Boise State University

ScholarWorks

Computer Science Faculty Publications and

Presentations Department of Computer Science

11-2021

cuTS: Scaling Subgraph Isomorphism on Distributed Multi-GPU
Systems Using Trie Based Data Structure

Lizhi Xiang
Washington State University

Arif Khan
Pacific Northwest National Lab

Edoardo Serra
Boise State University

Mahantesh Halappanavar
Pacific Northwest National Lab

Aravind Sukumaran-Rajam
Washington State University


https://scholarworks.boisestate.edu/
https://scholarworks.boisestate.edu/cs_facpubs
https://scholarworks.boisestate.edu/cs_facpubs
https://scholarworks.boisestate.edu/cs

cuTS: Scaling Subgraph Isomorphism on Distributed Multi-GPU
Systems Using Trie Based Data Structure

Lizhi Xiang
Washington State University
Pullman, Washington, USA
lizhi xiang@wsu.edu

Mahantesh Halappanavar
Pacific Northwest National Lab, WSU
Richland, Washington, USA
hala@pnnl.gov

ABSTRACT

Subgraph isomorphism is a pattern-matching algorithm widely
used in many domains such as chem-informatics, bioinformatics,
databases, and social network analysis. It is computationally expen-
sive and is a proven NP-hard problem. The massive parallelism in
GPUs is well suited for solving subgraph isomorphism. However,
current GPU implementations are far from the achievable perfor-
mance. Moreover, the enormous memory requirement of current
approaches limits the problem size that can be handled. This work
analyzes the fundamental challenges associated with processing
subgraph isomorphism on GPUs and develops an efficient GPU
implementation. We also develop a GPU-friendly trie-based data
structure to drastically reduce the intermediate storage space re-
quirement, enabling large benchmarks to be processed. We also
develop the first distributed sub-graph isomorphism algorithm for
GPUs. Our experimental evaluation demonstrates the efficacy of
our approach by comparing the execution time and number of cases
that can be handled against the state-of-the-art GPU implementa-
tions.
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1 INTRODUCTION

A graph, G = (V,E) is a pair of vertex set V representing unique
entities and edge set E representing binary relations on V. Two
graph are said to be isomorphic or equivalent if there exists a bijec-
tion function on the vertices of the two graphs, such that any two
vertices in the first graph are adjacent if and only if the bijected
vertices are adjacent in the second graph. We study the subgraph
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isomorphism problem in this paper, which is an important primi-
tive that is used to find patterns in graphs. Given two graphs, G
(data graph) and Q (query graph), subgraph isomorphism can be
defined as the task of finding all subgraphs in G that are isomor-
phic to Q (formal definitions are provided in §2). It is widely used
in various domains such as bioinformatics[2], computer vision[4],
social network analysis[5], chem-informatics[2]. For example, in
[11], the authors use subgraph isomorphism to identify network
motifs that can characterize common patterns occurring in biolog-
ical networks such as protein-protein interactions and networks
from other domains.

Even though the subgraph isomorphism problem is inherently par-
allel, the sheer amount of work and memory access required make
it an expensive computational problem. The performance of many
real-world applications is often limited by subgraph isomorphism,
and the performance of state-of-the-art techniques is limited. Hence,
optimizing it for modern architectures is an essential and challeng-
ing problem.

Due to its massive parallel processing power, high bandwidth, and
low power requirements, GPUs are well suited for solving sub-
graph isomorphism. However, there are several challenges associ-
ated with achieving high-performance for subgraph isomorphism
in GPUs: i) irregular memory access patterns; ii) huge memory
requirement; iii) highly imbalanced workload; and iv) challenging
memory placement. Graph isomorphism algorithms have to iden-
tify nodes in Q which can potentially match the nodes in G. At
each step of this process, we find common neighbors of multiple
nodes of both G and @, all of which need not be laid out contigu-
ously in memory. Depending on the processing strategy and data
structure used, this can result in irregular memory access patterns.
Moreover, since the number of neighbors of different nodes can
vary significantly, assigning one thread to process each node will
result in a huge load imbalance. This is especially true for GPUs,
where the workload imbalance can result in intra-warp, inter-warp,
inter thread-block, inter-grid and inter-node level load imbalance.
Figuring out where to place the partial results computed by each
thread is yet another important challenge. Since the number of
intermediate results is not known apriori, the memory placement
decisions have to be taken during the program execution (instead of
predetermined memory placement), which requires expensive syn-
chronization and/or atomic operations. Moreover, the intermediate
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results should be kept in a format that minimizes the memory foot-
print and, at the same time, offers good access efficiency. Solving
these challenges requires novel innovations in both data-structures
and GPU algorithms.

In this paper we present a high-performance subgraph isomorphism
algorithm and a new data-structure for GPUs. The contributions
can be summarized as follows:

o A trie based data structure which allows to reduce the required
memory footprint and simultaneously maintain good memory
access efficiency.

o A high throughput, GPU architecture aware algorithm which
provides good load-balancing and good data reuse.

o An efficient GPU mirco-kernel design for fast intersections

e A distributed GPU implementation which allows to handle
bigger data/query graphs with low intra node communication
and synchronization overhead. To the best of our knowledge
this is the first distributed GPU implementation for subgraph
isomorphism.

o A comprehensive evaluation of our approach against the state-
of-the-art approaches: Our cuTS framework can handle 154 test
cases out of 198(33 query graphs and 6 data graphs), whereas
GSI succeeded for 99 test cases. For these 99 test cases, cuTS
achieved a geomean speedup of 386 on the A100 machine and
312 on the V100 machine.

The rest of the paper is organized as follows. Section 2 presents
the necessary background to understand the rest of the paper, and
Section 3 gives an overview of existing subgraph isomorphism
works. Section 4 gives an overview of our approach. Section 4.1
describes our single-node algorithm, and Section 4.2 describes our
distributed GPU solution. Section 6 compares our implementation’s
performance with the state-of-the-art approaches, and Section 7
presents the conclusions.

2 BACKGROUND
2.1 Definitions

DEFINITION 1 (GRAPH). A graph is denoted by G = (V, E), where
V represents the set of vertices and E C V X V represents the set of
edges.

In this work, we consider directed graphs (edges are directed). A
given undirected graph Gi(V, E1) can be converted to directed
graph G»(V, E2), by adding an edge (v, u) for every edge (u,v) € Ej.

DEFINITION 2 (IsoMORPHISM). Two graphs G1(Vi, E1) and Go (Va, E2)
are isomorphic if there exists a bijective function f : Vi — V3 such
that for any two verticesu € Vi andv € Vi are adjacent in Gy if
and only if f (u) and f(v) are adjacent in Go. In otherwords, (u,v) €
Er & (f(u),f(v)) € Ez and (w,0) ¢ E1 & (f(u),f(v) ¢ Ea.

Isomorphism is denoted by =~.

In simple words, isomorphism shows the equivalence between
two graphs. Subgraph isomorphism tries to find the equivalence
between a subset of one graph and another graph.

DEFINITION 3 (SUBGRAPH IsoMORPHISM). Two graphs G1(Vi, E1)
and Go(Va, Ez) are subgraph isomorphic if there exists a subgraph
of G, G,(V,,E}) |V, € Vi and E; C (Ey N (V, x V,)) such that G|
and G are isomorphic. Subgraph isomorphism is denoted by =.
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In this paper, we solve the challenging task of subgraph isomor-
phism search on GPUs.

DEFINITION 4 (SUBGRAPH ISOMORPHISM SEARCH). Given two graphs
G and Q, find all subgraphs G of G such that Q and G are isomor-
phic. G is called as a match of Q.

Figure 1 (A) shows a sample data graph. (B) and (C) shows query
graphs that are isomorphic to (A). A query graph can have multiple
matches on the data graph. E.g., all triangles in (A) match (B). Graph
(D) is not isomorphic to (A). Intuitively, since Vertex ds has a degree
(in degree and out degree) of 5, which is higher than the maximum
degree (in degree and out degree) all nodes of graph (A), the graphs
are not isomorphic.

DEFINITION 5 (CANDIDATE SET). Given a data graph G(V1, E1) and
a query graph Q(V, Ep), the set of all vertices u € Vi such that
degree(v) < degree(u), wherev € Vs, is called as the candidate set
of v.

Figure 1 E) shows the candidate sets for each vertex in (C) for the
data graph (A). Since the degree of ¢; and cs is one, any node with a
degree greater than or equal to one can be considered as a candidate.
c and ¢4 can only match nodes with degree greater than or equal
to two, and c3 can only match nodes with degree greater than equal
to 4.

2.2 GPU Architecture

2.2.1 Thread hierarchy: The threads in a GPU are grouped hierar-
chically. A group of 32 threads is called a warp. All threads in the
same warp will execute the same instruction. If different threads in
a warp follow different control flow paths, the non-active threads
for a given path are masked during that path’s execution (see per-
formance factors for more details). Different warps are grouped
together to form thread blocks. Each thread block is mapped to a
streaming multiprocessor (SMP) which consists of a set of execution
units, L1 cache/shared memory, and a register file. The CUDA API
provides a collection of primitives to synchronize between different
threads in a thread block efficiently. A group of thread blocks forms
a grid. Each kernel launch is mapped to a grid, and multiple SMPs
will collectively execute the work in a grid.

2.2.2 Memory hierarchy: Registers are the fastest memory units
in the GPU memory hierarchy. Each thread owns a set of private
registers. All threads in the same warp can efficiently exchange
data contained in their registers using warp primitives. Different
threads in a thread block share a common L1 cache/shared memory.
Typically, the collective register capacity of a thread block exceeds
the shared memory capacity. Hence it is best to keep the elements
shared by the thread block in shared-memory and keep thread-
local data in registers. The entire GPU shares one common L2
cache across all the threads. Global memory (DRAM) sits above
this L2 cache. GPU threads cannot directly access the CPU memory.
CUDA supports Unified Memory Access (UMA) which provides
a single address space view of CPU memory and (multiple) GPU
memory. In addition to the single address space view, on Nvidia
Pascal and later architectures, UMA supports virtual addressing and
on-demand paging, enabling the GPU to address the entire system
memory. In other words, without UMA, the total size of memory
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Figure 1: Examples of data graph along with query graphs and candidate set: A) A sample data graph; B and C) sample query
graphs that are subgraph isomorphic to graph A; D) sample query graph which is not isomorphic to graph A; E) candidate set

of query graph C for data in graph A.

that can be allocated on the GPU is limited to the DRAM capacity
of the GPU. In contrast, with UMA, we can allocate memory much
higher than the GPU DRAM memory size. The GPU driver will
automatically take care of migrating the pages between the CPU
and the GPU.

2.2.3  Performance factors: Data movement minimization is one
key consideration while designing GPU algorithms. Efficient imple-
mentations should judiciously distribute the data structures over
the entire memory hierarchy and thereby achieve maximum data
reuse. In addition to data reuse, coalescing is another factor that
determines data movement. The memory accesses from different
threads in a warp are aggregated into transactions. Typically, but
not necessarily, contiguous threads accessing contiguous memory
locations will result in a minimal number of possible transactions
(coalesced access). Adjacent threads accessing non-contiguous data
can result in uncoalesced memory accesses, increasing the number
of required memory transactions. For subgraph isomorphism, the
memory accesses are dominated by the neighborhood queries and
storage of partial matches. Hence, it is vital to ensure that the mem-
ory accesses corresponding to these data structures are coalesced
as much as possible.

Load imbalance is another critical factor that affects performance. In
GPUgs, load imbalance manifests in different forms. Intra warp diver-
gence, or simply warp divergence, occurs when different threads in
the same warp follow different control flow paths. In the latter case,
each path’s execution will be sequential (interleaving instructions
from different paths in the same warp is allowed in modern GPUs).
Warp divergence will result in resource underutilization. Inter-warp
load imbalance occurs when the work distribution among differ-
ent warps in the same thread block is not balanced. Since GPU
resources are allocated at the thread block level, an SMP cannot
replace a finished warp with a new one until all the warps in a
thread block finish execution. If different thread blocks have a non-
uniform amount of work, it may expose tail effects in GPUs, where
only a few SMPs are active towards the end of the kernel execution.
For a multi-GPU implementation, we also need to balance the work-
load between different nodes while minimizing the synchronization
requirements to achieve the best performance.

Occupancy is another factor that determines performance. It is
defined as the ratio of the active threads to the maximum number
of threads that an SMP can support (1024 or 2048 in modern GPUs).
A code with low occupancy typically exposes memory latency
and thereby will only achieve limited performance. Occupancy is
affected by shared-memory usage, register usage, and thread block

size. Holding more data in shared memory, especially when tiling,
allows better data reuse; however, this may reduce the occupancy.
The challenge in developing an efficient sub-graph isomorphism
GPU algorithm is to find the balance between all these performance
factors.

3 RELATED

Prior subgraph isomorphism works can be classified into two cate-
gories. The first category uses the depth-first search-based strategy,
and the second category uses the breadth-first search-based strat-
egy. The depth-first search strategy keeps joining the next vertex to
the current partial path until no match can be found. If the search
did not result in a match, it would backtrack to a previous step.
This strategy has a linear memory complexity with respect to the
number of vertices of the query graph. Compared with the breadth-
first strategy, reduced memory complexity is the most significant
advantage of the depth-first strategy. However, depth-first search
strategies are hard to parallelize since it is recursion-based and is
not GPU-friendly. On the other hand, the Breadth-first strategy
favors parallelism and can fully use GPU’s massive threads. In
breadth-first-based strategies, the massive parallelism will produce
a volume of intermediate results, potentially hitting the memory
limit. The latter is a significant challenge, especially for GPUs with
limited memory capacity.

CPU-based Work: To the best of our knowledge, Ullmann[14] is
considered as the first subgraph isomorphism framework and is
based on the depth-first strategy. Other frameworks such as VF2[4],
VF3[3], QuickSI[12], GraphQL[7], GADDI[18], and SPath[19] can
be considered as extensions of the Ullmann algorithm. Like Ullman,
VF2 also follows the filtering and join strategy but adds more prun-
ing rules derived from the graph connectivity properties. QuickSI
refines the query graph’s searching order to access the vertex with
the most infrequency label as fast as it can. GraphQL and GADDI
further prune out the candidates by putting neighborhood infor-
mation into consideration. Unlike other frameworks, SPath verifies
each subpath instead of one vertex at each recursive call, which
decreases the depth of the search tree.

GPU-based Work: GPSM[13], GUNROCK]15], GSI[17] are the
most recent GPU frameworks for subgraph isomorphism. These
three GPU works follow a breadth-first strategy that favors GPU
architecture. The GPSM work tries to search for the next candidate
by considering all the neighbors of a previously verified candidate.
They use a single warp to read the neighbor list and thereby achieve
good memory coalescing. However, for data graphs with a small



SC ’21, November 14-19, 2021, St. Louis, MO, USA

average degree, most of the threads will be idle and thereby under-
utilize the available resources (thread idling). Furthermore, their
approach will result in a huge load imbalance for graphs with a lot
of variance in the degree distribution. Compared to GPSM, we use a
hybrid BFS-DFS strategy which enables a high degree of parallelism
without increasing the overall memory required. Our trie-based
data structure also offers additional compression of intermediate
storage, which further reduces the memory requirement. In addi-
tion, our work virtual warp strategy helps to minimize thread idling.
GSl is a recent work, and it is the fastest among these three. Similar
to GPSM, GSI also assigns each candidate to a warp; hence it also
suffers the same load imbalance issue. In addition, GSI doesn’t have
an efficient way to store the tons of intermediate results, which re-
sults in memory overflow. The advantages of our approach over GSI
are similar to that of GPSM. In addition, we adaptively choose the
intersection method, which enables higher performance. Gunrock
uses optimized intermediate storage representation, which relies
on encoding the path to a 64-bit integer. However, this approach
is not scalable as it requires |Vp| Vol < 264 where [Vp| and [Vp|
are the number of nodes in the data graph and query graph respec-
tively. As an example, consider a data graph with a million nodes
(10%). Gunrock can only support query graphs with a maximum
of four vertices. More importantly, Gunrock relies on a pass-by-
pass approach, where each pass will read (and possibly write) to
global memory, which reduces performance. The cuTS approach
uses trie to represent the data; hence it can support much bigger
query graphs than Gunrock. Moreover, we use a fused single-phase
approach which removes the need for repeatedly loading the same
data from global memory.

4 cuTS

In this section, we present the design of our high-performance sub-
graph isomorphism algorithms for GPUs. Our design is motivated
by one or more of the following limitations of existing approaches:
i) inability to process massive data graphs and query graphs; ii) re-
quires repeated computations — uses two-pass algorithms; iii) uses
space inefficient data structures to keep the intermediate matches
— a structure which is responsible for most of the data movement
and memory requirement; iv) lack of distributed GPU support; and
v) limited performance.

The overall design objective of cuTS is to support big datasets and
query graphs without sacrificing performance. To this end, the
algorithm design considers i) memory access efficiency, ii) space
requirement, and iii) load-balancing. For simplicity, we explain the
concepts using directed graphs. However, our approach works for
both directed and undirected graphs. We use D (Vp, Ep) to denote
the data graph and Q(Vp, Eg) to denote the query graph. Our
overall approach is based on vertex matching. We construct each
candidate by matching one node at a time (details in Section 4.1.2).
Each such partially matched set, called partial path, is a part of a
possible subgraph isomorphism match. We begin the search process
by identifying the node with the maximum degree in V. If there
are multiple such nodes, the node with the minimum node id (a
simple heuristic to break the tie) is selected. Let qo € Vo denote
this node. This node will serve as the root node for all our matches.
Let C(qo) denote all the possible candidates of gg in D, i.e., C(qo) =
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{do | do € Vp A (degree(qo) < degree (dp))}. In the next step, we
want to find a match for g1, where (qo, q1) € Eg. If there are mul-
tiple candidates for g, we select one node with maximum degree
(out degree in the case of directed graphs). For each dy, we compute
the candidate for q; as C(q1) = {d1 | d1 € Vp A (degree(q1) <
degree(d1)) A (do,d1) € Ep}. This process is repeated till all the
nodes of Q are matched. If next node g € Q that we add to the
partial path P has a subset of neighbors which are already in P
({plp € P A (p.q) € Vp}), then the candidate of q - (C(q)),
should be connected to all the elements of the candidate set of P.
This requires multiple intersection operations. The efficiency of
maintaining the intermediate path data structures along with the
intersection efficiency determines the overall performance of the
implementation. In Section 4.1 we describe our data structure and
the associated benefits and challenges for a single node system. We
also compare it against existing approaches (the high-level differ-
ences are explained in Section 2). It also describes our hierarchical
load balancing algorithm. In Section 4.2 we describe our distributed
algorithm and our distributed load balancing algorithm.

For undirected graphs, we assume that the query graph Q and
the data graph D are connected (for directed graphs, we assume
that the graphs are weakly connected). If the query graph is not
connected (weakly connected), but the data graph is, we split Q
into a set of connected (weakly connected) components, compute
sub-graph isomorphism on each of these components, and produce
the final result as the cross product of individual solutions. If the
data graph is not connected (weakly connected), but the query
graph is, we will split D into a set of connected (weakly connected)
components, compute sub-graph isomorphism on each of these
components, and produce the final result as the union of individual
solutions. A combination of the above approaches can be used
for the case where both Q and G are not connected (not weakly
connected).

4.1 Single Node

4.1.1 Data Structure: Data structure plays a key role in determin-
ing the memory footprint. Holding intermediate results in GPUs
with limited memory is an arduous challenge. Each of the partial
matches consists of a set of nodes the query graph Q and their
corresponding candidates in the data graph D. For query graphs
with simple structures, such as a chain, the number of partial paths
increases non-linearly as we increase the path length. For illustra-
tion, consider a simple mesh data graph and linear chain query
graph as shown in Figure 2 (A) and (B). The first node of the query
graph (v1) can match any of the vertices of the data graph (u.). In
the second step, there are as many partial paths as two times the
number of edges in D. Intuitively, the total number of paths of
length 1 is equal to the total number of edges (note that the edges
are unidirectional). Each of these partial paths of length 1 has to
keep track of two vertices (candidate vertices). In general, each
partial path has to keep track of ||partial_path|| vertices. Figure 2(C)
shows the storage requirement at each depth. In real-world graphs,
the rate at which the number of partial paths (and thus the storage
requirement) grows as a function of the degree of the graph. Table 1
shows the actual storage requirement for the Enron dataset for a
fully connected network with five nodes as the query graph.



cuTS: Scaling Subgraph Isomorphism on Distributed Multi-GPU Systems Using Trie Based Data Structure

A)@ 2oy —(w) ®
OO«
OO

ul3 ulg uls ulée

N

N
OmOaOn0

C) Partial path | Candidates Storage size
depth requirement
(words)
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2 48 48x2 = 96
3 96 96x3 = 288
4 192 192x4 = 368

Figure 2: Figure illustrating the storage requirement: A) data
graph; B) query graph; C) number of candidates and storage

size for each path depth.
partial path | naive storage | our storage | compression
depth (words) (words) ratio
1 16514 33028 0.5
2 631318 647832 0.974509
3 13485244 9217116 1.463065
4 237996028 121472508 1.959258
5 3723609628 1515717948 2.456664

Table 1: Storage space comparison between the naive ap-
proach and our approach for the Enron dataset for a fully
connected network with five nodes as the query graph.

A careful reader might have observed that we could use a trie-
based data structure, which can be implemented using Compressed
Sparse Fibre (CSF) format (an extension of the CSR format) and
thereby reduce the storage requirement considerably. Figure 3(b)
summarizes CSF representation and our representation. Assuming
that the nodes and edges do not hold any meta information such as
labels, the CSF format can be implemented using two arrays per
level (i) nodeid array — holds the id of each node (dark blue), and
(ii) index array — holds the starting location (and ending location)
of its neighbors (light blue). For example, at level 1, position 0,
we have a node with id us, its neighbours will start at location
index_array[0] == 0 and will end at location index_array[1] == 3
(end is non-inclusive). The challenge here is in determining the
exact write location in parallel. Consider Figure 3 and assume that
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is the query graph is same as Figure 2 (B). We are trying to find
candidates for v3 for the partial path where vz is matched to us.
Note that level 3 and level 4 of CSF are not yet constructed at this
point in time. To construct level 3, we scan the neighbors of the
node u3 and detect the number of neighbors. The highlighted red
polygon in Figure 3 shows the elements involved in this operation.
Only after that can we determine the write location for level 3
for the partial path where v; is matched to u4. One way to solve
this problem is to use parallelism only within a partial path (the
order of neighbors of u3 at level 4 does not matter). However, this
strategy introduces other problems: i) thread idling: Massive parallel
architectures like GPUs requires massive parallelism to achieve high
performance; restricting ourselves to process one vertex at a time
will result in poor performance; ii) unnecessary synchronizations:
after processing each vertex the entire threads in GPU have to
synchronize which limits the performance. Some prior approaches
have solved this problem using a two-stage algorithm where the
first stage computes the intersection and simply counts the number
of matches per node. The second stage recomputes the intersection
and uses the count array to determine the exact write location.
Thus the computations and, more importantly, the data-movement
operations are performed twice.

We propose a data structure that is space-efficient and, at the same
time, avoids re-computations. Our data structure is built on the
realization that as the length (number of nodes) of the partial match
path increases, the number of times the same prefix match path
is used also increases. Our data structure is capable of reusing all
prefix paths without the disadvantages of CSF. Figure 3 (C) shows
the details of our data-structure. We first allocate two big arrays
whose size equals half of the free space available in the GPU. We
use the CUDA cudaMemGetInfo to determine the available free
space. The first array is called parent array (PA) — orange —, is used
to store the parent index of the current candidate, and the second
array, called the candidate array (CA) — dark blue - is used to store
the current candidate id. With our format, a thread processing the
partial path where v; is matched to us4 doesn’t have to wait for
the thread where v; is matched to us. This is mainly because we
explicitly store the parent id; hence, the children of both paths
can be written in an interleaved manner, which is not possible in
the case of CSF data structure, which requires all children of the
same node to be laid out contiguously in memory. The level 3 in
Figure 3 (C) is based on the [ug, u4, ug, u7, u1, u3] order; however any
permutation of the previous list such as [ug, us, u7, ug, u1, u3] and
[uz, u7, us, uq, ug, u3] is valid. Compared to CSF, our representation
requires slightly more space. E.g., the highlighted red box can be
represented using six words, whereas our representation requires
seven words. However, our strategy only requires an atomic operation
to find the write location, offers a high degree of parallelism, and has
good storage efficiency.

The space-saving of our representation exploits the fact that many
paths share common parents. If we represent paths using trie, the
shared parents only need to be represented once. Figure 2 and
Table 1 shows some examples of compression ratios. Before we
jump into the actual data representation, we present a theoretical
analysis to compute the estimated savings. If the query graph Q
has N vertices, then the maximum length of partial paths is N. Let
Pj represent the set of partial paths at depth [ and let |P;| denote the
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Figure 3: Simplified view of multiple data representations

number of partial paths at depth I. Let § represent the maximum
degree of the graph. The maximum number of total paths at depth
I+ 1 can be estimated as |P;| X §. However, many of these paths
may not satisfy the degree constraint and hence will be invalid. Let
o7 denote the ratio of total paths to valid path at depth [ + 1. [Py,|
can be bounded by |P;| X § X o;. In other words, if we assume that
there are there are |P;| initial candidates, the maximum number of
partial path at depth 2 is |Pz| = |P;| X § X 07; the maximum number
of partial path at depth 3 is |P3| = |P2| X § X 02. The total number
of paths at depth [ can be summarized as:

[Pyl = |P—11 x 6 X 011 = (IPj—2| X 6 X 0)_3) X 6 X 071
= (|P1| X8 X 01) X (8 X 02) X (8 X 07)... X ...(8 X 07_1)

-1 M
= 1Py x 8" [ ] leil)
i=1

For simplicity, assume that the fraction of valid paths at all levels
is a constant (o = max(o;)). Under this assumption and denoting
d X o as ds, Equation (1) can be re-written as:

Py = |P1] x ds'! )

Traditional representations for f paths of depth [ requires f X [
space. Using Equation (2), the space requirement for traditional
method for paths of depth [ (S_trad;) can be summarized as:

S_trad; = || x I = |Py| x ds'™' x )

Let S_cuTS; represent the space requirement of our representation
for paths of depth [. S_cuTS; is equal to |P;| (the number of initial
candidates). If there are x partial paths at depth 2, we need x storage
for leaf nodes and |P;| space for its parent (|P;| + x). If there are y
partial paths at depth 3, we need y storage for leaf nodes and |Py|
space for its parent (|P;| + y). In general, the space requirement at

level I can be computed as:
S_cuTS; =S_cuTS;_; +|Py|
=S_cuTS;_5 + P4 + 1Py
=S _cuTSy + |P2| + |P3| + ... + | P
= [P1] +|P2] + P3| + ... + [Py
= (IPuD) + (1P x ds") + (1Py] x ds?) + (1P| x ds'™)

= (IPI)((ds'™" = 1)/(ds - 1))
4)

Assuming that the number of paths at depth [ is greater than number
of paths at depth [ — 1, Equation (4) can be rewritten as:

S_cuTS; < (|P1])(ds"™1) /(ds — 1)
S_trad; ©)
SIx(ds—1)

Equation (4) shows that our representation has a space reduction
factor of I X (ds —1). This matches our intuition. The average saving
factor at each level is approximately equal to ds. There are | such
levels. Hence the average savings factor is [ X (ds — 1). Also note
that, as [ and ds, the number of computations also increases and so
does the advantage of our representation. Hence our representation
is ideal for large problem sizes which also matches the use case
scenario for GPUs.

4.1.2  Approach: Let S = {qo, q1, q2, ...} be the order in which the
query graph nodes are selected for matching. Let P = {p1, p2, p3, ...}
be the set of partial paths. Let n; be the length of each partial path.
Each p; can be thought about as a function which maps a node v in
the query graph to a node u in the data graph (pi(v;) = (ug)). As
mentioned in the middle of Section 4, we select go as the node with
the maximum out degree in the query graph (use node id to break
the tie) and find the candidates for qo. These set of candidates forms
the initial set of partial paths. Note that the candidates for a lower
degree query graph node includes all the candidates of a higher
degree query graph node and some additional matches. By choosing
to match the node with maximum out degree we reduce the set of
initial matches. Each partial path (p;) is then extended as follows :
i) select the next node (q(y,+1)) in the query graph to be matched
and ii) compute all neighbours (next_neigh) of q(y,+1) which are
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already matched. Note that the next query node to be matched is
selected independently of the partial path. Hence the next_neigh
set will be the same for all partial paths of same length iii) the next
set of matches (matches) can be computed by taking the intersec-
tion of all p; (next_neighj); iv) append each of the matches to the
current partial path and save it such that it can be processed in the
next iteration; (v) repeat all the above steps until all elements of S
are matched or till the set of partial paths to be processed becomes
empty. The costliest operation here is to compute the intersection.
Since we use the CSR data structure to represent the data graph,
finding the neighbors for performing the intersection can be done
with O(1) time cost.

Assigning one warp to process a single partial path can result in
severe thread-idling. The latter is one of the major limitations of the
prior works. The average degree of most graphs is less than 32. This
means that some of the threads in a warp won’t have any work to
process. Hence compute cycles and resources allocated to them are
wasted. We explored two ways to resolve this problem. One strategy
is to group the paths based on the work into bins and use virtual
warps to process the bins. For example, if the number of neighbors
of each node to be intersected is eight, put this partial path in bin
eight. In the next iteration, all paths in bin eight will be processed
by a virtual warp of 8 threads; each warp will process four paths,
significantly reducing thread idling. However, the challenging as-
pect of this approach is that we have to predict the amount of space
assigned to each bin to store the intermediate results. A uniform
partitioning of the buffer space is not a good option. Depending
on the graph characteristics, most of the bins may be empty. The
memory space assigned to empty bins is wasted. One could try
an alternative strategy of splitting the buffer based on the number
of paths in each bin; however, the number of paths is not a direct
indicator of the buffer space required. More importantly, employing
any of the latter two approaches may prevent us from processing
big graphs that otherwise could have been compatible. There are
additional challenges associated with binning. The binning code
should itself be very efficient, and we have to append the results
from different bins to compress the buffer space, which requires
additional memory transactions.

Hence, we chose another strategy where we still use virtual warps
to process the elements, but instead of having multiple bins, we only
use one bin, and the size of the virtual warp is determined by the
average degree of the node. Our experiments show that this strat-
egy achieves better performance and has better compatibility with
larger graphs. However, even with this strategy, we also observed
considerable intra-warp and intra thread block load imbalance. Our
analysis showed that, in most cases, this was an artifact of how
the data graphs are created and due to the fact that we process
the elements in the order of node ids. We randomized the partial
path placement, and this simple strategy helped us achieve good
intra-warp and intra thread block load balance.

Algorithm 1 shows the pseudo-code of our approach. Lines 4 to 14
represent the outer iteration. Lines 8 to 11 handle the first iteration,
which forms the initial set of partial paths. For the rest of the
iterations, we call the search kernel. In line 19, we declare a shared-
memory buffer for performing intersections. For each partial path
that this thread is responsible for, we first find the query graph
nodes already present in the partial path, which are connected
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//Tnput: Query graph Q(Vp, Eg) , Data graph D(Vp, Ep)
//Output: Matching table M

N=|Q|
V = Vg ordered by decreasing order of degree
forn=0to N
v =V[n]
if n ==0:
foruin D:
if Degree(u) >= Degree(v)
append u to M
else:
search_kernel GPU(M ,n, Q, D V)

func search_kernel GPU(M n,Q, D, V):
start = blockld/virtual_warp_size  blocks + warp_id;
workers = #virtual_warps_per_block = blocks;
//shared memory buffer used for intersection
shared intersection_buffer[#virtual_warps_per_block];
buffer = intersection_buffer[warp_id];
prev_M = extract_paths_that_this_thread_should_process( M)
for (m = start; m < |prev_M|; m += workers):
//extract one partial path
S = prev_M[m];
//global memory write loc
last_location = memory_location(S[n-1]);
fori=0to [S|:
u = S[i]
if (V[i],VI[n]) € Eg:
if buffer[warp_id] = {}:
buffer[warp_id] = neighbors[u];
else:
warp_level_intersection(buffer[warp_id],neighbors[u
B}
for v' in buffer:
write(v",last_location) to M
Algorithm 1: Simplified psuedocode corresponding to our
approach

to the current query graph node. In lines lines 24 to 33, we then
compute the intersection of the candidates of these nodes (details
in Section 4.1.3). Lines 34 and 35 write the final output to global
memory.

Hybrid scanning:As mentioned earlier, the DFS scanning strategy
requires less space than the BFS; however, the DFS strategy has low
parallelism and hence is not suitable for GPUs. Our approach uses
a hybrid DFS-BFS strategy. We start with a BFS scan which gives
us a lot of partial paths. These partial paths are then chunked, and
the GPU will process one chunk at a time. This step corresponds to
the DFS scan (for each chunk, we are going deeper). The GPU then
expands each partial path corresponding to a given chunk using the
BFS strategy. Once a chunk is fully processed, the resulting matches
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//Input: vertices to be intersected (a1, az, as...ay),
Graph D,
D.cs(x) denotes the children of x
D .ps(x) denotes the parent of x
//Output: Common children set of the intersecting vertexes

func scatter_vector_intersection():
interset[] = {}; sv[V] = {0}
for C € (D.cs(ar), D.cs(az),...D.cs(ay))
//intersect
forveC:
sv[v]++
//collect
forv e D.cs(ay) :
if sv[v] == y:
interset.append(v)
return interset

func c-intersection():
interset1[] = {}
//initial set
forv e D.cs(ay) :
intersetl.append(v)
//intersect
for C € (D.cs(az), D.cs(az),...D.cs(ay))
interset2[] = {}
forveC:
if v € interset1:
interset2.append(v)
intersetl = interset2
return intersetl

func p-intersection():
interset1[] = result[] = {}
//initial set
forv e D.cs(ay) :
intersetl.append(v)
//intersect
for v € interset1:
if (a2, a3...ay) € D.ps(ay)
result.append(v)
return result
Algorithm 2: Simplified pseudocode corresponding to the
three intersection methods

are written out, and the next chunk is loaded. This strategy allows
us to process bigger graphs without sacrificing performance. A
smaller chunk size enables our framework to process bigger graphs;
however, if the chunk size is too small, there won’t be enough work
to occupy all the GPU cores. Hence we only use chunking for big
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graphs. We empirically found that that chunk size of 512 achieves
a good performance.

4.1.3 Micro kernel intersection design: Efficient intersection of
neighbors is arguably the most important computational part of
subgraph isomorphism. In this subsection, we compare multiple
intersection strategies (Algorithm 2) and describe our efficient GPU
implementation and intersection selection mechanism. The first
strategy is similar to the Scatter Vector (SV ) approach used in
SpGEMM][6] (SV is not used for intersection). Assume that we want
to intersect children of y vertices and assume that the maximum
out-degree is §. First, we initialize the SV array of |V| elements
to zero and the result array to the empty set (Line 8). Then for
each node to be intersected, we traverse through its children and
increment the corresponding element in the SV array by 1 (Lines
9-12). After processing all nodes, all the elements in SV whose
corresponding count is y represents the final result. Instead of scan-
ning this entire array, we simply traverse through the children of
the first node (a super-set of intersection results) and extract the
elements whose count is y. This method is very efficient as as it
only has a global memory data movement complexity of O(y X 9),
time complexity of O(y X §), and space complexity of (single-core)
of O(|V]) . However, this approach is not practical for GPUs as
the space complexity in the parallel case is O(|V| X &) where & is
the number of parallel processors (warps in the case of GPUs —
extremely high).

The next method (Lines 19 to 31) describes the c-intersection, which
is better suited for GPUs. First, we load the children of a; to a buffer
(Lines 22-23). In our GPU implementation, a warp will read all the
children in a coalesced manner. Since the buffer is accessed multiple
times, for access efficiency, we maintain it in shared memory. For
each remaining node, we load its children and check whether they
are present in the buffer(interset1); if yes, we add it to a tempo-
rary buffer(interset2). In our GPU implementation, the threads in
a warp directly load the children from global memory to registers
in a coalesced manner which are then reused multiple times while
checking if the loaded elements are present in the current intersec-
tion array (Lines 27 to 29). At the end of each loop iteration in Line
25, we copy the temporary array to the intersection array (Line 30).
The data movement complexity of this method is O(y x ), and the
sequential time complexity is O(y x §2); however the space com-
plexity in the sequential case is O(J) and parallel cases is O(8 X &)
which is much lower than the SV method.

Next, we explain our p-intersection method (Lines 33 to 42). The
main idea here is similar to the c-intersection method, but instead
of intersecting children, we intersect parents. First we load the
children of a; to a buffer (intersect1) (Lines 36-37). Then for each
element in the buffer, we check if its parent set includes all the a; to
ay.If yes, we append it to the result array and we repeat this process
for all elements in (intersect1). The GPU implementation details
are similar to that of c-intersection method. Assuming that the
maximum in-degree is d;, the data movement complexity of this
method is O(§ + (6 — 1) X i), and the sequential time complexity
is O(8 + 6 X din X y); the space complexity in the sequential case is
O(98) and parallel cases is O (d x &) which is much lower than the
SV method.
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4.2 Distributed Memory

Algorithm 3: Work distribution in the distributed imple-
mentation

Input: Q,D, rank, num_nodes

Let M denote the matching table

Let Q denote the query graph

let D denote the data graph

global_free_count = 0;

-

[N}

@

'S

global_processes_count = N;
6 M = init_match(Q,D, rank)
depth = 1;

while all_ GPUs_free() do

9 while depth</Q| do

[

N

®

10 split M to chunk[1],chunk[2],chunk[3]
11 search_kernel(chunk[1], depth, Q, D)
12 free_process = check_free_GPU()

13 if free_process != -1then

send chunk[2] to free_process
search_kernel(chunk[3],depth,Q,D)
16 end

14

15

17 else
searching_kernel(chunk[2],depth,Q,D)
searching_kernel(chunk[3],depth,Q,D)

18

19

20 end

21 depth++

22 end

23 broadcast_free(rank) if req = listen_process_request()
then

24 receive_work()

25 //adjust depth and other parameters and begin

processing of received work
26 end
27 end

One of the major limitations of the single-node approach is the
ability to handle large data graphs, especially when simple query
graphs are used as the number of possible candidates is very large.
We solve this problem using a distributed implementation. To the
best of our knowledge, this is the first distributed implementation
available for sub-graph isomorphism. The fundamental idea is to
distribute the computation of partial paths across different nodes.
The major challenge here is intra-node load balance. We explored
two strategies to solve this. The first strategy is to synchronize
all the compute nodes after each outer iteration (i.e., after finding
all the partial paths with a given depth). Different compute nodes
can then exchange the number of remaining partial paths (not the
actual path data) and then distribute the partial paths evenly across
each node. However, this strategy has two main disadvantages:
i) wasted compute cycles and ii) incompatibility with the cuTS
representation( without sacrificing the ability to handle large graphs
and performance). Even though this strategy guarantees that the
number of partial paths per node is the same in every iteration,
the amount of total work in each iteration can vary drastically.
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Therefore nodes that have finished their work share have to wait
for the other nodes to complete their work before proceeding. The
second challenge comes from the fact that cuTS is based on the
trie representation. Sending partial paths from one node to another
requires us to extract the entire path from our data-structure, send
it to the other node, and then integrate it to its own local trie. The
latter is challenging and will require expensive copying. Another
option is to send the entire trie to the other node. However, in this
case, the receiving nodes should have enough space to hold their
local trie and the incoming trie, which limits the ability to work
with big graphs.

Network Vertices Edges
enron 36,692 367,662
gowalla 196,591 1,900,655
roadNet-PA 1,088,092 1,541,898
roadNet-TX 1,379,917 1,921,660
roadNet-CA 1,965,206 2,766,607
wikiTalk 2,394,385 5,021,410

Table 2: Properties of data graphs used in our experiments.

Our actual implementation solves the above problem using a differ-
ent work distribution strategy. The main idea is to let each compute
node complete its entire work without any synchronization. First,
we split each outer iteration into several chunks. Each chunk is
processed sequentially. At the end of each chunk, every busy node
checks if any free node is available to share the workload. A node is
considered as free if it has finished all its work (across all iterations).
Once the node finishes all its work, it saves the final results and dis-
cards its local trie. Then it broadcasts a message to all other nodes
to tell that it has finished its execution. A node that has not finished
processing will then send a portion of its work to the free node
along with the trie, and this whole process is repeated till the entire
work is done. In order to ensure that required synchronizations are
minimum, we developed a mini asynchronous protocol, built on
top of the MPI framework, to exchange the required information.
Using this protocol, we ensure that only one busy node sends data
to a given free node, and a given busy node only sends data to one
free node. Algorithm 3 describes the entire process. For simplicity
we assume that the work at each iteration is only divided into three
chunks.

5 TIME COMPLEXITY

Sequential: Let Vp and Vy denote the number of vertices in the
data graph and query graph, respectively. Let § denote the maxi-
mum degree of the data graph. Let the query graph be fully con-
nected (worst case). Let o] denote the ratio of the number of to-
tal paths to the number of valid paths at depth [ + 1 and oy be
|Vp|/number_of _initial_candidates. Let P; represent the set of
partial paths at depth [ and let |P;| denote the number of partial
paths at depth I. Let Pli represent the ith path at level .

Finding initial set of possible candidates requires scanning all data
graph vertices; hence the complexity of this step is O(|Vpl|). |P1|
can be estimated as Vp X op. To find all possible candidates at
depth 2, we have to consider all the neighbours of depth 1 can-
didates; the complexity of this step is O(|P1| X 6). |P2| can be es-
timated as |P;| X § X o1. A viable candidate at depth 3, for path
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Pli should be a neighbour of both P{ and Pé, which requires in-
tersecting neighbours of both Pi and Pé. Initially we consider all
neighbours of Pé which can be estimated as |P2| X 03. Then we
intersect this with the neighbours of Pi. The intersection of two
sets of size S; and Sy has complexity of O(S; + S2). Hence the total
complexity at depth 3 is O((|P2| X (8 + §)). | P3| can be estimated
as [P2| X § X 0. By generalization, complexity at depth I can be
computed as O((|Pj_;| X (I = 1) X §)). |P;| can be estimated as
[P;_1| X & X 07_1. For simplicity, assume that the fraction of valid
paths at all levels is a constant (¢ = max(o;)). Under this assump-
tion sequential complexity can be expressed as:

s_complexity = O(|Vp|) + O(|P1| X 8) + O((|Ps] x (8 + 8))+
e+ O((|P_1 X (1= 1) x )
= 0(|Vp|) + O(|Vp| X o x 8)+
Vol
Z O(|[Vp| x o1 x 87 x (1-1) x 8)
=3

O

Assuming |Vg| and ignoring lower order terms in Equation (6),
the sequential time complexity can be estimated as Scomplexity =
O([Vp| x oVel=1 x §IVel=1 x (JVp| - 1) x 8), which can be further
simplified as scompiexiry = OIVD| X [Vol X 5Vely since ¢ <=1
andso o!Vel << 10r=1.

Single GPU: Assume that nSMP is the amount of parallelism avail-
able in a single GPU. For simplicity, assume that the work across
GPU SMPs (streaming multiprocessors) is uniform. Note that this
does not assume that the work across different thread blocks is
uniform. Based on the state of the SM, the GPU can map multi-
ple thread blocks to an SMP. Since the number of thread blocks
launched is huge, it is reasonable to assume the scheduler will
balance the workload. Under this assumption the single node com-
plexity can be calculated as peomplexity = Scomplexity/nSMP =
O([Vp| x alVel=1 x §IVel=1 x ([Vp| - 1) x &) /nSMP.

Multi GPU: Let nGPU be the total number of (homogeneous)
GPUs. The number of nodes processed by each node at level 1
is |Vp|/nGPU. Let Wipin and Wyygy be the minimum and max-
imum workload across all GPUs. In the worst case, we can as-
sume that all GPUs initially perform W,;, units of work in par-
allel, and then it has to process half of the remaining work of
the processors which got Wy,4x units of work. So the total time
complexity will be O(Wiin + (Winax — Winin)/2). If we assume
an all-to-all communication model, ignore the communication re-
quired for initialization and communication, and assume that the
maximum space required per node is S;;4x (see Equation (5)), the
communication complexity will be O(Smqax). If we assume that
the load is perfectly balanced, we can compute multi-node com-
plexity can be computed as Mmcomplexity = Peomplexity/MGPUs =

O(IVp| x alVel=1 x §IVol=1 x (|Vg| - 1) x §)/(nSMP * nGPU).

6 EXPERIMENTS

In this section, we compare the performance against the cutting
edge subgraph isomorphism frameworks. In [17], Li Zeng et al.
have shown that GSI consistently achieves better (or equal) per-
formance than the state-of-the-art CPU and GPU implementations
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such as MAGIiQ,[8], CFL-Match[1], CBW][10], Wukong+G[16],
VF3[3], GPSM[13], GUNROCK][15]. Hence, we compare our ap-
proach against GSI'.

6.1 Software and Hardware Configuration:

We evaluated our approach and GSI on two different machines:
i) an Nvidia Volta V100 machine (84 SMs, 32GB global memory)
paired with dual Intel Xeon E5-2680 v4 (128GB RAM) CPUs running
Ubuntu 18.04.4 LTS, and ii) an Nvidia Ampere A100 machine(108
SMs, 40 GB global memory) paired with dual Intel Xeon Gold 6238R
(384GB RAM) CPUs running Ubuntu 20.04 LTS and. We used CUDA
11.0 to compile codes on both devices. We evaluate the single node
results on both the A100 machine and the V100 machine. We evalu-
ated the distributed version by running our code on multiple V100
machines, each with a single V100 GPU.

6.2 Datasets and query graphs:

We evaluated our approach using six real-world data graph: en-
ron(an email connection based graph), gowalla(location-based so-
cial), wikiTalk(Wikipedia communication network), roadNet-CA(road
network of California), roadNet-PA(road network of Pennsylvania),
and roadNet-TX(roadNet-TX). Table 2 shows the graph character-
istics. These graphs were selected based on the prior works. We
obtained these graphs from the SNAP [9] repository. Query graphs
with lots of edges are the most difficult ones to solve efficiently.
Hence we generated all possible five node graphs and then sorted
them by the total number of edges in decreasing order and selected
the top 11 as the query graphs. For graphs with the same number of
edges, we broke the tie randomly. A similar procedure was carried
out for six node and seven node query graphs.

6.3 Evaluation

Evaluation Metric: We use the execution time of GPU kernel(s) as
the evaluation metric. The time to transfer the data graph was not
accounted in both approaches. As explained in Section 4, in order to
support bigger datasets and complex query graphs, our frameworks
use both BFS-DFS traversals. We have included this overhead in all
our measurements. In the distributed version, we have included all
the CPU-GPU transfer times, inter-node communication time, and
synchronization time. To account for the difference in performance
between the two frameworks, we use the Nvidia Nsight Compute
to collect different hardware metrics such as occupancy, data move-
ment, and thread divergence.

Single node results: Table 3 shows our single node results. The
GSI runtime (in milliseconds) and cuTS runtime (in milliseconds) are
encoded in the following format "GSI ; cuTS". On the A100 machine,
we successfully ran 164 cases, whereas GSI could only run 99 cases.
Similarly, on the V100 machine, we were able to successfully run
154 cases, whereas GSI was only able to run 99 cases. A100 machine
has a higher memory capacity than the V100 machine. Hence, we
are able to run more cases on the A100 machine. The geomean
speedup of cuTS over GSI for the roadNet-PA, roadNet-TX, and
roadNet-CA was 329, 430, and 407, respectively, on the Nvidia
A100 machine. The geomean speedup of cuTS over GSI for the

!https://github.com/pkumod/GSI - commit id c8d631236983
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enron gowalla roadNet -PA roadNet-TX roadNet-CA wikiTalk
A100 V100 A100 V100 A100 V100 A100 V100 A100 V100 A100 V100
GSI cuTs GSI cuTS GSI cuTsS GSI cuTS GSI cuTs GSI | cuTS | GSI | cuTS | GSI | cuTS GSI cuTS GSI | cuTS | GSI cuTs GSI cuTS
ql - 8851 - 6607 - 33206 - 49332 687 7 431 4 930 7 491 4 1245 11 730 6 - 82588 - 114504
q2 - 8837 - 6573 - 33086 - 54928 688 7 409 4 892 7 516 4 1255 11 740 6 86639 - 143173
q3 - 9327 - 6970 - 34342 - 52048 684 7 419 4 923 7 529 4 1259 11 718 6 71255 - 108136
q4 - 10573 - 8385 - 43982 - 55546 653 8 393 4 858 8 565 4 1186 13 683 6 93539 - 151134
q5 - 9293 - 6919 - 34021 - 49820 657 7 389 4 861 7 495 4 1162 11 685 6 85291 - 138199
q6 - 10564 - 8307 - 44083 - 57746 644 8 385 4 839 8 496 4 1182 13 693 6 96772 - 158326
q7 - 9298 - 6926 - 34205 - 49473 654 7 405 4 856 7 503 4 1163 11 693 6 88887 - 150911
q8 - 8151 - 6090 - 30070 - 48026 653 7 388 4 872 7 493 4 1188 11 689 6 103818 - 176300
q9 - 8164 - 6112 - 30281 - 47956 654 8 372 4 880 7 487 4 1183 11 689 6 88341 - 153688
q10 - 8268 - 6160 - 30614 - 42881 620 8 370 4 825 7 461 4 1081 11 651 6 90141 - 150503
qll - 8259 - 6180 - 30295 - 43017 617 9 364 4 834 8 458 4 1107 13 648 7 104175 - 168898
ql2 - 152560 - 139398 - 580505 - - 653 1 407 1 874 1 489 1 1187 2 690 1 1155800 - 2063400
q13 - 255168 - 325684 - 1082000 - 688 1 423 1 892 1 511 1 1242 2 728 1 1399930 - 2308120
ql4 - 167811 - 232490 - 624750 - 659 1 400 1 879 1 493 1 1181 2 680 1 1120940 - 1915960
q15 - 162114 - 225663 - 600496 - 651 1 406 1 862 1 485 1 1143 2 688 1 1320980 - 2426190
q16 - 150660 - 215953 - 558794 - 617 1 375 1 824 1 463 1 1115 2 645 1 1160250 - 2032980
q17 - 149425 - 213845 - 553420 - 656 1 411 1 869 1 493 1 1195 2 689 1 1210250 - 2083800
q18 - 149923 - 219232 - 554430 - 657 2 386 1 883 2 469 1 1150 2 684 1 1247810 - 1967790
q19 - 165271 - 242986 - 621429 - 644 1 390 1 855 1 498 1 1155 2 685 1 1389050 - 2243470
20 - 153147 - 224247 - 545104 - 656 1 395 1 850 1 494 1 1167 2 687 1 1980750 - 3463900
q21 - 152539 - 220596 - 554440 - - 642 1 395 1 837 2 491 1 1178 2 693 1 1057240 - 1687480
q22 - 182688 - 214690 - - - - 692 1 416 1 883 1 513 1 1214 2 733 1 1609290 - 2502260
q23 - - - - - - - 717 1 450 1 938 1 551 1 1304 1 765 1 - - -
q24 B = B - B - = 715 1 443 1 921 1 577 1 1306 1 771 1 = B =
25 - - - - - - - 740 1 432 1 938 1 555 1 1282 1 921 1 - - -
26 - - - - - - - 605 1 371 1 815 1 451 1 1122 2 655 1 - - -
q27 - - - - - - - 650 1 387 1 870 1 510 1 1164 1 696 1 - - -
q28 - - - - - - - 692 1 406 1 891 1 520 1 1252 1 842 1 - - -
29 B = B - B - = 684 1 421 1 917 1 524 1 1255 1 725 1 = B =
30 - - - - - - - 652 1 398 1 837 1 491 1 1150 1 801 1 - - -
q31 - - - - - - - 649 1 388 1 860 1 487 1 1174 1 698 1 - - -
32 - - - - - - - 570 1 344 1 780 1 439 1 1037 1 610 1 - - -
33 - - - - - - - 655 1 400 1 867 1 496 1 1166 1 695 1 - - -
Table 3: Single node results (times in milliseconds). "-" indicates that the execution did not complete successfully.
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Figure 4: Speedup against single node

roadNet-PA, roadNet-TX, and roadNet-CA was 250, 314, and 387,
respectively, on the Nvidia V100 machine.

Our high speedup can be attributed to (i) reduced number of opera-
tions, (ii) significantly lower data movement. The total number of
operations in cuTS is much less than that of GSI. This is due to our
superior query node ordering process. We select the query graph
node with the highest degree (¢max) as the root node to match. Let
there be x candidates with this strategy. Choosing any other query
graph node (g.), whose degree is less than g4y as the root node to
match, will increase the search space. Any such node will at least
have these x candidates, as these nodes are guaranteed to have a
higher degree than or equal to g by construction and hence are
viable candidates. In addition to these x candidates, since the degree
of g4 is less than gy, there will be additional candidates. Note
that filtering efficiency, especially at lower depths, is crucial as re-
ducing the total number of candidates at lower levels exponentially
reduces the total number of higher levels and achieves exponential
speedup. There are cases where cuTS has more than 785x fewer

candidates than GSI at depth 1 and 26,000x lower candidates at
depth 2. Moreover, when the query graph is not present in the data
graph, our approach can eliminate all candidates at a lower depth
than GSI. This is also evident from the hardware metrics as cuTS
only executes significantly fewer instructions (the reduction factor
is 1000x SASS (assembly) instructions).

Data movement is one of the critical factors that determine perfor-
mance. When compared to GSI, cuTS has upto 200x lower DRAM
read traffic. Subgraph isomorphism is a memory-bound problem.
Hence a 200x reduction in data movement will drastically improve
the performance. The total number of write operations is also much
lower for cuTS. In addition to these factors, compared to GSI, we
have 34x lower shared-memory (programmable cache) writes and
7x lower reads. We also have 2x lower atomic operations, and we
execute 7x lower instructions. The reduction in instructions is a
direct result of query node matching order prioritization.
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Distributed results: One of the most significant advantages of
using our distributed version is the ability to run larger datasets and
complex query graphs. While our single-node implementations only
ran 154 cases on the V100 machine, our distributed implementation
was able to run 158 cases using two nodes and 164 cases using
four nodes. Figure 4 shows the scalability of our approach on the
three biggest datasets. Since we are showing speed up, we are
only showing cases where the single node implementation was
completed successfully. The multi-node results are only collected
for big datasets such as enron, gowalla, and wikiTalk.

We achieve close to 2x speedup over two nodes for the big graphs
and close to 3.1x on four nodes for the big data graphs. There
are cases where we achieve superlinear speedup, which can be
attributed to better cache hits.

BTl mT2 T3 WM T4
1250000

1000000
750000
500000

250000

Running Time(ms)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

query graphs

Figure 5: Load balancing on 4 node V100 system with wik-
iTalk dataset. T1 is the running time for the first node, T2 is
the running time for the second node and so on.

Figure 5 shows the efficacy of our load balancing scheme on the
wikiTalk dataset. Our node to node runtime variation is very low.
Others follow the same pattern. Thanks to our work distribution
strategy all nodes gets similar amount of work and does not suffer
from synchronization overheads.

7 CONCLUSION

This paper develops a novel trie-based data structure that achieves
good compression without sacrificing performance. Our new data
structure is well suited for massive parallelism in GPUs and avoids
the need for two-pass algorithms. We developed the first (to the
best of our knowledge) distributed algorithm for subgraph isomor-
phism on GPUs. Our experimental evaluation sections show the
efficacy and scalability of the proposed approach. We demonstrated
that cuTS is able to handle bigger data graphs and complex query
graphs. Our single-node implementations significantly outperform
the state-of-the-art competitors, and our multi-node implementa-
tion achieves close to linear speedup on big data graphs.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

We ran our experiments on Nvidia A100 and Nvidia V100. We used
NVCC 11.0 with the "-O3" flag to compile our code. We ran our
distributed code using OpenMPI 3.0.1. The results presented for
cuts in the paper can be reproduced by running the automated
script ‘cuts.py’, ‘2nodes_exe.sh’ and ‘4nodes_exe.sh’ which will
generate the experimental data corresponding to our code. For GSI,
we have provided the github link in our ‘README’ file. We have
also provided a sample python script (convert_ours_to_gsi.py) to
convert our graph format to theirs. For other detailed information,
refer to the ‘README'’ file inside the repo.

Author-Created or Modified Artifacts:

Persistent ID: https://doi.org/10.5281/zenodo.5154114
Artifact name: CuTS

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER
Relevant hardware details: Nvidia A100, Nvidia V100

Operating systems and versions: 18.04.5 LTS
Compilers and versions: nvce/11.0
Libraries and versions: OpenMpi 3.0.1

Key algorithms: subgraph isomorphism
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