Monografías del Semin. Matem. García de Galdeano. 27: 201-208, (2003).

Analysis of a Non-overlapping Domain Decomposition Method for Stokes Equations

Tomás Chacón Rebollo, Eliseo Chacón Vera
Depto de Ecuaciones Diferenciales y Análisis Numérico. Universidad de Sevilla chacon@numer.us.es, eliseo@numer.us.es

Abstract

In this note we extend the analysis for elliptic problems performed in [1] to saddle point problems like the Stokes equations. We use a non overlapping domain decomposition and the introduction of a penalty term. In a simply connected bounded domain $\Omega \subset \boldsymbol{R}^{2}$ with Lipschitz boundary, we decompose Ω into two non-overlapping Lipschitz subdomains Ω_{1} and Ω_{2} with $\Omega_{1} \cap \Omega_{2}=\emptyset$, and suppose that $\partial \Omega_{i}=\Gamma_{i} \cup \Gamma$ where Γ_{i} is the common boundary with $\Omega, \Gamma_{i}=\partial \Omega \cap \partial \Omega_{i}$ and Γ is the interface with $\Omega_{j}, \Gamma=\partial \Omega_{1} \cap \partial \Omega_{2}$. The Stokes equations on Ω are solved via the following parallel process: For $n=0,1,2, \ldots$, given u_{i}^{n}, p_{i}^{n} we compute u_{i}^{n+1} and $p_{i}^{n+1}(i=1,2)$ such that $$
\left\{\begin{aligned} -\Delta \mathbf{u}_{i}^{n+1}+\nabla p_{i}^{n+1} & =\mathbf{f} \quad \text { in } \Omega_{i} \\ \nabla \cdot \mathbf{u}_{i}^{n+1} & =0 \quad \text { in } \Omega_{i} \\ \mathbf{u}_{i}^{n+1} & =0 \quad \text { on } \Gamma_{i} \\ \frac{\partial \mathbf{u}_{i}^{n+1}}{\partial \mathbf{n}_{i j}}-p_{i}^{n+1} \mathbf{n}_{i j} & =-\frac{1}{\epsilon}\left(\mathbf{u}_{i}^{n+1}-\mathbf{u}_{j}^{n}\right) \text { on } \Gamma \end{aligned}\right.
$$ where $\mathbf{n}_{i j}$ is the outward normal vector on Γ pointing from Ω_{i} into $\Omega_{j}, \epsilon>0$ is a parameter that tends to cero and inforce the transmision conditions on the interface Γ and we stress that the pressures p_{i} do not longer have cero mean average. We present the convergence analysis of this technique and some numerical tests. An ampliation of this work will appear in [2].

Keywords: Stokes Problem, Parallel technique, Non Overlapping AMS CLASSIFICATION: 65L50, 65L60, 65L70

1 Introduction

In a simply connected bounded domain $\Omega \subset \boldsymbol{R}^{\boldsymbol{d}}(d=2,3)$ with a Lipschitz boundary $\partial \Omega$ and with $\mathbf{f} \in\left[L^{2}(\Omega)\right]^{d}$, we search for a velocity field $\mathbf{u} \in\left[H_{0}^{1}(\Omega)\right]^{d}$ and a pressure
$p \in L_{0}^{2}(\Omega)$ such that

$$
\begin{cases}-\Delta \mathbf{u}+\nabla p=\mathbf{f}, \nabla \cdot \mathbf{u}=0 & \text { in } \Omega \\ \mathbf{u}=0 & \text { on } \partial \Omega\end{cases}
$$

In the classical mixed formulation of this problem we look for $(\mathbf{u}, p) \in\left[H_{0}^{1}(\Omega)\right]^{d} \times L_{0}^{2}(\Omega)$ with

$$
\begin{equation*}
(\nabla \mathbf{u}, \nabla \mathbf{v})_{\Omega}-(p, \nabla \cdot \mathbf{v})_{\Omega}-(\nabla \cdot \mathbf{u}, q)_{\Omega}=(\mathbf{f}, \mathbf{v})_{\Omega} \tag{1}
\end{equation*}
$$

for all $(\mathbf{v}, q) \in\left[H_{0}^{1}(\Omega)\right]^{d} \times L_{0}^{2}(\Omega)$. Now we decompose Ω into two non-overlapping Lipschitz subdomains Ω_{1} and Ω_{2} with $\Omega_{1} \cap \Omega_{2}=\emptyset$ (this choice is made to ease the exposition of the main ideas, but these can be extended to more than two subdomains). Suppose that $\partial \Omega_{i}=\Gamma_{i} \cup \Gamma$ where Γ_{i} is the common boundary with $\Omega, \Gamma_{i}=\partial \Omega \cap \partial \Omega_{i}$ and Γ is the interface with $\Omega_{j}, \Gamma=\partial \Omega_{1} \cap \partial \Omega_{2}$, all of these boundaries are Lipschitz ($d-1$)-dimensional manifolds. Next, we consider the Sobolev spaces

$$
\mathbf{X}_{i}=\left[H_{0}^{1}\left(\Omega_{i} ; \Gamma_{i}\right)\right]^{d}=\left\{\mathbf{v} \in\left[H^{1}\left(\Omega_{i}\right)\right]^{d} \text { s.t. } \mathbf{v}_{\left.\right|_{\Gamma_{i}}}=0\right\}
$$

normed by $|\mathbf{v}|_{1, \Omega_{i}}^{2}=(\nabla \mathbf{v}, \nabla \mathbf{v})_{\Omega_{i}}$ and the Hilbert spaces $M_{i}=L^{2}\left(\Omega_{i}\right)$ normed as usual. Now for $\epsilon>0$ we consider the problem $\left(P_{\epsilon}\right)$:

Find $\left(\mathbf{u}_{i}, p_{i}\right) \in \mathbf{X}_{i} \times M_{i}$ with
$\left(P_{\epsilon}\right)\left\{\begin{array}{l}\left(\nabla \mathbf{u}_{1}, \nabla \mathbf{v}_{1}\right)_{\Omega_{1}}-\left(p_{1}, \nabla \cdot \mathbf{v}_{1}\right)_{\Omega_{1}}-\left(q_{1}, \nabla \cdot \mathbf{u}_{1}\right)_{\Omega_{1}}+\frac{1}{\epsilon}\left(\mathbf{u}_{1}-\mathbf{u}_{2}, \mathbf{v}_{1}\right)_{0, \Gamma}=\left(\mathbf{f}, \mathbf{v}_{1}\right)_{\Omega_{1}}, \\ \left(\nabla \mathbf{u}_{2}, \nabla \mathbf{v}_{2}\right)_{\Omega_{2}}-\left(p_{2}, \nabla \cdot \mathbf{v}_{2}\right)_{\Omega_{2}}-\left(q_{2}, \nabla \cdot \mathbf{u}_{2}\right)_{\Omega_{2}}+\frac{1}{\epsilon}\left(\mathbf{u}_{2}-\mathbf{u}_{1}, \mathbf{v}_{2}\right)_{0, \Gamma}=\left(\mathbf{f}, \mathbf{v}_{2}\right)_{\Omega_{2}},\end{array}\right.$
for all $\left(\mathbf{v}_{i}, q_{i}\right) \in \mathbf{X}_{i} \times M_{i}, i=1,2$. This problem is the variational formulation of the following coupled partial differential equations

$$
\left\{\begin{array} { l l l }
{ - \Delta \mathbf { u } _ { 1 } + \nabla p _ { 1 } } & { = \mathbf { f } \quad \text { in } \Omega _ { 1 } } \\
{ \nabla \cdot \mathbf { u } _ { 1 } } & { = 0 \quad \text { in } \Omega _ { 1 } } \\
{ \mathbf { u } _ { 1 } } & { = 0 \quad \text { on } \Gamma _ { 1 } } \\
{ \frac { \partial \mathbf { u } _ { 1 } } { \partial \mathbf { n } _ { 1 2 } } - p _ { 1 } \mathbf { n } _ { 1 2 } } & { = } & { - \frac { 1 } { \epsilon } (\mathbf { u } _ { 1 } - \mathbf { u } _ { 2 }) \text { on } \Gamma }
\end{array} \quad \left\{\begin{array}{lll}
-\Delta \mathbf{u}_{2}+\nabla p_{2} & =\mathbf{f} & \text { in } \Omega_{2} \\
\nabla \cdot \mathbf{u}_{2} & =0 & \text { in } \Omega_{2} \\
\mathbf{u}_{2} & 0 & \text { on } \Gamma_{2} \\
\frac{\partial \mathbf{u}_{2}}{\partial \mathbf{n}_{21}}-p_{2} \mathbf{n}_{21} & = & -\frac{1}{\epsilon}\left(\mathbf{u}_{2}-\mathbf{u}_{1}\right) \text { on } \Gamma
\end{array}\right.\right.
$$

where $\mathbf{n}_{i j}$ is the outward normal vector on Γ pointing from Ω_{i} into Ω_{j} and we stress that the pressures p_{i} do not longer have cero mean average. The apprpriated transmission conditions are enforced when $\epsilon \longrightarrow 0$ because we show that $\left\|\mathbf{u}_{1}-\mathbf{u}-2\right\|_{0, \Gamma}=\mathcal{O}(\epsilon)$. The iteration process that we proposse is the following: For $n=0,1,2, \ldots$, given $\mathbf{u}_{1}^{n}, \mathbf{u}_{2}^{n}$
we compute $\mathbf{u}_{1}^{n+1}, \mathbf{u}_{2}^{n+1}$ and p_{1}^{n+1}, p_{2}^{n+1} such that the following problems are satisfied

$$
\begin{cases}-\Delta \mathbf{u}_{1}^{n+1}+\nabla p_{1}^{n+1} & =\mathbf{f} \quad \text { in } \Omega_{1}, \\ \nabla \cdot \mathbf{u}_{1}^{n+1} & =0 \quad \text { in } \Omega_{1}, \\ \mathbf{u}_{1}^{n+1} & =0 \quad \text { on } \Gamma_{1}, \\ \frac{\partial \mathbf{u}_{1}^{n+1}}{\partial \mathbf{n}_{12}}-p_{1}^{n+1} \mathbf{n}_{12} & =-\frac{1}{\epsilon}\left(\mathbf{u}_{1}^{n+1}-\mathbf{u}_{2}^{n}\right) \text { on } \Gamma \\ -\Delta \mathbf{u}_{2}^{n+1}+\nabla p_{2}^{n+1} & =\mathbf{f} \quad \text { in } \Omega_{2}, \\ \nabla \cdot \mathbf{u}_{2}^{n+1} & =0 \quad \text { in } \Omega_{2}, \\ \mathbf{u}_{2}^{n+1} & =0 \quad \text { on } \Gamma_{2}, \\ \frac{\partial \mathbf{u}_{2}^{n+1}}{\partial \mathbf{n}_{21}}-p_{2}^{n+1} \mathbf{n}_{21} & =-\frac{1}{\epsilon}\left(\mathbf{u}_{2}^{n+1}-\mathbf{u}_{1}^{n}\right) \text { on } \Gamma\end{cases}
$$

We remark that our method may be viewed as a variation of the Robin

2 Analysis of problem $\left(P_{\epsilon}\right)$

Let us introduce the product spaces $\mathbf{X}=\mathbf{X}_{1} \times \mathbf{X}_{2}, \mathbf{M}=M_{1} \times M_{2}$ and denote by capital letters the elements (pairs) of \mathbf{X} and \mathbf{M}. Then we norm \mathbf{M} with $\|\mathbf{P}\|_{\mathbf{M}}^{2}=\sum_{i=1}^{2}\left\|p_{i}\right\|_{0, \Omega_{i}}^{2}$ and \mathbf{X} via $((\mathbf{U}, \mathbf{V}))_{\epsilon}=\sum_{i=1}^{2}\left(\nabla \mathbf{u}_{i}, \nabla \mathbf{v}_{i}\right)_{\Omega_{i}}+\frac{1}{\epsilon}\left(\mathbf{u}_{1}-\mathbf{u}_{2}, \mathbf{v}_{1}-\mathbf{v}_{2}\right)_{0, \Gamma}$ i.e., the norm in \mathbf{X} is given by $\|\mathbf{U}\|_{\epsilon}=((\mathbf{U}, \mathbf{U}))_{\epsilon}$. Next we define the forms $b(\mathbf{P}, \mathbf{V})=-\sum_{i=1}^{2}\left(p_{i}, \nabla \cdot \mathbf{v}_{i}\right)_{\Omega_{i}}, F(\mathbf{V})=$ $\sum_{i=1}^{2}\left(\mathbf{f}, \mathbf{v}_{i}\right)_{\Omega_{i}}$ and write problem $\left(P_{\epsilon}\right)$ in terms of the variational problem:

$$
\left\{\begin{array}{l}
\text { Find }(\mathbf{U}, \mathbf{P}) \in \mathbf{X} \times \mathbf{M} \text { such that } \\
((\mathbf{U}, \mathbf{V}))_{\epsilon}+b(\mathbf{P}, \mathbf{V})+b(\mathbf{Q}, \mathbf{U})=F(\mathbf{V}), \quad \forall(\mathbf{V}, \mathbf{Q}) \in \mathbf{X} \times \mathbf{M}
\end{array}\right.
$$

Now we consider the following symmetric and continuous, according to $\|\cdot\|_{\epsilon}$ and $\|\cdot\|_{\mathbf{M}}$, bilinear form on $\mathbf{X} \times \mathbf{M}$ given by

$$
B_{\epsilon}(\mathbf{U}, \mathbf{P} ; \mathbf{V}, \mathbf{Q})=((\mathbf{U}, \mathbf{V}))_{\epsilon}+b(\mathbf{P}, \mathbf{V})+b(\mathbf{Q}, \mathbf{U})
$$

for all pairs $(\mathbf{U}, \mathbf{P}),(\mathbf{V}, \mathbf{Q}) \in \mathbf{X} \times \mathbf{M}$. We have
Lemma 1 There exists a positive constant γ independent of $\epsilon>0$ such that for all $(\mathbf{U}, \mathbf{P}) \in \mathbf{X} \times \mathbf{M}$

$$
S=\sup _{(\mathbf{v}, \mathbf{Q}) \in \mathbf{X x M}} \frac{\left|B_{\epsilon}(\mathbf{U}, \mathbf{P} ; \mathbf{V}, \mathbf{Q})\right|}{\|\mathbf{V}\|_{\epsilon}+\|\mathbf{Q}\|_{\mathbf{M}}} \geq \epsilon \gamma\left(\|\mathbf{U}\|_{\epsilon}+\|\mathbf{P}\|_{\mathbf{M}}\right)
$$

As a consequence, given $\mathbf{f} \in\left[L^{2}(\Omega)\right]^{d}$ and for each $\epsilon>0$ problem $\left(P_{\epsilon}\right)$ has a unique solution $\left(\mathbf{U}^{\epsilon}, \mathbf{P}^{\epsilon}\right) \in \mathbf{X} \times \mathbf{M}$.

We introduce next the consistency error of problem $\left(\mathrm{P}_{\epsilon}\right)$ as an approximation of the Stokes equations in variational form. This error is the result of plugging the solution of (1) into $\left(P_{\epsilon}\right)$.

Lemma 2 Let (\mathbf{u}, p) be the solution of the Stokes problem and $\mathbf{U}=\left(\mathbf{u}_{\Omega_{1}}, \mathbf{u}_{\left.\right|_{2}}\right), \mathbf{P}=$ $\left(p_{\Omega_{1}}, p_{\Omega_{2}}\right)$. Then, we consider the consistency error of problem $\left(P_{\epsilon}\right)$ via

$$
\begin{aligned}
G(\mathbf{V}) & =((\mathbf{U}, \mathbf{V}))_{\epsilon}+b(\mathbf{P}, \mathbf{V})-F(\mathbf{V}) \\
& =\sum_{i=1}^{2}\left(\nabla \mathbf{u}, \nabla \mathbf{v}_{i}\right)_{\Omega_{i}}-\sum_{i=1}^{2}\left(p, \nabla \cdot \mathbf{v}_{i}\right)_{\Omega_{i}}-\sum_{i=1}^{2}\left(\mathbf{f}, \mathbf{v}_{i}\right)_{\Omega_{i}}
\end{aligned}
$$

for all $\mathbf{V}=\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right) \in \mathbf{X}$. Then, assuming $\mathbf{u} \in\left[H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right]^{d}$ and $p \in H^{1}(\Omega)$, let $\mathbf{n}_{1,2}=\mathbf{n}$, we have

$$
G(\mathbf{V})=\int_{\Gamma}\left(\partial_{\mathbf{n}} \mathbf{u}-p \mathbf{n}\right) \cdot\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right) d \sigma
$$

and therefore

$$
|G(\mathbf{V})| \leq\left\|\partial_{\mathbf{n}} \mathbf{u}-p \mathbf{n}\right\|_{0, \Gamma}\left\|\mathbf{v}_{1}-\mathbf{v}_{2}\right\|_{0, \Gamma} .
$$

Now we can estimate the error in approximating the variational formulation of the Stokes Equations with problem $\left(P_{\epsilon}\right)$

Lemma 3 Suppose that $\mathbf{u} \in\left[H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right]^{d}$ and $p \in H^{1}(\Omega)$ is the solution to the Stokes problem. For each $\epsilon>0$ let $\left(\mathbf{U}^{\epsilon}, \mathbf{P}^{\epsilon}\right) \in \mathbf{X} \times \mathbf{M}$ be the unique solution of problem $\left(P_{\epsilon}\right)$, with $\mathbf{U}^{\epsilon}=\left(\mathbf{u}_{1}^{\epsilon}, \mathbf{u}_{2}^{\epsilon}\right)$ and $\mathbf{P}^{\epsilon}=\left(p_{1}^{\epsilon}, p_{2}^{\epsilon}\right)$. Let $c(\mathbf{u}, p)=\left\|\partial_{\mathbf{n}} \mathbf{u}-p \mathbf{n}\right\|_{0, \Gamma}, \mathbf{U}=\left(\mathbf{u}_{\Omega_{1}}, \mathbf{u}_{\Omega_{2}}\right)$ and construct

$$
\pi^{\epsilon}=p_{1}^{\epsilon} \chi_{\Omega_{1}}+p_{2}^{\epsilon} \chi_{\Omega_{2}}-\frac{1}{|\Omega|}\left(\int_{\Omega_{1}} p_{1}^{\epsilon}+\int_{\Omega_{2}} p_{2}^{\epsilon}\right)
$$

Then

$$
\left\|\mathbf{U}-\mathbf{U}^{\epsilon}\right\|_{\epsilon} \leq c(\mathbf{u}, p) \sqrt{\epsilon} \quad \text { and } \quad\left\|p-\pi^{\epsilon}\right\|_{0, \Omega} \leq c(\mathbf{u}, p) \sqrt{\epsilon} .
$$

As a consequence we have

$$
\sum_{i=1}^{2}\left|\mathbf{u}-\mathbf{u}_{i}^{\epsilon}\right|_{1, \Omega_{i}} \leq c(\mathbf{u}, p) \sqrt{\epsilon} \quad \text { and } \quad\left\|\mathbf{u}_{1}^{\epsilon}-\mathbf{u}_{2}^{\epsilon}\right\|_{0, \Gamma} \leq c(\mathbf{u}, p) \epsilon
$$

3 Discrete problem and error estimates

We suppose that the domain Ω is polygonal and take for $h>0$ an admissible and regular triangulation \mathcal{T}_{h} of $\bar{\Omega}$ formed by polygons $(d=2)$ or polyhedra $(d=3)$ elements such that Γ is formed by faces or sides of elements K in \mathcal{T}_{h}. Then we use $\mathcal{T}_{h}^{i}=\mathcal{T}_{h} \cap \overline{\Omega_{i}}$, for $i=1,2$. These triangulations of $\overline{\Omega_{i}}$ are compatible on Γ, i.e., they share the same edges on Γ. For the triangulation \mathcal{T}_{h} we consider finite element subspaces $\left(V_{h}, P_{h}\right)$ of $\left(\left[H_{0}^{1}(\Omega)\right]^{d}, L_{0}^{2}(\Omega)\right)$ satisfying the discrete inf-sup condition of Ladyzhenskya-Brezzi-Babuška on Ω. Now we consider the discrete solution $\left(\mathbf{u}_{h}, p_{h}\right) \in V_{h} \times P_{h}$ of the discrete version of the Stokes
problem posed on $V_{h} \times P_{h}$ and assume that, when the solution (\mathbf{u}, p) to the continuous Stokes problem in Ω satisfies $\mathbf{u} \in\left[H^{k+1}(\Omega) \cap H_{0}^{1}(\Omega)\right]^{d}$ and $p \in H^{k}(\Omega) \quad(k \geq 1)$, then

$$
\begin{equation*}
\left|\mathbf{u}_{h}-\mathbf{u}\right|_{1, \Omega}+\left\|p_{h}-p\right\|_{0, \Omega} \leq C_{0} h^{k} \tag{2}
\end{equation*}
$$

for some constant $C_{0}=C_{0}(\mathbf{u}, p)$. Now, based on \mathcal{T}_{h}^{i}, use finite element subspaces of $\left(\mathbf{X}_{i}, M_{i}\right)$, denoted by $\left(\mathbf{X}_{i, h}, M_{i, h}\right)$, such that each pair $\left(\mathbf{Y}_{i, h}, N_{i, h}\right)$, where $\mathbf{Y}_{i, h}=\mathbf{X}_{i, h} \cap$ $\left[H_{0}^{1}\left(\Omega_{i}\right)\right]^{d}$ and $N_{i, h}=M_{i, h} \cap L_{0}^{2}\left(\Omega_{i}\right)$ also satisfies the discrete inf-sup condition on Ω_{i}. For instance we could use the restriction of the spaces V_{h} and P_{h} to each of the Ω_{i}. Set now $\mathbf{X}_{h}=\mathbf{X}_{1, h} \times \mathbf{X}_{2, h}$ and $\mathbf{M}_{h}=M_{1, h} \times M_{2, h}$ and pose the discrete version of $\left(P_{\epsilon}\right)$, that we denote by $\left(P_{\epsilon, h}\right)$:

$$
\left\{\begin{array}{l}
\text { Find }\left(\mathbf{U}_{h}^{\epsilon}, \mathbf{P}_{h}^{\epsilon}\right) \in \mathbf{X}_{h} \times \mathbf{M}_{h} \text { such that } \\
\left(\left(\mathbf{U}_{h}^{\epsilon}, \mathbf{V}_{h}\right)\right)_{\epsilon}+b\left(\mathbf{P}_{h}^{\epsilon}, \mathbf{V}_{h}\right)+b\left(\mathbf{Q}_{h}, \mathbf{U}_{h}^{\epsilon}\right)=F\left(\mathbf{V}_{h}\right), \quad \forall\left(\mathbf{V}_{h}, \mathbf{Q}_{h}\right) \in \mathbf{X}_{h} \times \mathbf{M}_{h}
\end{array}\right.
$$

The existence and uniqueness of solution for $\left(P_{\epsilon, h}\right)$ is carried out as for $\left(P_{\epsilon}\right)$ and we have the estimates
Theorem 4 Let $\mathbf{u} \in\left[H^{k+1}(\Omega) \cap H_{0}^{1}(\Omega)\right]^{d}$ and $p \in H^{k}(\Omega)(k \geq 1)$ be the solution to the Stokes problem in Ω and for each $h>0$ let $\left(\mathbf{u}_{h}, p_{h}\right) \in V_{h} \times P_{h}$ solve the discrete Stokes problem on $V_{h} \times P_{h}$. Now consider $\mathbf{U}_{h}=\left(\mathbf{u}_{h \mid \Omega_{1}}, \mathbf{u}_{h \mid \Omega_{2}}\right) \in \mathbf{X}_{h}, \mathbf{P}_{h}=\left(p_{h \mid \Omega_{1}}, p_{h \mid \Omega_{2}}\right) \in \mathbf{M}_{h}$. For each $\epsilon>0$ let $\left(\mathbf{U}_{h}^{\epsilon}, \mathbf{P}_{h}^{\epsilon}\right) \in \mathbf{X}_{h} \times \mathbf{M}_{h}$ solve $\left(P_{\epsilon, h}\right)$ and write $\mathbf{U}_{h}^{\epsilon}=\left(\mathbf{u}_{1, h}^{\epsilon}, \mathbf{u}_{2, h}^{\epsilon}\right)$ and $\mathbf{P}_{h}^{\epsilon}=\left(p_{1, h}^{\epsilon}, p_{2, h}^{\epsilon}\right)$. Now construct

$$
\begin{equation*}
\pi_{h}^{\epsilon}=p_{1, h}^{\epsilon} \chi_{\Omega_{1}}+p_{2, h}^{\epsilon} \chi_{\Omega_{2}}-\frac{1}{|\Omega|}\left(\int_{\Omega_{1}} p_{1, h}^{\epsilon}+\int_{\Omega_{2}} p_{2, h}^{\epsilon}\right) \tag{3}
\end{equation*}
$$

then, the following error estimate hold

$$
\begin{align*}
\left\|\mathbf{U}_{h}-\mathbf{U}_{h}^{\epsilon}\right\|_{\epsilon} & \leq C\left(h^{k}+\sqrt{\epsilon}\right) \tag{4}\\
\left\|p_{h}-\pi_{h}^{\epsilon}\right\|_{0, \Omega} & \leq C\left(h^{k}+\sqrt{\epsilon}\right) \tag{5}
\end{align*}
$$

where $C=C(\mathbf{u}, p)$ is a positive constant just depending on (\mathbf{u}, p). As a consequence of (4) we have

$$
\sum_{i=1}^{2}\left|\mathbf{u}_{h}-\mathbf{u}_{i, h}^{\epsilon}\right|_{1, \Omega_{i}} \leq C\left(h^{k}+\sqrt{\epsilon}\right) \quad \text { and } \quad\left\|\mathbf{u}_{1, h}^{\epsilon}-\mathbf{u}_{2, h}^{\epsilon}\right\|_{0, \Gamma} \leq C\left(\sqrt{\epsilon} h^{k}+\epsilon\right)
$$

Via the triangular inequality, we give the main result of this section
Theorem 5 Let $\mathbf{u} \in\left[H^{k+1}(\Omega) \cap H_{0}^{1}(\Omega)\right]^{d}$ and $p \in H^{k}(\Omega),(k \geq 1)$ be the solution to the Stokes problem in Ω. For each $h>0$ and $\epsilon>0$ let $\left(\mathbf{U}_{h}^{\epsilon}, \mathbf{P}_{h}^{\epsilon}\right) \in \mathbf{X}_{h} \times \mathbf{M}_{h}$ solve $\left(P_{\epsilon, h}\right)$ with finite dimensional spaces of accuracy $k \geq 1$ and write $\mathbf{P}_{h}^{\epsilon}=\left(p_{1, h}^{\epsilon}, p_{2, h}^{\epsilon}\right)$. Then construct π_{h}^{ϵ} as in (3). The following bounds hold

$$
\begin{align*}
\sum_{i=1}^{2}\left|\mathbf{u}-\mathbf{u}_{i, h}^{\epsilon}\right|_{1, \Omega_{i}}+\frac{1}{\sqrt{\epsilon}}\left\|\mathbf{u}_{1, h}^{\epsilon}-\mathbf{u}_{2, h}^{\epsilon}\right\|_{0, \Gamma} & \leq C\left(h^{k}+\sqrt{\epsilon}\right) \tag{6}\\
\left\|p-\pi_{h}^{\epsilon}\right\|_{0, \Omega} & \leq C\left(h^{k}+\sqrt{\epsilon}\right) \tag{7}
\end{align*}
$$

where $C=C(\mathbf{u}, p, \mathbf{f})$ is a positive constant just depending on the data. When $\epsilon=O\left(h^{2 k}\right)$ we have

$$
\sum_{i=1}^{2}\left|\mathbf{u}-\mathbf{u}_{i, h}^{\epsilon}\right|_{1, \Omega_{i}}+\left\|p-\pi_{h}^{\epsilon}\right\|_{0, \Omega} \leq C h^{k} \quad \text { and } \quad\left\|\mathbf{u}_{1, h}^{\epsilon}-\mathbf{u}_{2, h}^{\epsilon}\right\|_{0, \Gamma} \leq C h^{2 k}
$$

4 Iteration process

We search for the solution of $\left(P_{\epsilon, h}\right)$ via the following parallelizable technique: For $n=$ $0,1,2, \ldots$, given $\mathbf{u}_{1}^{n}=\mathbf{u}_{1, h}^{\epsilon, n}$ and $\mathbf{u}_{2}^{n}=\mathbf{u}_{2, h}^{\epsilon, n}$ we compute $\mathbf{u}_{1}^{n+1} \in \mathbf{X}_{1, h}, \mathbf{u}_{2}^{n+1} \in \mathbf{X}_{2, h}$ and $p_{1}^{n+1} \in M_{1, h}, p_{2}^{n+1} \in M_{2, h}$ such that the following problem $\left(P_{\epsilon, h}^{n}\right)$ is satisfied

$$
\left\{\begin{array}{l}
\left(\nabla \mathbf{u}_{1}^{n+1}, \nabla \mathbf{v}_{1}\right)_{\Omega_{1}}-\left(p_{1}^{n+1}, \nabla \cdot \mathbf{v}_{1}\right)_{\Omega_{1}}-\left(q_{1}, \nabla \cdot \mathbf{u}_{1}^{n+1}\right)_{\Omega_{1}}+\frac{1}{\epsilon}\left(\mathbf{u}_{1}^{n+1}-\mathbf{u}_{2}^{n}, \mathbf{v}_{1}\right)_{0, \Gamma}=\left(\mathbf{f}, \mathbf{v}_{1}\right)_{\Omega_{1}}, \\
\left(\nabla \mathbf{u}_{2}^{n+1}, \nabla \mathbf{v}_{2}\right)_{\Omega_{2}}-\left(p_{2}^{n+1}, \nabla \cdot \mathbf{v}_{2}\right)_{\Omega_{2}}-\left(q_{2}, \nabla \cdot \mathbf{u}_{2}^{n+1}\right)_{\Omega_{2}}+\frac{1}{\epsilon}\left(\mathbf{u}_{2}^{n+1}-\mathbf{u}_{1}^{n}, \mathbf{v}_{2}\right)_{0, \Gamma}=\left(\mathbf{f}, \mathbf{v}_{2}\right)_{\Omega_{2}}
\end{array}\right.
$$

for all $\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right) \in \mathbf{X}_{h}$ (we drop the indices ϵ and h when not needed). We obtain the following geometric rate of convergence

Theorem 6 Let $\mathbf{U}_{h}^{\epsilon}=\left(\mathbf{u}_{1, h}^{\epsilon}, \mathbf{u}_{2, h}^{\epsilon}\right) \in \mathbf{X}_{h}$ and $\mathbf{P}_{h}^{\epsilon}=\left(p_{1, h}^{\epsilon}, p_{2, h}^{\epsilon}\right) \in \mathbf{M}_{h}$ be the solution of $\left(P_{\epsilon, h}\right)$ and $\mathbf{U}_{h}^{\epsilon, n}=\left(\mathbf{u}_{1, h}^{\epsilon, n}, \mathbf{u}_{2, h}^{\epsilon, n}\right) \in \mathbf{X}_{h}, \mathbf{P}_{h}^{\epsilon, n}=\left(p_{1, h}^{\epsilon, n}, p_{2, h}^{\epsilon, n}\right) \in \mathbf{M}_{h}$ be the solution of $\left(P_{\epsilon, h}^{n}\right)$. Let us define π_{h}^{ϵ} and $\pi_{h}^{\epsilon, n}$ as in (3). Then, starting off the iterative process, for instance, with $\mathbf{u}_{i, h}^{0, \epsilon}=0$, there exists a positive constant C_{0} such that for each $\epsilon, h>0$ and all $n \geq 0$

$$
\begin{aligned}
\sum_{i=1}^{2}\left|\mathbf{u}_{i, h}^{\epsilon, n+1}-\mathbf{u}_{i, h}^{\epsilon}\right|_{1, \Omega_{i}} & \leq \frac{\mathcal{P}\|\mathbf{f}\|_{0, \Omega}}{\sqrt{\epsilon}\left(1+2 C_{0} \epsilon\right)^{n / 2}} \\
\left\|\pi_{h}^{\epsilon, n+1}-\pi_{h}^{\epsilon}\right\|_{0, \Omega} & \leq \frac{\mathcal{P}\|\mathbf{f}\|_{0, \Omega}}{\epsilon\left(1+2 C_{0} \epsilon\right)^{n / 2}}
\end{aligned}
$$

for some constant \mathcal{P} proportional to the constant in Poincare's Inequality.
Via the triangular inequality we obtain the final bound
Theorem 7 Let $\mathbf{u} \in\left[H^{k+1}(\Omega) \cap H_{0}^{1}(\Omega)\right]^{d}$ and $p \in H^{k}(\Omega)$, for $k \geq 1$, be the solution to the Stokes problem in Ω. For each $h>0$ and $\epsilon>0 \operatorname{let}\left(\mathbf{U}_{h}^{\epsilon, n}, \mathbf{P}_{h}^{\epsilon, n}\right) \in \mathbf{X}_{h} \times \mathbf{M}_{h}(n \geq 1)$ solve the iteration problem $\left(P_{\epsilon, h}^{n}\right)$ starting off the iteration with $\mathbf{U}_{h}^{\epsilon, 0}=0$, and using finite element spaces of accuracy $k \geq 1$. Then the following bounds hold for all $n \geq 0$

$$
\begin{align*}
\sum_{i=1}^{2}\left|\mathbf{u}-\mathbf{u}_{i, h}^{n+1, \epsilon}\right|_{1, \Omega_{i}} & \leq C\left(h^{k}+\sqrt{\epsilon}+\frac{1}{\sqrt{\epsilon}\left(1+2 C_{0} \epsilon\right)^{n / 2}}\right) \tag{8}\\
\left\|p-\pi_{h}^{n+1, \epsilon}\right\|_{0, \Omega} & \leq C\left(h^{k}+\sqrt{\epsilon}+\frac{1}{\epsilon\left(1+2 C_{0} \epsilon\right)^{n / 2}}\right) \tag{9}
\end{align*}
$$

where $C=C(\mathbf{u}, p)$ is a positive constant just depending on (\mathbf{u}, p). When $\epsilon=O\left(h^{2 k}\right)$ and n large enough we obtain error bounds $O\left(h^{k}\right)$ for velocity and pressure

$$
\sum_{i=1}^{2}\left|\mathbf{u}-\mathbf{u}_{i, h}^{n, \epsilon}\right|_{1, \Omega_{i}}+\left\|p-\pi_{h}^{n, \epsilon}\right\|_{0, \Omega} \leq C h^{k}
$$

where $C=C(\mathbf{u}, p)$ is a positive constant just depending on (\mathbf{u}, p).

5 Numerical experiments

We use a known solution of the incompressible Stokes equations to compute the error between the exact solution and the numerical approximation in the case $k=1$. In this test $\Omega=(0,1) \times(0,1)$ and the boundary condition is $\mathbf{u}=0$ on the boundary $\partial \Omega$ of Ω. The exact solution is

$$
\begin{aligned}
& u(x, y)=-\cos (2 \pi x) \sin (2 \pi y)+\sin (2 \pi y) \\
& v(x, y)=\sin (2 \pi x) \cos (2 \pi y)-\sin (2 \pi x) \\
& p(x, y)=2 \pi(-\cos (2 \pi x)+\cos (2 \pi y))
\end{aligned}
$$

and we take viscosity $\nu=1$. We consider the interface Γ as the line $y=0.5$ and then $\Omega_{1}=(0,1) \times(0,0.5)$ and $\Omega_{2}=(0,1) \times(0.5,1)$. Next, we consider a uniform triangular mesh of mesh size $h=h_{x}=h_{y}$, take $\epsilon=h^{2}$ and use \mathbf{P}_{1} finite elements with the BrezziPitkaranka stabilization technique for computing the solutions $\mathbf{u}_{i, h}$ and $p_{i, h}$ on each Ω_{i}. Then we construct the approximated velocity field \mathbf{u}_{h} and pressure $\pi_{h} \in L_{0}^{2}(\Omega)$ via

$$
\begin{cases}\mathbf{u}_{h}=\mathbf{u}_{i, h}, & \text { in } \Omega_{i} \\ \mathbf{u}_{h}=\left(\mathbf{u}_{1, h}+\mathbf{u}_{2, h}\right) / 2, & \\ \pi_{h}=p_{1, h} \chi_{\Omega_{1}}+p_{2, h} \chi_{\Omega_{2}}-\frac{1}{|\Omega|}\left(\int_{\Omega_{1}} p_{1, h}+\int_{\Omega_{2}} p_{2, h}\right), & \\ \text { in } \Omega\end{cases}
$$

where $|\Omega|=1$. Finally we compute the errors $e u(h)=\left(\sum_{i=1}^{2} \int_{\Omega_{i}}\left|\nabla\left(u_{h}-u_{i h}^{n, \epsilon}\right)\right|^{2} d x\right)^{1 / 2}$ and $e p(h)=\left\|p-p_{h}\right\|_{0, \Omega}$. The following table shows the values obtained for these measures.

wesh	$16 \times 16 \quad(h=1 / 16)$	$32 \times 32 \quad(h=1 / 32)$	$64 \times 64 \quad(h=1 / 64)$
eu(h)	0.4600	0.13413	0.0412
ep(h)	0.5773	0.1942	0.066

Indeed, an order of convergence slightly larger that 1 is obtained on this example.

References

[1] Chacón Rebollo, T., Chacón Vera, E., Domínguez Delgado, A. Analysis of a Non-overlapping Domain Decomposition Method for Elliptic Equations XVII CEDYA/VII CMA, Salamanca (Spain) 2001.
[2] Chacón Rebollo, T., Chacón Vera, E.A non-overlapping Domain Decomposition Method for the Stokes equations via a penalty term on the interface C.R. Acad. Sci. Paris, t. 334, Serie I, p. 2002.
[3] J.L. Lions, Pironneau, O., Overlapping domain decomposition of evolution operators. C.R. Acad. Sci. Paris, t. 330, Serie I, p. 937-942, 2000.
[4] P.L. Lions On the Schwarz alternating method III: a variant for non-overlapping subdomains Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, T.F. Chan et al. eds., SIAM, Philadelphia, pp. 202-231, 1990.

