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Abstract. We analyze the relationship between the fixed points of different iterates of an
analytic self-map of the unit disk. We show that, in general, a boundary fixed point of such a
function is not a fixed point of its iterates. However, in the context of fractional iteration, all the
iterates have the same fixed points. We also present results, in terms of the Koenigs function, of
self-maps whose behaviour are not so extreme as above.

1. Introduction and statement of the results

1.1. Let ϕ be a holomorphic map in the unit disc D with ϕ(D) ⊂ D . A
point a ∈ ∂D is called a boundary contact point of ϕ , if the non-tangential or
angular limit L := ∠ limz→a ϕ(z) lies in ∂D . Moreover, boundary contact points
have multipliers. That is, and also in the non-tangential sense, ϕ always has a
derivative ϕ′(a) ∈ C∞\{0} at that point a . If L = a , the point a is called a
boundary fixed point of ϕ and, in this case, ϕ′(a) ∈ (0,+∞) ∪ {∞} .

In what follows, a fixed point of ϕ will mean a fixed point in the classical
sense (ϕ(a) = a with a ∈ D) or a boundary fixed point. The famous Denjoy–Wolff
point (DW-point) of every non-trivial ϕ will be denoted by τϕ or, when there is
no confusion, simply by τ . The study of fixed points and boundary contact points
is one of the central topics in iteration theory in the unit disk (see [8], [10], [11])
as well as in those related mathematical branches like composition operators. It
is worth mentioning that boundary contact points are playing a more and more
important role in many situations (see [2], [3] and the references therein).

This paper is about the collection of the boundary fixed points and the bound-
ary contact points of the different iterates ϕn of the function ϕ . Of course, many
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things are known, so we are trying to determine clearly what our contributions
are. Almost all of our results assume that ϕ has an inner DW-point (τ ∈ D and
|ϕ′(τ)| 6= 1). We consider the case of a boundary DW-point (τ ∈ ∂D) only in
Theorem 5. To be precise with the terminology, we recall that ϕ is usually said
to have an elliptic DW-point, whenever ϕ is not trivial, τ ∈ D and |ϕ′(τ)| = 1.

So, suppose that ϕ has an inner DW-point. If a ∈ ∂D is a boundary fixed
point of ϕ with ϕ′(a) 6= ∞ , by [13, p. 80], the curve r ∈ [0, 1) 7→ ϕ(ra) ∈ D

tends non-tangentially to a and, according to the Lehto–Virtanen theorem [13,
Chapter 4], we get that a is also a boundary fixed point of ϕn , for all n ∈ N .
On the other hand, if a is a boundary fixed point of ϕn with finite derivative,
we can only claim that a is a boundary contact point of ϕ . In other words, and
under certain regularity assumptions, boundary fixed points “grow” in the forward
direction. In spite of several ambiguous comments elsewhere, we have to say that
the hypothesis ϕ′(a) 6= ∞ is crucial there. In fact, in Section 3, we provide
an example (Example 1) of a univalent holomorphic map ϕ: D → D having a
boundary fixed point a ∈ ∂D such that a is not even a boundary contact point
of ϕ2 . Necessarily, ϕ′(a) = ∞ .

1.2. As one may expect, we can go further in the framework of fractional
iteration. Some words are in order. We recall that a semigroup of analytic func-
tions (ϕt) is a family (indexed by the non-negative real numbers) of holomorphic
self-maps of the unit disk, satisfying the following three conditions:

(a) ϕ0 is the identity in D ,
(b) ϕt+s = ϕt ◦ ϕs , for all t, s ≥ 0,
(c) for every z ∈ D , limt→0 ϕt(z) = z.

The fractional iterates ϕt are always univalent. Moreover, if one of the iterates
ϕt (t > 0) has an inner (resp. boundary) DW-point, all the ϕt (t > 0) have
an inner (resp. boundary) DW-point and, indeed, all of the DW-points are the
same [15]. In that case, we say that (ϕt) is a semigroup with inner (resp. boundary)
DW-point. There are other two types of semigroups (trivial and elliptic) but we
remit to the literature for more information.

Theorem 1. Let (ϕt) be a semigroup of analytic functions with inner DW-

point and a ∈ ∂D . Then, the point a is a boundary fixed point of ϕt for some

t > 0 if and only if it is a boundary fixed point for all the iterates ϕt .

In particular, if a holomorphic mapping ϕ: D → D with inner DW-point can
be embedded into a semigroup of analytic functions, then all the iterates of ϕ have
the same collection of boundary fixed points. This theorem was also enunciated
by Cowen in the relevant paper [7]. Unfortunately, Cowen’s proof uses that a
boundary fixed point of a holomorphic map ϕ: D → D is also a boundary fixed
point of ϕ2 , which we know to be incorrect in general. Anyway, our approach is
different and, perhaps, clearer.
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Boundary fixed points can be characterized by some properties of the classical
Koenigs function, also in the context of fractional iteration. The famous result
of Koenigs [14, Section 6.1] asserts the existence of a unique holomorphic map
σ: D→C such that

σ ◦ ϕ = ϕ′(τ)σ

with σ′(τ) = 1, for every holomorphic self-map ϕ of D with inner DW-point and
ϕ′(τ) 6= 0. This map σ is called the Koenigs function associated to ϕ and σ is
univalent, whenever ϕ is. It is possible to prove that if (ϕt) is a semigroup with
inner DW-point, all the Koenigs functions associated to ϕt (t > 0) coincide, so
we can talk about the Koenigs function of the semigroup (ϕt).

Theorem 2. Let (ϕt) be a semigroup of analytic functions with inner DW-

point and let σ be the corresponding Koenigs function. Assume that a ∈ ∂D .

Then the following are equivalent:

(1) The point a is a boundary fixed point of ϕt for some (resp. all) t > 0 .

(2) The radial limit limr→1− σ(ra) exists and is ∞ .

(3) The unrestricted limit limz→a σ(z) exists and is ∞ . That is, the function

σ admits a continuous extension from D∪{a} into C∞ , where we assign

σ(a) := ∞ .

In terms of prime end theory and denoting the corresponding Carathéodory
map by σ̂ , we notice that the above statement two says that σ̂(a) is an accessible
prime end and the statement three that the impression of σ̂(a) is singleton. This
theorem is false outside of the fractional iteration world. In fact, we can show, see
Example 2, a univalent function verifying statement two but failing the first one
and another univalent function, see Example 3, satisfying the second but not the
third condition.

Corollary 3. Let (ϕt) be a semigroup of analytic functions with inner DW-

point and a ∈ ∂D a boundary fixed point of ϕt for some (resp. all) t > 0 . Then,

each fractional iterate ϕt admits a continuous extension from D∪{a} into D∪{a} ,

where ϕt(a) := a .

Apparently, if we want a more general (univalent) version of the last theorem
we have to weaken the hypothesis of being a boundary fixed point. As we will see,
the concept of boundary contact point will be really useful for this task.

We point out that, as a consequence of the Julia–Carathéodory theorem, if
a ∈ ∂D is a boundary contact point of some ϕn with ϕ′

n(a) 6= ∞ , then a is
also a boundary contact point of each iterate ϕk , k < n . Thus, once more under
certain regularity assumptions, boundary contact points “grow” in the backward
direction. For fractional iteration, there is also a strong relation between boundary
fixed points and boundary contact points. Here, the dynamical concept of ω -limit
appears in a very natural way. We want to point out that a point ξ ∈ C∞ is
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called an ω -limit point of a curve γ: [0, 1) → C if there exists a strictly increasing
sequence (rn) ⊂ [0, 1) convergent to 1 such that γ(rn) → ξ . The set of all ω -limit
points of γ is called its ω -limit and it is denoted by ω(γ).

Theorem 4. Let (ϕt) be a semigroup of analytic functions with inner DW-

point and a ∈ ∂D . Then the following are equivalent:

(1) The point a is a boundary fixed point of ϕt for some (resp. all) t > 0 .

(2) The point a is a boundary contact point of ϕt for all t > 0 .

(3) There is t > 0 such that the point a is a boundary contact point of ϕnt , for

every n ∈ N .

(4) For all t > 0 , the ω -limit of the curve

r ∈ [0, 1) −→ ϕt(ra) ∈ D

is completely included in ∂D .

(5) For some t > 0 and every n ∈ N , the ω -limit of the curves

r ∈ [0, 1) −→ ϕnt(ra) ∈ D

are completely included in ∂D .

In general, the above analysis cannot be quickly translated to the DW-bound-
ary context. Clearly, new phenomena appear and it deserves a proper and further
study. Anyway, we want to point out that our initial theorem also holds in this
situation.

Theorem 5. Let Φ = (ϕt) be a semigroup of analytic functions with bound-

ary DW-point and a ∈ ∂D . Then, the point a is a boundary fixed point of ϕt for

some t > 0 if and only if it is a boundary fixed point for all ϕt .

Obviously, we can drop “boundary” above since fixed points of fractional
iterates of semigroups with boundary DW-point are all of them contained in ∂D .

This theorem was also stated by Cowen in [7]. However, the same remarks
given for the inner DW-point case are still valid here.

1.3. Now we leave the fractional iteration and give the univalent version of
Theorems 2 and 3. Due to the undoubtedly dynamical aspect of the equivalences,
we have decided to give an initial version with “general” curves and, after that, to
show the corresponding corollary with “radial” curves.

Theorem 6. Let ϕ: D → D be a univalent function with inner DW-point

and let σ be the corresponding Koenigs function. Likewise, let γ: [0, 1) → D be

a curve. Then, the following statements are equivalent.

(1) For all n ∈ N , the limit limr→1 ϕn

(

γ(r)
)

exists and lies in ∂D .

(2) For all n ∈ N , the ω -limit of the curve ϕn ◦ γ: [0, 1) → D is completely

contained in ∂D .

(3) The ω -limit of the curve σ◦γ: [0, 1) → C is ∞ . That is, limr→1 σ
(

γ(r)
)

= ∞ .
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Corollary 7. Let ϕ: D → D be a univalent function with inner DW-point

and let σ be the corresponding Koenigs function. Assume that a ∈ ∂D . Then,

the following statements are equivalent.

(1) The point a is a boundary contact point of ϕn , for every n ∈ N .

(2) For all n ∈ N , the ω -limit of the curve r ∈ [0, 1) → ϕn(ra) ∈ D is completely

contained in ∂D .

(3) The radial limit limr→1− σ(ra) exists and is ∞ .

1.4. It is quite natural to ask about what can happen in the non-univalent
situation. Different examples unequivocally tell us that, in this context, everything
is much more complicated and, roughly speaking, they suggest replacing the verb
“to contain” by “to touch” in the corresponding assertions.

Anyway, it is worth mentioning that it is not possible to replace in the above
corollary “ω(ϕn ◦ γ) ⊂ ∂D , for all n” by “ω(ϕn ◦ γ)

⋂

∂D 6= ∅ , for all n” (see
Example 4).

Theorem 8. Let ϕ: D → D be a function with inner DW-point τ and

ϕ′(τ) 6= 0 , and let σ be the corresponding Koenigs function. Assume that a ∈ ∂D
and let γ: [0, 1) → D be a curve such that ω(γ) = {a} . If a is a boundary contact

point for every iterate of ϕ , then the following two equivalent statements hold:

(1) For every n ∈ N , the intersection ω(ϕn ◦ γ)
⋂

∂D is not empty.

(2) The ω -limit of the curve σ ◦ γ: [0, 1) → C contains ∞ .

Even for radial curves, the behaviour of the just mentioned ω -limit of the
curve σ ◦ γ can be very “pathological” in a certain sense. In fact, in Section 3, we
present a non-univalent holomorphic function ϕ: D → D having the point 1 as a
boundary fixed point and 0 as the DW-point with 0 < |ϕ′(0)| < 1, such that the
ω -limit of the curve r ∈ [0, 1) → σ(r) ∈ C is a compact connected subset of C∞

including ∞ and the DW-point 0 (see Example 5).
Thinking about the meaning, in this non-univalent framework, of having a

non-common boundary contact point for the iterates of ϕ , we have arrived at an
extreme dichotomy for the behaviour of the ω -limits of ϕn ◦ γ , where γ is curve
in D tending to the corresponding boundary fixed point of ϕ . In a certain sense,
this complements the former theorem.

Theorem 9. Let ϕ: D → D be a function with inner DW-point τ and

ϕ′(τ) 6= 0 , and let σ be the corresponding Koenigs function. Let γ: [0, 1) → D

be a curve. Then, only one of the two following conditions is satisfied:

(i) The ω -limit of the curve σ ◦ γ: [0, 1) → C does not contain ∞ and

sup
{

|ϕn ◦ γ(t)− τ | : t ∈ [0, 1)
} n→∞
−→ 0.

(ii) The ω -limit of the curve σ◦γ: [0, 1) → C contains ∞ and ω(ϕn◦γ)
⋂

∂D 6= ∅ ,

for every n ∈ N .
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It is worth mentioning that there are functions ϕ such that the associated
Koenigs function touches the point ∞ for every radial limit (see Example 6).

2. Proofs of the results

In order not to repeat arguments, we will give the proofs in a different order.

Proof of Theorem 6. Let Ω be equal to σ(D). Denote λ = ϕ′(τ). Since σ
is univalent we have that λ 6= 0. If the limit limr→1 ϕn(γ(r)) = η exists, then we
have that ω(ϕn ◦ γ) is only the single point η . So, it is clear that (1) implies (2).

Let us see that (2) implies (3). We know that ω (σ ◦ γ) ⊂ C∞ . Suppose that
there is a point w ∈ ω (σ ◦ γ)∩C . Since w ∈ C , 0 ∈ Ω (which is a open set), and
λ ∈ D there is a natural number n such that λnw ∈ Ω. Moreover, w ∈ ω (σ ◦ γ).
That is, there is a sequence (rm) in the interval (0, 1) converging to 1 such that
σ
(

γ(rm)
)

→ w . Therefore, bearing in mind that σ is univalent, we have

ϕn

(

γ(rm)
)

= σ−1
(

λnσ
(

γ(rm)
)) m→∞

−→ σ−1(λnw) ∈ D.

That is, ω(ϕn ◦ γ) ∩ D 6= ∅ . A contradiction.
Finally, we see that (3) implies (1). Fix a natural number n and consider the

curve r ∈ [0, 1) 7→ λnσ
(

γ(r)
)

. By hypothesis, limr→1 λ
nσ

(

γ(r)
)

= ∞ . Since σ is
univalent it follows from [14, p. 162] that

ϕn

(

γ(r)
)

= σ−1
(

λnσ
(

γ(r)
))

tends to a limit as r → 1, and this limit lies in ∂D because σ is finite in D .

Proof of Theorems 1, 2 and 4. Let Ω be equal to σ(D). To fix the notation,
we have that there is c with Re c > 0 such that ϕt(z) = σ−1

(

e−ctσ(z)
)

for all
t ≥ 0 and z ∈ D .

To prove these three theorems, we have to get that the following eight asser-
tions are equivalent:

(i) The point a is a boundary fixed point of ϕt for some t > 0.
(ii) The point a is a boundary fixed point of ϕt for all t > 0.
(iii) The unrestricted limit limz→a σ(z) exists and is ∞ .
(iv) The radial limit limr→1− σ(ra) exists and is ∞ .
(v) The point a is a boundary contact point of ϕt for all t > 0.
(vi) There is t > 0 such that the point a is a boundary contact point of ϕnt , for

every n ∈ N .
(vii) For all t > 0, the ω -limit of the curve

r ∈ [0, 1) −→ ϕt(ra) ∈ D

is completely included in ∂D .
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(viii) For some t > 0 and every n ∈ N , the ω -limits of the curves

r ∈ [0, 1) −→ ϕnt(ra) ∈ D

are completely included in ∂D .

First of all, bearing in mind that all functions of the semigroup have the same
Koenigs function, by Theorem 6, we have that (iv), (v), (vi), (vii), and (viii) are
equivalent. Moreover, it is obvious that (ii) implies (v), (ii) implies (i), and that
(iii) implies (iv). To close the cycle we are going to prove that

(iv) implies (iii), (iv) implies (ii), and (i) implies (vi).

(iv) implies (iii). To simplify this implication we introduce some notation.
Given c ∈ C with Re c > 0 and w ∈ C , w 6= 0, we define the spiral spirc[w] =
{e−csw : s ∈ R}

⋃

{0}
⋃

{∞} ; given real numbers s < t , we define the spiral
segment spirc[e

−sw, e−tw] as the subarc of spirc[w] that goes from e−sw to e−tw ;
finally, spirc[∞, w] = {e−csw : s ≤ 0}

⋃

{∞} .
Take a zero-chain (Cm) in D converging to a such that

(

σ(Cm)
)

is a zero-

chain in Ω such that σ̂(a) =
[

σ(Cm)
]

. To get (iii) we have to prove that the
impression of the prime end σ̂(a) is the single point ∞ . By [5, Lemma 3.3] the
corresponding impression I(σ̂(a)) ⊂ ∂∞Ω must be of one of the following types:

(a) I
(

σ̂(a)
)

is a single point.

(b) There is λ ∈ ∂D and η1 < η2 such that I
(

σ̂(a)
)

= spirc[e
−η1cλ, e−η2cλ] .

(c) There is λ ∈ ∂D and η ∈ R such that I
(

σ̂(a)
)

= spirc[∞, e−ηcλ] .

Since limr→1 σ(ra) = ∞ , we have that ∞ ∈ I
(

σ̂(a)
)

. Therefore, the possibil-
ity (b) cannot occur. If (c) is satisfied, then limmwm always exists and it is equal
to λe−ηc whenever wm ∈ σ(Cm) for all m ∈ N (see the proof of [5, Theorem 1.2.
(2) implies (3)]). Moreover, for each m , there is rm ∈ (0, 1) such that rma ∈ Cm .
So, limm σ(rma) = e−ηc . A contradiction because the sequence (rm) must tend
to 1 and, by hypothesis, limm σ(rma) = ∞ . Therefore, I

(

σ̂(a)
)

is a single point

and, again using that ∞ ∈ I
(

σ̂(a)
)

we get that I
(

σ̂(a)
)

= {∞} .
(iv) implies (ii). Let us fix t > 0. We have to show that

lim
r→1

ϕt(ra) = lim
r→1

σ−1
(

e−ctσ(ra)
)

= a.

First of all, notice that by [14, p. 162], the limit limr→1 σ
−1

(

e−ctσ(ra)
)

does exist.
So we only have to prove that the limit is equal to a .

Clearly, we have that limr→1 ϕ0(ra) = a . Take an increasing sequence (rn)
tending to 1 with r0 = 0. For each n , define the following curves

γn : r ∈
[

rn−1, rn
]

7−→ γn(r) := σ(ra),

ηn : s ∈
[

0, t
]

7−→ ηn(s) := e−csσ(rna).
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Since Ω is c -spirallike, the curve ηn is in Ω. Now we build the curve

Γ =
∞

⊕

n=1

(γ2n−1 + η2n−1 + e−ctγ2n + η−

2n).

Notice that Γ is a curve in Ω joining 0 to ∞ . So, by [14, p. 162], we have
that there is ω ∈ ∂D such that limw∈Γ,w→∞ σ−1(w) = ω . On the one hand,
the points σ(r2n−1a) ∈ γ2n−1 ⊂ Γ and the sequence

(

σ(r2n−1a)
)

tends to ∞ .

So, ω = limn→∞ σ−1
(

σ(r2n−1a)
)

= limn→∞ r2n−1a = a . On the other hand, the

points e−ctσ(r2n−1a) ∈ η2n−1 ⊂ Γ and the sequence
(

e−ctσ(r2n−1a)
)

tends to ∞ .
So,

ω = lim
n→∞

σ−1
(

e−ctσ(r2n−1a)
)

= lim
n→∞

ϕt(r2n−1a).

Therefore, limn→∞ ϕt(r2n−1a) = a . Since the limit limr→1 ϕt(ra) does exist, we
have that it must be a .

(i) implies (vi). First of all, notice that, since Ω is c -spirallike, by [9, p. 431],
the limit limr→1 σ(rξ) does exist and belong to C

⋃

{∞} for all ξ ∈ ∂D . In
particular, we have that the limit limr→1 e

−cntσ(rξ) exists for all n and all ξ . On
the one hand, if this limit belongs to Ω, then the continuity of σ−1 in Ω implies
that the limit limr→1 ϕnt(rξ) = limr→1 σ

−1
(

e−cntσ(rξ)
)

exists. On the other
hand, if this limit belongs to ∂∞Ω, by [14, p. 162], the limit limr→1 ϕnt(rξ) =
limr→1 σ

−1
(

e−cntσ(rξ)
)

exists.
Summing up, we have that for all n and for all ξ , the limit limr→1 ϕnt(rξ)

exists. It is worth pointing out that we want to prove (vi) and, at this moment,
we only know that the limit limr→1 ϕnt(ra) exists for all n (notice that we have
not used the hypothesis (i) to get this preliminary fact) but we do not know if
these limits belong to the boundary of the unit disc.

Now, we are going to get this last assertion. Namely, we show that

lim
r→1

ϕnt(ra) = a for all n.

We argue by induction. By hypothesis, we have that limr→1 ϕt(ra) = a . Now
suppose that limr→1 ϕnt(ra) = a . Then, by the Lehto–Virtanen theorem [13,
Chapter 4], we have that

lim
r→1

ϕ(n+1)t(ra) = lim
r→1

ϕt

(

ϕnt(ra)
)

= lim
z→a, z∈ϕnt([0,1)a)

ϕt(z) = lim
r→1

ϕt(ra) = a.

Proof of Corollary 3. By Theorem 2, we have that the function σ has a
continuous extension to the point a . What we are going to do is to pass this

continuous extension property from σ to ϕt .
So, fix t > 0 and let

Uk =
{

z ∈ D : |z − a| < 1/k
}

.
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We have to show that diamϕt(Uk) → 0 as k → ∞ . Suppose this is false. Then, for
some subsequence, there are Jordan arcs Ckn

in ϕt(Ukn
) with diamCkn

> b > 0.
We have

σ(Ckn
) ⊂ σ

(

ϕt(Ukn
)
)

= e−ctσ(Ukn
)

n→∞
−→ ∞

by Theorem 2. Hence (Ckn
) is a sequence of Koebe arcs [12, p. 267] for the

function σ . This is a contradiction because a univalent function has no Koebe
arcs.

Proof of Theorem 5. Denote τ ∈ ∂D the DW-point of the semigroup. Then
there is a unique univalent function σ: D → C with σ(0) = 0 verifying the prop-
erty

(∗ ∗ ∗) Ω + t ⊂ Ω, for each t > 0, where Ω := σ(D),

and such that
ϕt(z) = τσ−1

(

σ(τz) + t
)

, t ≥ 0, z ∈ D

(see [1] or [15]). Fix t0 > 0 such that a is a fixed point for ϕt0 . We claim that
the following properties hold:

(a) For all ξ ∈ ∂D , the limit limr→1 σ(rξ) exists and belongs to ∂∞Ω;
(b) For all ξ ∈ ∂D , the limit limr→1 ϕt0(rξ) exists;
(c) a is a fixed point of ϕnt0 for all n ;
(d) limr→1 σ(ra) = ∞ .

Once we know that (d) is satisfied we conclude the proof arguing as in the
proof of (iv) implies (ii) above.

Let us check (a). In [4], K. Ciozda obtained that, given a univalent function
σ satisfying (∗ ∗ ∗), there is α ∈

[

− 1
2
π, 1

2
π
]

, such that

Re eiα(1 − z)2σ′(z) ≥ 0 for all z ∈ D.

In particular, denoting g(z) = z/(1 − z), we have that

Re
eiασ′(z)

g′(z)
≥ 0 for all z ∈ D.

Since g is convex, we see that the function eiασ is close-to-convex with associated
function g . Notice that g(D) =

{

w ∈ C : Rew > − 1
2

}

. So,

∂g(D) =
{

w ∈ C : Rew = −
1

2

}

and we parametrize this curve by

w(t) = −
1

2
+

sin t

2(1 − cos t)
i
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for all 0 ≤ t ≤ 2π . Take

β(t) =

{

limτ→t+ arg
[

w(τ) − w(t)
]

if w(t) 6= ∞,
limτ→t+ argw(τ) + π if w(t) = ∞.

On the one hand, since the function t ∈ (0, 2π) 7→ sin t/2(1 − cos t) is increasing,
we get that β(t) = 3

2
π for all t ∈ (0, 2π). On the other hand,

β(0) = lim
τ→0+

argw(τ) + π = lim
τ→0+

arg

[

−
1

2
+

sin τ

2(1 − cos τ)
i

]

+ π =
1

2
π + π =

3

2
π.

Therefore, by [13, Theorem 3.21], the limit limr→1 σ(rξ) does exist and belongs
to C

⋃

{∞} for all ξ ∈ ∂D . The univalence of σ implies that this limit belongs
to ∂∞Ω.

Now we obtain (b). On the one hand, if this limit belongs to Ω, then the conti-
nuity of σ−1 in Ω implies that the limit limr→1 ϕnt0(rξ) = limr→1 σ

−1(σ(rξ)+nt0)
exists. On the other hand, if this limit belongs to ∂∞Ω, by [14, p. 162], the limit
limr→1 ϕnt0(rξ) = limr→1 σ

−1
(

σ(rξ)+ nt0
)

exists. Summing up, we have that for
all n the limit limr→1 ϕnt0(ra) exists.

To get (c), we argue by induction. We have to see that limr→1 ϕnt0(ra) = a
for all n . By hypothesis, we have that limr→1 ϕt0(ra) = a . Now suppose that
limr→1 ϕnt0(ra) = a . Then, by the Lehto–Virtanen theorem [13, Chapter 4], we
have that

lim
r→1

ϕ(n+1)t0(ra) = lim
r→1

ϕt0

(

ϕnt0(ra)
)

= lim
z→a, z∈ϕnt0

([0,1)a)
ϕt0(z) = lim

r→1
ϕt0(ra) = a.

Finally, we deduce (d). Denote ξ = limr→1 σ(ra) (this limit does exist by (a)).
Let us see that ξ = ∞ . Suppose on the contrary that ξ 6= ∞ . Then there are
two possibilities: either there is n such that ξ + nt0 ∈ Ω or ξ + st0 ∈ ∂Ω for all
s > 0. In the first case, a = limr→1 ϕnt0(ra) = limr→1 σ

−1
(

σ(ra) + nt0
)

∈ Ω.
A contradiction. In the second case, we have that the half-line {ξ + s : s > 0}
is included in the boundary of Ω. Moreover, we have one of the following two
situations:

Imσ(rb) < Im ξ for all r or Imσ(rb) > Im ξ for all r.

Suppose we have that Imσ(rb) < Im ξ for all r . Then, there is c ∈ R , such that
the half-strip

{

w ∈ C : 0 < Imw < Im ξ, Rew > c
}

is included in Ω# .This implies that the points of the half-line {ξ + s : s > 0}
are simple boundary points and, by [6, Theorem 14.5.12(b)], the function σ−1

has a continuous one-to-one extension to Ω
⋃

{ξ + s : s > 0} . But we know that
σ−1(ξ+ nt0) = a for all n . A contradiction. So, ξ cannot be different from ∞ .



Fixed points and the Koenigs function 481

Proof of Theorem 9. Without loss of generality, we may assume that τ = 0.
Denote λ = ϕ′(0). First, assume that r := supz∈γ |ϕm(z)| < 1 for some natural
number m . If z ∈ γ and n > m , then

|ϕn(z)| =
∣

∣ϕn−m

(

ϕm(z)
)
∣

∣ ≤ sup
|ζ|≤r

|ϕn−m(ζ)|.

Since 0 is the Denjoy–Wolff point, we get that sup|ζ|≤r |ϕn−m(ζ)| −→
n→∞

0. The

Koenigs function satisfies σ(z) = σ
(

ϕn(z)
)

/λn for all n and for all z . So, given
z ∈ γ , we have

|σ(z)| =
1

|λ|m
∣

∣σ
(

ϕm(z)
)
∣

∣ ≤
1

|λ|m
sup
|ζ|≤r

|σ(ζ)| < ∞.

Therefore, if supz∈γ |ϕm(z)| < 1 for some natural number m , we have that (1) is
satisfied.

Now, assume that

(∗) sup
z∈γ

|ϕn(z)| = 1 for all natural n.

In this case, it is trivial that ω(ϕn◦γ)
⋂

∂D 6= ∅ , for every n ∈ N . Take 0 < % < 1
such that σ has no zeros on |ζ| = % . Then there is c > 0 such that

(∗∗) |σ(ζ)| ≥ c for |ζ| = %.

Since ϕn(0) = 0, the curve γn = {ϕn(z) : z ∈ γ} has 0 as initial point and,
by (∗), we have that γn

⋂

∂D 6= ∅ . So there is zn ∈ γ such that |ϕn(zn)| = % .
Now, using again that σ(z) = σ

(

ϕn(z)
)

/λn and (∗∗), we have that

|σ(zn)| =
1

|λ|n
∣

∣σ
(

ϕn(z)
)
∣

∣ ≥
c

|λ|n
−→

n→∞
∞

and this implies that |zn| → 1.

Proof of Theorem 8. Denote an := limr→1 ϕn(ra) ∈ ∂D for all n . Since
ϕn(D) ⊂ D , the function

ψn(z) = log
(

1 − anϕn(z)
)

(z ∈ D)

satisfies that | Imψn(z)| < 1
2π . Therefore, ψn is a Bloch function.

Suppose that supz∈γ |ϕn(z)| < 1 for some natural number n . Then |ψn| is
bounded on γ . On the one hand, by the Anderson–Clunie–Pommerenke theorem
[13, Proposition 4.4], we get that |ψn| is bounded on the radial segment [0, a).
On the other hand, since 1− anϕn(ra)−→

r→1
0, we have that |ψn| is not bounded on

the radial segment [0, a). A contradiction.
So, supz∈γ |ϕn(z)| = 1 for all n and, by Theorem 9, we obtain that

lim sup
z→a, z∈γ

|σ(z)| = +∞.
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3. The examples

Example 1. There is a univalent function ϕ: D → D with ϕ(0) = 0 and
boundary fixed point 1 such that ϕ2 does not have a radial limit at 1.

Proof. (a) We define R = [0, 1) and

(1) A =
{

(1 − e−1/t)eit : 0 < t ≤ π
}

,

furthermore, for k = 1, 2, . . .,

(2) rk = 1 − e−k, Bk =

{

rke
it :

1

k
+ exp(−e2k) ≤ t ≤ π

}

.

We consider the simply connected domain

(3) Ω = D�

(

A
⋃

[

−1,−1 + e−1
]
⋃

(

∞
⋃

k=1

Bk

))

which contains 0. Let ϕ be the Riemann map of D onto Ω that satisfies ϕ(0) = 0
and ϕ(1) = 1 in the sense that γ = ϕ(R) lies between the arc A and the arcs Bk ;
see Figure 1. This function ϕ has a continuous extension to D�{1} . There are
two important aspects: the arc A is very tangential at 1 and the gaps between A
and the Bk are exceedingly small.

Ω

 B 1

 B 2

 A

 R

 γ

Figure 1 (not to scale).
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Since γ = ϕ(R) lies to the left of R , the image ϕ ◦ ϕ(R) lies to the left
of ϕ(R). Furthermore ϕ ◦ ϕ(R) goes from 0 to ∂D . Hence there exists zk with

(4) zk ∈ ϕ(R), |ϕ(zk)| = 1
2 (rk + rk+1), argϕ(zk) < π.

We claim that argϕ(zk) > 1
2π for large k .

(b) Suppose that argϕ(zk) ≤ 1
2π . Let c1, c2, . . ., denote suitable positive

constants. Since ϕ(R) goes from 0 to 1, there exists bk ∈ R with |ϕ(bk)| =
1
2 (rk + rk+1); see Figure 2. The hyperbolic distance λ in D satisfies [13, p. 92]

(5) λ(bk, zk) ≤ inf
C

∫

C

|dw|

dist (w, ∂Ω)
,

where C runs through all curves in Ω from ϕ(bk) to ϕ(zk). It follows from the
geometry of Ω (see (1) and (2)) that this infimum is essentially attained if C is
the arc Ck of

{

|w| = 1
2 (rk + rk+1)

}

from ϕ(bk) to ϕ(zk). Now ϕ−1(A) lies on
∂D above R and the ϕ−1(Bk) lie on ∂D below R . Hence ϕ(bk) has about the
same distance [12, p. 318] from A and

⋃

Bk .

 S k

 a k  b k

 z k
 A

 R

 γ

ϕ
−→

 u k

 v k

 A

 R

 γ

Figure 2 (not to scale). The dotted lines are ϕ−1(Ck) and Ck . Note that the arc appears in

both parts of the figure. We have denoted vk = ϕ(zk) and uk = ϕ(ak) .

Since argϕ(zk) ≤ 1
2π we therefore obtain that dist (w, ∂Ω) ≥ c1e

−k for w ∈
Ck . Hence we see from (5) that λ(bk, zk) ≤ c2e

k . If Sk is the hyperbolic segment
from zk to ak ∈ R , that is orthogonal to R , then it follows that

(6) λ(ak, zk) ≤ λ(bk, zk) ≤ c2e
k;
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see Figure 2. The curve A is tangential to ∂D at 1 and ϕ(R) lies between A
and ∂D . Hence, by (1), there exists tk such that

(7) (1 − e−1/tk)eitk ∈ Sk, |zk| > 1 − e−1/tk .

Since the euclidean radius of Sk is ∼ 1 − ak as k → ∞ , we have tk ∼ 1 − ak .
Hence, by (7),

λ(0, zk) > c3 log
1

1 − |zk|
>
c3
tk

≥
c4

1 − ak
≥ exp

(

c5λ(0, ak)
)

and we obtain from (6) that, for large k ,

(8) c2e
k > exp

(

c5λ(0, ak)
)

− λ(0, ak) > exp
(

c6λ(0, ak)
)

.

There are xk ∈ R such that |ϕ(xk)| = rk . We have [13, Corollary 1.5]

(9) λ(ς0, ς1) ≥
1

4
log

|ϕ(ς0) − ϕ(ς1)|

4 dist (ϕ(ς0), ∂Ω)
for ς0, ς1 ∈ D.

Now suppose that ak ≤ xk . Then there exists z′k ∈ Sk with |ϕ(z′k)| = rk . Since

dist
(

ϕ(z′k), ∂Ω
)

≤ exp(−e2k),

by (1) and (2), we obtain from (9) that

λ(ak, zk) ≥ λ(z′k, zk) ≥ c7(e
2k − k) for large k

which contradicts (6). Hence xk < ak and it follows as above from (9) that

λ(0, ak) ≥ λ(xk−1, xk) ≥ c8e
2k.

Thus we conclude from (8) that c2e
k > exp(c9e

2k) for large k and we have arrived
at a contradiction.

(c) Hence we have π > argϕ(zk) > 1
2π for large k . Since ϕ(zk) ∈ ϕ2(R) by

(4), we conclude the ω -limit of ϕ2(R) contains points different from 1.
On the other hand, since ϕ is univalent and ϕ(1) = 1, we obtain from a

Theorem of Lindelöf [13, Theorem 2.16] that this ω -limit contains 1. Hence
ϕ2(R) does not have a limit as x→ 1, with x ∈ R .

Example 2. There are a univalent function ϕ: D → D with an inner
DW-point and associated Koenigs function σ and a point a ∈ ∂D such that
limr→1 σ(ra) = ∞ and a is not a boundary fixed point of ϕ .
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Proof. Take σ(z) = z/(1 − z2) for all z ∈ D . We have that σ′(z) =
(1 + z2)/(1 − z2)2 , σ(0) = 0, and σ′(0) = 1. The function p(z) = zσ′(z)/σ(z) =
(1 + z2)/(1 − z2) satisfies that p(0) = 1 and Re

(

p(z)
)

> 0 for all z ∈ D . So,
by [12, Theorem 2.5], σ is starlike. Moreover, σ(−z) = −σ(z) for all z ∈ D .
Therefore, − 1

2σ(D) ⊂ σ(D).
Consider the univalent function ϕ(z) = σ−1

(

− 1
2
σ(z)

)

for all z ∈ D . It is clear
that the Koenigs function of ϕ is the function σ . We have that limr→1 σ(r) = ∞
but

lim
r→1

ϕ(r) = lim
r→1

σ−1
(

− 1
2σ(r)

)

= lim
s→+∞, s∈R

σ−1
(

− 1
2
s
)

= lim
s→−∞, s∈R

σ−1
(

1
2
s
)

= −1.

So 1 is not a fixed point of ϕ .

Example 3. There is a univalent function ϕ: D → D with an inner DW-
point and associated Koenigs function σ and a point a ∈ ∂D such that

lim
r→1

σ(ra) = ∞

(so, a is a boundary contact point of ϕn for all n) and limz→1 σ(z) 6= ∞ .

Proof. For each natural number n take

Hn =

{

z ∈ C : Re z = −1 +
1

2n
, Im z ≥ −n

}

and consider the domain

Ω = {z ∈ C : Re z > −1}�

(

⋃

n≥1

Hn

)

.

Let σ be the normalized Riemann map from D onto Ω. Let Cn be the
arc in Ω of the circumference centered in 0 that goes from −1 + (1/2n) − ni
to H1 . The sequence of Jordan arcs (Cn) generates a prime end p in Ω. Take
the point a ∈ ∂D such that σ̂(a) = p . Then the impression of the prime end
is I(p) = {z ∈ C : Re z = −1}

⋃

{∞} . So the limit limz→1 σ(z) does not exist.
Moreover, by [13, Theorem 2.16], limr→1 σ(ra) = ∞ .

Notice that 1
2
Ω ⊂ Ω. Therefore, the univalent function ϕ(z) = σ−1

(

1
2
σ(z)

)

for all z ∈ D is well-defined and it is clear that the Koenigs function of ϕ is the
function σ . So, by Theorem 6, a is a boundary contact point of ϕn for all n .

Example 4. There are a univalent function ϕ: D → D with an inner DW-
point and a point a ∈ ∂D such that, for all n , the ω -limit of the curve r ∈
[0, 1) 7→ ϕn(ra) touches ∂D but it is not contained in ∂D .
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Proof. For each natural number n take

H2n =

{

z ∈ C : Re z = −1 +
1

2n
, Im z ≥ −2n

}

,

H2n+1 =

{

z ∈ C : Re z = −1 +
1

2n+ 1
, Im z ≤ 2n+ 1

}

and consider the domain

Ω =
{

z ∈ C : Re z > −1
}

�

(

⋃

n≥1

Hn

)

.

Let σ be the normalized Riemann map from D onto Ω. The sequence of
Jordan arcs (Cn) given by

C2n =

[

−1 +
1

2n+ 1
− i,−1 +

1

2n
− i

]

,

C2n+1 =

[

−1 +
1

2n+ 2
+ i,−1 +

1

2n+ 1
+ i

]

,

for all n , generates a prime end p in Ω. Take the point a ∈ ∂D such that
σ̂(a) = p . Then the set of principal points of the prime end p is {z ∈ C :
Re z = −1}

⋃

{∞} and, by [13, Theorem 2.16], this set coincides with the ω -limit
of the curve r ∈ [0, 1) 7→ σ(ra). In particular, ∞ belongs to this ω -limit and
limr→1 σ(ra) 6= ∞ .

Notice that 1
2Ω ⊂ Ω. Therefore, the univalent function ϕ(z) = σ−1

(

1
2σ(z)

)

for all z ∈ D is well-defined and it is clear that the Koenigs function of ϕ is
the function σ . Since ∞ belongs to ω -limit of the curve r ∈ [0, 1) 7→ σ(ra), by
Theorem 9, the ω -limit of the curve r ∈ [0, 1) 7→ ϕn(ra) touches ∂D for all n .
Finally, since limr→1 σ(ra) 6= ∞ , by Theorem 6, a is not a boundary contact
point of ϕn for all n .

Example 5. There are a function ϕ: D → D with DW-point 0, ϕ′(0) 6= 0,
and associated Koenigs function σ , and a boundary fixed point a ∈ ∂D of ϕn ,
for all n , such that, the ω -limit of the curve r ∈ [0, 1) 7→ σ(ra) contains the
DW-point 0 and ∞ .

Proof. Take 0 < λ < 1 and ϕ(z) = z(z − λ)/(1 − λz). Then ϕ′(0) = −λ ,
ϕ(1) = 1, and 1 < ϕ′(1) < ∞ . Consider x1 = λ and xn = ϕ(xn+1) for all n .
Then λ < xn+1 < 1, xn < xn+1 for all n and xn → 1. Moreover,

σ(xn) = σ
(

ϕ(xn)
)

= −λσ(xn+1).

Therefore, bearing in mind that 0 = σ(0) = σ
(

ϕ(λ)
)

= −λσ(λ), we have that
σ(xn) = 0 for all n and 0 belongs to the ω -limit of the curve r ∈ [0, 1) 7→ σ(ra).
Since 1 is a fixed point of ϕn for all n , by Theorem 8, we have that ∞ belongs
to this ω -limit, too.
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Example 6. There is a function ϕ: D → D with DW-point 0, ϕ′(0) 6= 0,
and associated Koenigs function σ such that ∞ is in ω(σ ◦ Γ) for all curves Γ in
D with ω(Γ) in ∂D .

Proof. Consider the finite Blaschke product

ϕ(z) = cz

m−1
∏

k=1

z − zk

1 − zkz
, |c| = 1, 0 < |zk| < 1 for all k.

Since ϕ is continuous on D and ϕ(∂D) = ∂D , the ω -limit of the curves r 7→
ϕn(Γ(r)) are in ∂D for all curves Γ in D with ω(Γ) in ∂D and for all n . Hence
we obtain from Theorem 9 that

lim sup
r→1

∣

∣σ
(

Γ(r)
)
∣

∣ = +∞.

Valiron [16, p. 123] has given a more precise description of the behaviour of the
Koenigs function for finite Blaschke products. His results show that |σ(z)| → +∞
as |z| → 1 except in smaller and smaller neighbourhoods of the points ϕ−1

n (zk)
for all n and k = 0, . . . ,m− 1 where z0 = 0.
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