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Abstract

Background: The analysis of data generated by microarray technology is very useful
to understand how the genetic information becomes functional gene products.
Biclustering algorithms can determine a group of genes which are co-expressed
under a set of experimental conditions. Recently, new biclustering methods based
on metaheuristics have been proposed. Most of them use the Mean Squared Residue
as merit function but interesting and relevant patterns from a biological point of
view such as shifting and scaling patterns may not be detected using this measure.
However, it is important to discover this type of patterns since commonly the genes
can present a similar behavior although their expression levels vary in different
ranges or magnitudes.

Methods: Scatter Search is an evolutionary technique that is based on the evolution
of a small set of solutions which are chosen according to quality and diversity criteria.
This paper presents a Scatter Search with the aim of finding biclusters from gene
expression data. In this algorithm the proposed fitness function is based on the linear
correlation among genes to detect shifting and scaling patterns from genes and an
improvement method is included in order to select just positively correlated genes.

Results: The proposed algorithm has been tested with three real data sets such as
Yeast Cell Cycle dataset, human B-cells lymphoma dataset and Yeast Stress dataset,
finding a remarkable number of biclusters with shifting and scaling patterns. In
addition, the performance of the proposed method and fitness function are
compared to that of CC, OPSM, ISA, BiMax, xMotifs and Samba using Gene the
Ontology Database.

1 Background
DNA microarray technology measures the gene expression level of thousand of genes

under multiple experimental conditions [1]. After several preprocessing steps well-

known as low level microarray analysis a microarray can be represented as a numerical

matrix where rows correspond to different genes and columns to experimental condi-

tions. The row vector of a gene is called the expression pattern of the gene and a col-

umn vector is called the expression profile of the condition. High level microarray

analysis uses data mining techniques in order to analyze the huge volume of all this

biological information [2]. In this field, an important problem is to discover transcrip-

tion factors which determine that a group of genes are co-expressed. Thus, the goal of

Biclustering techniques is to discover groups of genes with the same behavior under a

specific group of conditions.
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Biclustering was considered in the seventies and it was proven to be a NP-hard pro-

blem [3]. It can be also found in the literature with other names such as Subspace

Clustering [4] or Co-clustering [5]. Several algorithms have been proposed and recently

published reviews can be found in [6-8]. In the context of microarray analysis, biclus-

tering was firstly considered by Cheng and Church in 2000. Cheng and Church (CC)

algorithm [9] is a greedy iterative search method and consists in building a bicluster

adding or removing rows or columns iteratively, thus, improving its quality which is

measured with the Mean Squared Residue (MSR). The MSR is based on the sum of

the squared residues which measure how adequate each expression value is, in com-

parison with the rest of values of the bicluster (see [9] for more details). The FLOC

algorithm [10] improved the method presented in [9] by obtaining a set of biclusters

simultaneously and by incorporating the processing of missing values. In [11] an itera-

tive hierarchical clustering is separately applied to each dimension and biclusters are

built by means of the combination of the obtained results for each dimension. In the

ISA algorithm [12] a simple linear model for gene expression is used assuming a nor-

mally distributed expression level for each gene or condition in a specific way. SAMBA

[13] executes an exhaustive biclusters enumeration by means of a bipartite graph-

based model and later a greedy approach adds or removes nodes in order to find maxi-

mum weight subgraphs. In [14] an exhaustive biclusters enumeration algorithm is pro-

posed with the OPSM algorithm. Spectral biclustering [15] uses techniques from linear

algebra, concretely eigenvectors calculus, to identify bicluster structures from the input

data. The Plaid Model [16] is a statistical modelling approach which represents the

input matrix as a superposition of layers where each layer corresponds to a bicluster.

The BiMax algorithm [17] discretizes the data set by using binary values and it is

recursively applied until a submatrix with only one value is detected. Geometrical char-

acterization of biclusters are used for discovering patterns [18,19]. These techniques

use image processing in order to search for hyperplanes which represent biclusters.

There is a group of biclustering algorithms based on metaheuristics such as evolution-

ary approaches [20,21], multiobjective evolutionary approaches [22,23], Simulated

Annealing [24], Particle Swarm Optimization [25], greedy randomized adaptive search

[26], Estimation of Distribution Algorithms [27] or Memetics Algorithms [28]. All

these algorithms used the MSR as a part of their fitness function. Although the MSR is

commonly used as quality criterion, some interesting patterns from a biological point

of view might not be detected with such measure. The MSR is effective for recognizing

biclusters with shifting patterns but not some patterns with scaling trends, in spite of

representing quality patterns. A group of genes has a shifting pattern when the expres-

sion values vary in the addition of a fixed value for all the genes. A group of genes has

a scaling pattern when the expression values vary in the multiplication of a fixed value

for all the genes. Aguilar-Ruiz [29] proved that the MSR is not a good measure in

order to discover patterns in data when the variance of gene values is high, that is,

when the genes present scaling patterns.

Other algorithms are designed to work with time series gene expression data. In this

kind of data, the biclusters can be restricted to those with contiguous columns. This

constraint becomes the biclustering problem in a tractable problem. CCC-Biclustering

[30] finds coherent biclusters with maximal contiguous columns in linear time. First,

the algorithm discretizes the matrix and then it works with string processing
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techniques based on suffix trees. This algorithm is not robust as regards errors in

gene values due to the discretization process, the microarray experiment, etc. e-CCC-

Biclustering [31] is a robust extension of the CCC-Biclustering where approximate

expression patterns such as scaling patterns can be found and several measures to

compute the committed errors in these patterns are proposed.

The gene expression level under a set of conditions can be seen as values of a dis-

crete random variable. Thus, the linear dependency between two genes can be studied

by using the correlation coefficient between two random variables. In this paper, this

fact has motivated the use of the proposed measure based on correlations among

genes [32,33]. Several correlation-based measures have been proposed in [4,34,35]. In

[4] biclusters are characterized as hyperplanes in a high dimensional space using the

definition of correlation and, therefore, the problem is transformed into the search for

groups of points embedded in hyperplanes. In [34] the correlation coefficient is used

for forming biclusters with a greedy algorithm. In [35] an enumeration algorithm

based on a tree structure for biclustering is presented and it uses an evaluation func-

tion based on the Spearman’s rank correlation.

A Scatter Search algorithm for biclustering is presented in this paper. Scatter Search

is a population-based method that emphasizes systematic processes against random

procedures. Thus, the generation of the initial population is not random but a genera-

tion method based on diversification [36] is used to generate a set of diverse initial

solutions. Moreover, Scatter Search includes an improvement method with the aim of

exploiting the diversity provided by the generation and combination method. The lin-

ear correlation among genes is included in the fitness function to evaluate the quality

of biclusters in the Scatter Search, which improves the localization of shifting and scal-

ing patterns.

2 Description of the algorithm
Scatter Search [36] is a population-based optimization metaheuristic which has

recently been applied to combinatorial and nonlinear optimization problems. Optimi-

zation algorithms based on populations are search procedures where a set of indivi-

duals that represent trial solutions evolve in order to find optimal solutions of the

problem. Scatter Search uses strategies to diversify and intensify the search in order to

avoid local minima and to find quality solutions and, on the opposite to other evolu-

tionary heuristics, it emphasizes systematic processes against random procedures.

Basically, the optimization process consists in the evolution of a set called Reference

Set. This set is initially built with the best solutions from the population, according to

the value of their fitness function, and the most scattered ones from the population

regarding the previous best solutions. This set is updated by using the Combination

Method and the Improvement Method until it does not change. When the Reference

Set is stable, that is, after applying the combination and improvement methods it con-

tains the same solutions that the reference set at the previous iteration, then it is

rebuilt again. That is, the building of the Reference Set is based on quality and diversity,

but its updating is only guided by quality. Thus, diversity is introduced in the evolu-

tionary process when the initial population is generated and, mainly, when the refer-

ence set is rebuilt at each step. The search intensification is due to the improvement

method where the solutions are improved by exploiting the knowledge of the problem.
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The pseudocode of the proposed Scatter Search for biclustering is presented in

Algorithm 1. The Scatter Search process is repeated numBi times where numBi is the

number of biclusters to be found and the best solution of the reference set is stored in

a set called Results for each iteration. Thus, the Results set is formed by numBi biclus-

ters and it is the output of the Algorithm 1. The Scatter Search mainly consists in a

diversification generation method to generate the initial population, a combination

method to create new offspring and an improvement method to intensify the search.

All theses steps of the Scatter Search are detailed as follows.

Algorithm 1 Scatter Search Algorithm for Biclustering

INPUT microarray M , number of biclusters to be found numBi, maximum number

of iterations numIter, size of the initial population and size S of the reference set.

OUTPUT Set Results with numBi biclusters.

begin

num  0, Results  θ

while (num <numBi) do

Initialize population P

P  Improvement Method (P )

//Building Reference Set

R1  S/2 best biclusters from P (according to the fitness function)

R2  S/2 most scattered biclusters, regarding R1, from P \ R1 (according to a

distance).

RefSet  (R1 ∪ R2 )

P  P \ RefSet

//Initialization

stable  FALSE, i  0

while (i <numIter) do

while (NOT stable) do

A  RefSet

B  Combination Method(Ref Set)

B  Improvement Method(B)

RefSet  S best biclusters from Ref Set ∪ B

if (A = RefSet) then

stable  TRUE

end if

end while

//Rebuilding Reference Set

R1  S/2 best biclusters from RefSet

R2  S/2 most scattered biclusters from P \ R1
RefSet  (R1 ∪ R2 )

P  P \ RefSet

i  i + 1

end while

//Storage in Results

Results  the best one from RefSet

num  num + 1

end while

end
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2.1 Initialization phase

Formally, a microarray is a real matrix M composed of N genes and L conditions. The

element (i, j) of the matrix means the level of expression of gene i under the condition

j. A bicluster B is a submatrix of the matrix M composed of n ≤ N rows or genes and

l ≤ L columns or conditions. Biclusters are encoded by binary strings of length N + L.

Each of the first N bits of the binary string is related to the genes and the remaining

L bits to the conditions. For example, the string 0010110000|01100 represents a biclus-

ter of a microarray with ten genes, {gi}1≤i≤10, and five conditions, {cj }1≤j≤5 . This string

encodes the bicluster composed by the genes g3, g5 and g6 and the conditions c2 and c3.

The initial population is generated with solutions as diverse as possible. Thus, the diver-

sification generation method [36] takes a binary string, xi with i = 1, . . . , n where n is the

number of bits, as a seed solution and generates solutions ′xi by following the rule:

′ = − =+ +x x k n hkh kh1 11 0 1 2 3for , , , , ..., /⎣ ⎦ (1)

where ⌊n/h⌋ is the largest integer less or equal than n/h and h is an integer less than

n/5. All the remaining bits of x′ are equal to that of x.

After generating all the posible solutions with that seed, if more solutions are

needed, the diversification generation method is applied again by using the last solu-

tion as new seed.

2.2 Biclusters Evaluation: Fitness Function

The most difficult biclusters to find are those that present jointly shifting and scaling

patterns. The aim of this work is to discover this type of biclusters. Two genes show a

shifting and scaling pattern if they are described from (2).

g gY X= + ∈   ,  (2)

Consequently, two genes with shifting and scaling patterns are linearly dependent

and therefore a measure based on correlations can be a good fitness function to find

biclusters with these patterns.

The correlation coefficient between two variables X and Y measures the grade of lin-

ear dependency between them. It is defined by:
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where cov(X, Y ) is the covariance of the variables X and Y, x and y are the mean of

the values of the variables X and Y and sX and sY are the standard deviations of X and

Y , respectively.

Given a bicluster B composed by N genes, B = [g1, . . . , gN ], the average correlation

of B, r(B), is defined as follows,
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where r(gi, gj ) is the correlation coefficient between the gene i and the gene j. Due

to r(gi, gj ) = r(gj, gi), therefore, only
N

2

⎛

⎝
⎜

⎞

⎠
⎟ elements have been considered.

Figure 1 presents a bicluster with lowly-correlated genes and a bicluster with highly-

correlated genes. It can be observed that the bicluster with perfect shifting and scaling

patterns has an average correlation of 1 while that the bicluster without patterns has

an average correlation close to 0 (concretely 0.003).

In this work, biclusters with highly-correlated genes and high volume are preferred.

Therefore, the fitness function used to evaluate the quality of biclusters is defined by:

f B B M
nG

M
nC

( ) ( ( ))= − + + +⎛
⎝⎜

⎞
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⎛
⎝⎜

⎞
⎠⎟

1
1 1

1 2   (5)

where nG and nC are the number of genes and conditions of the bicluster B, respec-

tively, M1 and M2 are penalty factors to control the volume of the bicluster B, and sr

is the standard deviation of the values r(gi, gj ) from (4). The standard deviation is

included in order to avoid that the value of the average correlation can be high for a

bicluster and this bicluster can contain several non-correlated genes with the remain-

ing ones of the bicluster. Best biclusters are those with the lowest value for the fitness

function. Thus, it has been considered (1 − r(B)) to identify biclusters with highly-cor-

related genes.

Moreover, this measure is robust to noise since genes showing noise but with shift-

ing patterns can present a high correlation although scaling patterns are not involved.
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Figure 1 Correlation among genes. Biclusters with lowly-correlated genes and highly-correlated genes.

115 159 72 182

163 13 28 64

218 258 128 204

275 76 243 118

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⇒ (BB) .=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 003

194 66 130 98

92 28 60 44

266 74 170 122

122 58 90 74
⎥⎥

⇒ =( )B 1

Nepomuceno et al. BioData Mining 2011, 4:3
http://www.biodatamining.org/content/4/1/3

Page 6 of 17



2.3 Improvement Method

Scatter Search uses improvement methods when the solutions have to fulfill some con-

straints or simply to improve them in order to intensify the search process. This

method depends on the problem under study and usually it consists in classical local

searches for continuous optimization problems.

The goal of this work is to find biclusters with shifting and scaling patterns. Thus,

biclusters with positively-correlated genes are only searched for. Therefore, the pro-

posed improvement method aims at extracting positively-correlated genes either

from biclusters of the initial population or from biclusters obtained by the combina-

tion method. The pseudocode of the improvement method is presented in the

Algorithm 2.

Figure 2 presents a bicluster composed by four genes: three highly-correlated genes

and a gene negatively correlated with the remaining. The average correlation for this

bicluster is equal to 0.0083 and after applying the improvement it is equal to 1. Thus,

the volume of biclusters is decreased by removing the negatively-correlated genes but

the average correlation of the new bicluster will be greater than that of the original

bicluster when the improvement method is applied.

2.4 Building of the reference set

The reference set is initially built with the best solutions, according to the value of

their fitness function, and the most scattered ones from the initial population regarding

the previous best solutions. The

Algorithm 2 IMPROVEMENT METHOD

INPUT Bicluster B = [g1, . . . , gN ]

OUTPUT Bicluster B′ ⊆ B such that r(gi, gj ) ≥ 0 ∀gi, gj Î B′
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Figure 2 Improvement Method. Bicluster before and after applying the Improvement Method.
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begin

i  1, B′  {gi }, R  {}

while (i < N ) do

j  i + 1

while (j ≤ N) do

if (r(gi, gj) > 0) then

if (gj ∉ R) then

B′  B′ ∪ {gj}

end if

else

R  R ∪ {gj}

end if

j  j + 1

end while

i  i + 1

end while

end

Hamming distance is used to measure the distance among biclusters in this work.

After getting the stability of the reference set in the updating process, it is rebuilt to

introduce diversity in the search process. Thus, the reference set is rebuilt with the

best biclusters from the updated reference set, according to the fitness function, and

the most distant solutions from the initial population regarding the previously chosen

best solutions.

The initial population has to be updated too in the evolutionary process by removing

solutions which have already been considered in the building or rebuilding of the refer-

ence set. When the initial population is empty, a new population is created by using

the diversification generation method previously explained in Section 2.1.

2.5 Combination method and reference set updating

New solutions are introduced in the search process by the combination method. Two

solutions are combined by using an uniform crossover operator and a new one is gen-

erated. All pairs of biclusters in the reference set are combined, generating thus, S *

(S - 1)/2 new biclusters where S is the size of the reference set. This crossover operator

generates randomly a mask and the child is composed of values from the first parent

when there is a 1 in the mask, and from the second parent when there is a 0.

After combining all pairs of biclusters, the best solutions from the joining of the pre-

vious reference set and the new solutions are chosen. Hence, best solutions according

to the value of their fitness function remain in the reference set.

3 Experiments
The proposed algorithm has been applied to three real data sets in order to study its

performance. The first data set (Yeast) is the yeast Saccharomyces cerevisiae cell cycle

expression, with 2884 genes and 17 experimental conditions presented by Cho [37].

The second one (Lymphoma) is the human B-cells lymphoma expression data with

4026 genes and 96 conditions [38]. These two data sets are available in [9] where origi-

nal data were processed. The third data set (GaschYeast) is the yeast Saccharomyces
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cerevisiae Stress conditions expression provided by Gasch [39] with 2993 genes and

173 conditions. This data set was used in [17] where can be downloaded as supple-

mentary data.

The inner parameters of the Algorithm 1 are as follows: 20 for the maximum num-

ber of iterations of the Scatter Search, 10 for the size of the reference set, 200 for the

number of solutions of the initial population and 100 for the number of biclusters to

be found for each run. M1 and M2 parameters are weights in the fitness function in

order to drive the search depending on the required size of biclusters. High values of

M1 and M2 may be used when biclusters with a lot of genes and conditions are

desired. Results for Yeast and Lymphoma data set have been obtained with values

M1 = 1 and M2 = 1. Results for GaschYeast data set have been presented for M1 = 1

and M2 = 1 and for M1 = 10 and M2 = 10 to show the influence of these parameters

on the volume of the biclusters.

3.1 Results

Table 1 shows the information for four biclusters selected among 100 biclusters

obtained by the application of the proposed Scatter Search and the average of the 100

biclusters (in bold). For each bicluster an identifier of the bicluster, the number of

genes, the number of conditions, the volume, the average correlation, r(B), and the

standard deviation, s(B), are presented. The MSR and the variance of gene values are

reported too in order to establish a comparison of the quality of biclusters with other

algorithms. The variance of gene values measures how different the values of the gene

expression level are. Figure 3 and 4 present the four biclusters for Yeast and Lym-

phoma data set, respectively, which are reported in Table 1. Figure 5 and 6 depict

Table 1 Information about biclusters found by the Algorithm 1

Id bi. Genes Conditions Volume r(B) s(B) MSR Genes Variance

biYeastN15 7 10 70 0.95 0.56 59.2 882.8

biYeastN21 11 9 99 0.92 0.47 205.2 1190.5

biYeastN24 9 9 81 0.92 0.45 142.9 1344.8

biYeastN40 13 8 104 0.89 0.45 368.2 2185.4

biYeast 22.27 6.46 133.1 0.90 0.48 321.0 1508.7

biLymphomaN1 14 14 196 0.92 0.43 3719.2 29180.0

biLymphomaN11 17 7 119 0.92 0.50 1607.9 10317.6

biLymphomaN15 21 10 210 0.86 0.43 1818.4 8351.2

biLymphomaN54 9 14 126 0.82 0.45 1292.6 6108.0

biLymphoma 10.81 11.53 123.7 0.85 0.45 2593.3 11643.07

bi1-GaschYeastN1 13 25 325 0.96 0.42 0.08 1.51

bi1-GaschYeastN10 12 22 264 0.95 0.48 0.06 1.19

bi1-GaschYeastN11 41 17 697 0.93 0.34 0.15 1.67

bi1-GaschYeastN25 19 10 190 0.93 0.43 0.19 0.89

bi1-GaschYeast 16.36 14.08 237.6 0.89 0.43 0.32 1.50

bi2-GaschYeastN1 54 39 2106 0.82 0.32 0.22 1.00

bi2-GaschYeastN4 43 32 1376 0.84 0.45 0.18 1.02

bi2-GaschYeastN9 48 24 1152 0.87 0.41 0.17 1.18

bi2-GaschYeastN27 33 28 924 0.84 0.39 0.13 0.72

bi2-GaschYeast 46.69 27.69 1269.4 0.72 0.34 0.38 1.02

Results from Yeast and Lymphoma data set for values M1 = 1 and M2 = 1 (four biclusters and the average of the 100
biclusters obtained). Results from GaschYeast for values M1 = 1 and M2 = 1, and for M1 = 10 and M2 = 10.
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biclusters from GaschYeast data set. The biclusters bi1-GaschYeastN1, bi1-

GaschYeastN10, bi1-GaschYeastN11 and bi1-GaschYeastN25 in Figure 5 have been

obtained for values M1 = 1 and M2 = 1 and the biclusters bi2-GaschYeastN1, bi2-

GaschYeastN4, bi2-GaschYeastN9 and bi2-GaschYeastN27 in Figure 6 for values M1 =

10 and M2 = 10. It can be noted that the greater the penalty values are, the greater the

volume of the obtained biclusters is. The motivation for taking the values of the para-

meters M1 = M2 = 1 is to find biclusters with a low number of genes in order to show

visually the shifting and scaling patterns. However, the main goal is to find groups of

genes sharing the same GO terms, therefore, it is more adequate to search for biclus-

ters with a high number of genes. Thus, parameters M1 = M2 = 10 have been consid-

ered to achieve biclusters with a higher volume.
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Figure 3 Results for Yeast data set. Several biclusters found by the Algorithm 1 from Yeast data set.
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Figure 4 Results for Lymphoma data set. Several biclusters found by the Algorithm 1 from Lymphoma
data set.
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3.2 Discussion

Four biclusters represented in Figure 3 have a high value for the average correlation

(see Table 1). It can be observed that shifting and scaling patterns can clearly be

appreciated in all of them. Most of papers which use the MSR as the fitness function

consider that a bicluster is good for Yeast data set if its MSR is less than 300 [9,21].

This value is data set dependent because it depends on the mean and the standard

deviation of the values of the expression matrix. From this point of view, biYeastN15,

biYeastN21 and biYeastN24 are good biclusters but biYeastN40 is not a good bicluster

due to its high value for the average correlation. Note that the value for the gene var-

iance in biYeastN40 is high compared to that of other biclusters.
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Figure 5 Results for Gasch Yeast data set (M1 = 1, M2 = 1). Several biclusters found by the Algorithm 1
from Gasch Yeast data set obtained for values M1 = 1 and M2 = 1.
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Figure 6 Results for Gasch Yeast data set (M1 = 10, M2 = 10). Several biclusters found by the
Algorithm 1 from Gasch Yeast data set obtained for values M1 = 10 and M2 = 10.
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Four biclusters represented in Figure 4 for Lymphoma data set show a group of

genes with similar behavior and high values for the average correlation (see Table 1).

However, these biclusters are not considered good for some authors because the MSR

are higher than 1200 [9,21]. This value is data set dependent too as it was previously

commented for Yeast data set. Note that the bicluster with lowest value for MSR is

biLymphomaN54 (1292.6), and however this bicluster has the lowest value for the aver-

age correlation (0.82). It was proved in [29] that MSR is not precise enough in order to

discover shifting and scaling patterns. Biclusters with these patterns with high values

for the gene variance are not detected by the algorithms that use the MSR as fitness

function. Results reported for theses cases make evident this situation.

Figure 5 and 6 show biclusters for GaschYeast data set. It can be observed the effect

of the penalty parameters on the number of genes and conditions. The higher values

for M1 and M2, the higher volume is. From a geometrical point of view all the results

present genes with similar behavior. For example, scaling patterns can be very clearly

observed in bi1-GaschYeastN25 since the shape of genes between conditions 6 and 8 is

the same although all genes increase their expression levels with different intensity.

Moreover, the value for the average correlation shows biclusters from GaschYeast with

highly-correlated genes. The values for MSR and gene variance vary in a different

range of values to the other two data set due to the previous preprocessing.

It should be noted that all biclusters present shifting and scaling patterns, and there-

fore, a high value for the average correlation. Moreover, the standard deviation is low,

that is, the correlation coefficients of each pair of genes have similar values and close

values to the average correlation of the bicluster. Therefore, all biclusters with a high

average correlation found by the proposed Scatter Search do not contain non-corre-

lated genes.

3.3 Comparative analysis

The performance of the Algorithm 1 has been compared with biclustering methods

such as CC [9], OPSM [14], ISA [40], BiMax [17], xMotifs [41] and Samba [13] for the

GaschYeast data set and CCC-Biclustering [30] for Yeast data set. Also, random biclus-

ters have been generated as naive reference method. Following the methodology in [17]

the performance of all algorithms is evaluated biologically with the percentage of

biclusters enriched by any Gene Ontology Consortium (GO) category at different levels

of significance. GO [39] is used to investigate if a group of genes belonging to a biclus-

ter presents significant enrichment with respect to a specific GO term. There are dif-

ferent tools to analyze GO term enrichment. The AGO [42] tool recently published

has been used to study the percentage of significant biclusters obtained by the different

algorithms. The enrichment of each group of genes with respect to a specific GO term

is established by the p-value. A bicluster is said to be overrepresented in a functional

category if its p-value is small. The comparison criterion among several algorithms is

the percentage of overrepresented biclusters in one or more GO annotation.

Figure 7 represents the percentage of enrichment biclusters for each method in

which one or several GO terms are overrepresented for different levels of significance

(0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1 and 5). In this Figure, SScorr11 means the proposed

Scatter Search with penalization parameters M1 = 1 and M2 = 1. Analogously,

SScorr1010 is the Scatter Search with M1 = 10 and M2 = 10. With p-value p = 0.01,
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the proportion of biclusters significantly enriched by any GO Biological Process cate-

gory for SScorr11 and SScorr1010 is over 30%, for CC is over 21%, for OPSM over

17%, for BiMax 2% and 0% for the rest. It can be observed that SScorr1010 improves

the results of the rest of the methods for small levels of significance except to the CC

when p = 0.001 (for instance, see the most restrictive level of significance p = 0.001 for

the p-value). However, both Scatter Search algorithms obtained a percentage of signifi-

cant biclusters greater than CC for p = 0.005 and p = 0.01 and the CC presents a per-

centage of significant biclusters greater than SScorr11 when p-value ranges from p =

0.05 to p = 5. This is due to the volume of the biclusters since it is easier to find func-

tional enrichment from large groups of genes than from small groups. Table 2 presents

information about the size of biclusters obtained by the different methods. Note that

biclusters obtained by the CC algorithm have more genes that biclusters for obtained

by the algorithms based on Scatter Search. SScorr1010 finds biclusters with more

genes than SScorr11 and therefore it improves the results of CC for all levels of signifi-

cance from p = 0.005 to p = 5. The rest of methods find a less percentage of biclusters

SScorr11 SScorr1010 CC OPSM ISA BiMax xMotif Samba Random
0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f 
E

nr
ic

he
d 

B
ic

lu
st

er
s 

%

Gasch Yeast

 

 

p=0.001
p=0.005
p=0.01
p=0.05
p=0.1
p=0.5
p=1
p=5

Figure 7 Comparison of different Biclustering algorithms. Comparison of different Biclustering
methods from Gasch Yeast data set: percentage of enriched biclusters by GO Biological Process category
for each method at different significance levels. (p-values from p = 0.001% to p = 5%).

Table 2 Comparison of biclusters of different methods

num. of biclusters number of genes number of conditions volume

SScorr11 100 16.4(6.9) 14.8(3.1) 237.6

SScorr1010 100 46.7(8.2) 27.1(5.5) 1269.4

CC 100 82.0(130.1) 19.8(16.3) 2557.31

OPSM 12 95.6(119.6) 12.5(3.6) 849.8

ISA 66 76.3(43.9) 8.7(1.4) 645.7

BiMax 101 24.0(2.8) 3(0) 72.1

xMotifs 306 1.2(0.4) 42.3(11.4) 46.7

Samba 100 911.5(132.1) 25.1(8.2) 22344.7

Random 100 12.8(2.4) 25.0(2.1) 318.3

Number of genes, average values and standard deviation of number of genes and number of conditions and volume for
each method.
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with the p-values specified than the proposed method although OPSM presents good

results for high levels of significance (p >0.05).

The comparison is not an easy task because the number of biclusters, their size or

what kind of patterns are found are very different for each method. Table 2 presents

the number of biclusters for each method, the average and standard deviation for the

number of genes and the number of conditions (standard deviation in brackets) and

the volume. The standard deviation shows how the size of different biclusters obtained

by each method varies. For example CC, OPSM and SAMBA find biclusters with a

high number of genes and biclusters with only a reduced group of genes due to the

high standard deviation of the number of genes. In order to establish a more restrictive

criterion, Figure 7 can be reformulated with the concept of bicluster overrepresented in

a GO term as follows. The percentage of enriched biclusters is reported after filtering

the biclusters which have less than ten genes in each GO category or have a study

fraction less than 50%, that is, there is not more than half of the genes in the bicluster

that share the same function in the category [42]. Figure 8 presents the comparison for

all methods with this new definition of enriched bicluster. Note that SScorr11 and

SScorr1010 obtain the best biclusters for small values of p-value (from p = 0.001 to p

= 0.01) but not for high values from p = 0.05 to p = 5 where OPSM and Samba pre-

sent the best results. It can be noted that there is not any significant bicluster for ISA

and BiMax algorithms. Figure 9 presents a comparison between algorithms based on

Scatter Search (SScorr11 and SScorr1010 with values M1 = M2 = 1 and M1 = M1 = 10

respectively) and CCC-Biclustering [30] for Yeast data set. Biclusters for the CCC-

Biclustering have been obtained using the tool BiGGEsTS [43] and results for all

biclusters (CCC-Bi) and for only 100 selected biclusters have been reported. It can be

observed that SScorr11 and SScorr1010 obtain a percentage of enriched biclusters

greater than that of the CCC-Bi. This fact was expected as SScorr11 and SScorr1010
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Figure 8 Comparison of different Biclustering algorithms with hard definition of enrichment
bicluster. Comparison of different Biclustering methods from GaschYeast data set with a restrictive
definition of enriched biclusters: percentage of enriched biclusters by GO Biological Process category for
each method at different significance levels (from p = 0.001% to p = 5%) by setting the allowed minimum
number of genes per each GO category to 10 and the study fraction greater than 50%.
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obtain 100 biclusters and the CCC-Bi obtains 14412 due to this exhaustive method dis-

covers all maximal biclusters in time series gene expression data. Note that if only 100

biclusters of CCC-Bi are considered (the 100 first biclusters that the algorithm reports)

the CCC-Bi obtains better results than SScorr11 and SScorr1010 for levels of signifi-

cance from 0.001 to 0.01 and similar results for p ≥ 0.05.

3.4 Biological study

AGO tool [42] has been used to study if a bicluster is composed by a group of genes

overrepresented in some GO Biological Processes. The biological study has been

focused on the biclusters shown in Figure 3, Figure 4 and Figure 5 whose information

is reported in Table 1.

The analysis of biYeastN15 identifies the GO process (GO:0006412) with p-value

5.81e − 006. This process is known as translation and it is related with the process in

which amino acids are built in the ribosome using mRNA. In this bicluster, 5 genes of

the 7 genes are related with this process.

Other example is the bicluster biLymphomaN1 which identifies the GO term

(GO:0016887) known as ATPase activity with p-value 0.0069. This process is related

with Catalysis of the reaction of ATP molecules.

The study for biclusters from GaschYeast data set discovers the process

(GO:0006412) called translation for most of the 8 biclusters reported. However, other

interesting results are obtained as for example in the bicluster bi1GaschYeastN11

where the GO process (GO:0042254) called ribosome biogenesis and assembly, with p-

value 1.38e − 007, which is related with the formation of ribosomas and the transport

to the sites of protein synthesis has been found.

4 Conclusions
In this paper, a Scatter Search for finding biclusters from gene expression data has

been presented. The proposed Scatter Search has used as merit function to evaluate

biclusters a measure based on correlations among genes, with the aim of obtaining

biclusters with shifting and scaling patterns. Moreover an improvement method, which

consist in removing negatively-correlated genes from biclusters, has been incorporated

to intensify the search.
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Figure 9 Comparison of the propsed algorithm with CCC-Bi algorithm. Comparison between the
proposed algorithm based on Scatter Search and CCC-Biclustering [30] for Yeast data set: percentage of
enriched biclusters by GO Biological Process category for each method at different significance levels. (p-
values from p = 0.001% to p = 5%).
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The proposed algorithm has been tested with three real data sets: a data set related

to yeast cell cycle (Yeast), a data set related to a collection of different stress conditions

over Yeast (GaschYeast) and another one related to human B-cells lymphoma (Lym-

phoma). A group of biclusters composed by genes with shifting and scaling patterns

has been discovered some of which can not be detected using the MSR as it was

proved in [29]. A comparison using Gene Ontology with other six methods has been

presented and a good performance of the proposed algorithm has been observed.

Future works will focus on some improvements for the proposed algorithm with

regard to the overlapping among genes and to the fitness function.
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