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ABSTRACT The ionic currents of clonal Y-1 adrenocortical cells were studied 
using the whole-cell variant of the patch-clamp technique. These cells had two 
major current components: a large outward current carried by K ions, and a small 
inward Ca current. The Ca current depended on the activity of two populations of  
Ca channels, slow (SD) and fast (FD) deactivating, that could be separated by their 
different closing time constants (at - 8 0  mV, SD, 3.8 ms; and FD, 0.13 ms). These 
two kinds of channels also differed in (a) activation threshold (SD, ~ - 50 mV; FD, 
~ - 2 0  mV), (b) half-maximal activation (SD, between - 1 5  and - 1 0  mV; FD 
between + 10 and + 15 mV), and (c) inactivation time course (SD, fast; FD, slow). 
The total amplitude of the Ca current and the proportion of SD and FD channels 
varied from cell to cell. The amplitude of the K current was strongly dependent on 
the internal [Ca ~+] and was almost abolished when internal [Ca ~+] was < 0.001 
#M. The K current appeared to be independent, or only slightly dependent, of  Ca 
influx. With an internal [Ca ~+] of 0.1 #M, the activation threshold was - 2 0  mV, 
and at +40 mV the half-time of  activation was 9 ms. With 73 mM external K the 
closing time constant at - 70 mV was ~3 ms. The outward current was also modu- 
lated by internal pH and Mg. At a constant pCa, a decrease of pH reduced the 
current amplitude, whereas the activation kinetics were not much altered. 
Removal of internal Mg produced a drastic decrease in the amplitude of the Ca- 
activated K current. It was also found that with internal [Ca ~+] over 0.1 #M the K 
current underwent a time-dependent transformation characterized by a large 
increase in amplitude and in activation kinetics. 

I N T R O D U C T I O N  

The electrophysiological properties of  adrenocortical cells are poorly studied 
although it has been known for over a decade that they can generate spike-like 
depolarizations (Matthews and Saffran, 1973; Natke and Kabela, 1979). Recently, 
action potentials of  over 70 mV in amplitude have been recorded in clonal Y-1 
murine adrenocortical cells (Tabares and L6pez-Barneo, 1986). These action poten- 
tials are tetrodotoxin (TTX)-resistant and disappear after removal of  external Ca or  
after introduction of  Ca channel blockers. These cells have a dense and uniform 
distribution of  Ca-activated maxi-K channels, the properties of  which have been 
studied at the single-channel level (Tabares et al., 1985; L6pez-Barneo et al., 1986). 
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Cells dispersed from the rat adrenal cortex also exhibit Ca-dependent electrical 
excitability (Quinn et al., 1987) and when subjected to voltage clamp, they can gen- 
erate Ca and K currents (Payet et al., 1987; Tabares et al., 1988). 

Several endocrine cells generate Ca- and Na-dependent action potentials that are 
responsible for the Ca entry required for exocytosis (for a review see Petersen, 
1980), and in some secretory cells the ionic conductances underlying membrane 
excitability have been studied (Fenwick et al., 1982; Hagiwara and Ohmori, 1982; 
Dubinsky and Oxford, 1984; Matteson and Armstrong, 1984; Cota, 1986; Rorsman 
and Trube, 1986; Hiriart and Matteson, 1988). Adrenocortical cells are unusual 
because stimulation by adrenocorticotropin (ACTH) and other  secretagogues pri- 
marily increase hormone biosynthesis, and the release of  newly synthesized steroids 
can occur by diffusion across the lipid phase of  the membrane (Jaanus et al., 1970; 
Sibley et al., 1981). However, it is well established that external Ca is required for 
optimal steroid production and output  in response to ACTH (Birmingham et al., 
1953;Jaanus et al., 1970; Sayers et al., 1972; Fakunding et al., 1979) and that secre- 
tagogues increase Ca uptake in adrenocortical cells (Leier and Jungmann,  1973; 
Yanagibashi, 1979; Kojima and Ogata, 1986). In adrenal cells cytosolic Ca may be 
important for key enzymatic steps and cytoskeleton rearrangement involved in ste- 
roidogenesis (Hall et al., 1979; Cheitlin and Ramachandran, 1981). Thus, the char- 
acterization of  the ionic currents present in these cells, which are possibly regulated 
by secretagogues and intracellular mediators, will surely be of  importance for the 
understanding of  the action of  hormones and drugs on steroid biosynthesis and 
secretion. 

We have studied the properties of  ionic currents present in Y-1 cells. These are a 
transformed line of  murine adrenocortical cells that secrete glucocorticoids in 
response to ACTH and other secretagogues, and that are broadly used in biochem- 
ical studies on the mechanisms underlying the production and release of  steroid 
hormones (Mrotek and Hall, 1977; Clark and Shay, 1981; Hall et al., 1979; Mattson 
and Kowal, 1982). In this article it is shown that clonal adrenocortical cells have 
voltage-dependent Ca and K currents. The Ca current  is mediated by two different 
types of  Ca channels, and the K current  appears to be essentially due to the activity 
of  Ca-activated K channels. It is also shown that this K conductance is modulated by 
cytosolic pH and Mg 2+. 

Preliminary accounts of  some of  these results have appeared elsewhere (L6pez- 
Barneo and Tabares, 1987; Tabares and Ltpez-Barneo,  1988). 

M E T H O D S  

Cell Culture 

Y-1 cells were purchased from the American Type Cell Collection (Rockville, MD) and cul- 
tured in Ham's F-10 medium (Gibco, Grand Island, NY) supplemented with 5% fetal bovine 
serum (Gibco), penicillin (100 U/ml), and streptomycin (100 #g/ml; Flow Laboratories, Inc., 
Rockville, MD). In some experiments 1% glutamine (Sigma Chemical Co., St. Louis, MO) was 
added to the culture medium. Cells were plated on slivers of glass coverslips coated with 
poly-/-lysine (Sigma) placed inside 35-mm plastic Petri dishes. Cells were kept in a CO2 incu- 
bator at 37"C until use (4-72 h after plating). 
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Solutions 

At the beginning of  each exper iment  a coverslip was placed in a chamber  with a volume of  
~0.2 ml and filled with the recording external solution. The  pipette filling solution is referred 
to as internal solution since, as previously observed in o ther  preparat ions (Fenwick et al., 
1982; Matteson and Armstrong,  1984), it equilibrated rapidly with the cell cytoplasm. In the 
text and figure legends solutions are indicated as external / / in ternal .  The  compositions o f  the 
recording solutions are shown in Table I. In some experiments TI 'X (1 #g/ml)  and 1 mM 
CdCl~ were added to the standard external solution, o r  10 mM NaCI was replaced by an 
equimolar  concentrat ion of  te traethylammonium (TEA) chloride. 2 mM Mg-ATP was added 
to the 70 Cs internal solution to retard wash-out o f  Ca channels (Kostyuk, 1984; Forscher 
and Oxford,  1985; Cota, 1986). Unless otherwise noted the p H  of  the external and internal 
solutions were adjusted to 7.2 and 7.2-7.3,  respectively. In experiments designed to test the 
effect o f  internal Ca 2+ and pH,  Ca /EGTA buffers were added to the standard internal solu- 
tion (Table II). The compositions o f  these buffers were obtained with the aid o f  a short com- 
puter  program that calculates pCa (log 1/[Ca2+]) and [Mg ~+] at a given pH,  given the total 
concentrat ions o f  Ca (Cat), EGTA (EGTAt), and Mg (Mgt). Stability constants for EGTA, 
EGTA/Ca  and E G T A / M g  (at 200C and 0.1 M ionic strength) were taken f rom Martell and 

T A B L E  I 

C~positi~ ~ ~cording ~ i o n s *  

External NaCI KCI CaCI~ MgCI2 BaCI2 HEPES 

Standard 130 5 0-10 1 - -  10 
10Ca 140 - -  10 - -  - -  10 
10 Ba 140 - -  - -  - -  10 10 
73 K 62 73 10 1 - -  10 

Internal KCI MgCI~  C s C I  NMGCI HEPES EGTA Mg-ATP 

Standard 140 2 - -  - -  10 0-10 - -  
140 Cs - -  2 140 - -  10 0-10 - -  
70 Cs - -  2 70 70 10 10 2 

*All values are in millimolar. 

Smith (1974). Solutions were passed through a 0.2-#m filter (Millipore, Bedford, MA) before  
use. Experiments were per formed at 20-25~ 

Recording Techniques and Electronics 

Ionic currents were recorded f rom over  300 adrenocortical  cells (12-16 #m in diameter) 
using the whole-cell variant o f  the patch-clamp technique (Hamill et al., 1981). The average 
cell capacitance was 17.78 _+ 7.24 pF (mean + SD, n = 50). Patch electrodes were fabricated 
f rom either soft hematocri t  capillaries (Hirschmann, West Germany) o r  Kimax 51 borosilicate 
(Kimble Division, Toledo,  OH)  by a double pull on  a puller (David Kopf  Instruments,  
Tujunga,  CA) and fire polished on a microforge.  In the experimental  conditions used the 
currents recorded with both types o f  electrodes were indistinguishable. Electrode resistance 
varied between 0 .5 -2  Mr.  In most experiments we used a patch-clamp amplifier built by us 
following the standard design (Hamill et al., 1981). In this amplifier the current-to-voltage 
conver ter  is a Burr-Brown OPA 111 (Tucson, AZ). Frequency response was improved by 
using low-resistance electrodes, series resistance compensation,  and a relatively low (100 Mfl) 
feedback resistance. Because the recording of  the small and fast Ca tail currents present  in 
Y-1 cells requires bet ter  t ime resolution than our  amplifier provides, a set of  experiments was 
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done at the laboratory o f  Dr. Clay M. Armst rong (University o f  Pennsylvania) using a tech- 
nique that enhances the speed with which a voltage step is applied to the cell membrane  (for 
details see Armstrong and Chow, 1987; Swandulla and Armstrong,  1988). Apart  f rom the 
difference in time resolution the properties o f  the Ca currents recorded in both laboratories 
were the same. 

Data Acquisition and Analysis 

An IBM-PC/AT computer  was used for pulse generat ion and for acquisition, storage and 
analysis of  the data. The pulse generator  was built by us on an IBM prototype card, using an 
eight-bit digital-to-analog conver ter  (DCA 0808; Analog Devices Inc., Norwood,  MA) and a 
programmable  peripheral interface (PPI 8255A-5; NEC Microcomputers,  Paris, France). The 

T A B L E  II  

Ca/EGTA Buffers Added to the Standard Internal Solution* 

Variable pCa at constant pH 

pCa [Cat] [EGTA,] pH [Ca ~+] 

UM 
6.34 4.14 5 7.2 0.45 
6.64 3.75 5 7.2 0.23 
6.94 2.78 5 7.2 0.11 
7.04 2.51 5 7.2 0.09 
8.04 0.45 5 7.2 0.009 

Variable pH at constant pCa 

pH [Ca,] [EGTAd pCa 

6.8 0.098 5 8 
7 0.238 5 8 
7.2 0.485 5 8 
7.6 1.669 5 8 
6.7 0.455 5 7 
7.4 3.576 5 7 
7.7 4.316 5 7 

*All values, except the concentration of free Ca ~+, are in millimolar. The concentration of 
free Mg 2+ is in all cases between 1.85-2 raM. 

pulse generator  triggered a 10-bit digital oscilloscope 5223; (Tektronix, Inc., Beaverton, OR) 
which was used to digitize the current  signal. The oscilloscope was interfaced to the compute r  
by an IEEE-488 card (National Inst rument  Co., Inc., Baltimore, MD). The system used for 
acquisition o f  Ca tail current  was based on a LSI-11/73  computer  (Digital Equipment  Corp.,  
Marlboro, MA) (Matteson and Armstrong,  1984). In all cases linear ionic and capacity cur- 
rents were subtracted. Ca and K tail currents were fitted with one or  the sum or  two expo- 
nentials using a least-squares procedure.  

R E S U L T S  

Major Current Components 

T h e  m a j o r  c o m p o n e n t s  o f  ion ic  c u r r e n t  r e c o r d e d  in Y-1 cells  a r e  s h o w n  in Fig. 1. 

W i t h  h i g h  K in t he  p ipe t t e ,  d e p o l a r i z a t i o n  to  pos i t ive  vo l t ages  g e n e r a t e d  in all cel ls  a 
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large outward current  that activated slowly and, at a membrane  potential o f  +50  
mV, reached a maximum in - 5 0  ms (Fig. 1 A). The outward current  was mainly 
carried by K ions since it disappeared when all the K of  the pipette solution was 
replaced by Cs or  a mixture of  Cs and N-methyl-u-glucamine (NMG). Furthermore,  
this current  was greatly reduced when 10 mM TEA was added to the external solu- 
tion. 

With the standard external and internal solutions inward currents were observed 
in only a few cells and in a membrane  voltage range at which K currents were not 
too large. On the other  hand, inward currents, smaller than 200 pA, were clearly 
recorded under  conditions that abolished the K current.  Fig. 1 B shows, in a cell 
dialyzed with the 140 Cs solution, an inward current  elicited by a step depolariza- 
tion to - 10 mV from a holding potential o f  - 70 mV. The current  reaches a maxi- 
mum in 7 -8  ms and thereafter  partially inactivates. Inward tail currents are not 
clearly detected at the end of  the 50-ms pulse due to the large fraction of  the cur- 
rent  that is already inactivated and the relatively low time resolution o f  the record- 
ing system (see Methods). The inward current  was a result o f  the activity of  Ca chan- 

A 

50 / 
B 

-1o .. . . . . . .  ....................... i -  

10 ms 

1 nA 

0.4 nA 

FIGURE 1. Whole-cell currents in 
clonal adrenocortical cells. (A) Out- 
ward current during a voltage step 
to + 50 mV from a holding potential 
o f - 7 0  mV. Standard, 5 Ca//stan- 
dard, 0.5 EGTA. Experiment 
09MZ87C. (B) Inward current dur- 
ing a pulse to - 1 0  mV from a hold- 
ing potential of - 70 mV. The arrows 
indicate the onset and the end of the 
voltage step. Standard, 10 Ca//140 
Cs, 10 EGTA. Experiment 
08JN87A. 

nels since it was not affected by the addition of  T I X  (1 ug/ml) the the external 
solution, and it disappeared in the absence of  external Ca or  in the presence of  1 
mM external Cd. A similar current  was recorded when external Ca was replaced by 
Ba. These results indicate the existence of  Ca and K channels in Y-1 adrenocortical 
cells. 

Properties of  the Ca Current 

Current-voltage relations. Fig. 2 A illustrates Ca currents recorded with high 
time resolution (see Methods) at various membrane  potentials. Current  generated 
during the pulse, which is indicated between the arrows, activates more  rapidly at 
more  depolarized levels. At the instant o f  repolarization to the holding potential, 
the driving force for Ca ions suddenly increases and inward tail currents are 
recorded. These tails are due to the flow of  current  through the Ca channels that 
were opened by the pulse, and their time course reflects that o f  the closing of  the 
channels. After small depolarizations the decay of  the tails follows a simple, slow 
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time course but after steps to potentials more positive than 0 mV a fast component  
clearly appears. Both the slow and the fast components  of  the tails grow larger as 
the pulse potential is made more positive. These findings suggest the existence in 
adrenocortical cells o f  at least two types of  Ca channels with different activation 
thresholds and deactivation kinetics (see below). 

The relation between the Ca current  measured at the end of  a 10-ms pulse and 
the step membrane  potential is illustrated in Fig. 2 B. The line drawn through the 
filled symbols is the I / V  curve obtained with 10 mM Ca in the external solution. In 
this cell, the inward current  became detectable at - 6 0  mV, it reached a maximum 

A 

-20  .... . ~ . :  
r 

0 "~- 

2 0  - 

4 0  ~ 

- 8 0  - 6 0  - 4 0  - 2 0  
A i i i 

~ ' 5  

r 
2 

! 

6 0  " ~  

1 ( n A  i 

2. ms 

150" 

V M (mY) 

20 40  60  80  
i i i i 

I M (pA)  

FIGURE 2. (,4) Ca currents recorded with high time resolution by depolarizations to the 
membrane potentials given in millivolts to the left of each trace. The onset and the end of the 
voltage steps (10-ms duration) are indicated by the arrows. Upon repolarization tail currents 
with a biphasic decay are observed. (B) Current-voltage relation of inward current. Current 
amplitude (ordinate) was measured 10 ms after the beginning of voltage steps of variable 
amplitude (abscissa). The continuous line was fitted by eye. Holding potential - 8 0  mV. 10 
Ca//70 Cs. Experiments 0C1587N and 0C2487N. 

between - 1 0  and +20  mV, and with larger depolarizations the amplitude of  the 
current  decreased as the driving force for Ca ions became progressively smaller. 

Identification of two Ca channel types. As shown before,  at least two components  
of  Ca current  could be clearly distinguished in the tail currents generated after 
depolarizing voltage steps. The isolation of  the two components  was done following 
the method shown in Fig. 3 (see also Matteson and Armstrong, 1986). A illustrates a 
Ca tail current  recorded on return to a holding potential of  - 8 0  mV after a depo- 
larization to +40  mV lasting 10 ms. After the initial j u m p  in the current  there is a 
biphasic decay. An exponential with a time constant of  3.78 ms was fitted to the slow 
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c o m p o n e n t  and extrapolated back to the instant o f  the repolarization (Fig. 3 A). 
The  difference between the tail cur ren t  and the exponential  yielded a separate fast 
c o m p o n e n t  that was fitted by ano ther  exponential  with a time constant  o f  0.13 ms 
(Fig. 3 B). Thus,  the slow and the fast componen t s  are indications o f  the existence in 
adrenocort ical  cells o f  two different Ca channel  types that  differ in their activation 
threshold and closing kinetics. Similar results have been  found  in a n u m b e r  o f  endo-  
crine cells and the two Ca channels classified as fast (FD) and  slow (SD) deactivating 
channels (cf. Matteson and Armst rong,  1986). FD channels also have a higher  
threshold and inactivate more  slowly than SD channels. In  Y-1 cells the closing time 
constants  measured  at - 8 0  mV after  10-ms steps to + 4 0  mV were 0.13 +_ 0.031 ms 
for  FD channels (mean _+ SD, n = 6), and between 3 and 4 ms for  SD channels. 

A C 1. 

-7" 

F 

~= 3.78 m s  

~=0,13 ms 

1 ms 

E 0.5 �84 

(.9 

-80-40-20 6 ~0 i0 6b 
V M (mV) 

FIGURE 3. Identification of  two types of  Ca channels. (A) Tail current recorded at the end 
of  a voltage step to +40 mV. The repolarization potential was - 8 0  mV. The tail had a 
biphasic decay with a slow and a fast component. The slow component, due to the activity of  
SD channels, was fitted by an exponential with a time constant of  3.78 ms extrapolated back 
to the instant of  repolarization. (B) Subtraction of  the slow exponential from the current 
yielded an isolated fast component which was due to the activity of  FD channels. The fast 
component was fitted by another exponential with a time constant of  0.13 ms. In A and B the 
baseline was fitted to the current level before the pulse step. (C) Conductance-voltage rela- 
tions of  SD (filled symbols) and FD (open symbols) channels. The amplitude of  the slow and 
fast exponentials normalized to their respective maximal values are plotted as a function of 
the step potential. Measurements are from two cells, each one is represented by a different 
symbol. The lines were fitted by eye. 10 Ca//70 Cs. Experiments 0C1587N and 0C2487N. 

Fig. 3 C shows the conductance-vol tage relations for  SD (filled symbols) and  FD 
(open symbols) channels.  Normal ized SD and  FD conductances ,  which are  p ropor -  
tional to the ampli tude o f  the slow and fast tail components ,  respectively, are plot- 
ted as a funct ion o f  the step m e m b r a n e  potential.  The two curves illustrate some o f  
the differential proper t ies  o f  SD and FD channels suggested in the previous section. 
The  activation threshold is lower for  SD (~-50 mV) than for  FD ( ~ - 2 0  mV) chan- 
nels and half-maximal activation is between - 15 and - 10 mV for  SD channels,  and 
between + 10 and  + 15 mV for  FD channels.  

Conductance changes during a maintained depolarization. SD and  FD channels 
also differ in their behavior  dur ing  a maintained depolarization. This is illustrated in 
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Fig. 4, A-D by Ca tail currents recorded upon repolarization to the holding poten- 
tial of  - 8 0  mV after voltage steps to +40  mV. The duration of  each pulse, in milli- 
seconds, is indicated next to each trace. The slow component  of  the tail current  is 
almost absent after a pulse of  short duration (a), it appears when the pulse lasts 7 ms 
(b), and is abolished after a long pulse (c). After this sequence of  variable pulse dura- 
tion, a large slow component  is recorded again when the voltage step is made 
shorter (d). These results suggest that SD and FD channels have different activation 
and inactivation time courses. In  Fig. 4 E, normalized conductance is plotted as a 

A 

�9 1 J  

C 

; 100 

D ' 7  

f 

, 1 4  I 1 nA 

1ms 

O O 

~ 0 . 5  

. . . . . . .  ~ ,  ,~\ ,  
1 2 3 4 5 6 7 10 50 100 300 ms 

FIGURE 4. Differences in the activation and inactivation time course of SD and FD Ca chan- 
nels. (A-D) Tail currents recorded after depolarizations to +40 mV lasting (A) 1.1, (B) 7, (C) 
100, and (D) 14 ms. The repolarization membrane potential was - 8 0  mV. (E). Time course 
of SD (filled symbols) and FD (open symbols) channel conductance during maintained depo- 
larizations. Normalized amplitudes of slow and fast exponentials (ordinate) fitted to tails 
recorded after voltage pulses to +40 mV are plotted as a function of the pulse duration 
(abscissa). The lines drawn through the data points were fitted by eye. Measurements are 
from two experimental protocols applied to the same cell. 10 Ca//70 Cs. Experiment 
0C2487N. 

function of  pulse duration. While at this membrane  voltage (+ 40 mV) half of  the 
maximal conductance of  FD channels (open symbols) was reached in ~0.8 ms, the 
same parameter  for SD channels (filled symbols) was near  1.fi ms. However, SD 
channels tend to inactivate more rapidly than FD channels. After a 300-ms depolar- 
ization only 30% of  FD conductance was inactivated whereas SD conductance pro- 
gressively decreased after depolarizations lasting more  than 10 ms, and at the end of  
a 300-ms pulse fell to 20% of  the peak value. 
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Variability of Ca currents. Indications of  the existence o f  SD and FD channels 
were observed in all Y-1 cells subjected to voltage clamp, but the relative contribu- 
tion of  each channel type to the total current  varied from cell to cell. Clonal adre- 
nocortical cells also showed a large variability in the size of  the total Ca current. This 
might be related to some unknown physiological phenomena and could be an aspect 
of  interest for future experimental work. 

The results so far presented demonstrate that Y-1 adrenocortical cells have volt- 
age-dependent Ca conductances. There appear to be two types of  Ca channels (FD 
and SD channels) that differ in their activation thresholds and kinetic properties. 

Properties of the K Current 

It was shown in Fig. 1 that clonal adrenocortical cells can generate a K current  of  
several nanoamperes of  amplitude. During the initial experiments designed to study 
the properties of  this current  we observed dramatic changes in its amplitude and 
kinetic with time unless internal [Ca ~+] was maintained at 0.1 #M or lower. Thus, 
the study of  the properties o f  this current  was performed in conditions that yielded 
stable and reproducible recordings. The time-dependent changes in the K current  
that occurred when internal [Ca ~+] was higher are presented in a separate section at 
the end. 

Current-voltage relations. Fig. 5 illustrates K currents recorded in a cell dialyzed 
with a standard solution where free Ca ~+ was 0.1 #M. The traces shown in a were 
obtained within the first 2 min after the beginning of  the whole-cell recording by 
depolarizing steps to the indicated membrane potentials. In this experiment a rela- 
tively large inward Ca current  could be observed at membrane voltages below 0 inV. 
Larger depolarizations elicited slow outward K currents with a typical sigmoid acti- 
vation time course at all membrane voltages. Part b of  the figure shows another  
family of  traces recorded at the same membrane potentials but  obtained 20 rain 
after breaking into the same cell. In both sets of  recordings the K currents are 
almost identical but the inward current  is absent in b due to wash-out of  Ca chan- 
nels. Plot c illustrates the current-voltage relation for the recordings shown in a 
(dots) and b (squares). The lines represent the I / V  curves of  the K current  in the 
presence (continuous line) and in the absence (discontinuous line) of  functional Ca 
channels. 

Although the outward current  of  Y-1 cells was strongly dependent  on internal 
[Ca ~+] (see below), we never observed clear N-shaped I / V  relations that resembled 
those of  Ca-activated K currents described in other  preparations (Meech and 
Standen, 1975; Bolsover, 1981; Dubinsky and Oxford,  1984; Thomas, 1984; Marty 
and Neher, 1985). In several experiments small "humps"  in the current-voltage 
relation similar to the one shown in the example of  Fig. 5 C (continuous line) were 
observed. This, however, could be a result of  the large scattering in the time course 
of  current  records obtained with large depolarizations and therefore may have no 
functional significance. In many other  cells that were dialyzed with solutions in 
which pCa was between 6 and 8 and in the presence of  5-10 mM external Ca 2+, no 
appreciable inflexions were seen. 

Time course of activation. The time course of  the outward K current  is illus- 
trated in Fig. 6. Trace a is a recording generated by a voltage step to +50  mV 
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showing the slow activation time course of  the current that reaches the maximum by 
the end of  the 50-ms pulse. The voltage dependence of  activation kinetics is summa- 
rized in d where, with measurements done in three different cells, the time to reach 
half-activation (tl/~) is plotted vs. membrane potential. Traces b and c are recordings 
obtained with longer pulses and illustrate the time course of  the K current during a 
maintained depolarization. In this experiment there was only a slight decay of  the 
current during the long depolarization but in other cells a fall of  10-20% of the 
peak current was observed at the end of  500-ms pulses. Pulses of  1 s or longer 

~ -...~.:x.--A .-.~" 

7 o J  ,~ ~.~ .. 

50 ---" ,r'-" ... 

-10, ' , . . , ~  ,. ~ = -  

2-  

1.5- 

1- 

0 . 5 - -  

-20 0 

I 1 nA 

20 ms 

IM(nA)  I 

I 

/ 

20 do 
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FIGURE 5. Current-voltage relation 
of K current. (A and B) Outward cur- 
rents recorded in the same cell (A) 2 
and (B) 20 min after going into the 
whole-cell recording mode. The 
membrane potential of the voltage 
step is given, in millivolts, by the 
number drawn near to each trace. 
The holding potential was -70  inV. 
In C, current amplitude, measured at 
50 ms from the onset of the pulses, is 
plotted as a function of the step 
membrane potential. Each symbol 
belongs to I/V curves taken around 2 
(dots) and 20 (squares) min from the 
beginning of the experiment. The 
lines were drawn by eye. Standard, 5 
Ca//standard, 0.1 #M Ca. Experi- 
ment 03JN87A. 

caused in all cells a substantial inactivation of  the outward current, however, this 
phenomenon was not studied in detail. 

Closing kinetics. The closing kinetics of  the K channels were studied by record- 
ing tail currents in cells bathed with a high K solution. Fig. 7 A shows a set of  K 
currents activated by depolarizing steps to various voltages in the presence of  high 
external K. The pulse current was similar to the ones recorded with the standard 
external solution, but at the instant of  the repolarization the driving force for K ions 
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suddenly changed in direction and large inward tail currents were generated. The 
decay o f  the tails reflects the time course o f  K channel closing. In Fig. 7 B, tail cur- 
rents were recorded after a step to +30  mV lasting 50 ms. Membrane potential 
after the step is indicated in the figure. Tails were inward at potentials more nega- 
tive than E x and outward at more positive potentials. The amplitude of  the tails is 
represented in c as a function of  membrane potential. The curve is the instanta- 
neous I / V  relation for the K channels, which has a constant slope between - 60 and 
- 10 mV but decreases with more positive potentials. The intercept with the abscissa 
gives a value for Ex in this experiment ( -  14 mV) that was only 2 mV away from the 
value predicted by the Nernst equation ( -  16 mV). In these experiments a stable E x 
value was attained within the first 30 s after breaking into the cells, which indicates 
that, as reported before (Fenwick et al., 1982; Matteson and Armstrong, 1984), the 
pipette filling solution rapidly equilibrated with the cytoplasm. At all membrane 

A 

J 

10 ms 

B 

7 

20 ms 

C 

100 ms 

FIGURE 6. 

D t l /2 (ms) 

3~]20 

10 �9 �9 

:2'0 o 2'o go go 
V M (mV) 

Activation time course of the K current. (A-C) Outward currents recorded in a 
cell by pulses to +50 mV of 50, 100, and 500 ms. The holding potential was - 7 0  mY. (D) 
Time to reach half-activation (t~/~, ordinate) as a function of step membrane potential. Mea- 
surements are from three cells each one represented by a different symbol. The line was 
drawn by eye. Standard, 5 Ca//standard, 0.09 #M Ca. Experiments 25MY87A and 
25MY87B. 

potentials tail currents were well fitted by a single exponential and an example is 
shown by the trace at - 6 0  mV in Fig. 7 B. The closing time constant was voltage- 
dependent,  and was faster as the repolarizing membrane potential became more 
negative (Fig. 7 D). 

Activation of K currents by internal Ca 2+. It has been shown that the K current  of  
Y-1 cells is independent of, or only slightly dependent,  on external [Ca 2+] or  Ca 2+ 
influx. In this section it is shown that this current  is, however, strongly affected by 
changes of  internal [Ca2+]. Fig. 8, A - D  are current  traces elicited by 50-ms depolar- 
izing steps to +50  mV in four  cells of  equivalent size. All recordings were obtained 
within the first 60 s after breaking into the cells. The free Ca concentrations of  the 
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internal solution were (in micromolar): (it) 5-10,  (B) 0.45, (C) 0.09, and (D) < 
0,001. The four  current  traces had a rather  similar time course but the amplitude 
was drastically reduced as [Ca ~+] decreased. With very low internal Ca ~+ (D) the 
current  was almost suppressed. The current-voltage relations for  the K currents at 
the four  different internal [Ca 2+ ] indicated above are plotted in e. The I/V curves 
obtained in the presence of  high (0.45 and 5-10  #M) internal [Ca ~+] had small 
inflexions but a clear N-shape was not observed despite the fact that the external 
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FIGURE 7. Deactivation time course of K channels�9 (.4) Superimposed current traces 
recorded in a high K external solution by pulses to -10 ,  +10, +30, and +50 mV from a 
holding potential of - 7 0  mV. (B) K tail currents recorded after 50-ms pulses to +30 mV 
from a holding potential of - 70 mV. In each trace the repolarization membrane potential is 
indicated in millivolts. In the trace at - 6 0  mV there appears superimposed an exponential 
with a time constant of 3.3 ms fitted to the current recording. (C) Tail amplitude as a func- 
tion of the repolarization membrane potential. The point where the eye-fitted line crosses the 
voltages axis indicates the equilibrium potential. (D) Deactivation time constant (ordinate) as 
a function of the repolarization membrane potential (abscissa). 73 K//standard, 0.5 EGTA. 
Experiments 21MY87B and 22MY87A. 

solution contained, in all cases, between 5 and 10 mM Ca 2§ The differences in cur- 
rent  amplitudes were larger at more  depolarized membrane  potentials, which is per- 
haps explained by the enhancement  of  the Ca sensitivity of  K channels with depolar- 
ization (Barrett et al., 1982; Moczydlowski and Latorre,  1983; Thomas, 1984). At 
extremely low [Ca 2+] the voltage-dependence was almost lost. Table I I I  is a sum- 
mary of  the experiments in which the effect o f  internal [Ca ~+] was tested. In the 
Table the current  is given in pA/pF  to minimize variations in current  amplitude due 
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to differences in cell size. These results suggest that the outward K current of  Y-1 
cells is predominantly due to the activity of  Ca-activated K channels. 

Modulation of the K current by internal pH. Cytosolic pH has a marked effect on 
different types of  ionic conductances (for a review see Moody, 1984), and there is a 
report  indicating that acidification of  the cytoplasmic membrane surface inhibits Ca- 
activated K channels in pancreatic B cells (Cook et al., 1984). In several experiments 
we tested the effect of  internal pH on the K current of  Y-1 cells. At a fixed internal 
[Ca 2+ ] the amplitude of  the current was reduced as internal pH decreased. Current- 
voltage relations observed at two different internal pH values are shown in Fig. 9 
with internal pCa of  8 (A) and 7 (B), and Table IV summarizes the effect of  internal 

A 

/ 

f - -  

f 
r . t  

C 

; t  

E 

L4nA tnA/ 
2 nA 

-20 0 ~0 10 /0 
10 ms V M (mY) 

FIGURE 8. K currents at various internal Ca 2+ concentrations. (A-D) Currents recorded by 
50-ms pulses to + 50 mV in four cells of similar size delivered within 60 s from the onset of 
whole-cell recording. The holding potential was -70  mV. The internal [Ca2+]s in each cell 
were: (A) 5-10, (B) 0.45, (C) 0.09, and (D) <0.001 #M. In A, no Ca was added to the solution 
and a contaminating free Ca concentrations of 5-10 #M was assumed (cf. Meech and 
Standen, 1975). In D, the solution contained 10 mM EGTA and no Ca was added. E) Cur- 
rent-voltage curves obtained by measuring current amplitude at 50 ms from the beginning of 
pulses of variable amplitude. Each symbol indicates a different [Ca2+]: dots, 5-10 #M; trian- 
gies, 0.45 #M; squares, 0.09 #M; and diamonds, <0.001 #M. The lines are drawn following 
the data points. Standard 5-10 Ca//standard, variable pCa. Experiments 29EN87C,D and 
25MY87A,D. 

pH on K current amplitude. The major effect of  lowering pH was a reduction of  the 
current amplitude that was more pronounced as membrane depolarization was 
larger. Thus, reduction of  pH had an effect very similar to an increase in internal 
pCa. On the other hand, activation kinetics of  K currents were not much altered by 
modifications in internal [H+]. Protons are known to block K channels in a voltage- 
dependent manner (cf. Moody, 1984) and this could explain our  results, however, a 
more subtle mechanism is probably involved because the changes in current ampli- 

 on S
eptem

ber 22, 2014
jgp.rupress.org

D
ow

nloaded from
 

Published March 1, 1989

http://jgp.rupress.org/


508 THE JOURNAL OF GENERAL PHYSIOLOGY �9 VOLUME 93 �9 1989 

TABLE I I I  
Dependence of Ix Amplitude on Internal Ca 2+ 

pCa [Ca ~§ IK 

~Vl pA/pF* 
5-5.31 5-10: 400 • 140 (4) 

6.34 0.45 340 • 200 (4) 
6.64 0.23 205 • 70 (3) 
7.04 0.09 50 • 10 (9) 
8.05 0.009 35 • 10 (5) 

*Values are mean + SD and the number of cells are in parentheses. 1K was measured at 
the end of 50-ms pulses to +50 mV delivered 30-60 s after breaking into the cells. The 
pH of all solutions was 7.2 and free Mg ranged between 1.85 and 2 mM. 
qn the absence of Ca/EGTA, a contaminating [Ca 2+] of ~5-10 #M was assumed (Frank- 
enhaeuser, 1957; Meech and Standen, 1975). 

t ude  i nduced  by a l te r ing  i n t e m a l  p H  were  also d e p e n d e n t  on  in terna l  [Ca2+]. A n  
equiva lent  decrease  o f  p H  caused  a relat ively l a rge r  r educ t ion  o f  the  c u r r e n t  ampli-  
t ude  with a p C a  o f  7 (Fig. 9 B) than  with a p C a  o f  8 (Fig. 9 A). These  results  cou ld  
be  exp la ined  if  in te rna l  p ro ton s  c o m p e t e  for  the  site normal ly  o c c u p i e d  by Ca 2+, 
and  thus at  low p H  fewer  channels  o p e n  at  a given m e m b r a n e  voltage.  

Effect of  internal Mg 2+. I t  is known that  some Ca-b ind ing  p ro te ins  can  also b ind  
Mg ~§ and  that  in some cases b ind ing  o f  Mg ~§ modif ies  the  affinity o f  the  p ro t e in  
for  Ca ~+ (Fuchs, 1971; Cox  et  al., 1977; Leavis and  Gergely ,  1984). In  a b r o a d  sense 
the  Ca-act ivated K channels  a re  an  example  o f  Ca-b ind ing  pro te in ,  and  thus  the i r  

0.8. 
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FIGU~ 9. Effect of  internal pH on the amplitude of  K currents. (A) Current amplitude 
(ordinate) measured 50 ms after the onset of pulses of variable amplitude (abscissa) in two 
cells. Internal pH and pCa are indicated in the figure. Experiments 16JL87D and 17JL87B. 
(B) Similar experimental protocol as in A but with different pH and pCa values. Note the 
different current scales in A and B. Experiment 02JN87B,C. In A and B the lines follow 
approximately the data points. Standard, 5 Ca//standard,  variable pCa and pH. 
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T A B L E  IV 

Dependence of lK Amplitude on Internal pH 

509 

pH pCa IK 

pA/pF* 
6.8 8 21 .8  • 4 (2) 
7.0 8 19.5 • 2 (2) 
7.2 8 30.0 • 1 (3) 
7.6 8 42 .3  • 1.6 (3) 
6.7 7 46 .0  • 16 (2) 
7.4 7 64.0 • 7 (3) 
7.7 7 209 • 45 (3) 

*Values are mean • SD and the number of cells are in parentheses. IK was measured at 
the end of 50-ms pulses to +50 mV delivered 30-60 s after breaking into the cells. In all 
solutions free Mg was between 1.85 and 2 mM. 

activation by internal Ca 2+ could be influenced by internal Mg 2+ (Mgi). We tested 
this hypothesis by measuring the K current  amplitude using internal solutions with 
and without Mg. In all these experiments Ca/EGTA buffers were not added and 
contaminating internal [Ca 2+] was 5-10  #M. 

Fig. 10, A and B illustrates the effect of  Mgi on K currents recorded in two dif- 
ferent cells by voltage steps to + 10, +30,  and +50  mV from a holding potential 
of  - 70 mV. The concentration of  Mgi is given next to each set of  traces. In 0 mM 
Mgl (B), the amplitude of  the K currents were much smaller than in the control 
situation (2 mM Mg, A). This effect occurred at all membrane potentials as illus- 
trated by the I-V curves of  Fig. 10 C. The average peak K current  amplitude elicited 

A 2mM Mg~ + C 

J ~  ~ I 6 - 
~--~" ,... 4 nA 

4-  

lO ms 

0mM Mg 2+ 

~ ~  2 nA 2- 

o 

I M (nA) //./ 
io ~ 8b 

VM(mV) 
FIGURE 10. Effect o f  removal o f  internal Mg on Ca-activated K currents. (A and B) K cur- 
rents recorded by depolarizations to +10,  +30,  and + 5 0  mV from a holding potential 
o f  - 7 0  mV with (A) 2 and (B) 0 mM Mg in the internal solution. The current-voltage relation 
is shown in C (dots, 2 mM internal Mg; triangles, 0 mM internal Mg). Standard 5 Ca / / s tan-  
dard, 0 Ca, 0 EGTA. Experiments 29EN87C and 23AB87A. 
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by a depo la r i za t ion  to + 30 mV was 4.12 - 2 n A  (mean _+ SD, n = 5) with 2 mM Mgi, 
whereas  in the  absence  o f  Mgi this value was 0.5 _+ 0.2 n A  (n = 4). These  resul ts  
indicate  that  a decrease  o f  in te rna l  Mg ~+, f rom 2 to  0 mM, causes a 10-fold reduc-  
t ion o f  the  Ca-act ivated K cur ren t .  

Changes in the properties of the K current during intracellular dialysis. K cur ren t s  
o f  d ia lyzed Y-1 cells u n d e r w e n t  s t r iking t i m e - d e p e n d e n t  changes  in the i r  ampl i t ude  
and  kinetic p roper t i e s .  This p h e n o m e n o n ,  i l lus t ra ted  in Fig. 11, was obse rved  in all 
cells when in terna l  [Ca ~+] was h ighe r  than  0.1 #M. I n  a the re  is a set o f  cu r r en t s  

S 162 
J .,,...~.-.~---.-----~ 83 
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c I 'nA 
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f .......... ~ . . . t ~  
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FIGURE 11. Time-dependent transformation of the outward current. (A) Currents recorded 
by a pulse to + 30 mV delivered to a cell at various times after breaking into the cell. The time 
is given in seconds next to each trace. (B) Time-dependent changes in current amplitude 
measured 50 ms after the beginning of  pulses to +30 mV. (C) Current traces recorded by a 
pulse to + 50 mV at 31 and 205 s from the onset of  whole-cell recording mode. The trace at 
31 s was scalled by a factor of  1.95. (D) Time-dependent changes in the activation time course 
(time to reach half-activation, tip) of  K currents recorded by depolarizations to +30 mV. 
Holding potential - 7 0  mV. Standard, 5 Ca//standard,  5-10 ~tM Ca. Experiment 
23MZ87A. 

ac t iva ted  by pulses to + 30 mV app l i ed  to a cell at var ious  t imes,  ind ica ted  in sec- 
onds  by the  n u m b e r  nea r  each  t race,  a f te r  go ing  into  the  whole-cel l  mode .  In  this 
e x p e r i m e n t  there  was no  C a / E G T A  a d d e d  to the  p ipe t t e  filling so lu t ion  a n d  con-  
t amina t ing  f ree  Ca l+ was ~ 5 - 1 0  #M (Frankenhaeuse r ,  1957; Meech  a n d  S tanden ,  
1975). In  b, c u r r e n t  a m p l i t u d e  m e a s u r e d  at  the  e n d  o f  each  pulse  is p lo t t ed  as a 
func t ion  o f  dine.  Both  f igures show a t i m e - d e p e n d e n t  increase  in c u r r e n t  ampl i -  
tude.  The  c u r r e n t  r e ached  a m o r e  o r  less s table amp l i t ude  1 5 0 - 2 0 0  s a f te r  the  
beg inn ing  o f  the  in t race l lu la r  dialysis. The  r eco rd ings  o f  Fig. 11 A, o b t a i n e d  wi thout  
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linear subtraction, also show that the resting holding current  was unaltered during 
the experiment. Besides the increase in amplitude, the current  acquired a qualita- 
tively different time course that was characterized by a marked acceleration o f  the 
activation kinetics. This is illustrated in c by two current  recordings scaled to the 
same amplitude that were obtained by pulses to +50  mV delivered 31 and 205 s 
after the beginning o f  the experiment. Half-activation at 31 s was reached in ~10 
ms, a value comparable to the one measured at the same voltage with low internal 
[Ca ~+ ] (see Fig. 6), whereas at 205 s the current  reached half the maximal value in 
less than 1 ms. The change in activation time course as a function o f  time in this 
experiment is shown in plot d. The data shown in Fig. 11 must be taken as useful 
only for illustrative purposes since the time course of  the transformation of  the cur- 
rent varied from cell to cell. In many experiments the current  grew progressively for 
several minutes and before reaching a steady value the cells were destroyed. 

The origin of  this phenomenon is for  the moment uncertain. It is unrelated to 
external Ca or  Ca influx since it appeared in the absence of  external Ca or in cells 
bathed with solutions containing 1 mM Cd. However, it seems to be somehow 
related to internal [Ca 2§ because currents were stable when pCa was higher than 7 
and the changes of  the K current  developed more slowly as internal [Ca z+] was 
lower. Thus, the transformation of  the K § current  is probably a reflection of  the 
equilibration of  cytosolic Ca 2§ with Ca ~§ in the pipette solution after the replenish- 
ment of  intracellular Ca ~§ stores and the depletion of  cytoplasmic ATP. In previous 
work using whole-cell recording it has been reported a time-dependent negative 
shift of  15-25 mV for the kinetic parameters of  Na (Marty and Neher, 1983; Fer- 
nandez et al., 1984), Ca (Cota, 1986), and K (Cahalan et al., 1985) channels. In the 
K current  of  Y-1 cells the changes expressed in terms o f  shifts were of  60-80 mV or  
larger. 

These results indicate that intracellular dialysis with solutions containing high 
Ca 2§ have profound effects on the K channels of  Y-1 cells. In perfused cells time- 
dependent  changes of  Ca currents, which are believed to be partially due to Ca- 
stimulated enzymatic processes, are prevented by exogenous nudeotides (Fedulova 
et al., 1985; Forscher and Oxford,  1985; Byerly and Yazejian, 1986; Cota, 1986). In 
some Y-1 cells the addition of  2 mM Mg-ATP to the pipette filling solution appeared 
to retard the time-dependent modifications in the K current. However, this observa- 
tion must be taken as preliminary since the effects of  internal ATP were not studied 
in detail. 

D I S C U S S I O N  

Much of  the previous evidence concerning the existence of  ionic channels in adre- 
nocortical cells has come from intracellular recording studies. In this report  we 
show that clonal adrenocortical cells, which can generate large action potentials 
(Tabares and L6pez-Barneo, 1986), have voltage-dependent Ca and K channels. 
Indications of  the activity o f  Na channels were never observed. 

Ca Channels 

Ca currents of  Y-1 cells depend on the activity of  two main populations of  Ca chan- 
nels that are clearly distinguished by their different voltage range of  activation and 
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closing kinetics. SD channels have a lower threshold and inactivate faster than FD 
channels. The kinetic properties of  these channels seem to be similar to those of  the 
endocrine cells so far studied: GHs (Matteson and Armstrong, 1986), rat hypophy- 
seal pars intermedia (Cota, 1986), and pancreatic beta (Hiriart and Matteson, 1988) 
cells. In preliminary reports, two types of  Ca channels have also been described in 
freshly dispersed bovine (Cohen et al., 1987) and rat (I'abares et al., 1988) adrenal 
glomerulosa cells. Indications for the existence of two populations of  Ca channels 
have been found in a number of preparations other than endocrine cells, including 
neurons (Llinas and Yarom, 1981; Carbone and Lux, 1984; Fedulova et al., 1985; 
Yoshii et al., 1985; Alvarez de Toledo and Lrpez-Barneo, 1988), egg cells (Fox and 
Krasne, 1984; Hagiwara et al., 1975), and muscle cells (Bean, 1985; Cota and Ste- 
fani, 1986). SD and FD channels of adrenocortical cells seem to be respectively sim- 
ilar to the T and L Ca channel types observed in dorsal root ganglion cells (Nowycky 
et al., 1985). These last authors have also reported the existence of a third Ca chan- 
nel type (N channel), however, a current component that could represent the activ- 
ity of  N channels was not detected in our preparation. 

Y-1 cells have a large resting potential and upon depolarization they generate 
large Ca-dependent action potentials repetitively (Tabares and Lrpez-Barneo, 
1986). This electrical behavior is probably a reflection of the activity of  the two Ca 
channel types described in this report. Each Ca channel type may have a different 
physiological role. It has been suggested that SD channels facilitate spike initiation 
and participate in the pacemaker mechanism that make possible the spontaneous 
firing of action potentials, whereas FD channels may be more specifically involved in 
spike generation and serve to inject Ca into the cytoplasm (Matteson and Arm~ 
strong, 1986). 

K Channels 

Voltage-dependent K currents recorded in Y-1 cells were mainly due to the activity 
of  Ca-activated K channels since their amplitude was strongly dependent on internal 
[Ca ~+] and almost disappeared when internal pCa was 9 or higher. Thus, Y-1 differ 
from other endocrine cells in which large K currents, apart from the Ca-activated 
current, can be recorded (Dubinsky and Oxford, 1984; Rorsman and Trube, 1986; 
Lrpez- Barneo et al., 1987). The K conductance of Y-1 cells seems to be very selec- 
tive for K ions since the equilibrium potential measured with high external K was 
almost identical to the value predicted by the Nernst equation. The high selectivity 
of this conductance has been previously observed by single-channel recording in Y-1 
cells (Lrpez-Barneo et al., 1986) and analyzed in detail in other preparations. 

The slow activation time course of the outward K current is similar to Ca-acti- 
vated K currents recorded in a number of  cells, including Helix neurons (Meech and 
Standen, 1975; Lux and Hofmeier, 1982), Tritonia (Thompson, 1977), photorecep- 
tors (Bolsover, 1981), neuroblastoma (Moolenar and Spector, 1978), clonal pitui- 
tary (Dubinsky and Oxford, 1984), and chromaffin cells (Marty and Neher, 1985). 
However, in most preparations the I /V  curve of Ca-dependent K currents has an 
N-shape, which is supposedly due to the local rise in cytosolic Ca 2+ that follows 
membrane depolarizaton (cf. Meech and Standen, 1975; Marty and Neher, 1985); 
this feature was much less pronounced, or absent, in our experiments. This suggests 
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that either Ca influx is small in Y-1 cells or that Ca equilibrates rapidly near the 
membrane. A similar current-voltage relation can be seen in Ca-activated K currents 
of  Leydig cells (Kawa, 1987). 

Closing kinetics of  Ca-activated K currents have not been previously studied. We 
show here that channel closing is voltage-dependent, having a closing time constant 
of  ~3 ms at - 7 0  inV. For illustrative purposes this value can be compared with the 
2.6 ms (at 8"C and without high external K) measured in K channels of  the squid 
axon at the same membrane potential (Matteson and Swenson, 1986). 

Modulation of  K Channel Activity by Internal Ca 2+, pH, and M g  e+ 

Ca-activated K currents of  Y-1 cells were modulated by internal pH (pHi) and Mgi. 
In addition, with internal [Ca ~+] higher than 0.1 /~M the current  underwent a 
marked time-dependent transformation characterized by a progressive increase in 
amplitude and an acceleration of  activation kinetics. 

The effects of  p H  i o n  several K channels have been reviewed (Moody, 1984) and 
little is known about the effect of  pH on Ca-dependent K channels. Meech (1979) 
reported that injection of  HCI into Helix neurons decreased the amplitude of  Ca- 
dependent  currents, and more recently it has been shown that in pancreatic B cells 
lowering pHi decreases the open probability o f  Ca-activated K channels without 
affecting the single-channel conductance (Cook et al., 1984). Although a complete 
explanation of  the effects of  pHi requires fur ther  research, our  results can be 
explained if internal protons compete with Ca for the same binding site and prevent 
the activation of  the channels. Ca 2+ and H + are known to compete in their binding 
to membranes (Carvalho, et al., 1963) and cytosolic molecules (Fabiato and Fabiato, 
1978). 

A decrease of  internal Mg 3+, in the range of  millimolars, greatly reduces the 
amplitude of  the Ca-activated K current  of  Y-1 cells. This phenomenon may have 
physiological interest since it is known that cytosolic [Mg ~+] can change under  vari- 
able circumstances (Alvarez-Leefmans et al., 1986). A similar effect o f  Mgi has been 
recently described on single maxi-K channels from mammalian skeletal muscle. 
Internal Mg 2+ seems to have an allosteric effect increasing the affinity of  the chan- 
nel for Ca ~+. It has been suggested that elevated Mgi makes accessible to Ca ~+ addi- 
tional binding sites involved in the activation process (Golowash et al., 1986). Other  
divalent cations that bind to Ca-binding proteins also have a similar qualitative effect 
on this channel (Oberhauser et al., 1988). 

The dramatic time-dependent changes observed in K conductance when the inter- 
nal solution had a [Ca ~+] > 0.1 #M is a phenomenon not observed previously in 
cells perfused with solutions containing similar Ca concentrations (Kostyuk and 
Krishtal, 1977; Rorsman and Trube, 1986; L6pez-Bameo et al., 1987). In cells sub- 
jected to whole-cell patch-clamp there is a 15-25 mV negative shift of  voltage- 
dependent  parameters of  Na (Marry and Neher, 1983; FernS.ndez et al., 1984) Ca 
(Cota, 1986), and K (Cahalan et al., 1985) channels. Expressed in term of  "shifts" 
the changes observed in our  experiments (60-70 mV) were too large and therefore 
it is probable that a more specific process is involved. The time-dependent changes 
in the K current  were also observed in the absence of  internal Mg ~+. The transfor- 
mation of  the K + current  after the initiation of  internal dialysis may reflect the time 
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required for cytosolic Ca ~+ to equilibrate with Ca 2+ in the pipette solution, a process 
that probably depends on the intracellular Ca sequestering capacity and the avail- 
ability of  ATP. Exogenous cyclic nucleotides seem to prevent the shift of  Ca chan- 
nels (Forscher and Oxford, 1985; Cota, 1986) and 2 mM ATP added to the internal 
solution appears to retard the transformation of  the K current in Y-1 cells. How- 
ever, the nature of this phenomenon and the mechanisms involved are for the 
moment unknown. 

Thus, internal Ca 2+, H + and Mg ~+ modulate the activity of K channels in clonal 
adrenocortical cells. This may be of  functional relevance because it is known that the 
intracellular homeostasis of these ions are closely related (see for example Alvarez- 
Leefmans et al., 1981; Grinstein and Cohen, 1987) and their effects on K channels 
occur at concentration ranges around the physiological values. 

Possible Significance of Membrane Ionic Channels in the Physiology 
of Adrenocortical Cells 

Steroid-secreting cells differ from other endocrine cells in that they appear to have 
no significant amount of  stored hormone and in that stimulation by secretagogues 
primarily increases biosynthesis, the product of  which rapidly diffuses across the 
membrane (Jaanus et al., 1970; Sibley et al., 1981). In adrenocortical cells external 
Ca is required for steroid production and release, and secretagogues increase Ca 
uptake (Jaanus et al., 1970; Sayers et al., 1972; Fakunding et al., 1979; Yanagibashi, 
1979; Kojima and Ogata, 1986). Furthermore, ACTH seems to cause a transient 
depolarization of fasciculata cells (Lymangrover et al., 1982) and Ca-channel ago- 
nists increase steroid secretion (Hausdorff et al., 1986). A rise of  cytosolic Ca 2+ 
appears to trigger key enzymatic processes that are essential for steroidogenesis. 
Among these processes are the activation of a Ca-calmodulin system that hydrolyzes 
cholesterol esters (Koletsky et al., 1983; Wilson et al., 1984; Sekimoto et al., 1984), 
and the reorganization of microfilaments and microtubules required for cholesterol 
mobilization and transport to mitochondria (Hall et al., 1979; Clark and Shay, 1981; 
Cheitlin and Ramachandran, 1981). 

The properties of the ionic channels described here appear compatible with a 
significant contribution to the regulation of steroidogenesis and, perhaps, other cel- 
lular functions. Ca entry in adrenocortical cells can be mediated by SD and FD Ca 
channels and, therefore, regulated by membrane voltage. Secretagogues could mod- 
ulate SD Ca channels and thus generate the voltage change required to open FD 
channels, which are well suited for fast injection of Ca into the cytoplasm. Another 
site of regulation could be the Ca-activated K conductance, which is the largest con- 
ductance present in these cells and which, by influencing membrane potential, 
determines Ca channel activity. Although this K conductance has a relatively high 
activation threshold ( - 1 0  to - 1 5  mV) it probably participates in spike repolariza- 
tion since it is known that in clonal adrenocortical cells action potentials of over 
70-80 mV amplitude are usually recorded (Tabares and Lrpez-Barneo, 1986). The 
K conductance of Y-1 cells, modulated by Ca ~+, H +, Mg ~+, and perhaps other intra- 
cellular mediators, also serves as a link between the cell metabolism and membrane 
potential and thus may impose a fine control of membrane ionic permeability. This 
is probably of importance to determine the Ca channel activity appropriate for the 
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different  physiological states of  the cells. These hypotheses may serve as guide for  

fu tu re  exper imenta l  work. 
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