Boise State University ScholarWorks

2022 Undergraduate Research Showcase

Undergraduate Research and Scholarship Showcases

4-22-2022

How Does Inter-Annual Snowpack Variability Impact Reservoir Storage in the Magic Reservoir?

Kyle LaCoursiere Boise State University

Kendra Kaiser Boise State University

How Does Inter-Annual Snowpack Variability Impact Reservoir Storage in the Magic Reservoir?

BACKGROUND

Reservoir storage plays a role in determining water use in agricultural areas. The aim of this project is to understand variables of importance for reservoir storage.

INTRO

- Snowpack does not necessarily correlate to reservoir storage
- Understanding variables for reservoir storage can help predicting in the future

STUDY AREA

 Magic Reservoir located in Blaine and Camas counties on the Big Wood River, south of Ketchum

Big Wood and Camas Creek Watersheds

Figure 1. Site map with labeled SNOTEL sites

METHODS

1. Automated data retrieval using R

2. 46 variables were created: SWE*, Apr.-Jun. Temp, Nov.-Jan. Temp, and Stream Discharge 3. Automated parameter selection for linear regression models

*SWE: Snow Water Equivalence is the depth of water contained in a depth of snow DATA

Data Source	File Name
USGS	Streamflow
USGS	Reservoir Storage
NCRS	SNOTEL data
Idaho Power	Streamflow

Kylelacoursiere@u.boisestate.edu

Kyle LaCoursiere, Dr. Kendra Kaiser Boise State University - Department of Geosciences Funded by the Higher Education Research Council (HERC)

Initial Analysis

Figure 2. Seasonal contributions of stream discharge into Magic Reservoir each water year.

Figure 3. Cumulative N SWE per water year versus maximum reservoir storage

Spring temperatures, Winter temperatures, and Snow Water Equivalence are major drivers of Magic Reservoir storage. Spring temperature parameters are the majority (5/8 variables) Highlights the importance of variability in spring temperatures

Res.Vol SWE model fit • 150 100 Observed

Figure 4:

Model fit with all variables included. R2 = 0.91, highlights higher uncertainty at higher reservoir fill

Figure 6:

Model fit with only SWE data. R2 = 0.5, highlights higher uncertainty at lower reservoir fill

Figure 5:

- Model fit with only
- Spring
- Temperatures.
- R2 = 0.65,
- highlights higher
- uncertainty at lower
- reservoir fill

Figure 7:

Model fit with only Winter Temperatures. R2 = 0.37, highlights uncertainty at all levels

March 24, 2022

Results

Figure 8. BIC results from model selection with all variables included.

*Bayesian Information Criteria (BIC): Model selection method, lower BIC represents more parsimonious model.

Variables	Adjusted R^2	BIC
All	0.91	-41
Only Spring Temperature	0.65	-9.8
Only SWE	0.5	-7.8
Only Winter Temperature	0.37	-0.6

CONCLUSIONS

- Existing environmental data can predict reservoir storage
- Spring temperatures are particularly important in addition to SWE and winter temperatures
- If irrigators want predications of reservoir storage prior to planting, predicting April-June temperatures would be necessary

FUTURE DIRECTIONS

- Determine if a linear models could be developed without spring temperatures for forecasting purposes
- Quantify variability of snowpack within the watershed