
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 150.214.182.56

This content was downloaded on 17/12/2014 at 16:21

Please note that terms and conditions apply.

The minimum or natural rate of flow and droplet size ejected by Taylor cone–jets: physical

symmetries and scaling laws

View the table of contents for this issue, or go to the journal homepage for more

2013 New J. Phys. 15 033035

(http://iopscience.iop.org/1367-2630/15/3/033035)

Home Search Collections Journals About Contact us My IOPscience

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51384297?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
beta.iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/15/3
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


The minimum or natural rate of flow and droplet size
ejected by Taylor cone–jets: physical symmetries
and scaling laws
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Abstract. We aim to establish the scaling laws for both the minimum rate
of flow attainable in the steady cone–jet mode of electrospray, and the size of
the resulting droplets in that limit. Use is made of a small body of literature
on Taylor cone–jets reporting precise measurements of the transported electric
current and droplet size as a function of the liquid properties and flow rate.
The projection of the data onto an appropriate non-dimensional parameter space
maps a region bounded by the minimum rate of flow attainable in the steady
state. To explain these experimental results, we propose a theoretical model
based on the generalized concept of physical symmetry, stemming from the
system time invariance (steadiness). A group of symmetries rising at the cone-
to-jet geometrical transition determines the scaling for the minimum flow rate
and related variables. If the flow rate is decreased below that minimum value,
those symmetries break down, which leads to dripping. We find that the system
exhibits two instability mechanisms depending on the nature of the forces arising
against the flow: one dominated by viscosity and the other by the liquid polarity.
In the former case, full charge relaxation is guaranteed down to the minimum
flow rate, while in the latter the instability condition becomes equivalent to
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the symmetry breakdown by charge relaxation or separation. When cone–jets
are formed without artificially imposing a flow rate, a microjet is issued quasi-
steadily. The flow rate naturally ejected this way coincides with the minimum
flow rate studied here. This natural flow rate determines the minimum droplet
size that can be steadily produced by any electrohydrodynamic means for a given
set of liquid properties.
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1. Introduction

Taylor cone–jets naturally occur under appropriate circumstances: for example, when a liquid
drop is subjected to a strong electric field [3] or a flat liquid interface holds sufficient electric
charges [4]. Taylor cones can be sustained for a long time as long as the electric boundary
conditions do not change, and the liquid pool where the cone forms is sufficiently large. In
this case, a quasi-steady liquid ejection is produced in the form of a natural cone–jet, and the
issued rate of flow is essentially determined by the liquid properties. This phenomenon exhibits
a wealth of physical balances and delicate symmetries, similar to those appearing in other
capillary problems such as the pinch-off of an interface [5, 6]. The richness and complexity
of electrospray are difficult to find in other fields of meso-scale physics, and long ago attracted
the attention of many investigators [7–11]. Among the fields that benefited from an intelligent
use of its singular properties, analytical chemistry of biomolecules may be the most salient
one [12–15]. Increasingly demanding industry standards of sensitivity, discrimination, etc have
motivated researchers to deepen the physical mechanisms involved in this phenomenon [16–18],
fruitfully merging varied research fields.

The range of applied voltages (electric fields) necessary to produce Taylor cone–jets is
very narrow. It depends on the boundary conditions and geometry of the domain where the
liquid drop sits, and is determined by the existence of an underlying static solution with a
conical peak for the tapering meniscus [19–23]. Before emission takes place, there is a critical
value of the applied electric field above which the drop develops an instability [20, 21] leading
to a conical shape. Similarly, in the case of an isolated or suspended liquid drop in a gas
or vacuum, two opposite Taylor cones pointing in the electric field direction are formed at a
critical applied electric field [24–26]. For drops attached to a given boundary, there is a univocal
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relationship between the applied voltage and the volume of the resulting static liquid meniscus
with a Taylor peak, as shown in [22]. This peak constitutes a singularity smoothed out by a
small liquid ejection. The liquid ejection entails the spread of electric charge in front of the
cone tip. The presence of this charge reduces the electric field intensity at the conical tip, and
thus the meniscus elongates and relaxes. To produce a Taylor cone–jet, one can fix the applied
voltage first, and then add or extract liquid to accommodate the meniscus volume/shape to the
prescribed voltage.

In the phenomenon described above, the ejected flow rate is a function of the boundary
conditions, the applied voltage and, more importantly, the liquid properties. This natural flow
rate is that satisfying a set of physical symmetries taking place at the meniscus tip. However,
one can ‘stretch’ those symmetries by imposing a certain flow rate above the natural one. Larger
imposed flow rates lead to larger issued jets, and thus larger resulting droplets. The surface
charge is essentially determined by the liquid properties [27], and thus both the electric current
transported by the Taylor cone–jet [28, 29] and the space charge due to the issued spray [30]
also increase with the flow rate. This explains why the conical meniscus elongates under the
same applied electric field when the prescribed flow rate is increased.

It must be noted that the steady cone–jet mode cannot be reached by imposing a flow rate
smaller than the natural one. In that case, the liquid ejected by the Taylor cone would not be
replaced, the meniscus volume would decrease progressively, moving away from that of the
underlying static solution, and the jet emission would be eventually interrupted. One concludes
that the liquid flow rate naturally issued by a Taylor cone–jet is also the minimum flow rate
that can be steadily ejected for the same liquid. Therefore, the natural flow rate determines the
minimum size of the droplets steadily produced by electrospraying.

In this work, we will ascertain the value of the minimum flow rate that can be steadily
issued by a Taylor cone–jet as a function of the liquid properties. Our analysis will be based
only on rather general assumptions (such as the locality of the cone–jet transition region). In
particular, we will not resort to hypotheses on charge relaxation, although recent numerical
simulations [31] have pointed to a nearly complete charge relaxation in all the cases considered.

2. Physical symmetries and scaling laws

2.1. Dimensionless groups and characteristic values

The parameters that essentially characterize the steady cone–jet mode are: (i) the issued rate
of flow Q, (ii) the liquid properties (density ρ, surface tension σ , viscosity µ, electrical
conductivity K and electrical permittivity εi) and (iii) the outer environment properties. We
shall assume that the outer environment is either vacuum or a low-viscosity dielectric fluid [32],
and thus its dynamical effect on the system can be neglected. In this case, the only parameter
characterizing its influence is its electrical permittivity εo. The applied voltage V is left out of
the analysis because, as discussed in the introduction, it must be that necessary for achieving
the underlying static solution which supports the steadily ejecting tip. Furthermore, the jet
emission in the steady cone–jet mode relies on the singular fluidic structure arising in the
cone–jet transition region. The characteristic length of this region is much smaller than those
characterizing the electrospray device. Because of the locality of the cone–jet transition, the
steady cone–jet mode losses its dependence on the device geometrical features and associated
lengths [23, 33].
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Figure 1. Schematics of the Taylor cone–jet situation at the minimum rate of
issued flow.

The physical variables defining univocally the state of the system are the interface position
r = f̂ (z) (r and z are the radial and axial cylindrical coordinates, respectively), as well as the
velocity v̂i,o and electric fields Êi,o inside and outside the liquid (the subindexes i and o stand for
the inner and outer domains, respectively). Observe that we do not take note of the issued electric
current Î since this is a secondary quantity determined by the primary variables mentioned
above. The general equations governing the relationship among these variables are well known
(see e.g. [23, 33]) and will not be repeated here.

The minimum flow rate Q∗ ejected in the steady cone–jet mode is a function of the
governing parameters mentioned above, i.e. Q∗

= Q∗(ρ, µ, σ, K , εi, εo). This relationship can
be expressed in terms of three dimensionless groups [34]:

Q∗

Qo
= G(δµ, β) , (1)

where Qo = σεo/(ρK ) [23, 27, 29, 30, 33, 35], δµ = [σ 2ρεo/(µ
3 K )]1/3 (also definable as the

electrohydrodynamic Reynolds number) and β = εi/εo. One searches for a similarity or scaling
law for equation (1), G = δα1

µ βα2 , where α1,2 can take any rational values4.
Let us define d, U , Es, En and I as the characteristic values of the interface position

(jet radius), the liquid axial velocity, the tangential and normal electric fields on the liquid
surface and the issued electric current, respectively. One assumes that there is a region of the
liquid domain where all those quantities are of the order of their corresponding characteristic
values. That electrohydrodynamic region is delimited by the axial characteristic length L (see
figure 1). The electrohydrodynamic region typically, but not necessarily, corresponds to the
cone–jet region.

The equilibrium of electric forces in the cone yields the Taylor’s solution [19, 22, 23],
which allows one to calculate the characteristic value of the tangential electric field

Es =

(
σ

εoL

)1/2

. (2)

This value also characterizes the normal electric field on the surface of the conical region.

4 Possible values of α1,2 are restricted to rational numbers on the basis of dimensional analysis (Vaschi–
Buckingham 5-theorem) for a finite number of fundamental parameters, variables and governing equations.
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The relationships between the above characteristic quantities can be ascertained through
an analysis of the balance of mass, momentum, energy and electric charge occurring in the local
cone–jet region [34]. Interestingly, the concept of ‘symmetry’ can be applied to these balances
independent of time, and thus any particular balance can be regarded as a ‘symmetry’ of the
system stemming from time invariance.

2.2. System symmetries

Consider an electrospray realization in which the flow rate Q is a prescribed parameter
(a common practice in electrospraying). Here, we seek the relationships between the
characteristic quantities {d, Es, En, U , I , L} involving the governing parameters {ρ, µ, σ , K ,
εi, εo} and the imposed flow rate Q.

The smallness of the jet’s diameter forces a rapid radial diffusion of momentum from the
surface, even for the lowest viscosities tested in practice (e.g. light alkanes such as hexane or
heptane). This occurs in spite of the fact that the axial velocity can be significantly distorted
in the radial direction at the cone–jet neck [36]. Therefore, mass conservation allows one to
establish the first symmetry for the characteristic liquid velocity

U = Q d−2. (3)

The second symmetry can be found from the axial momentum equation as applied to the
electrohydrodynamic region [27]. The terms of that equation can be grouped into driving and
resistant forces per unit volume. The first group is

{εo E2
n L−1, εoβE2

s L−1, εo En Esd
−1

} . (4)

Here, these terms are generally referred to as the electrostatic, polar and electric tangential
forces, respectively [27]. To calculate these terms, we have considered that β − 1 ' β, and the
normal component of the electric field on the outer side of the interface is much larger than that
on the inner side [27]. The second group comprises the terms

{σd−1L−1, ρQ2d−4L−1, µQ d−2L−2
} (5)

which correspond to surface tension, inertia and viscosity, respectively. Both numerical and
experimental studies have shown that the polarization force εoβE2

s L−1 is at most comparable to
the electrostatic force εo E2

n L−1 [27]. The electric tangential force εo En Esd−1 is much smaller
than the electrostatic one throughout the cone–jet region, although it is the only force which
remains positive when the jet is fully developed [27, 33, 34]. On the other hand, the viscosity
force is at most comparable with inertia, while the role played by surface tension is negligible
in most cases. The equilibrium between the dominant driving and resistant forces leads to the
second symmetry

ρQ2d−4
= εo E2

n . (6)

The electric power consumed by the system is mostly invested in the kinetic energy of the
ejected liquid [34]. In fact, the heat generated by the Joule effect is at most comparable with that
kinetic energy. If the liquid were static, then it would heat up as a result of the charge motion
through the bulk. However, the ‘wire’ in electrospray (the jet’s bulk) is continuously withdrawn
at a high speed by the voltage decay, and thus the basic output of that voltage decay is kinetic
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energy, and not heat. The electric power consumed by the system is I V = K d2 Es(L Es). Taking
into account the value of Es given by (2), one obtains the third symmetry

σ

εo
K d2

= ρQ3d−4. (7)

One can assume that conduction gives way to a dominant charge convection over the liquid
surface within the electrohydrodynamic region [23, 27, 37]. This assumption allows one to
establish the last symmetry:

K d2 Es = εo En Q d−1. (8)

Equations (3) and (6)–(8) constitute the system symmetries characterizing the steady
cone–jet regime in electrospray. An interesting feature of this set of symmetries is its
independence with respect to the characteristic electrohydrodynamic length L .

2.3. Scaling laws for the characteristic quantities

Some useful scaling laws can be straightforwardly obtained from the system symmetries derived
in the previous section. Symmetries (3) and (7) provide the scaling laws for the jet’s diameter
and velocity:

d = do(Q/Qo)
1/2 and U =

(
σ K

ρεo

)1/3

, (9)

where do = [σε2
o/(ρK 2)]1/3 [23, 27, 34]. Equations (6) and (9) lead to the scaling for En:

En =

(
σ 2ρK 2

ε5
o

)1/6

. (10)

From this result and equation (8), one obtains

Es = En(Q/Qo)
−1/2. (11)

Equations (7), (9) and (10) yield the scaling law for the current intensity

I = (σ K Q)1/2
= Io(Q/Qo)

1/2 , (12)

where Io = σρ−1/2ε1/2
o [23, 27, 33, 34, 37]. Finally, equations (2) and (11) allow one to obtain a

scaling law for the axial characteristic length L:

L = do(Q/Qo). (13)

From these findings note that the main driver is not only the electrostatic force εo E2
n L−1 arising

from the cone–jet transition region, but also the electric tangential force εo En Esd−1 acting along
the whole jet.

It is worth noting that the above scaling laws cannot be applied to electrospinning, where
viscous forces cannot be neglected even for large flow rates [29]. Besides, the locality of the
phenomenon analyzed here demands the characteristic electrohydrodynamic length L to be at
most comparable with the characteristic size D of the feeding capillary. Thus, the cases where
D < L (e.g. ‘nano-electrospray’ [38, 39]) are excluded from this analysis.

2.4. The minimum flow rate

Now, a question arises as to what different scenarios would be found if Q were quasi-steadily
decreased from the basic asymptotic regime described above. Experience shows that one reaches
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a point where the system becomes unstable and drips. The instability can be localized either in
the conical meniscus (global instability) or in the jet close to the cone–jet transition region
(local instability). We are interested in the absolute minimum value of the flow rate that can be
ejected in the steady regime, independently of the instability localization. As explained in the
introduction, this value is also the flow rate naturally and steadily extracted when an electric
voltage is applied on a liquid interface to form a Taylor cone [25].

Close to the minimum flow rate stability limit, the system symmetries derived in section 2.2
fail to describe the jet emission. Two forces are expected to rise against the electric tangential
force as the system approaches its stability limit. The first one is the viscous force appearing at
the jet inception. This force may become comparable with inertia as the flow rate decreases. In
this case, viscous dissipation prevents the jet from being formed for small enough values of the
flow rate, even before the surface tension stalls the jet production [34].

The second instability mechanism is associated with the polarization force appearing
beyond the cone–jet transition. This force may become negative in that region for sufficiently
small values of the flow rate [27]. Under certain conditions, the driver is unable to overcome
the reactive polarization force, and the jet emission is no longer stable. It must be noted that
the electrostatic force may also constitute a resistant force beyond the cone–jet transition when
the flow rate is very close to its minimum value [27]. However, its magnitude scales as Q (as
occurs with the main driver εo En Esd−1), while the polarization force scales as Q−1/2, and thus
the latter becomes the major obstacle in this stability limit.

One finds, therefore, two scenarios when the flow rate approaches its minimum value:

1. Viscous forces stall the jet emission before polarization forces. In this case,

µQ∗d−2L−2
= εo E2

n L−1. (14)

From this equation and (13), one concludes that the minimum flow rate Q∗ and jet
diameter d∗ scale as

Q∗
= Qoδ

−1
µ and d∗

= doδ
−1/2
µ . (15)

2. Polarization forces rise against the main driver first. In this case,

εoβE2
s L−1

= εo E2
n L−1. (16)

Taking into account the scaling laws (10) and (11) for En and Es, respectively, one has that
the minimum flow rate and jet diameter should scale as

Q∗
= Qoβ and d∗

= doβ
1/2. (17)

Equations (15) and (17) allow one to conclude that the parameter βδµ determines which
mechanism dominates the minimum flow rate instability: for βδµ < 1 the loss of stability
is caused by the viscous forces, while polarization forces are responsible for instability for
βδµ > 1. It must be noted that the conditions Q > Qoδ

−1
µ and βδµ < 1 are equivalent to those

defining the ‘IE’ (inertia + electrostatic force) regime defined in [35].
As explained in the introduction, the minimum flow rate that can be steadily ejected in

electrospraying is also the flow rate naturally and steadily issued by a Taylor cone–jet formed
by the same liquid. Therefore, expressions (15) and (17) provide the scales of the flow rate and
(diameter of) the jet quasi-steadily ejected by a Taylor cone–jet in the absence of an imposed
rate of flow. Both the scaling laws and the dimensionless number βδµ are functions of the liquid
properties only.
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The literature on the breakup of electrified capillary jets, in conditions comparable with
those issued from steady cone–jets (see e.g. [1], section 5 and figure 14 of that classic work,
and more recently [2]), supports that the emitted drop is commensurate with the jet, and thus
the drop scales as d∗ as well. This is particularly true close to the minimum flow rate, for which
the electrical Weber numbers of the jet are smaller (see [34, 37]). Thus, in the following, d∗ will
refer to the scale of both the jet and the droplet diameters indistinguishably.

Basaran and co-workers described in [4] an essentially unsteady phenomenon. They
derived the scaling laws governing the size of the first ejected droplet when a liquid interface
is suddenly electrified and tapers a microjet. In contrast, the symmetries invoked in the present
work are based on time invariance, and thus the scaling laws (9)–(13) cannot be applied to that
problem. The analyses presented in [4] and here can be regarded as complementary studies to
describe electrospray tip streaming, but they are separated by a fundamental barrier: system
steadiness.

To clarify the above statement, the scaling for the drop size here obtained is compared
with that reported in [4] for the first issued drop: dB ∼ doβ

1/3δ−1
µ . When viscous forces

arise first, d∗/dB = β−1/3δ1/2
µ = β−5/6

(
βδµ

)1/2
, while in the polarization case d∗/dB = β1/6δµ =

β−5/6
(
βδµ

)
. In both cases, the factor β−5/6 appears in combination with the critical parameter

βδµ. The discrepancy between d∗ and dB reflects the influence of charge relaxation/separation
on the initial stage of liquid ejection. A detailed analysis of the charge relaxation/separation
processes is beyond the scope of this work. In section 2.5, the characteristic time te ∼ βεo/K
associated with charge relaxation is compared with the hydrodynamic time characterizing our
steady process to assess the consistency of our scaling laws.

2.5. Charge relaxation and separation issues

Charge relaxation phenomena take place when the characteristic time te of charge diffusion
under an applied electric field becomes comparable with the smallest characteristic
hydrodynamic time of the system. In steady cone–jet electrospraying, the smallest
hydrodynamic time is given by the characteristic residence time in the electrohydrodynamic
region, th ∼ L/U = d2L/Q. Two possibilities can be contemplated:

1. The case βδµ < 1 (viscous force arises first when the system operates near the minimum
flow rate stability limit). Equations (14) and (15) allow one to calculate the ratio of the
electrical relaxation time to the hydrodynamic time

te/th ∼ β
εo Q∗

K d∗2L
= β

δ−1
µ

δ−1−1
µ

= βδµ. (18)

Therefore, the minimum flow rate Q∗ is reached before any ‘choking’ charge relaxation
phenomena arise.

2. The case βδµ > 1 (polarization force arises first when the system operates near the
minimum flow rate stability limit). From equations (17), one concludes that

te/th ∼ β
β1

β1+1
= 1. (19)

In this case, polarization forces oppose the flow concomitantly when charge relaxation and
separation phenomena take place. Observe that this limit implies the same assumptions as
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those made in [29] for the entire flow rate range. However, we show that these assumptions
can only be made in the limit of minimum flow rate for βδµ > 1.

The above results show that charge relaxation in steady cone–jet electrospraying is at least
as fast as any hydrodynamic processes taking place in the system. In fact, if the charge supply
to the jet interrupts at any point of the cone–jet transition, then time-invariance would break
down, the system would reach an unsustainable state, and steady jetting would no longer be
possible. Thus, models that explain the physics of steady Taylor cones involving phenomena
such as complete charge separation or surface charge freezing at the cone–jet transition [29, 40]
need revision.

A precise description of the limiting situations considered in this work requires either a
numerical resolution of all the equations [41] or the use of appropriate prefactors in the scaling
laws. The experimental analysis accomplished in section 3 will enable us to confirm the validity
of our predictions and provide information about those prefactors.

3. Experimental verification

We make use of experimental results gathered from a small body of literature on the subject [29,
42–45],5 consisting of 15 series of experiments (see table 1) where the authors, as far as we
know, drove their setups down to the minimum flow rates that their equipment allowed. Details
and discussions of the experiments can be seen in the respective references. Also, we conducted
experiments to cover intermediate values of the parameter (βδµ)−1. In our experiments, the
liquid was injected at a constant flow rate through a capillary of inner (outer) radius 100 (110)
µm located in front of a metallic plate at a distance of 1 mm. An electric potential was applied
to the end of the feeding capillary through a dc high-voltage power supply, while the plate was
used as the ground electrode. A liquid meniscus was formed in the open air and stretched by
the action of the electric field. A microjet tapered from the meniscus tip and moved vertically
toward the plate. Digital images were acquired to check that the fluid configuration was steady.
The liquid flow rate Q was reduced in steps of 0.1 ml h−1 until the dripping regime was reached.

Figure 2 shows the ratio Q/(Qoβ) as a function of (βδµ)−1. For (βδµ)−1 > 1, the minimum
flow rate is essentially independent of β over two orders of magnitude of the parameter (βδµ)−1.
This interval is bounded by the data obtained by Gamero-Castaño [44],6 which correspond to the
smallest value of δµ found in the literature. The minimum value of Q/(Qoδ

−1
µ ) is approximately

unity for all the liquids of this interval, and thus the validity of the scaling law (15) is shown
even for large values of δµ.

For (βδµ)−1 < 1, Q∗ is proportional to both Q0 and β, as predicted by (17). The data
obtained by Hayati et al [43] provide a solid support for our theoretical predictions. That series
follows the same trend as the others, even though the liquid electrical permittivity in that case
is much smaller than in the others. A paradigmatic case is that of Guerrero et al [45], which
exhibits the largest electrical permittivity of all the series. Their work presents with caution
experiments with extremely small flow rates. They suspect both changes in the liquid properties
due to differential evaporation of the solvent in their mixtures, and almost complete suppression
of liquid ejection owing to ion emission (these conditions correspond to the outlier point in

5 Experiments conducted in the present work.
6 Professor Gamero-Castaño kindly provided the author with two extra values of extreme low flow rates not
reported in his paper.
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Table 1. Properties of the liquids used in the experimental series.

Liquid Reference ρ (kg m−3) σ (N m−1) β K (S m−1) µ (Pa s)

Ethyl. glyc. 2 [29] 1110 0.0484 38.66 6.26 × 10−2 0.021
Ethyl. glyc. 3 [29] 1110 0.0484 38.66 1.69 × 10−2 0.021
3-Ethyl. glyc. (b) [42] 1134 0.0454 23.7 1.27 × 10−3 0.0366
3-Ethyl. glyc. (c) [42] 1134 0.0454 23.7 2.73 × 10−3 0.0366
3-Ethyl. glyc. (d) [42] 1134 0.0454 23.7 5.04 × 10−3 0.0366
3-Ethyl. glyc. (e) [42] 1134 0.0454 23.7 1.58 × 10−2 0.0366
4-Ethyl. glyc. (a) [42] 1137 0.0448 20.5 7.38 × 10−3 0.0456
4-Ethyl. glyc. (b) [42] 1137 0.0448 20.5 3.70 × 10−2 0.0456
Isopar + 15% n-butOH [43] 754.75 0.024 2.64 7.14 × 10−9 0.00173
EMI-Im [44] 1520 0.0349 3 8.80 × 10−1 0.034
PC-EMI-BF4 [45] 1200 0.042 65 1.04 0.00276
1-Octanol See footnote 4 827 0.027 10 9.0 × 10−7 0.0081
1-Decanol See footnote 4 828 0.028 7.6 3.0 × 10−7 0.01179
1-Dodecanol See footnote 4 830 0.0275 6.5 1.0 × 10−7 0.0125
3-Ethyl glyc. See footnote 4 1120 0.0454 23.7 0.0011 0.0401

Figure 2. Q/(Qoβ) as a function of (βδµ)−1. Details of the experimental series
are given in their corresponding references (see table 1).

this series). In spite of this, their results agree remarkably well with the general trend for the
(βδµ)−1 < 1 range.

It must be noted that the minimum values of Q/(Qoβ) for (βδµ)−1 < 1 are hardly above
0.01. This effect can be explained as follows. Our scaling analysis indicates that βE2

s /E2
n =

βQo/Q in this regime. However, the experiments show that the maximum values of the
polarization and electrostatic forces are about 0.092

× βεo E2
s and 0.52

× εo E2
n , respectively

(see [27], p 868, figure 2). This yields a maximum value for the ratio βE2
s /E2

n of about
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(0.09/0.5)2
= 0.032. Thus, one may expect the system reaching flow rates significantly below

βQo to have a noticeable rise of the polarization forces.
It must also be noted that the minimum flow rate plunges below Qoδ

−1
µ for (βδµ)−1 . 1.

A plausible explanation of this effect may be the following. Charge continuity in the cone–jet
transition region demands that the axial electric field increases as the cone–jet cross section
decreases. Thus, the polarization force in this region points in the downstream direction.
However, the axial electric field given by the Taylor solution decreases downstream from a
certain location where it reaches a maximum [33, 46]. When (βδµ)−1 becomes small, the
polarization forces in the cone–jet transition region become comparable with the driving force,
providing the liquid with an additional push in that critical region. This occurs even though
polarization forces act against the flow when the jet is developed. This initial push may result
in an extra stabilization of the system for (δµβ)−1 . 1, which allows one to reach flow rates as
small as 0.01 × Qoβ, well below Qoδ

−1
µ . For flow rates below 0.01 × Qoβ, the negative action

of the polarization forces and, possibly more importantly, charge separation [41] preclude the
existence of steady jetting.

4. Conclusions

In this work, we obtained the scaling laws for the minimum flow rate attainable by the steady
cone–jet configuration. This quantity coincides with the flow rate naturally ejected by quasi-
steady Taylor cone–jets, and determines the minimum size of the droplets steadily produced
by electrospraying. The scaling laws for the minimum flow rate were obtained by considering
a system of symmetries stemming from time invariance, and valid for the cone–jet transition
of the steady mode. If the flow rate is decreased below its threshold value, those symmetries
break down, and the cone–jet regime becomes globally unstable. Our analysis relies on general
assumptions, and does not assume any hypotheses on the charge relaxation process occurring in
the electrified liquid.

The minimum flow rate obeys two different scaling laws depending on the nature of
the force opposing the liquid motion. If the viscosity force is responsible for instability,
the minimum flow rate is given by equation (15), while equation (17) applies when the
polarization force destabilizes the cone–jet mode. Interestingly, in the first case full charge
relaxation is guaranteed down to the minimum flow rate, while in the second limit the charge
relaxation/separation condition also breaks down. Both the experimental results gathered from
the literature and those conducted in this work show the validity of our predictions. The results
presented in this paper have obvious technological applications, because they allow one to
determine the minimum droplet size that can be reached by electrohydrodynamic means for
a given set of liquid properties.

One of the aspects of electrospraying which deserves attention is the transition taking place
from the very first stage of the liquid ejection to the subsequent quasi-steady flow occurring
once that ejection is established. The differences between the flow rates and jet diameters
characterizing those two processes must reveal the role played by charge relaxation/separation
in electrospraying. To visualize what happens just after the liquid ejection, it would be very
beneficial to combine full numerical simulations (including a detailed electro-kinetic model)
with experiments conducted with a sufficiently high spatio-temporal resolution.
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[31] Herrada M A, López-Herrera J M, Gañán-Calvo A M, Vega E J, Montanero J M and Popinet S 2012
Numerical simulation of electrospray in the cone–jet mode Phys. Rev. E 86 026305

[32] Barrero A, Lopez-Herrera J M, Boucard A, Loscertales I G and Marquez M 2004 Steady cone–jet
electrosprays in liquid insulator baths J. Colloid Interface Sci. 272 104–8

[33] Higuera F 2003 Flow rate and electric current emitted by a Taylor cone J. Fluid Mech. 484 303–27
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systems including a purification module and an on-chip nano electrospray ionization interface for biological
analysis J. Chromatogr. A 1071 213–22

[39] Arscott S, Le Gac S and Rolando C 2005 A polysilicon nanoelectrospray-mass spectrometry source based on
a microfluidic capillary slot Sensors Actuators B 106 741–9

[40] de la Mora J F 2007 The fluid dynamics of Taylor cones Annu. Rev. Fluid. Mech. 39 217–43
[41] Higuera F 2009 Charge separation in the conical meniscus of an electrospray of a very polar liquid: its effect

on the minimum flow rate Phys. Fluids 21 032104
[42] Rosell-Llompart J and Fernandez de la Mora J 1994 Generation of monodisperse droplets 0.3 to 4 µm in

diameter from electrified cone–jets of highly conducting and viscous liquids J. Aerosol Sci. 25 1093–119
[43] Hayati I, Bailey A I and Tadros Th F 1987 Investigations into the mechanisms of electrohydrodynamic

spraying of liquids: I. Effect of electric field and the environment on pendant drops and factors affecting
the formation of stable jets and atomization J. Colloid Interface Sci. 117 205–21

[44] Gamero-Castaño M 2008 Characterization of the electrosprays of 1-ethyl-3-methylimidazolium
bi(trifluoromethylsulfonyl)imide in vacuum Phys. Fluids 20 032103 1–11

[45] Guerrero I, Bocanegra R, Higuera F J and de la Mora J F 2007 Ion evaporation from Taylor cones of propylene
carbonate mixed with ionic liquids J. Fluid Mech. 591 437–59
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