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Abstract: Industrial Control Systems (ICS) are used to control physical processes in critical
infrastructure. These systems are used in a wide variety of operations such as water treatment,
power generation and distribution, and manufacturing. While the safety and security of these
systems are of serious concern, recent reports have shown an increase in targeted attacks aimed
at manipulating physical processes to cause catastrophic consequences. This trend emphasizes
the need for algorithms and tools that provide resilient and smart attack detection mechanisms to
protect ICS. In this paper, we propose an anomaly detection framework for ICS based on a deep
neural network. The proposed methodology uses dilated convolution and long short-term memory
(LSTM) layers to learn temporal as well as long term dependencies within sensor and actuator data
in an ICS. The sensor/actuator data are passed through a unique feature engineering pipeline where
wavelet transformation is applied to the sensor signals to extract features that are fed into the model.
Additionally, this paper explores four variations of supervised deep learning models, as well as
an unsupervised support vector machine (SVM) model for this problem. The proposed framework
is validated on Secure Water Treatment testbed results. This framework detects more attacks in
a shorter period of time than previously published methods.

Keywords: industrial controls systems; attack detection; neural networks

1. Introduction

Industrial Control Systems (ICS) are used to control physical processes in industry and critical
infrastructure. These systems, composed of a combination of software and hardware components,
analyze the information received from sensors and, based on the state of a process, issue control
commands to actuators. ICS are used in a wide variety of operations such as nuclear power plants,
manufacturing, oil and gas pipelines, and water distribution systems. Hence, they are integral
to the safety and security of a nation’s critical infrastructure. As a result, initiatives such as the
United States of America Presidential Executive Order No. 13,636 (2013) have been passed to protect
critical infrastructure [1]. Due to their critical nature, attacks on ICS that propagate to the physical
processes can cause large monetary losses, cause environmental damage, and significantly impact the
infrastructure of cities. Well-known attacks such as the Ukraine power blackout [2], Stuxnet worm [3],
and Maroochy Shire Sewage Spill [4] demonstrate the impact and consequences of ICS attacks.
Furthermore, the Cybersecurity and Infrastructure Security Agency (CISA) has publicly reported
that the number of attacks against ICS has steadily grown, with 290 reported attacks in 2016 alone [5].
This increase in targeted attacks on ICS emphasizes the need for algorithms and tools to provide
resilient and smart attack detection mechanisms.
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For this reason, many researchers have started focusing on developing techniques and approaches
for anomaly detection within ICS processes. Existing state-of-the-art research can be divided into
two categories: (I) Formal methods based on mathematical models and behavior specification
of processes [6–10], and (II) data driven approaches using: (a) machine learning (ML) [11–13], (b) deep
learning (DL) [14–17], and (c) statistical modeling [18,19].

Formal logic methods are applied to detect deviations from specified process requirements.
Detection is based on formal models of the systems that are created using symbolic grammar and
invariant logic. While these models are robust due to their use of mathematical reasoning, they are
susceptible to the state explosion problem and scalability issues that result from the complexity of ICS
processes [6]. Furthermore, these methods are resource intensive and technically complex to design
and implement. It is even more challenging to use these techniques when faced with safety critical
systems that require strict timing features. Constructing a model specifying the exact behavior of
an ICS is an expensive process as it requires a precise understanding of ICS physics, which is hard
even for current domain experts to obtain [8].

A second approach to ICS security uses machine learning to detect deviations from normal
behavior in a specified feature space. Its shortcomings are that a labeled set of attack data is required,
and the method fails to detect novel attacks on a system. In addition to machine learning, deep learning
methods use historical data to parse the normal behavior of a system from anomalous behavior.
Existing state-of-the-art tools and algorithms are only able to capture a small subset of attacks and
require expensive training time and cost due to the large number of features and data that need to
be analyzed. Signature-based statistical modeling is a third approach. It is based on creating noise
signatures for the sensors. Any deviations from the created signatures are recognized as anomalies.
This approach is highly susceptible to noise in the operating environment, which limits it to a small
number of devices in a process [18].

Along with the challenges described above, data driven models have to deal with the sheer variety
of data that occurs in ICS. Physical process data is discrete in nature for actuators and continuous for
sensors. In addition to the difference in type, these data have varying distributions for each feature.
Thus, normalization of all features to a normal distribution for machine learning models cannot be
used. At the same time, changes in actuator values are relatively large compared to changes in sensor
values. For example, a valve turning ON and OFF could be encoded as 1 and 0, which is a large
magnitude change compared to sensor values that may slowly decrease from 1.0 to 0.99. Most research
studies in this field have treated both data types similarly, which results in a high rate of false positives
by the anomaly detection tools. This result is due to sudden changes or large deltas in the process data
as actuators operate. In this paper, we propose a novel feature engineering approach for sensor data to
extract more nuanced information, which is used for training the model. Our findings show that using
a feature engineering pipeline, where wavelet transformations are used, results in detection of attacks
that went undetected without feature engineering.

Building on existing research and advancing the state-of-the-art, this paper presents a supervised
deep learning architecture for anomaly detection in a water treatment plant. The novel contributions
of this paper are:

• A unique feature engineering process in which wavelet transformations are used to transform
sensor data and add higher-dimensional features for each sensor in the ICS data set;

• Use of a hybrid convolution and long short-term memory (LSTM) neural network to learn
windowed temporal dependencies, as well as long term sequence memorization for successful
attack detection;

• A deep learning methodology that reduces training and detection time—and therefore
cost—relative to methods documented in previous works;

• Evaluation of multiple deep learning architectures, and examination of their relative performance.
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The methodology and the case study presented in this paper can be ued for precise and quick
detection of anomalous behaviors in time series data from industrial infrastructure. Section 2
summarizes related work and discusses limitations in each of the methods. Section 3 describes
the proposed methodology. Section 4 describes a case study using historical data from the
Secure Water Treatment (SWaT) testbed and employing the methodology described in Section 3.
Section 5 discusses the results of our analyses and potential future work to augment or improve the
methodologies proposed.

2. Related Works

Research into anomaly detection in ICS can be divided into two main categories: data driven
models (ML, DL, and statistical modeling), and formal methods. Formal reasoning techniques are based
on specifying the overall security requirements for the control logic, sensor data, and actuators and
mathematically proving that the requirements are satisfied in system design and development. In one
of the first instances of formal methods being applied in this realm, the mathematical relationship
between sensors and actuators in an ICS were derived. These relationships are derived using a state
condition graph (SCG) that represents how changes in sensor and actuator data relate to each other [9].
These relationships are then used to verify sensor and actuator values agree with the derived SCG
when the system is running. Application of this approach is limited to features that can cause
loss of information. A second formal method uses symbolic grammar and verification of system
properties. This approach was implemented by Jones et al. [20]. Signal temporal logic (STL) is used
to formulate safety rules for sensors and actuators, based on a small portion of data from the ICS;
however, only a small subset of ICS components are explored. Considering the complexity of ICS
and the large volume and variety of data required to be processed and analyzed, causes one to
question the scalability of this approach. Similarly, Kang et al. [8] define process state changes and
security properties using first-order linear temporal logic and use a verification engine to detect counter
examples that invalidate the security properties. However, this method is limited to finding code
vulnerabilities that deviate from the identified security properties, and it protects the system only
against known attacks. Finally, Lin et al. [6] propose a hybrid model that uses passive learning of
symbolic models for sensors using timed automata as well as learning Bayesian networks to infer
causality between sensor states and actuator states. Since the completeness of a security specification is
highly dependent on historical data and the security knowledge of the domain experts, this method’s
effectiveness in the higher dimensional feature space of ICS is small.

The second category of techniques is based on data driven models. Data driven models use
sensor data and actuator commands to detect deviations from normal process behavior. One of these
methods applies machine learning to build anomaly classification models. Weaselboard [17] employs
Bayesian networks in this fashion to detect data manipulation and zero-day attacks. A model built
with this method analyzes the sensor and actuator data using a dedicated device that is connected
to the backplane of the programmable logic controller (PLC). Inspired by this research, Junejo et al. [11]
tested various machine learning algorithms to design classification models for ICS anomaly detection.
However, the models are limited to using a small subset of data within the ICS data set and do not
provide strong evidence of the robustness and resilience of the system against unknown attacks.

Urbina et al. [21] introduced the concept of statistical monitoring of ICS data using CUSUM
(cumulative sum control chart) to detect stealthy attacks. This methodology was then used by
Goh et al. [14] in concert with DL models to build detection models that are semi-supervised.
They introduce the usage of recurrent neural networks (RNN) and long short-term memory deep
learning approaches that learn prediction models for sensor and actuator values. This method learns
how the sensor and actuator values are related to each other during normal operation of the physical
process to predict these values into the future. Next, CUSUM was used on the difference between
values predicted by the model and real-time sensor and actuator values to detect stealthy attacks.
In this paper, Goh et al. were limited to analyzing and evaluating their methodology against a single
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process within a large system. They were also limited to a small number of classes of cyber attacks.
To improve on their approach, Shalyga et al. [16] explore genetic algorithms running on small sets
of neural networks to find an architecture that provides the best results for their metrics. Instead of
CUSUM, they use exponentially weighted moving average smoothing (EWMA), mean p-powered
error measure, weighted p-powered error measure, and disjointed prediction windows to improve
the quality of anomaly detection. However, their model has a long time lag between the start of
an attack and detection of an attack, and it retains low recall within the attack windows. A different
architecture was explored by Inoue et al. [15], using a deep neural network (DNN) and one class of
support vector machine (SVM) to detect anomalies. Their work analyzes and evaluates data from all
processes of a miniature ICS and explores all available attack data; however, their recall values for
64% of attacks were zero, and the training of the model was expensive, taking two weeks to complete.
This work was followed by Kravchik and Shabtai [22], where multiple neural network architectures
were proposed to construct a forecasting model for the sensor/actuator values, and a learned threshold
was used to classify and predict values as anomalous or normal. The authors concluded that a vanilla
convolution neural network (CNN) with four layers performed best for anomaly detection for their
data set. Although this work presents a high detection rate, some of the attacks are detected well
after their successful completion. Because of the critical nature of ICS-driven processes, it is important
to detect attacks as quickly as possible to provide system engineers an opportunity to respond to
the attack and protect the system. In this paper, we advocate for an anomaly detection model that
performs better at detecting attacks while they are still underway. Furthermore, we advocate for
a deep learning-based model that is not computationally expensive to train on ICS data. A recently
proposed method by Kim et al. [23] obtained similar results to our model using the SWaT dataset;
however, their model is considerably more expensive to train. They report an average training time of
2 h per process using an Intel Xeon CPU E5-2960 v4 2.60GHz, 6 NVIDIA Tesla V100 GPUs, and 512 GB
RAM, whereas, our proposed model takes 20–30 min to be trained on the same dataset employing
a hardware setup of 8 NVIDIA Tesla V100 GPUs (32 GB RAM) and 80 GB of memory.

To perform data driven detection, data from an ICS needs to be collected. Network packets and
sensor/actuator data are the two main sources of ICS data. All of the data-driven models explored
above rely on time sampled sensor and actuator data. As mentioned before, these data are discrete
(actuators) and continuous (sensors) in nature and have a variety of distributions. Treatment of
these data types in the preprocessing pipeline affects how the model behaves and what it learns [24].
The data driven anomaly detection models described above treat these two features similarly and
scale them to a range of 0–1 [11], or normalize them to zero mean and unit variance [14–16]. Scaling
brings features down to the same magnitude, while normalizing forces data to a normal distribution.
Scaling and normalizing are not the only forms of preprocessing used with ICS data. Some actuators
can have three unique values with one of those values occurring in small instances. These values
can be missed by models while providing low total errors. Treating unique types of data differently
could aid in building models that do not learn to ignore underrepresented values. In addition, sensor
values can be decomposed to extract more information for particular features to aid the training of
models [25,26].

3. Methodology

In this paper, we use a data driven methodology for building an anomaly detection model that
raises alarms while attacks are still in action. Sensor and actuator data from an ICS was passed through
a preprocessing pipeline where sensor values are decomposed using wavelet transformation and
added as features for training. A supervised neural network anomaly detection model was trained
and improves on the performance of previous models explored in this domain. To our knowledge,
this is the first paper to propose a CNN + LSTM parallel hybrid architecture specifically in the field
of ICS and anomaly detection, verify that the model performs better than other supervised as well
as semi-supervised methodologies, and require a short duration (20–30 min) to complete training.
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This section provides an overview of the proposed feature engineering pipeline and classification
models, and details the anomaly detection framework.

3.1. Feature Engineering

Preprocessing of data is required in order to overcome the challenges that high dimensional
data typical to ICS impose on cyberattack detection components. Because our proposed anomaly
detection framework is faced with a large amount of high dimensional sensor and actuator data,
along with evolving attack characteristics, we scaled all values to a range of 0–1. Furthermore, wavelet
transform [26] was used to transform sensor signals and obtain temporal information on multiple
scales. Wavelet transformation is an invertible transformation that can be used to decompose a signal
into a high and low spectrum using high and low pass filters respectively. The low pass spectrum is
a down-sampled decomposition of the original signal. The high pass spectrum is the localization of
higher frequencies of the original signal. These decompositions are generated by Equation (1)

lowk = ∑
m

g(2k−m)xm

highk = ∑
m

h(2k−m)xm
(1)

where k is the coefficients index, h(2k − m) and g(2k − m) are low and high pass filters built from
a mother wavelet function of signal x. Once the decomposition coefficients are calculated, we append
the low and high spectrum decomposition to the existing feature set of data.

In this context, wavelet transformations are preferred over Fourier transformations because
of their ability to keep temporal locality information of the signal frequencies. For our purpose,
we use a type of wavelet transformation that is sensitive to the alignment of signal in time called
Daubechies discrete wavelet transformation (DWT) [26]. To keep the original signal coefficients within
the transformed low and high spectrum output, we apply a single level DWT transformation.

After the wavelet transformation, we labeled each time step of sensor/actuator values as attack
or normal behavior. If a time step contains anomalous, faulty, or attack data, it was manually labeled
as an attack instance. Furthermore, the result was converted into a sliding window format where each
window size is a hyper-parameter. For each sliding window containing an attack label, the entire
window was labeled as an attack behavior.

3.2. Classification Models

The next step in the proposed framework was to train a classification model for the purpose
of anomaly detection. First, we concentrated on techniques for detection of temporal patterns in
sensor/actuator time series data. Second, it was important to learn not only temporal patterns but
also spatial dependencies and the inter-relatedness between various sensors and actuators to be
able to efficiently detect attacks. We use a supervised deep neural network methodology to design
a two-class (stealthy and non-stealthy) attack detection model for ICS time series sensor/actuator data.
The proposed framework relies on convolution and long short-term memory layers.

3.2.1. Long Short-Term Memory Networks (LSTM)

LSTM, which is an extended form of RNN, was used to detect temporal patterns in sensor/actuator
time series data. Given an input signal x = (x1, x2, ..., xT), where T is the length of the signal, an LSTM
hidden state at time step t was computed by:
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Input Gate : it = σ(Wixt + Uiht−1 + bi) (2)

Forget Gate : ft = σ(W f xt + U f ht−1 + b f ) (3)

Output Gate : ot = σ(Woxt + Uoht−1 + bo) (4)

Cell Input : gt = tanh(Wgxt + Ught−1 + go) (5)

Cell State : ct = ft
⊙

ct−1 + it + gt (6)

Cell Output : ht = ot
⊙

tanh(ct) (7)

where σ(.) and tanh(.) are the element-wise sigmoid and hyperbolic tangent functions and
⊙

is the
element-wise multiplication operator. ht−1 and ct−1 are the hidden state and memory cell of the
previous time step.

In this context, LSTM defines the influence of the sensor/actuator input by using a sigmoid layer
for each gate to be open or closed. As depicted in Equations (2)–(4), it, ft, and ot are input, forget, and
output gates. In Equation (5), g, which is the recurrent unit, was calculated based on the input at the
current time xt and the hidden state of the previous time step ht−1. In (7), ht is the current hidden
state of the LSTM at time t through tanh activation, and in (6) the memory cell, ct, was calculated.
The memory cell identifies the contribution of the previous time step and the current input to calculate
the hidden state, ht. Figure 1 depicts this mechanism in detail.

Figure 1. The repeating module in an long short-term memory networks cell [27].

As it is depicted in the above formulas, the LSTM model requires storage of additional cell states
in memory and needs to compute these cell states. While LSTM’s ability to extract long-term temporal
dependencies without suffering from the vanishing gradient problem [28] helps with effective anomaly
detection, it is a relatively computationally expensive model [29]. The solution is to design an efficient
neural network architecture to balance the utility of LSTM while minimizing the computational
overhead caused by it. This balance can be achieved through the reduction of the size and depth of
LSTM layers in the proposed neural network architecture.

3.2.2. Convolution Neural Network (CNN)

CNN is known to be used to extract features for normal/attack classification of data [30,31].
Given an input signal, a CNN with m filters and a filter size of n extracts an m-dimension feature vector
from every n values in the signal. These filters can extract temporal locality from inputs and help learn
temporal dependencies in multivariate time series input data [32]. Therefore, 1D convolutions can
efficiently learn temporal and spatial dependencies within time series sensor and actuator input data.

In this work, we use a specific type of convolution layer known as a dilated causal convolution
layer. The causal property refers to a convolution layer where output[t] does not depend on inputs
from the future (input[t + 1]). This property helps preserve the temporal order of the sequential time
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series data [33]. With the added dilation property, we are able to construct a more compact CNN
model and still preserve global relationships between the features, because dilations allow each hidden
feature in a CNN to observe an increasingly larger input space (receptive field) as the depth of the
CNN increases. Hence, it allows an increase in the receptive fields of the layers without the addition of
large filters [29].

To extract the important features from the output of the convolution layers, we use a 1D
MaxPooling layer. As depicted in Figure 2, this layer selects the maximum value in the provided
pooling window. This approach allows the convolution layers’ output to be reduced in its dimensions
while preserving the important features learned.

Figure 2. 1D MaxPooling with pooling window size of 3.

3.3. Anomaly Detection Framework

In this section, we discuss the attack scenarios targeted by our proposed architecture and describe
the proposed architecture built using the classification models discussed in the previous section.
We also discuss the metrics and loss function used in our architecture.

3.3.1. Attack Scenarios

The proposed methodology aims to detect data manipulation attacks that spoof and inject
sensor/actuator values into a PLC. These data manipulation attacks can be divided into two categories:
(1) stealthy attacks, and (2) non-stealthy attacks. Stealthy attacks slowly manipulate the sensor/actuator
values to gradually cause the process behavior to deviate from normal. Impact of these attacks is
not observed immediately or within a short time window. Non-stealthy attacks manipulate the
sensor/actuator values in shorter periods of time to force the system rapidly outside of normal
cyclical behavior. The impact of non-stealthy attacks can be observed through spikes or changes in the
sensor/actuator values within a short time window.

To detect both types of attacks, the detection model must learn the relationships between sensors
and actuators over a short window as well as longer periods of time. In ICS, these relationships
dictate how a change in one sensor/actuator affects other sensors/actuators over time. Therefore,
we are learning the behavior of these components without having to encode the rules of the PLC
or the physical process itself. This approach helps detect anomalies where a change in one of the
components does not trigger an expected change in another component. In the proposed architecture,
convolution layers are used in conjunction with LSTM layers to learn the relationships between
features over different periods of time. As mentioned in Section 3.2, convolution layers can learn
the temporal dependencies that can be used to identify normal sensor/actuator behavior, as well as
known attack behaviors, in a defined time window. Hence, they are useful at detecting non-stealthy
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attacks. LSTM layers help identify normal as well as attack behavior for stealthy attacks due to their
effectiveness at learning longer historical dependencies.

3.3.2. Non-Stealthy Attacks Representation

In the proposed architecture, a convolution layer accepts the sensor/actuator values as the input
features after the DWT transformation and learns how these features individually, and as a group,
change over a time window. The architecture contains multiple stacked convolution layers with the
number of convolution layers treated as a hyper-parameter. Our final architecture uses four convolution
layers. Kravchik and Shabtai [22] recommend using four CNN layers, and our own heuristic search
demonstrated that recall values for two and three layers were lower and that no significant increase in
recall was realized with additional layers beyond four. Additional layers also required more computing
time and memory. Kravchik and Shabtai. Along with the number of layers, each convolution
layer requires hyper-parameters to be defined for f ilter_size, number_o f _ f ilters, dilation_rates, and
activation_ f unction. These hyper-parameters are picked based on empirical analysis of the results
obtained from searching combinations of hyper-parameters values. Results of the hyper-parameter
searches for each model are presented in their respective case studies in Section 4.4.

As shown in Figure 3, each convolution layer is followed by a pooling layer. The first three
convolution layers are followed by a 1D MaxPooling layer. In addition, a final convolution layer is
followed by a GlobalMaxPooling layer to reduce the dimension of the data and pick the most important
features from each convolution filter.

Figure 3. Classification model using convolutions, LSTM, and dense layers. Here, w, w’, h, h’, f, and f’
represents the intermediate features.

3.3.3. Stealthy Attacks Representation

Along with CNN, LSTM layers are used to learn the temporal dependencies within the data
beyond the specified time window on which the CNN is being trained. This approach can identify
attacks where sensors/actuators are targeted for a long period of time with gradual physical impact in
the system. In our architecture, two LSTM layers are used to learn the long-term dependencies within
the input data. Each LSTM layer is initialized with a hyper-parameter of units, where units refers to the
dimensionality of the hidden states whose activations will be propagated to output. The initial LSTM
layer returns full sequences of cell output (ht) for every time step fed into the layer, returning a three
dimensional output of (batch size, t, units). This output is then passed as input to the second layer,
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which returns only the last output (ht) sequence of (batch size, units). Output obtained from the LSTM
layers will represent input features to effectively separate system normal behavior from anomalous
behavior. This process is visible in the principal component analysis (PCA) decomposition, Figure 4, of
the outputs from our two LSTM layers. As observed in Figure 4, initially the attack values are not
separable from normal values within a data set. After passing the input through the LSTM layers, the
normal and attack values are more segregated.

Figure 4. Principal component analysis decomposition of attack #23 and how it is represented after
passing multiple LSTM layers of the architecture.

3.3.4. Detection

In our architecture, LSTM cells contain 128 activation units, resulting in an output of
(batch size, 128). Once the results from LSTM layers are received, they are concatenated with the
results from the global max pooling layer. Global max pooling is applied to get a two-dimensional
presentation, in which each element is the result of pooling the feature map. The concatenated feature
representation is then passed through a dropout layer [34], with a dropout rate of 0.2, to prevent
overfitting through randomly disabling a percentage of the neurons at each training step.

As shown in Figure 3, the output of the dropout layer is passed through two, fully connected
dense layers. These layers each have a single unit size of [128, 64, 1]. The final dense layer in the
architecture outputs the probability 0–1 of an input being an attack. In this context, probability > 0.5 is
labeled as the time window that the system is under attack, and probability < 0.5 is labeled as normal.
To achieve this probability bound, the final dense layer uses a sigmoid activation function.

3.3.5. Optimizer and Loss Functions

Since our architecture is trained for a binary classification problem of identifying a time-window
as normal or attack, we use the loss function of Binary Cross-Entropy with added class weights as the
loss function during training. Binary Cross-Entropy is calculated by using Equation (8),

L(ŷ, y) =
−1
N

N

∑
i=1

[cw1 × yi log (ŷi) + cw0 × (1− yi) log (1− ŷi)] (8)

where L is the loss function, y is the true label, cw1 is the class weight assigned to an attack label, cw0

is the weight assigned to a normal label, and ŷ is the prediction from the model. Here, class weights
are derived from the ratio of occurrence of normal and attack classes within the training data.

Finally, we use the Adam [35] algorithm as an optimizer during the model training process.
The Adam optimizer requires four parameters: α, β1, β2, and ε. We use the parameters’ default values
proposed by Kingma and Ba [35], where α = 0.002, β1 = 0.9, β2 = 0.999, and ε = 1 × 10−7.

3.3.6. Metrics

The aim of our architecture is to detect ICS anomalies and attacks based on the sensor and actuator
data. To measure the performance of this architecture, we focus on the metrics of recall (Equation (9)),
precision (Equation (10)), F1-score (Equation (11)), and number of attacks detected. While we want
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the model to have a higher F1-score, this should not come at the expense of leaving a large number of
attacks undetected. Therefore, we calculate recall for each individual attack window to verify how
well the model is predicting each attack window. For the purpose of this study, an attack is detected if
an anomaly is detected within any attack time window.

recall =
tp

tp + f n
(9)

precision =
tp

tp + f p
(10)

F1− score = 2× precision× recall
precision + recall

(11)

where tp = number of windows correctly identified as attack, f n = number of windows incorrectly
identified as normal, and f p = number of windows incorrectly identified as attack.

3.4. Implementation

Algorithm 1 summarizes the implementation of our methodology for training the anomaly
detection model described in the sections above. Sensor and actuator data from ICS (X), indices of
sensors in the data set (S), manually encoded attack labels (Y), batch size (m), and window size (ws)
are passed as input to train the model. Initially, sensor and actuator data are scaled to a magnitude
of 0− 1 based on the distribution of a small subset of the data. Following the scaling, the data is
transformed into a sliding window format using the hyper-parameter ws. The sensor data in each
window goes through DWT. The transformed data are appended to the input along with the original
actuator data. The data is then split into train and test groups. A small percentage of data is used
for training. The purpose of training is to establish a performance metric to assess how the model
performs when presented with new attack behaviors. After the metric is obtained, a neural network
model is trained, using a batch size of m, with the process described in Section 3.3. This training
algorithm uses a weighted binary cross-entropy function to update the internal weights of the neural
network. The obtained weightings are then used to test the anomaly detection model against data it
did not observe during the training process. The model can then be deployed to catch attacks in real
time within the processes on which it is trained.
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Algorithm 1: Summary of Methodology.
Input : Time-series data X = {Xi}n

i=1, S sensors index in X, Y = {Yi}n
i=1 attack labels, batch

size m, window size ws, training samples n
Output : Trained weights for neural network model
X_trans f ormed← MinMaxTrans f orm(X, range = (0, 1))
forall j ∈ {1, 2, · · · , (n− ws)} do

X_wsj ← X_trans f ormedj+ws
j

if Y j+ws
j == 1 then
y_ws← 1

else
y_ws← 0

end
end
X_trans f ormed← DWT(X_ws[S])⊕ X_ws[!S]
X_train← X_ws0.4×n

1
X_test← X_wsn−ws

0.4×n
y_train, y_test← y_ws0.4×n

1 , y_wsn−ws
0.4×n

Randomly initialize internal weights of model w.
for each iteration do

forall k ∈ {1, 2, · · · , 0.4×n
m } do

Sample a batch X_traink from X_train;
Split batch into [X1

k , X2
k , · · · , Xl

k];
Feed batch into CNN+LSTM and get two output sequences [h1

ck, h2
ck, · · · , hl

ck], and
[h1

pk, h2
pk, · · · , hl

pk];
Concatenate sequences together, flatten into vector O, and dropout 20%;
Pass O through dense layers and final layer ending in sigmoid activation function to
obtain probability of input being attack;

Update internal weights w by using weighted binary cross-entropy (Equation (8)) and
Adam optimizer.

end
end

4. Case Study

The effectiveness of the proposed framework is verified using sensor and actuator data from
the Secure Water Treatment (SWaT) test bed [36]. SWaT is a functional miniature replica of a water
treatment plant located at the Singapore Institute of Technology [37]. Figure 5 provides a schematic of
the SWaT water treatment system. The treatment process, divided into six sub-processes denoted P1 to
P6, produces 5 gallons per minute of doubly filtered water. Each of the sub-processes is controlled
by a primary PLC and has a redundant hot-standby PLC. The water treatment process starts at
P1, as incoming water is taken in and stored in a tank. Then, the water is passed to P2 for quality
assessment, and chemical dosing is carried out to bring the water quality to an acceptable threshold.
In P3, the water is led through a fine set of filtration membranes to remove the undesired materials,
and in P4 chlorination and de-chlorination processes are conducted. In P5, the water is pumped
through a reverse osmosis (RO) process. The output from the RO process is stored in P6. The RO
concentrate is used for backwashing P3 filtration membranes, and the RO permeate is the end product
of the process—recycled water.
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Figure 5. Overview of the Secure Water Treatment testbed showing the processes segmentation along
with the location of sensors and actuators within the system [38].

4.1. Swat Data-Set

The SWaT data-set [37] contains 11 days of continuous operations data from 51 sensors and
actuators (Table 1) that are embedded in the six water treatment process steps. The data is collected
over seven days of normal operation and four days of a hackathon event where a total of 36 successful
attacks were carried out. Descriptions of the attack scenarios can be found on the website (https://itrust.
sutd.edu.sg/itrust-labs_data-sets/data-set_info/#swat) [37]. Most of the successful attacks are based
on injecting contrived process variable values into the PLC, resulting in the PLC accepting the spoofed
value as real sensor data. Some are stealthy attacks where the sensor values are modified slowly.

Overall, the data-set contains 53 columns (1 for timestamp, 1 for attack label, 51 for sensor/actuator
values) and 912,791 rows. Data is recorded once per second for a total of 10 days, 13 h, 33 min, and 11 s
of data (912,791 s total).

Table 1. Sensors and Actuators in SWaT Data.

Process Sensors Actuators

1 FIT101, LIT101 MV101, P101, P102

2
FIT201, AIT201, AIT202,
AIT203

MV201, P201, P202,
P203, P204, P205, P206

3 FIT301, DPIT301, LIT301
MV301, MV302, MV303,
MV304, P301, P302

4
FIT401, AIT401, AIT402,
LIT401

UV401, P501, P402,
P403, P404

5

FIT501, FIT502, FIT503,
FIT504, AIT501, AIT502,
AIT503, AIT504, PIT501,
PIT502, PIT503

P501, P502

6 FIT601 P601, P602, P603

https://itrust.sutd.edu.sg/itrust-labs_data-sets/data-set_info/#swat
https://itrust.sutd.edu.sg/itrust-labs_data-sets/data-set_info/#swat
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4.2. Data Preprocessing

To deal with noisy data and manage the high cardinality, the SWaT data set is put through three
preprocessing steps.

4.2.1. Scaling and Normalization

In order for each feature to contribute effectively to the learning algorithm’s output, the features
are scaled to a range of 0–1. In this case, normalization of the features is not feasible because the sensors’
measurements and actuators’ status do not follow a normal distribution. Therefore, normalization of
the features would result in the loss of information about their original distributions.

4.2.2. Slicing and Window Based Segmentation

A fixed size sliding window (ws) is selected as a hyper-parameter. In a data set of i entries,
(i− ws + 1) windows are required. To determine ws, a hyper-parameter search was carried out in the
range of 50–300, which resulted in a window size of 200 as the best fit for each model.

4.2.3. Performing Wavelet Transformation

Once the data is split into time windows, wavelet transformation is carried out on the sensor data
for each time window. This transformation increases the number of features from 51 to 76.

Finally, the data is divided into train and test sets—40% of the data is used for training, 60% for
testing. 0.06% of the training set data is labeled as attack data and included in the training set to increase
the effectiveness of the detection algorithm. Thus, the model is trained on a small proportion of the
attack data, while the remaining attack data is included in the testing set to validate the performance
of the model against new attacks.

4.3. Hardware Specification

Training is carried out in Google Compute cloud instances. Different configurations of machines
are picked based on the type of model we are training. The convolution only models are trained in
a cloud computing instance with an NVIDIA Tesla K-80 GPU (12 GB RAM) and 61 GB of memory.
The CNN+LSTM models are trained with a cloud computing instance with 8 NVIDIA Tesla V100
GPUs (32 GB RAM) and 80 GB of memory. To train the SVM model, we use a processor optimized
computing instance with 8 vCPUs and 64 GB RAM.

4.4. Anomaly Detection Results

The attack detection performance of the SVM, CNN, and CNN + LSTM anomaly detection
models is summarized in Table 2. Each model was trained and tested using the SWaT data set. A more
detailed discussion of each model’s performance follows.

Table 2. Results of Testing Our Supervised Classification Models.

Method Recall Precision F1-Score

One-class SVM 0.699 0.925 0.796

CNN 0.69 0.58 0.65

CNN + LSTM with Wavelet Transformation 0.773 0.972 0.861

4.4.1. Support Vector Machine

A baseline study was performed based on the support vector machine method presented by
Inoue et al. [15] to verify the performance of unsupervised methodologies with this data set. A one-class
classification SVM using a radial basis function kernel is used to learn a classification boundary for
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normal data (excluding attack data) and identify the outliers. Then the trained model was tested on the
attack data to detect anomalies that are not within the learned classification boundary. Results of the
SVM (Table 2) show that the model performed with high precision; however it was not able to detect
16 of 36 attacks and took a long time to train (4 h). On further investigation, we find that SVM missed
a combination of stealthy as well as non-stealthy attacks during the testing phase. This inefficiency
and failure to detect anomalies were also reported by other researchers who applied unsupervised
methodologies [14–16] to the SwaT dataset.

4.4.2. Convolutional Neural Network

The initial experiment was based only on the convolution-Maxpooling layers where the
ability of CNN to learn temporal dependencies within a time-window helps identify normal and
attack behaviors.

As mentioned in Section 3.3, CNN is able to learn the relationships between sensors/actuators
within a time window to detect non-stealthy attacks. For example, learning the relationship between
Level Indicator (LIT) 101, Motor Valve (MV) 101, and Flow Indicator (FIT) 101 allows the model to
infer the presence of anomalous behavior within the attack window. Therefore, an attack that results in
tank overflow in Process 1 through the manipulation of LIT101 and MV101 (Figure 6) can be detected
by the model.

Figure 6. The relationship between Level Indicator 101 (LIT101)and Flow Indicator 101 (FIT101) under
normal behavior (left) and under non-stealthy attack (right).

Hyper-Parameters

Hyper-parameter search space for this model is limited to the parameters of dilation rate, window
size, and filter size. A grid search for these hyper-parameters resulted in a filter size of 5, the number
of filters for each layer of convolution as [2, 4, 8, 16], and a window size of 200 as the best fit for this
CNN architecture.

Results

Training time of the proposed model was 30 minutes, and the cost of training was approximately
$1.25 when computed in a cloud instance. While the metrics show better performance than the SVM
approach, this model still fails to catch 13 of 36 attacks. (See Table 2) Seven of the 13 missed attacks are
stealthy attacks.

4.4.3. Convolutional Neural Network+Long Short-term Memory

To improve on the CNN architecture and overcome the weakness of convolutions where the layers
are limited to learning time windowed relationships between sensors and actuators, LSTM layers
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are included as part of the proposed model. As described in Section 3, LSTM layers overcome this
weakness of convolutions by learning long-term sequences to facilitate detection of stealthy attacks.
In this architecture, usage of LSTM improves on the classification of anomalous behaviors that result
from gradual changes in sensor/actuator values. For example, stealthy attack #3 (Figure 7) slowly
increases the value of LIT 101 by 1 mm/sec to artificially restrict flow into the tank, causing pump
damage. Initially, this model was trained with 1 LSTM layer; however, the model had minimal
improvement in its recall score relative to the CNN-only model. After increasing the number of LSTM
layers to 2, the recall score and the number of attacks detected improved.

Figure 7. The relationship between LIT101 and FIT101 under normal behavior (left) and under stealthy
attack on LIT-101 (right).

Hyper-Parameters

To find the best model, there are multiple hyper-parameters that need to be optimized: window
size, batch size, kernel size of convolutions, and dilation rates. To this end, we explore the range of
1–10 for the kernel size, then the filter sizes are adjusted to match the output size of the LSTM cells.
Window sizes were evaluated in the range of 50–300; dilation rates were evaluated in the range of 2–8.
Each convolution layer contains a dilation rate of dn where n is the layer number of the convolution.
The search for optimal hyper-parameters in these spaces are carried out using a grid-style search with
the aim to optimize recall score.

The hyper-parameters used in the final model are batch size of 200, window size of 200 s,
kernel size of 4, filter sizes of [5, 10, 15, 20], and dilation rates of [2, 4, 8, 16]. In addition, we limit our
LSTM cells to 128 dimensions to help the model learn a higher dimensional relationship between
various features over a long period of time.

Results

While the proposed model achieved better performance than previous deep learning
methodologies, it still failed to detect 9 of 36 attacks within the SWaT data set. Multi-point attacks
(20, 21, 24, 25, 30, 32) and three single point attacks (27, 28, 31) are not detected by our anomaly
detection model. The three undetected single point attacks and multi-point attack #32 did not cause
physical changes within the process, failing in their goal of violating the safety properties of the system.
Therefore, the impact of failing to detect these attacks is minimal. However, multi-point attack #30
keeps pumps P-101 and P-102 off to stop water outflow to the other processes. While this attack
succeeds, the attack does not cause damage to the other processes in the time it took for the attack to
start and stop. Therefore, 4 of the 9 undetected attacks cause physical harm to the system. In attacks
20 and 21, a level indicator value is set to a value only slightly above an actionable threshold while
another component is attacked at the same time. These attacks were harder for our model to catch
because noise is present in the level indicator training data—values fluctuate despite needing to be
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a single value. Further exploration of methods for reducing noise in sensor data could improve model
performance regarding these types of attacks. The final model completed training in 25 min while
missing 9 of 36 attacks. As shown in Table 3, this model performs better in detecting single point
attacks than the results in Inoue et al. [15]. Furthermore, our model can be trained within 25 min at
a cost of approximately $2.00, which is significantly lower than the 2 weeks that it took for the model
proposed by Inoue et al. [15]. In addition, we find that implementing the assumption provided by
Kravchik and Shabtai [22] increases the number of attacks detected by our proposed model to 32 out
of 36 attacks. Under this assumption, alarms that were previously classified as false positives are
considered to be true positives since they are raised after an attack period has ended and before the
system returned to the normal state. While this approach increases the number of detected attacks, it is
not ideal to detect attack after the fact.

Detection latency is a key parameter in evaluating a model’s utility for real-world anomaly
detection. In attack #26 (Figure 8), an attacker sets LIT-401 to values lower than the lowest acceptable
threshold in order to cause a tank to overflow. The CNN+LSTM model raises the initial alarm at 44 s
after the attack begins, and 94% of the attack window is correctly labeled as an attack. The rapid,
accurate response helps detect the attack before it causes physical harm to any process components.
Similar detection patterns were observed for the other attacks detected by the CNN+LSTM model.
Overall, this method detects attacks earlier than the Shalyga et al. [16] model. In Table 3, recall rates
and detection delays for each attack in the SWaT data set are compared to a baseline formed by results
from Inoue et al. [15] and Shalyga et al. [16].

Figure 8. Example of an attack detection by the CNN + LSTM model for attack #26 ( see Table 3).
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Table 3. Recall rates and detection delay for each attack is compared to baseline formed
in Inoue et al. [15] and Shalyga et al. [16] Detection Delays of N/D mean attacks were not detected,
while N/A signifies unavailability of time in baseline paper.

Attack # Attack Points Recall
(Our Method) Recall (Inoue)

Detection Delay
(Our Method)

in Seconds

Detection Delay
(Shalyga)

in Seconds

1 MV-101 1 0 83 N/D
2 P-102 1 0 40 112
3 LIT-101 1 0 11 N/D
4 MV-504 1 0 41 N/D
5 AIT-202 1 0.717 00 11
6 LIT-301 1 0 26 42
7 DPIT-301 1 0.927 80 16
8 FIT-401 1 1 5 18
9 FIT-401 1 0.978 5 3
10 MV-304 1 0 1 N/D
11 MV-303 1 0 0 N/D
12 LIT-301 1 0 2 297
13 MV-303 1 0 29 N/D
14 AIT-504 1 0.123 4 13
15 AIT-504 1 0.845 26 N/D
16 MV101, LIT-101 1 0 0 10
17 UV-401, AIT-502, P-501 1 0.998 200 16
18 DPIT-301, MV-302, P-602 1 0.876 2 102
19 Turn off P-203 and P-205 1 0 174 53
20 LIT-401, P-402 0 0 N/D 1043
21 P-101, LIT-301 0 0 N/D 67
22 P-302, LIT-401 1 0 25 N/D
23 P-302 1 0.936 0 1164
24 P-201, P-203, P-205 0 0 N/D 52
25 P-101, MV-101, LIT-101 0 0 N/D 105
26 LIT-401 1 0 44 102
27 LIT-301 0 0 N/D N/A
28 LIT-101 0 0 N/D N/A
29 P-101 1 0 253 89
30 P-101, P-102 0 0 N/D 82
31 LIT-101 0 0 N/D 110
32 P-501, FIT-502 0 1 N/D 79
33 AIT-402, AIT-502 1 0.923 60 73
34 FIT-401, AIT-502 1 0.94 61 71
35 FIT-401 1 0.933 0 71
36 LIT-301 1 0 1021 N/D

5. Discussion

This paper proposes a CNN + LSTM supervised deep learning anomaly detection model for
detecting stealthy and non-stealthy attacks targeting sensors and actuators in industrial control systems.
As mentioned in Section 2, previous criticisms of supervised anomaly detection methodology within
this domain have focused on their inability to catch novel attacks that were not available during
training of the model. Analysis of the final model derived in this paper shows that supervised models
can perform empirically better than semi-supervised models in catching known and unknown attacks
(Table 3). Furthermore, it is shown that supervised methodologies can offer performance similar to
unsupervised methodologies in the context of ICS anomaly detection.

Along with criticism of supervised methodologies, deep learning methodologies have been
criticized for their inability to expand to cover an entire process or system [14] and maintain
an inexpensive training cost [15]. In this paper, we provide a training architecture with feature
engineering that can train on the entire data set of a water treatment plant, while maintaining low
cost) and a high detection rate (Table 3). With the availability of high power computing at low hourly
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costs, industrial sectors can add a layer of security to their processes by leveraging deep learning
methodologies and creating an anomaly detection system with low cost and time penalty.

While this paper provides improvements in supervised deep learning architectures that can
be used for creating anomaly detection models for ICS, it works under the assumption that attack
labels can be added to the sensor/actuator data. There are various ways of obtaining the necessary
labeling. One approach is to label faults in the data set as attacks. At the process level, faults are
going to have the same characteristics as an attack as both are violating the normal procedure of the
process. Labeled data can also be collected by simulating attacks using methods such as honeypots [39],
simulations [40,41], or deep learning attack generation techniques [42]. While these are simulations of
working ICS, they offer data that can be used to build an extra layer of protection for these systems.

6. Conclusions

This paper provides a novel approach to overcome challenges that are unique to operational
technologies and industrial control systems, namely the variety of data types and ranges that are
obtained from various components. Data collected for physical processes in ICS are discrete in nature
for actuators and continuous for sensors; therefore, new tools and algorithms are required to interpret
time-series observations of these values and provide precise and quick detection of intrusions.

In this paper, we explore an LSTM + CNN-based supervised anomaly detection methodology
for ICS that catches 27 out of 36 attacks in SWaT testbed data while maintaining a low cost training
time. We use a wavelet transformation feature engineering pipeline for data preprocessing to encode
information for training our model. Various deep learning, as well as unsupervised methodologies
were explored for a comprehensive comparison. Through this work, we observe higher performance
for a supervised methodology compared to previous unsupervised and semi-supervised deep learning
methodologies when applied to the same data set.

Future work will focus on validating the proposed model on different data sets and adapting the
methodology and knowledge base to better differentiate between component failure and attack.
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