or parametric excitations, which figure so
prominently in isolated nonlinear oscillators, carry over to
the lattice setting? That is, we examine whether ILMs can
be generated and, especially, stabilized by subharmonic
and/or parametric driving which is homogeneous in space.
So far, this type of question seems to have been considered
chiefly in the context of continuous media [10], or for
parametric driving [11-13], and has been principally theo-
retical in nature. In this Letter, we demonstrate experimen-
tally and corroborate through theoretical modeling and
numerical computation, and, when possible, infusing ana-
Iytical insights, that ILMs can indeed be generated and
stabilized via subharmonic forcing.

The experimental system, shown in Fig. 1, is the bi-
inductance electrical band-pass filter of Refs. [14,15], and
the basic geometry and coupling to an external driver is
given in Refs. [16—18]. This electrical lattice becomes non-
linear by virtue of a diode (np junction) replacing a tradi-
tional capacitor in the unit cell. The voltage at each lattice
node is monitored at 0.4 ws intervals using a multichannel
analog-to-digital converter. The boundary conditions
are periodic, and the main result of subharmonic ILM
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FIG. 1. Left: Schematic circuit diagram of the electrical trans-
mission line. Right: Schematic of a single element.
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generation is realized identically in larger lattices than the
one used. We use ““flat”’—zero voltage and current—initial
conditions along the lattice. Furthermore, since the driving
is homogeneous across the system, this study relates to
Refs. [6-8] and more generally to nanoscale (e.g., antifer-
romagnets and charge-transfer solids) or even mesoscale
[such as microelectromechanical system (MEMS) cantile-
ver arrays or Josephson junctions] applications where ex-
ternal fields appear homogeneous on the scale of the lattice.
Using basic circuit theory, the single element composed
of the parallel combination of an inductor, L,, and a diode
(driven via a resistor) is approximately described by [18]

dv 1 [cos(ﬂr) R+ R, N i ]
“r _ v _
dr  c(v) B BR, R
dy 1
= — 1
dT L2 v ( )

where B8 = RCyw, and the following dimensionless vari-
ables have been used: 7 = wyt; ip = Ip/(wyCyVy); v =
V/V,, the dimensionless voltage; c(v) = C(V)/Cy; Q) =
w,/wy; and wy = 1//L,C,. y represents the normalized
current through the inductor, and C(V) is the capacitance of
the diode [18]. A phenomenological (and amplitude-
dependent) dissipation resistor, R;, was included in the
model to better approximate the experimental diode
dynamics.

When N such oscillators are coupled via a second in-
ductor, Eq. (1) generalizes to the lattice equations

dv, _ cos(Q27) _R+R

oy —
C(vn) dT ,8 BRZ Uy Yn lD(Un):

dy, L

i = L—?(vnﬂ +v,_; —2v,) — v, (2)

The inductor L is used to couple the unit cells, and L,
refers to the inductor to the ground within each oscillator
[18]. The ratio of these two inductors yields the effective
“discreteness” of the system; in the limit of L; much
larger (smaller) than L,, the system can be viewed as
approaching the continuum (anticontinuum) limit. In our
lattice, L = 0.68 mH and L, = 0.33 mH, so that we are
clearly not in the continuum limit, although the latter is, in
principle, experimentally approachable and mathemati-
cally interesting in its own right.

In order to investigate the origin of these subharmonic
breathers, we have to examine in detail the response of a
single unit cell of the electrical lattice (i.e., an effective
anticontinuum limit). As shown in Fig. 2(a), the response is
a typical nonlinear resonance curve, as expected. However,
for a range of frequencies located far above the linear
resonance curve, the attractor of the system, which oscil-
lates with frequency f, = w,/2, experiences a period-
doubling bifurcation and a new, larger (in amplitude) at-
tractor and appears with f = f,;/2 (see the curve bifurcat-
ing from points A and B in the figure). Thus, for an interval
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FIG. 2 (color online). Response of a unit cell at a driver
amplitude of V; = 8 V (in numerical simulations, we consider
a small frequency shift of 25 kHz to quantitatively compare with
the experimental curves). Top: Nonlinear resonance curves,
where grey (red) dots correspond to experimental data while
the solid and dashed black lines correspond, respectively, to
stable and unstable numerical solutions. Black circles show
period-doubling bifurcation points. The inset zooms in on the
subharmonic response, where the analytical approximation is
included (dash-dotted blue line), with a frequency shift of 5 kHz.
Bottom: Coexisting large and small attractors corresponding to
fa = wy/27 = 550 kHz obtained numerically (black lines) and
experimentally [grey (red) lines].

of frequencies beyond the top of the linear dispersion curve
of the full electrical lattice, two different attractors, one
small with a frequency f = f; = 550 kHz and another
one, large and with a frequency f = f,/2 = 275 kHz,
coexist, as illustrated in Fig. 2(b). When we decrease the
voltage amplitude, V, the two bifurcation points
(labeled A and B in the figure) get closer and, for a voltage
V, = 6.4 V in the model, collide and disappear, and no
subharmonic resonance takes place. Experimentally, the
cutoff voltage is found around 6.2 V; otherwise, the nu-
merical predictions match experimental observations
reasonably well, especially given the model’s phenomeno-
logical treatment of the diodes.

Furthermore, in order to obtain an approximate subhar-
monic solution corresponding to small voltages, we can
(Taylor) approximate Eq. (1) as

x? aQV,sin(Qd7)
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where V = (x + x?/2)/a (in volts) and « is a parameter
related to nonlinear capacitance [19,20]. Using the har-
monic balance method to approximate a solution of the
subharmonic response [21], such a solution assumes the
form x(1) =A;sin(T + ¢) + A, ;psin(T/2) + By ,cos(T/2),
where A; = 1/(1 — w?) and A, , and B, / can be obtained
by solving two nonlinear algebraic equations (not shown
here). This approximate solution is displayed in the inset of
Fig. 2(a). We note that this analytical approach predicts the
range of frequencies where the subharmonic resonance
takes place and the resulting solutions in the small ampli-
tude regime.

Let us now turn to the lattice of nonlinear oscillators.
Figure 3 shows the steady-state configurations upon uni-
form driving at frequencies (a) f; = w,/27 = 550 kHz
and (b) f; = 590 kHz and an amplitude of 7.5 V. Note that
the driver’s frequency is far detuned from the system’s
linear eigenmodes, so that, in the linear case, we would
expect no energy transfer from the driver. The uniform
mode frequency (k = 0) at the bottom of the linear disper-
sion curve occurs at around 315 kHz; the top of the
dispersion curve (k = ) is at around 520 kHz.

Nevertheless, in this nonlinear system, at around ¢ =
75 s after the driver is first turned on, energy starts to
build up around the 10th node, and soon we observe a
stable ILM centered there, with its wings expanding about
three nodes in either direction. The ILM oscillates at its
center at 275 kHz [Fig. 3(a)] and 295 kHz [Fig. 3(b)] but is
driven at twice the corresponding frequency. It is worth
mentioning that the particular location where the ILM is
formed is partly due to (very slight) configurational asym-
metries (i.e., very weak defects), where the driving prefer-
entially excites a particular site of the lattice and the
resulting breather state emerges spontaneously as a result
of this feature. It should be mentioned that modulational
instability of the (subharmonically excited) uniform mode
may also arise and has been observed to give rise to multi-
breather states. The profiles of the ILM depicted in Fig. 3
correspond to the times at which the ILM reaches its most
positive and negative voltages for both the experimental
data (circles) and for the theoretical model results (solid
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FIG. 3 (color online). Comparison between the theoretical
(solid line) and experimental (circles) ILM profiles, with fre-
quencies (a) 275 kHz and (b) 295 kHz, generated by a homoge-
neous forcing of 7.5 V at (a) 550 kHz and (b) 590 kHz. The insets
show the Floquet multiplier numerical linearization spectrum,
confirming (since all multipliers are inside the unit circle) the
stability of these time-periodic solutions.

line), suggesting an excellent agreement between the two
approaches. The insets in (a) and (b) show the numerical
linearization spectrum of Floquet multipliers (A = A, +
iA;) corresponding to this time-periodic solution, indicat-
ing dynamical stability of the ILM. It is interesting to note
that there exists a narrow frequency interval, where the
theoretical model predicts the destabilization of the ILM in
favor of a stable quasiperiodic ILM through a Hopf loop
(forward Hopf and reverse Hopf) bifurcation. Detailed
analysis of the experimental results (frequency spectra)
also reveals the corresponding window in the experiments.
Further studies of this interesting bifurcation will be re-
ported elsewhere.

Figure 4 illustrates the ILM dynamics in more detail.
The top panel depicts the experimental time traces at
various nodes. The most prominent trace corresponds to
the ILM center; the other traces correspond to first-,
second-, and third-neighbor dynamics (the experimental
traces suffer from a more limited time resolution). In
Fig. 4(b), the numerical traces give a smoother picture in
very good agreement with the experiment; both panels
demonstrate that the frequency of oscillation at the ILM’s
center is half of the driving frequency, f;. Furthermore—as
evidenced by the frequency spectra depicted in Figs. 4(c)—
4(f)—as we move away from the center to neighboring
lattice nodes, a second oscillation cycle gradually appears
and we transit from dominance of the f,/2 frequency to
the eventual dominance of the fundamental frequency f,.
Thus, spatially, moving from the wings to the center, a
period-doubling transition occurs.

We now explore the dependence on the driver frequency.
Single-peak ILMs (shown in Fig. 3) are found between 525
and 617 kHz (at 7.5 V amplitude). The lower bound is
dictated by an emerging overlap with the zone-boundary
linear mode, and the upper bound is dictated by the coin-
cidence of the ILM with the uniform linear mode. As the
driver frequency is raised beyond 617 kHz, the subhar-
monic will start to intersect the dispersion curve. What is
interesting is that, even inside the linear dispersion band,
localized structures can be driven subharmonically, as we
will now show.
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FIG. 4 (color online). (a) Experimental and (b) numerical
traces of the oscillation at four different nodes—the ILM center,
first neighbor, second neighbor, and third neighbor. (c)—(f) The
frequency spectrum corresponding to the experimental time
traces.
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FIG. 5 (color online). (a) Two-dimensional fast Fourier trans-
form (FFT) of the experimental lattice dynamics. (b) Spatial
component of the FFT (see text for description) in (a) corre-
sponding to 750 kHz (solid lines) and 375 kHz (dotted lines).
(c) A spatial snapshot of the resulting spatially extended struc-
ture using the same layout as in Figs. 3(a) and 3(b).

Figure 5(a) captures the system’s experimentally mea-
sured response in reciprocal space to a driver at a frequency
of 750 kHz and an amplitude of 7.92 V. We clearly observe
energy concentration at the discrete values in k space
where the dispersion curve (dotted red line) intersects the
f4/2 line. Moreover, this energy concentration results from
a buildup over time. Figure 5(b) plots the Fourier ampli-
tude at f; and f,;/2, for three distinct times in its evolution.
The bottom trace corresponds to an early time interval, t =
0 to 400 ws, with only a weak subharmonic response; the
middle trace indicates the subharmonic response emer-
gence, from t = 1.2 ms to 1.6 ms; while the top one reveals
its eventual dominance at later times, from ¢ = 2.8 ms to
3.2 ms. In the spatial domain, the pattern that results in this
situation is shown in Fig. 5(c). A multipeaked localized
pattern (or ILM train) is observed, the periodicity of which
is set up by the wave number k on the dispersion curve
associated with w /2.

Patterns resembling ILLM trains, as shown in Fig. 5(c), do
not appear at all driver frequencies equally. This is indi-
cated in Fig. 6, where the linear dispersion curve (solid
line) is shown with the (red) dots indicating the normal
modes for a 32-node lattice. Superimposed on these linear
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FIG. 6 (color online). Linear dispersion curve and normal
modes (red dots) in relation to frequencies at which nonlinear
subharmonic response is suppressed (horizontal lines) in the
experiment.

normal modes are horizontal lines depicting frequencies
where subharmonic response is the most difficult to ac-
complish experimentally. Namely, at driver frequencies
equal to twice those indicated, the multipeak patterns
vanish first as the amplitude of driving is reduced. These
frequencies coincide well with the linear normal modes.
This correlation suggests that such patterns avoid overlap
with the linear spectrum and thus preferentially reside in
the gaps inherent in small lattices [22,23]. Above [ =
420 kHz (f, > 840 kHz), no pattern can be induced even
at the maximum driving amplitude.

In conclusion, we have demonstrated experimentally
and have supported theoretically through both analysis
and numerical computation the fact that the subharmonic
response of coupled, driven nonlinear oscillators involves
the formation of intrinsic localized modes through a spatial
period-doubling sequence building up over time. We an-
ticipate that such conclusions may have broad applicability
to mechanical (pendula, granular chains), superconducting
(Josephson junction), and optical systems, among others.
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