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ABSTRACT

In this dissertation, neuromorphic circuits are used to implement spiking neu-

ral networks in order to detect spatiotemporal patterns. Unsupervised training and

detection-by-design techniques were used to attain the appropriate connectomes and

perform pattern detection.

Unsupervised training was performed by feeding random digital spikes with a re-

peating embedded spatiotemporal pattern to a spiking neural network composed of

leaky integrate-and-fire neurons and memristor-R(t) element circuits which imple-

ment spike-timing-dependent plasticity learning rules.

Detection-by-design was achieved using neuromporphic circuits and digital logic

gates. When detection-by-design was achieved using both neuromorphic circuits and

digital logic gates, a network was created of spatiotemporal pattern detector circuits,

each of which was capable of detecting the three fundamental spatiotemporal pat-

terns (NA-NA-∆t, NA-NB-∆t, and NA-NB-Coincidence), in order to detect combina-

tions of two-spike features in the desired spatiotemporal pattern. The spatiotemporal

pattern was detected when all of the two-spike features were detected. Similarly,

when detection-by-design was achieved using only neuromorphic circuits, a Complex

Pattern Detecting Network was was formed by combining Simple Pattern Detecting

Networks, each of which was capable of detecting the three fundamental spatiotem-

poral patterns. The Complex Pattern Detector was used in a proof-of-concept to

demonstrate a detect-and-generate spatiotemporal symbol computing paradigm.
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1 CHAPTER ONE: BACKGROUND AND LITERATURE REVIEW

What is explored in this work is detecting spatiotemporal patterns using hardware

Spiking Neural Networks (SNNs). This pattern-detecting behavior is then used in a

proof-of-concept to perform computation (addition) through a detect-and-generate

spatiotemporal symbol paradigm. However, before being able to discuss what makes

this work unique, some background information on SNNs is necessary; the rest of

Chapter One is a primer on SNNs with enough information that someone with no

knowledge in this subject would be able to understand what follows1.

1.1 Spiking Neural Network Primer

Spiking neural networks are networks of spiking neurons connected through syn-

apses which, depending on factors such as the network topology, the synaptic learning

rule, and how it was trained, can detect spatiotemporal patterns. This definition nat-

urally leads to many questions; at the very least after having read that sentence this

author would want to know: “What are spiking neurons?”, “What are synapses?”,

“How/why are neurons connected through them?”, “What is a network topology?”,

“What is a synaptic learning rule?”, “What is training?”, and “What are spatiotem-

poral patterns and how can a spiking neural network detect them?”. The rest of this

section is devoted to helping the reader understand the answers to these questions,

and more, in an effort to establish a foundational level of knowledge concerning SNNs.

1Some foundational electrical engineering knowledge concerning Complementary
Metal-Oxide-Semiconductor (CMOS) circuits is assumed.
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1.1.1 Neurons

A neuron is a simple computing element. It takes some kind of input signal and

produces some kind of output. In the case of spiking neurons, the output is depen-

dent upon a comparison with a threshold. This explanation is intentionally vague and

broad; it allows the reader to imagine all kinds of things that might otherwise not be

regarded as neurons. For example, using this vague description one could imagine a

bucket placed under a leaky roof as a neuron. Let us more closely examine this exam-

ple. The drips from the leaky roof can be thought of as input signals to the neuron. Do

the drips mean anything? Do the drips have some context? The bucket doesn’t care

in the same way that a neuron doesn’t. The neuron merely accepts them as inputs.

Inputs to neurons can be anything. Yes, you read that correctly—strictly speaking

neuron inputs can be anything. Biological neurons tend to take post-synaptic action

potentials as inputs, circuit-based neurons tend to take currents and voltage signals as

inputs, and neurons that are little more than abstractions can take unitless numbers

as inputs2 [1–3].

Once the drips enter the bucket neuron, they collect and accumulate in the bot-

tom. In a similar manner, neurons tend to collect and accumulate input signals from

afferent, or pre-synaptic, neurons. Biological neurons accumulate action potentials

in the capacitance of their soma, CMOS neurons accumulate charge in a capacitor,

and software abstractions of neurons accumulate numbers in a memory unit—all of

which are done in a very similar way to how our bucket neuron accumulates drips—

2Unitless quantities can represent anything: apples, sky scrapers, the number of
seconds since 1970, etc . . . The neuron doesn’t care what the number represents,
merely that it can make a comparison. Another thing to note is that the neuron
doesn’t care whether or not the sums of the inputs make sense—apples, sky scrapers,
and seconds can all contribute to the soma and be used to produce an output.
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by summing them together and keeping track of the running total.

After the drips enter the bucket and are accumulated, the neuron performs a simple

comparison between how high the water level is and how high the lip of the bucket is.

This isn’t entirely true, the bucket isn’t actually checking anything, but the response

of the bucket neuron depends on the height of the bucket and the height of the

accumulated water in the bucket. So, in a way, a check is performed as a consequence

of the physical properties of the bucket and the state of the inputs. If the height of

the water in the bucket after the new drips are accumulated is less than the height of

the bucket, then nothing happens. However, if the input drips cause the water level

to exceed the height of the bucket, then some water will spill out. This is similar to

how the behavior of a neuron is dependent on the value of the accumulated inputs and

the value of the threshold. A neuron threshold, sometimes denoted as θ, is just some

value. Neurons are constantly comparing this threshold value to the instantaneous

running value of the accumulated inputs. Generally speaking, when the accumulated

input is beneath the threshold the neuron produces one output, and when it is above

the threshold another output is produced. In a biological neuron the generation of an

action potential, or action potentials, is less likely when the soma potential is beneath

the threshold potential than when it is above it. Generally speaking this is also true

for most CMOS and software neurons that one particular output is more likely than

another depending on the relationship of the accumulated input and the threshold.

For the purposes of this work, and previously completed work, the neurons are CMOS

circuits, and so the threshold value refers to the switching voltage potential of the

CMOS inverter circuit connected to the soma capacitor.

The next thing to happen, after the comparison is made, is that the result of the
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comparison is processed to create the appropriate outputs. What does processing

mean in the context of a bucket? In this example it means doing something with the

contents of the bucket. Most of the time when I look over at the bucket in my living

room, the water level is below the top of the bucket, so I do nothing. However, every

once in a while when I look over the bucket is over flowing, so I run the bucket over

to the sink and dump it out. This dichotomy of action sequences, either dumping

out the contents of the bucket in the sink followed by replacing the bucket under the

drips, or doing nothing, based on whether or not the bucket is overflowing, is typical

neuron behavior. In particular, the period of time when the bucket is being dumped

can be thought of as producing an output, and the period of time resetting the

bucket—the time spent putting the bucket back under the drips—can be thought of

as a refractory period where new inputs are not accumulated, and new outputs can’t

be generated, until after the refractory period ends and the bucket is returned to its

original state collecting drips. In biological neurons if the soma potential exceeds θ,

then an action potential, or action potentials, is/are (probably) generated followed by

a refractory period. During the refractory period the neuron is unable to generate new

action potentials while ionic imbalances, created while generating the initial action

potential(s), are restored. This places the neuron in a condition where it is able to

generate further action potentials. The refractory period can be thought of as putting

the bucket back under the drips as no outputs can be generated and no new inputs

can be accumulated during this time period. If one were to describe the potential

actions that could be performed by the neuron, and the conditions under which they

were performed, this description would be called an activation function. One very
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simple example of an activation function for a biological neuron could be

f(VSoma) =

 Do nothing : VSoma < θ

Generate action potentials : VSoma ≥ θ.
(1)

This glosses over many details, is deterministic, and has no refractory period, but it

does describe the actions the neuron would take under certain conditions, and thus

can be considered an activation function.

For a digital spiking neuron, an extremely naive activation function that ignores

time might look extremely similar, namely

f(VC1) =

 0 V : VC1 < θ

1.8 V : VC1 ≥ θ,
(2)

where VC1 is the voltage of the soma capacitor.

In a software implementation of a neruon the activation function might look like

f(soma) =


−1 : soma ≤ −2

tanh(soma) : −2 < soma ≤ 2

1 : soma ≥ 2,

(3)

where there is no threshold, but instead the value stored in the soma is mapped to

the output either through constant values or a mathematical function. The general

actions of what is known as a Leaky Integrate-and-Fire (LIF) neuron are depicted as

a flowchart in Fig. 1.1.1.

Now that we’ve discussed the fundamentals of how a variety of neurons work
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Fig. 1.1.1. A flowchart describing the general actions of a LIF neuron
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in general, we can discuss a specific CMOS LIF neuron implementation. For the

purposes of this work, and previously completed work, the neurons that I will be

referring to are based on a design by Carver Mead, whose inputs and outputs are

time-varying voltage potentials [2]. Fig. 1.1.2.a and Fig. 1.1.2.b depict schematics of

an opamp-based LIF neuron and the LIF design used, respectively. Fig. 1.1.2.c is a

cartoon of the response of the neuron in 1.1.2.b to stimulus. What is illustrated is

how input current competes with leaky current set by Leak Voltage. This competition

moves charge to accumulate on and evacuate from C1 and C2 which in turn causes

VC1 to rise and fall over time. When VC1 crosses θ four things happen rapidly. First,

Node A drops. This cuts off the leaky current. Second, the output rises. This quickly

pulls up VC1, by the positive feedback through C2 and the capacitive divider formed

by C1 and C2. Third, input currents are prevented from influencing the neuron.

Fourth, a reset current is induced causing VC1 to fall at a rate determined by Reset

Voltage. When VC1 lowers below θ four things happen. First, Node A rises. This

cuts off the reset current. Second, the output lowers. This quickly pulls down VC1,

by the positive feedback through C2 and the capacitive divider formed by C1 and

C2. Third, inputs are enabled to influence the neuron again. Finally, a leaky current

is induced causing VC1 to fall at a rate determined by Leak Voltage returning the

neuron to its initial condition.

The characteristics of the voltage spike produced by the neuron are the result of

decisions made by the designer of the circuit. The output spike is initiated by input

currents sufficient to overcome the leaky current, which in turn causes VC1 to rise

and cross θ. The extent to which individual inputs influence the neuron, and window

during which individual input spikes influence the soma (VC1), are determined by
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Fig. 1.1.2. Schematics for CMOS LIF neuron and a cartoon depicting
response to typical stimulus. a) A LIF design based off of operational
amplifiers. b) A LIF design based off of Carver Mead’s design [2]. c) A
cartoon of the response of the circuit depicted in (b) to input stimulus.

the magnitude of the Leak Voltage selected by the user, as the Leak Voltage is what

limits the leaky current when the Output Voltage is low. The extremes of the voltage

spike, the height and resting potential, are determined by the rails of the circuit due

to the positive feedback through C2. The width of the voltage spike is determined

by the magnitude of the Reset Voltage selected by the user, as the Reset Voltage is

what limits the reset current when the Output Voltage is high.

1.1.2 Synapses

Synapses are connector elements that scale the signals passed between two, and

only two, neurons. They can be static elements, like resistors or Read-Only Mem-

ory (ROM), or they can be dynamic elements, like CMOS circuits, memristors,
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electrolyte-gated transistors, intercalation devices, memory cores, or floating gate

Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) [4–12].

Because a synapse connects two, and only two, neurons, the neurons on either

side of the synapse can be referenced with respect to that synapse. The neuron that

sends signals through the synapse is referred to as the pre-synaptic neuron and its

signals are referred to as pre-synaptic signals. The neuron that receives scaled signals

through the synapse is called the post-synaptic neuron and its signals are referred to

as post-synaptic signals.

The scaling performed by synapses, in conjunction with activation functions, en-

able neural networks to perform transformations on data; if the activation functions

are non-linear, then the transformations performed by the neural networks can also

be non-linear [13].

1.1.3 Neural Network

Neural networks are networks of neurons connected through synapses. When

neurons and synapses are combined together in a network, inputs are scaled as they

pass through synapses and then summed together and processed in the neuron.

If the neural network’s synaptic weights can change, then they can be changed

in a way such that they do something useful in response to input. In particular,

because of the transformations that neural networks are capable of, they can be used

to approximate functions [14].

It is straightforward to show how some functions, for example

f(a, b) =

 0 : a+ 2b < θ

1 : a+ 2b ≥ θ,
(4)
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can be approximated by neural networks that sum and scale their inputs. But,

neural networks are most useful when they are used to approximate functions that

are extremely complex or too difficult for humans to program into a computer. For

example,

f(image) =

 0 : No face in image

1 : Face in image.
(5)

Complicated functions, like the one described by (5), enable neural networks to do all

sorts of useful tasks like binary classification, n-ary classification, and spatiotemporal

pattern recognition [15–17]. In order to approximate functions that are extremely

difficult or impossible to describe a technique called training must be used.

Training techniques can generally be categorized as supervised and unsupervised.

In supervised training, the neural network is exposed to labeled stimulus and allowed

to produce a response. The response is then used to produce an error, based on

the labels, and update the weights [18, 19]. To do this, the label of the stimulus

is compared to the response of neural network, and the difference between the label

and the response is used to generate the error through an error function. The error

is then used to update the synaptic weights such that the output produced by the

neural network more closely approximates the desired functionality. One popular

method of updating the weights is to use a technique called backpropagation [20]. In

backpropagation, the synaptic weights of the network are updated by the derivative

of the weight with respect to its contribution to the error. The technique is called

backpropagation because the derivatives are calculated starting from the output layer.

In unsupervised training the neural network is exposed to unlabeled stimulus and

allowed to produce a response, the input and the response are used to generate an
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error (without the need for labels), and the error is used to update the weights of the

neural network.

Both supervised and unsupervised methods exist for training spiking neural net-

works [17–19, 21]. The completed work presented in this dissertation utilizes an

unsupervised training method where the synaptic weight is updated in accordance

with a learning rule—Spike-Timing-Dependent Plasticity (STDP).

STDP is a Hebbian learning rule in which a synaptic weight is changed based on

the temporal relationship between pre- and post-synaptic spikes. ‘Hebbian’ refers to

the work of Canadian psychologist Donald O. Hebb and specifically refers to his idea

that changes in synaptic weight should have something to do with the signals that

pass through the synapse [22]. In particular, Hebb asserted that, “When an axon

of cell A is near enough to excite cell B and repeatedly or persistently takes part in

firing it, some growth process or metabolic change takes place in one or both cells

such that A’s efficiency, as one of the cells firing B, is increased [22]”. Colloquially,

this is often summarized as, “Neurons that fire together, wire together.” The phrase

‘learning rule’ in this definition refers to a rule that describes how synaptic weight

should be updated.

There are many different ways to connect the neurons and synapses together.

The ways to connect neural networks together are called topologies. Some common

topologies that you might read about include perceptrons 3, Hopfield networks, and

deep neural networks. Of these topologies, perceptrons are the most relevant to the

3Single-layer feed-forward neural networks are sometimes referred to as percep-
trons. This is technically an inaccurate description, but is so prevalent that the
terms ‘perceptron’ and ‘single-layer feed-forward neural network’ are sometimes used
interchangeably. Strictly speaking, a perceptron is a feed-forward neural network
which has been trained using the perceptron training algorithm.
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completed work described in the following chapters, as this was the topology that was

used for spatiotemporal pattern detection.

Single-layer perceptrons are perceptrons in which the entirety of the network con-

sists of a single neuron connected to inputs through synapses. This topology is what

Rosenblatt described as a “simple perceptron” consisting of an association system

and a response unit [15, 23]. The association system in this topology consists of the

synapses between the input layer and the output layer, and the response unit consists

of a single neuron. Trained perceptrons are capable of discerning whether or not a

particular stimulus is representative of a certain group, for example whether or not

a particular stimulus represents the letter ‘E’. This kind of discrimination is called

binary classification.

Sometimes, it is useful to be able to discuss, not only the connections of a neural

network, but also the unique state of that network’s synapses. The certain way that

a particular neural network is connected, including the synaptic weights, is referred

to as that neural network’s connectome. The term ‘connectome’ is convenient for

situations where one desires to describe the particular state of a neural network in

time, such as when writing computer programs.

1.1.4 Spatiotemporal Pattern Recognition

Within the context of SNNs, spatiotemporal patterns are patterns in time from

multiple sources. Fig. 1.1.3 depicts some examples of spatiotemporal patterns.

It is convenient, although inaccurate, to think of spatiotemporal patterns as bi-

nary bit streams on a data bus. Just like bit streams, spatiotemporal patterns are

arbitrary, abstract, and ambiguous—they have absolutely no meaning without con-

text. However, within proper context, spatiotemporal patterns can be used, just like
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Fig. 1.1.3. Some examples of spatiotemporal patterns. a) A spatiotem-
poral pattern consisting of digital spikes from three different neurons. b)
A spatiotemporal pattern consisting of shaped pulses from three different
neurons. c) A spatiotemporal pattern consisting of impulses from three
different neurons.

bit streams, to represent addresses, signals, and sensory information [24–26].

Just as with bit streams, different encoding schemes exist for spatiotemporal pat-

terns. Information in spatiotemporal patterns can be encoded in the spike rate, the

latency between spikes from different neurons, the interspike intervals, and by the

phase relationship between the spikes and some other signal (similar to clocked digi-

tal signals) [27].

But, intentionally encoding and decoding streams of bits can be accomplished

using traditional digital systems. What makes SNNs unique is their ability to detect

spatiotemporal patterns without knowing ahead of time what the spatiotemporal

patterns are [17, 21].

SpatioTemporal Pattern Recognition (STPR) is the process of recognizing spa-

tiotemporal patterns. In the context of SNNs this means producing a particular

output that coincides with the occurrence of a particular pattern [17]. At the time of

writing this, how this behavior arises is not well understood.
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1.2 Summary

This chapter covered the foundational information that is necessary to understand

the rest of this work. Neurons, synapses, spatiotemporal patterns, and spatiotemporal

pattern recognition were introduced.

Neurons and synapses are the building blocks of SNNs. Neurons are simple com-

puting elements which produce an output determined by passing a value stored in an

integrating soma through a threshold-based activation function. Synapses are tightly

coupled memory elements that scale the signals passed between neurons.

Spatiotemporal patterns are patterns of signals over time from different sources.

Spatiotemporal pattern recognition is simply the process of recognizing spatiotem-

poral patterns. In the context of SNNs this means creating an SNN that produces

output spikes which tend to coincide with the occurrence of some spatiotemporal

pattern at its input. As this behavior is difficult to achieve analytically, STPR is usu-

ally achieved through either a supervised or unsupervised training method4. STPR

behavior has also been shown to arise from single-layer feed-forward networks, with

synaptic weights that update in accordance with local learning rules such as STDP,

which are exposed to an input composed of a repeating spatiotemporal pattern and

random noise.

1.2.1 Research Summary

In this research, spatiotemporal patterns are detected using LIF Neuron, Synapse,

and Delay circuits arranged in various topologies. The methods used to achieve the

appropriate connectomes were unsupervised training and designing for a known pat-

4Chapter 5 will demonstrate a non-training method for detecting spatiotemporal
patterns with SNNs
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tern. Unsupervised training was used to train a single-layer feed-forward network

of LIF spiking neurons to detect a random spatiotemporal pattern. The training

consisted of repeatedly feeding a particular spatiotemporal pattern to the input of

the network along with random noise. Designing for particular patterns was per-

formed through the use of Simple Pattern Detecting Networks (SPDNs) to create

a Complex Pattern Detecting Network (CPDN) to detect a particular known spa-

tiotemporal pattern. This was accomplished by unique two-spike features from the

known spatiotemporal pattern, configuring an SPDN to detect each of the features,

and layering the SPDNs together to produce a single output spike when all of the

features are detected.

One explored use for spatiotemporal pattern detection is computing using a detect-

and-generate computing paradigm. In this paradigm, inputs are spatiotemporal sym-

bols which are detected and interpreted by an interpretation network. The interpreted

symbols are passed to a condition network which performs logical operations on the

interpreted symbols and informs the generation network. Then, a generation net-

work produces the appropriate spatiotemporal response through generation based

on the response of the condition network. A spatiotemporal half adder, which took

spatiotemporal binary inputs and produces spatiotemporal binary outputs, was used.

1.2.2 Dissertation Overview

Chapter 2 introduces a CMOS synapse. The CMOS synapse is a circuit which

attenuates spiking action potentials passed through it, and updates its weight in ac-

cordance with a user-defined STDP learning rule. The CMOS synapse is composed of

three different subcircuits: an Race Condition Discriminator (RCD) Circuit, a Gaunt-

let Circuit, and a Synaptic Core Circuit. Simulations demonstrating the behavior of
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each subcircuit are presented and the operation of each subcircuit is discussed. Then,

simulations demonstrating the tunability of the CMOS synapse are shown, as well

as a simulation that demonstrates how the CMOS synapse can be tuned to produce

biologically plausible STDP. The contributions from this chapter are published in

[28].

Chapter 3 introduces a Spatiotemporal Pattern Detector. The Spatiotemporal

Pattern Detector is a circuit composed of modified neuron circuits and digital logic

gates which is capable of detecting three basic spatiotemporal patterns: Na-Na-∆t,

Na-Nb-∆t, and Na-Nb-Coincidence. The Spatiotemporal Pattern Detector is com-

posed of three different subcircuits: the Window Circuit, the Pulse Formatter Circuit,

and the Refractory Circuit. Simulations demonstrating the behavior of the subcir-

cuits and descriptions of their operation are shared. Then, the ability to detect

complex spatiotemporal patterns by combining spatiotemporal pattern detectors is is

also demonstrated in simulation. The contributions from this chapter are published

in [29].

Chapter 4 introduces the R(t) element model. R(t) elements are elements whose

resistance varies in time. This chapter shows how R(t) elements can be combined with

memristors to create STDP circuits. Equations describing the conditions for perfect

STDP, or STDP that only occurs due to related spikes, using R(t) elements and

memristors are given. Then, basic circuits that exhibit simple R(t) and complex R(t)

element behaviors, as well as STDP circuits composed of these R(t) element circuits

and memristors, are described and simulation results demonstrating their behaviors

are presented, and STPR using these R(t) element STDP circuits is demonstrated.

The contributions from this chapter are published in [30].
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Chapter 5 concerns spatiotemporal pattern detection, generation, and computing

using neural components. A spiking LIF Neuron Circuit, simple Synapse Circuit, and

Delay Circuit, which can mimic the propagation time of action potentials along the

axon of a nerve cell are introduced. Two different categories of delays, tolerant and

intolerant, and two different kinds of intolerant delays (resetting, and non-resetting)

are explained. Then, a simple pattern detecting network, which is a SNN capable

of detecting the three simple spatiotemporal patterns, is demonstrated in simulation.

This is followed by a demonstration of a complex spatiotemporal pattern detector,

which is a spatiotemporal pattern detector that detects non-simple spatiotemporal

patterns. the CSPD is composed of multiple SPDNs, and is shown to detect a com-

plex spatiotemporal pattern in simulation. Then, a detect-and-generate computing

paradigm, the spatiotemporal computing element, is presented and a half adder us-

ing this paradigm is demonstrated in simulation. The contributions from this chapter

have been submitted for publication.

Finally, future work is discussed in Chapter 6.



2 CHAPTER TWO: CMOS SYNAPSE

The adult human neocortex is composed of trillions of synapses interconnecting

billions of neurons in extremely complex structures [31–33]. A synapse serves to

modulate the connection strength between any two neruons in the system. This is

achieved by altering a pre-synaptic action potential’s influence in exciting a post-

synaptic neuron in proportion to a parameter called synaptic weight. Having a large

weight means having a stronger connection, whereas having a small weight means

that little or no propagation of a pre-synaptic signal to a post-synaptic neuron will

occur. How a synaptic weight changes over time is known as the learning rule, and

is some function of the activity of the associated pre- and post-synaptic neurons. In

some cases, activity can refer to firing rates, but it is also known to relate to timing

of individual spikes in a mechanism called STDP [34–36]. STDP can be thought of

as a rule which determines synaptic weight updates as a function of timing between

pre- and post-synaptic spikes. If a pre-synaptic spike is followed closely by a post-

synaptic spike, the synaptic weight is increased (potentiation). In the opposite case,

the weight is decreased (synaptic depression). STDP is known to be responsible for

certain abilities observed across many animal species, including rapid response to

©2017 IEEE. Reprinted, with permission, from Robert C. Ivans, Kurtis D. Cant-
ley, and Justin L. Shumaker, ”A CMOS Synapse Design Implementing Tunable Asym-
metric Spike Timing-Dependent Plasticity”, 2017 IEEE 60th International Midwest
Symposium on Circuits and Systems (MWSCAS), August 2017.
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threat stimuli and sound source localization [37–40]. It also results in the ability of

networks to recognize spatio- or spectro-temporal patterns [17, 21, 41].

For the purposes of building artificial, bio-mimetic neural networks, a simple, tun-

able, and repeatable synaptic implementation is needed. One such solution consists of

a single device such as a memristor, the major advantage of which is an extremely high

achievable synaptic density [42, 43]. However, there are many types of memristors,

each requiring different fabrication methods and possessing different behaviors. There

is also a lack of consensus on the ideal properties of a memristive synapse for use in

a neuromorphic system. On the other hand, CMOS technologies are well-developed,

ubiquitous, and continue to scale to nanometer dimensions. Extreme interconnectiv-

ity of these networks can be accomplished through careful system design. Separate

cores with 2-D synaptic arrays can send and receive data through high-speed pipelines

using protocols such as Address-Event Representation (AER) [7, 24, 44].

The idea of designing a synapse in CMOS technology is not novel [7, 45–47].

However, this research presents a novel CMOS synapse design which implements

tunable asymmetric STDP and is compatible with digitally spiking Integrate-and-Fire

(I&F) neurons. This design is unique in that it achieves a more biologically realistic

STDP response than [7] using fewer components than [47]. This is accomplished

by using voltage dividers, instead of amplifiers, to create the signals responsible for

changing synaptic weight.

Although not yet optimized for power consumption, the design can be directly

deployed into various Very Large-Scale Integration (VLSI) implementations such as

those based on neurosynaptic core architectures. Section 2.1 discusses general synapse

operation, with detailed description of each subcircuit block. Section 2.2 demonstrates
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simulation of the CMOS synapse learning rules, including settings for bio-mimetic

STDP.

2.1 Circuit and Subcircuit Operation

The results in this work were generated using the Cadence Virtuoso (6.1.7-61b)

design suite and the North Carolina State University (NCSU) Cadence Design Kit

(CDK 1.6.0.beta). This design kit included the Metal-Oxide-Semiconductor Imple-

mentation System (MOSIS) models for CMOS devices which are extremely accurate

over a wide range of operating conditions. The overall synapse design currently uti-

lizes a total of 41 transistors and three capacitors. Associated layouts have been

created and submitted for fabrication and future testing. In the ON Semiconductor

C5 process, the circuit occupies an area of approximately 200 × 300 µm2, which is

comparable to other approaches [7, 48]. Future work includes fully investigating scal-

ability of the design and its power consumption. Currently, energy consumption per

spike ranges from approximately 23 pJ to 1.5 µJ for spike pairs with pulse widths of 1

ms. Pulses generated by all neurons are presumed asynchronous and digital, meaning

that they may occur at any time and alternate between values of 0 V (inactive) and

5 V (during an action potential). All pulses in the system are of a set duration.

There are three total connections between the synapse and the two neurons it

connects: two inputs are for spikes received from the output of both the pre- and

post-synaptic neurons, and the synapse output is connected to the input of the post-

synaptic neuron. A diagram containing the three different subcircuit blocks of the

synapse is shown in Fig. 2.1.1.

The synapse requires four control voltages to set the STDP characteristics:

Vpre leak, Vpost leak, Vinc th, and Vred th. Although not demonstrated in this
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Fig. 2.1.1. A block diagram showing the connections between the sub-
circuits within the CMOS Synapse. Vpost is feedback from the output of
the post-synaptic neuron, whereas Vpre is connected to the output of the
pre-synaptic neuron. Vout is the modulated version of Vpre which is fed
to the input node of the post-synaptic neuron circuit.

paper, a biasing circuit can be used to create them from Vdd.

2.1.1 Race Condition Discriminator Circuit

Within the synapse, the RCD handles the situation in which pre- and post-

synaptic spikes overlap. The RCD output (Vrcd in Fig. 2.1.1) and its inverse control a

P-type MOSfet (PMOS) device in each of the two Gauntlet circuits (M4 in Fig. 2.1.3).

Providing these two particular PMOS devices with opposing signals prevents over-

lapping spikes from influencing the synaptic core at the same time.

In order to produce Vrcd, the RCD uses cross-connected outputs to suppress

propagation of competing input signals, as shown in Fig. 2.1.2a. Initially, nodes Vrcd

and Vrcd’ are both at 0 V, placing M1 and M3 in saturation and M2 and M4 in cutoff.

If a pre-synaptic pulse arrives at the Vpre input before a post-synaptic pulse arrives

at the Vpost input, then the voltages at A and B lower, causing node Vrcd to rise
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Fig. 2.1.2. a) Schematic diagram of the RCD circuit, which determines
whether increase or decrease signals should be admitted to the Synaptic
Core. All PMOS and NMOS are sized W/L=30/4 and 10/4 respectively.
b) The simulated response of the RCD circuit. When Vpre and Vpost
overlap, it is observed that Vrcd is Vpre unless Vpost arrives first and
blocks Vpre.

to 5 V, which in turn causes M3 to cutoff and M4 to saturate, forcing Vrcd’ to 0 V

and preventing secondary signal propagation from C to D. A similar series of events

occurs if a post-synaptic pulse arrives at the Vpost input before a pre-synaptic pulse

arrives at the Vpre input which forces Vrcd to 0 V, preventing signal propagation

from Node A to Node B. Effectively, the RCD serves to pass signals from Vpre to

Vrcd unless a signal from Vpost precedes and overlaps it (Fig. 2.1.2b).

2.1.2 Gauntlet Circuit

Fig. 2.1.3a shows the schematic of the Gauntlet Circuit. The Gauntlet Cir-

cuit’s purpose is to facilitate STDP in the synapse by providing a tunable window

within which pre- and post-synaptic spikes can influence synaptic weight. The diode-

connected PMOS, M1, allows 5 V digital pulses, applied to V2, to quickly charge
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capacitor C1 without also quickly discharging via the input after the pulse ends. A

tunable discharge path for C1 is provided by M2, with the discharge rate controlled

by Vleak. The resulting exponentially decaying analog signal Vdelay, whose time

constant is determined by the value of Vleak, is applied to the gate of M3 (see top

trace of Fig. 2.1.3b). M3 uses Vdelay to alter the magnitude of digital pulses applied

to V1 before they reach the Synaptic Core. M4 uses the Vnot pass signal from the

RCD to ensure that only one Vchange signal reaches the Synaptic Core at a time.

M5, M6, M7 and M8 provide a low resistance path to ground, in the absence of a

pulse at V1, to discharge trapped charge on either side of M8.

2.1.3 Synaptic Core

Fig. 2.1.4 depicts a schematic of the Synaptic Core circuit. The Synaptic Core pro-

duces Vstate, which is roughly analogous to the synaptic weight. Vstate is produced

by the movement of charge on to, or off of, the state storage capacitor Cstate. This is

accomplished via M5 and M8, respectively. When one of these devices is turned on,

charge must also flow through the two optional MOSFETs M6 and M7, whose sole

purpose is to help to reduce leakage current from Cstate through M5 and M8. The

amount of directed charge is controlled by two active element voltage dividers that

enable fine tuning of the STDP characteristics of the CMOS Synapse. One voltage

divider, formed by M1 and M2 in Fig. 2.1.4, allows for control over the amount of

charge directed into Cstate for a given signal applied to Vincrease. This is done by

limiting the drain current via Vinc th, so that increasing Vinc th reduces the amount

of directed charge for a given signal applied to Vincrease. The other voltage divider

(M9 and M10 in Fig. 2.1.4) allows for control over the amount of charge directed out

of Cstate for a given signal applied to Vreduce. This is accomplished by limiting the
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Fig. 2.1.3. a) The Gauntlet Circuit schematic. The Gauntlet Circuit
helps to facilitate STDP by shaping Vpulse into Vchange through Vdelay.
M5, M6, M7, and M8 help to drain charge trapped on either side of M2.
All PMOS and NMOS are sized W/L=30/4 and 10/4, respectively. b)
Gauntlet circuit response to stimulus. A single 5 V digital pulse 1 ms
wide is applied to V2 at 1 ms. Vleak is set to 433 mV. V1 is supplied
by 5 V square wave with a period of 2 ms; this is atypical and solely for
illustrative purposes. Vnot pass has been tied to ground to ensure that the
difference between Vchange and V1 is due exclusively to Vdelay. Notice
that the magnitude of Vchange decreases as Vdelay decays. This decrease
in magnitude helps to create STDP in the synapse.
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Fig. 2.1.4. The Synaptic Core schematic. Vred th and Vinc th control the
magnitude by which the change in the capacitor can change to allow fine
control of the STDP curve. All PMOS and NMOS are sized W/L=30/4
and 10/4 respectively, except where otherwise indicated.

drain current via Vred th. The result is that decreasing Vred th reduces the amount

of directed charge for a given signal applied to Vreduce.

For initial testing, the synapse was designed such that its conductance was con-

trolled by applying Vstate to the gate of a MOSFET (Matt in Fig. 2.1.1). The

issue with this is that values of Cstate above Matt’s threshold voltage do not cause

a proportional change in signal attenuation because the MOSFET will operate in

saturation. In future work, Matt will be replaced with a voltage controlled current

source with a gain controlled by Vstate.

2.2 Learning Rule Demonstration

2.2.1 Varying Circuit Parameters

Pair-based STDP curves were created to demonstrate the effects of varying circuit

parameters on the synapse. Each STDP data point was collected from a 110 ms
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transient simulation which contained only one pre- and one post-synaptic spike. For

each simulation the synaptic weight was initially set to one half of Vdd (Vstate =

2.5 V). The timing difference between the rising edges of pre- and post-synaptic spikes

(∆t=tpost-tpre) was recorded as the x-coordinate. Then, since Vstate only changes

due to pairs of spikes, and only changes on the second spike in the pair, the change

in Vstate, between just before and just after the second spike, was recorded as the

y-coordinate. Finally, the resulting x- and y-coordinate pair was plotted.

Fig. 2.2.1a depicts the effects of varying Vpre leak and Vpost leak, which control

the decay times of the two gauntlet circuits (see Fig. 2.1.3).

The left and right sides of the figure (for negative and positive ∆t, respectively) can

be independently controlled by the two voltages. Increasing Vpre leak or Vpost leak

will shorten the corresponding learning window for positive and negative ∆t. When

the two values are equal, the STDP curve will essentially be symmetrical for both

positive and negative ∆t, exemplified by the curves marked by triangle symbols in

Fig. 2.2.1.

The effects on the STDP curve of varying Vinc th and Vred th are depicted in

Fig. 2.2.1b. These two values control the maximum change in the weight for a pre-

post or a post-pre pair (the ∆Vstate values nereast to ∆t=0). For increased values

of Vinc th (and decreased values of Vred th), the weight will change more drastically

for presentation of a single pair, but only to a maximum of ±100%, at which point

the weight saturates. When saturation occurs, it does not change the difficulty for

the next (oppositely alternating) pair to change the state back to some intermediate

value. In other words, there is no “memory” or other driving force pushing the state

toward one extreme or the other. However, in the absence of spiking, subthreshold
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Fig. 2.2.1. a) The effects of varying Vpre leak and Vpost leak on the
STDP behavior of the synapse. When pre- and post-synaptic pulses are
applied to the CMOS synapse, it is observed that the amount of change
that occurs in Vstate (∆Vstate) is related to the difference in time between
the spikes (∆t=tpost-tpre), and the settings of Vpre leak and Vpost leak.
Notice that as Vpre leak and Vpost leak are increased, the STDP curve
narrows. This plot was made using Vinc th=300 mV and Vred th=1.4
V. Input pulse widths were 1 ms. b) The effects of varying Vinc th and
Vred th on the STDP behavior of the synapse. When pre- and post-
synaptic pulses are applied to the CMOS synapse, it is observed that
the amount of change that occurs in Vstate (∆Vstate) is related to the
difference in time between the spikes (tpost-tpre), and the settings of
Vinc th and Vred th. Notice that, as Vinc th is increased and Vred th is
reduced, the magnitude of change is reduced. This plot was made using
Vpre leak=200 mV and Vpost leak=200 mV. Input pulse widths were
1ms.
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conduction through M5, M6, M7, and M8 in Fig. 2.1.4, will cause Vstate to trend

toward some value near Vdd/2 over a period of approximately 10 seconds. Some form

of long-term motion of Vstate is common with all synaptic circuits that use MOSFETs

to control the charge on a capacitor. In this case, if spike pairs are presented with

regularity (at least a few times per second), the STDP learning will overcome the

very slow state change.

2.2.2 Fitting Biological Data

By choosing appropriate Vpre leak, Vpost leak, Vinc th, and Vred th values, the

STDP curve of the synapse can be tuned to fit a wide range of models with biphasic

decaying exponential form. Fig. 2.2.2 demonstrates the CMOS synapse tuned to

approximate STDP data measured from a biological synapse [35].

2.2.3 Power Consumption

The power consumed by the synapse is dependent upon the initial state of the

synapse, the magnitude of the weight change, and whether the weight is increasing

or decreasing. Fig. 2.2.3 depicts the energy consumed by the synapse as a function of

the temporal difference between pre- and post-synaptic spikes. Each point represents

the result of a simulation of a single pair of pre- and post-synaptic spikes with Vstate

initialized to 2.5 V, Vpre leak=270 mV, Vpost leak=300 mV, Vinc th=540 mV, and

Vred th=1.08 V. Input pulse widths were 1 ms. With these settings and an initial

Vstate of 2.5 V the energies used to decrease and increase synaptic weights are about

23 nJ and 1 µJ, respectively.

2.3 Conclusion

This chapter discussed the design and operation of a CMOS synapse which updates

its weight in accordance with a user-defined STDP rule. The operation of the CMOS
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Fig. 2.2.2. Adjusting Vpre leak, Vpost leak, Vinc th, and Vred th al-
lows the STDP curve of the CMOS Synapse to be adjusted such that it
can be fitted to biological data. In this figure, the CMOS Synapse has
been adjusted such that its STDP curve aligns with biological synapse
data collected by Bi and Poo [35]. The settings used to create this
plot are: Vpre leak=270 mV, Vpost leak=300 mV, Vinc th=540 mV, and
Vred th=1.08 V. Input pulse widths were 1 ms.
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Fig. 2.2.3. Energy consumption by the CMOS Synapse as a function
of the temporal difference between pre- and post-synaptic spikes. The
settings used to create this plot are: Vpre leak=270 mV, Vpost leak=300
mV, Vinc th=540 mV, and Vred th=1.08 V. Pulse widths were 1 ms.
Vstate=2.5 V.
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synapse, and each of the subcircuits that make up the CMOS synapse, was each

explained, and simulations were performed.

The simulations were designed to demonstrate how the subcircuits of the CMOS

synapse work, and how they work together to facilitate a weight that updates in

accordance with a customizable STDP rule.

The results demonstrate that the CMOS synapse is capable of performing weight

changes in accordance with a user-defined STDP learning rule, and can even be fine-

tuned to mimic biological plausibility. This is important because STDP is a local

learning rule which is known to be responsible for important behaviors and pattern

recognition.



3 CHAPTER THREE: A SPATIOTEMPORAL PATTERN DETECTOR

Spatiotemporal Pattern Recognition (STPR), within the context of SNNs, is the

process by which a spatiotemporal pattern is abstracted down to an output on a

single neuron. STPR has been demonstrated using SNNs with synapses with STDP

a learning rule that updates synaptic weight according to a spike-timing-dependent

learning rule [17, 18, 21, 49–52]. In one common approach to STPR, SNNs are trained

to recognize a pattern by repeatedly exposing them to the pattern embedded in noise

[17, 21]. After repeated exposures, the synaptic weights adjust in accordance with

an STDP learning rule so that the output neuron produces a spike which tends to

coincide with the presentation of the pattern. Another approach to STPR involves

knowing the pattern to be detected and designing a system to detect that particular

pattern. One example of this approach uses a Spike Sequence Recognition network

with a global inhibitory neuron [52]. Another example of this approach uses a Key-

Threshold based SNN which treats spikes as bits and “shifts in” spike trains to perform

a bit-by-bit comparison with a key [53]. The circuit we present in this work is also

an example of this approach, but unlike other approaches mentioned, which require

precise timing or time steps to achieve pattern recognition, a user-defined window of

detection is used.

©2019 IEEE. Reprinted, with permission, from Robert C. Ivans and Kurtis D.
Cantley, ”A Spatiotemporal Pattern Detector”, 2019 IEEE 62nd International Mid-
west Symposium on Circuits and Systems (MWSCAS), August 2019.
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Fig. 3.0.1. The three fundamental spatiotemporal patterns that the
circuit can detect. Case 1 illustrates the case where two outputs of two
different neurons, Na and Nb, occur with some time, ∆t, between them.
Case 2 is a temporal pattern where a single neuron, Na, spikes twice with
some time, ∆t, between the spikes. Case 3 is a special case of Case 1 where
∆t is reduced to zero so that the two spikes coincide.

In this work, we present a circuit which can be used to detect simple spatiotem-

poral patterns and demonstrate that it can be used to detect complex spatiotemporal

patterns when combined into networks without training. The goal of this circuit’s

design is to gain some insight into how digital SNNs perform STPR by reducing the

number of variables involved. To do this, a network, composed of modified digital

spiking LIF neurons and simple logic gates, was designed that is capable of detecting

three simple spatiotemporal patterns: Na-Nb-∆t, Na-Na-∆t, and Na-Nb-coincidence,

where Na and Nb are the first and second neurons to spike, respectively [2]. The three

cases are depicted in Fig. 3.0.1. All synaptic connections are maximized and leakiness

is minimized (leakiness is set by off-current).

Section 3.1 discusses the circuit operation with detailed description of each subcir-

cuit block. Section 3.2 demonstrates simulations of the circuit detecting spatiotem-

poral patterns.

3.1 Circuit Operation

The circuit presented in this work is a spiking network consisting of modified LIF

neurons and simple logic gates designed for the Taiwan Semiconductor Manufacturing
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Company (TSMC) 0.18 µm process and simulated in industry standard software

Cadence Virtuoso using the NCSU Process Design Kit (PDK) [54].

3.1.1 Spatiotemporal Pattern Detector Subcircuit

The Spatiotemporal Pattern Detector subcircuit shown in Fig. 3.1.1a is all that is

strictly necessary to detect the three spatiotemporal patters of Fig. 3.0.1. It consists

of a window circuit and an AND gate. It produces a pattern detected signal (Vpat-

terndetected=Vdd) when an input spike from Vin2 occurs during a digital window

(Vwindow=Vdd) produced by the window circuit. However, the resulting pattern de-

tected signal may not have a full spike pulse width due to either a very short window

(“large” Vwinwidth chosen by the user) or due to the input spike from Vin2 occurring

at the edge of a window (see Fig. 3.1.1b).

3.1.2 Window Circuit

The window circuit consists of two modified LIF neurons which act as analog

timing circuits. The window circuit can operate in two modes: non-coincidence and

coincidence detection modes which correspond to the state of Vcoin. Vcoin is a

voltage set by the user to either gnd or Vdd for non-coincidence and coincidence

modes, respectively. In the non-coincidence mode of operation, meaning that Vcoin

is tied to gnd, a simple digital pulse at Vin1 charges C1, C2, C3, and C4. Initially,

VA and VC are at logical 0. When a digital pulse arrives at Vin1, VA quickly rises

to logical 1 due to a combination of M1 being saturated and feedback from C2 after

VB rises to Vdd. Similarly, VC quickly rises to logical 1 due to a combination of M4

being saturated and feedback from C4 after VD rises to Vdd. This, in turn, causes

the potential at nodes B and D to raise to Vdd and quickly saturate M3 and M6.

This causes C1 and C2 to discharge at a rate controlled by M2 and, the user selected
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Fig. 3.1.1. a) A block diagram of the Spatiotemporal Pattern Detector.
b) The response of the Spatiotemporal Pattern Detector to stimulus with
Vcoin tied to gnd. The pulses applied to Vin1 and Vin2 are 1.8 V for a
duration of 1 ms. c) Schematic of the window circuit.
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potential, Vwinstart. When a sufficient amount of time has passed (determined by

the user’s choice of Vwinstart) enough charge will have passed to ground from C1

and C2 via M2 and M3 that Node A will have dropped below the inverter threshold

(θ), causing Node B to fall to gnd. This places a logical 1 on U4 and causes M7

to quickly saturate. The logical 1 due to Node B being at gnd, combined with the

logical 1 due to node D being at Vdd, causes the window circuit to output a logical

1 (Vwindow=Vdd). With M7 saturated, C3 and C4 discharge through M5, M6, M7,

and M8 at a rate controlled by M5 and, the user-selected potential, Vwinwidth. When

a sufficient amount of time has passed (determined by the user’s choice of Vwinwidth)

enough charge will have passed to ground from C3 and C4 via M5, M6, M7, and M8

that Node C will have dropped below θ, causing Node D to fall to gnd and the window

circuit to output a logical 0. The result is that Vwinstart and Vwinwidth control the

start and duration, respectively, of a digital window initiated by an input spike at

Vin1.

In the coincidence mode of operation, meaning that Vcoin is tied to Vdd, U2

prevents input spikes from reaching the LIF neurons. Instead, Vwindow is created

through simple logic (Vin1 AND Vcoin).

3.1.3 Pulse Formatter and Refractory Circuits

To address the issue of shortened pattern detected pulses, a Pulse Formatter

subcircuit has been created that is attached to the output. It consists of a single LIF

circuit that produces a pulse, the width of which is set by Vpw, for an input from the

Spatiotemporal Pattern Detector subcircuit. This ensures that the Spatiotemporal

Pattern Detector produces pulses of a consistent width. The refractory subcircuit

consists of a single LIF circuit that produces a pulse, the width of which is set by
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Fig. 3.1.2. The Pulse Formatter and Refractory circuits. The Pulse
Formatter takes Vpatterndetected signals and produces an output pulse
of a width determined by the user-set Vpw. The Refractory circuit pro-
duces a signal, Vrefractory, which prevents Vpatterndetected signals from
reaching the Pulse Formatter circuit.

Vrefrac. The refractory subcircuit prevents the pulse formatter circuit from producing

any pulses during a refractory period set by Vrefrac. Fig. 3.1.2 depicts the Pulse

Formatter and Refractory subcircuits.

3.2 Spatiotemporal Pattern Detection Demonstration

3.2.1 Case 1: Na-Nb-∆t

In Case 1, the pattern consists of two input pulses, one from each of two different

neurons, separated by some time ∆t. To detect a Case 1 pattern, the circuit is placed

in non-coincidence mode (Vcoin=gnd) and the user sets the start and duration of

the desired digital window and the output pulse width and refractory period via

Vwinstart, Vwinwidth, Vpw, and Vrefrac, respectively. Fig. 3.2.1 depicts the circuit

detecting a Case 1 pattern.

Initially, VA and VC are at logical 0. When a digital pulse arrives at Vin1, VA

quickly rises to logical 1 due to a combination of M1 being saturated and feedback

from C2 after VB rises to Vdd. Similarly, VC quickly rises to logical 1 due to a
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Fig. 3.2.1. Case 1: Na-Nb-∆t. Initially, the circuit is in non-coincidence
mode (Vcoin=gnd) and VA and VC are at logical 0. When a digital pulse
arrives at Vin1, VA and VC rise as C1, C2, C3, and C4 charge up. When the
pulse ends, VA lowers as C1 and C2 begin to discharge at a rate determined
by the user (Vwinstart) and VC lowers as C3 and C4 begin to discharge
at a rate determined by the off current of NMOS M7 (very small). When
VA crosses θ, it drops quickly to logical zero, Vwindow goes high, and VC

starts to lower more quickly as the discharge rate of C3 and C4 are now
limited by Vwinwidth (which was chosen by the user.) If a second digital
pulse arrives at Vin2 while Vwindow is high, Vpatterndetected goes high
and causes the Pulse Formatter circuit to generate a pulse on Vout and
the Refractory circuit to initiate a refractory period.



39

combination of M4 being saturated and feedback from C4 after VD rises to Vdd.

When the digital pulse ends, VA and VC start lowering at rates determined by

Vwinstart and the off current of M7, respectively (|d/dtVA| � |d/dtVC|). When

VA falls below θ, VB is pulled down quickly to gnd. This places a logical 1 on U4,

resulting in Vwindow quickly rising to Vdd, and causing M7 to quickly saturate,

which causes VC to lower more rapidly as the discharge rates of C3 and C4 are now

limited by Vwinwidth instead of the of current of M7 (since M7 is no longer “off”).

If a digital pulse arrives at Vin2 while Vwindow is a logical 1, then Vpatternde-

tected quickly rises to logical 1. This is detected by the Pulse Formatter circuit. As

the Pulse Formatter circuit is simply a LIF circuit with a maximum synaptic connec-

tion strength, it fires immediately causing Vout to rise quickly. This in turn causes

the refractory circuit to fire immediately (it is also a LIF circuit with a maximum

synaptic connection strength) causing Vrefractory to rise to Vdd and C7 and C8 to

start discharging through M13 and M14 at a rate determined by Vrefrac. Vrefractory

at Vdd turns M9 off, preventing Vpatterndetected from influencing the output while

Vrefractory is high, and turns M10 on creating a path to discharge charge trapped

by M9. Another thing that happens when Vout rises to Vdd is that C5 and C6 begin

discharging through M11 and M12 at a rate controlled by Vpw. When the voltage

across C5 drops below θ, Vout is pulled to gnd. After VC falls below θ, VD is pulled

down quickly to gnd. This places a logical 0 on U4, which in turn quickly pulls down

Vwindow to gnd.

3.2.2 Case 2: Na-Na-∆t

In Case 2, the pattern consists of two input pulses, each from the same neuron,

separated by some time ∆t. To detect a Case 2 pattern, the circuit is placed in non-
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coincidence mode (Vcoin=gnd), the circuit inputs Vin1 and Vin2 are tied together,

and the user sets the start and duration of the desired digital window and the out-

put pulse width and refractory period via Vwinstart, Vwinwidth, Vpw, and Vrefrac,

respectively. Fig. 3.2.2 depicts the circuit detecting a Case 2 pattern.

Initially, VA and VC are at logical 0. When a digital pulse arrives at Vin1 and

Vin2 (they are tied together), VA quickly rises to logical 1 due to a combination of M1

being saturated and feedback from C2 after VB rises to Vdd. Similarly, VC quickly

rises to logical 1 due to a combination of M4 being saturated and feedback from C4

after VD rises to Vdd.

When the digital pulse ends, VA and VC start lowering at rates determined by

Vwinstart and the off current of M7, respectively (|d/dtVA| � |d/dtVC|). When VA

falls below θ, VB is pulled down quickly to gnd. This places a logical 1 on U4, resulting

in Vwindow quickly rising to Vdd, and causing M7 to quickly saturate, which causes

VC to lower more rapidly as the discharge rates of C3 and C4 are now limited by M5

and Vwinwidth instead of the off current of M7 (since M7 is no longer “off”).

If another digital pulse arrives at Vin1 and Vin2 while Vwindow is a logical 1, then

Vpatterndetected quickly rises to logical 1. This causes VA and VC to rise as C1, C2,

C3, and C4 are recharged by the new pulse, cutting the window off and setting up

the circuit to detect another Na-Na-∆t pattern, while Vpatterndetected is detected

by the Pulse Formatter circuit. As the Pulse Formatter circuit is simply a LIF circuit

with a maximum synaptic connection strength, it fires immediately causing Vout to

rise quickly.

This, in turn causes the refractory circuit to fire immediately (it is also a LIF

circuit with a maximum synaptic connection strength) causing Vrefractory to rise to



41

Vdd and C7 and C8 to start discharging through M13 and M14 at a rate determined

by Vrefrac. Vrefractory at Vdd turns M9 “off”, preventing Vpatterndetected form

influencing the output while Vrefractory is high, and turns M10 “on” creating a path

to discharge charge trapped by M9. Another thing that happens when Vout rises to

Vdd is that C5 and C6 begin discharging through M11 and M12 at a rate controlled

by Vpw. When the voltage across C5 drops below θ, Vout is pulled to gnd. After VC

falls below θ, VD is pulled down quickly to gnd. This places a logical 0 on U4, which

in turn quickly pulls down Vwindow to gnd.

3.2.3 Case 3: Na-Nb-Coincidence

In Case 3, the pattern consists of two input pulses, each from one of two different

neurons, occurring at the same time. This is a special case of Case 1 where ∆t=0.

It should be noted that overlapping input pulses will cause a detection and not just

coincidental pulses. However, in this mode of operation coincidental pulses will be

detected. Fig. 3.2.3 depicts the circuit detecting a Case 3 pattern.

3.2.4 Larger Spatiotemporal Patterns

Larger spatiotemporal patterns can be detected by networks of Spatiotemporal

Pattern Detector circuits. Fig. 3.2.4a shows a network of Spatiotemporal Pattern

Detector circuits. Each Spatiotemporal Pattern Detector is depicted as an AND gate

with the start time of its window written in its body and Vin1 above Vin2. Simulation

of a network with 25 spiking input neurons is provided in Fig. 3.2.4b. The input

consists of a pattern, highlighted in grey, embedded within random activity. The

network of Fig. 3.2.4a is identifying a sub-pattern generated by neurons 1, 3, 7, 10,

11, and 20 as indicated by the “Pattern Detected” signal. If detecting a sub-pattern

is insufficient, then a larger detector can be used to detect the entire pattern.
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Fig. 3.2.2. Case 2: Na-Na-∆t. Initially, the circuit is in non-coincidence
mode (Vcoin=gnd), Vin1 and Vin2 are tied together, and VA and VC are
at logical 0. When a digital pulse arrives at Vin1, VA and VC rise as
C1, C2, C3, and C4 charge up. When the pulse ends, VA Lowers as C1
and C2 begin to discharge at a rate determined by the user (Vwinstart)
and VC lowers as C3 and C4 begin to discharge at a rate determined by
the off current of NMOS M7 (very small). When VA crosses θ, it drops
quickly to logical zero, Vwindow goes high, and VC starts to lower more
quickly as the discharge rate of C3 and C4 are now limited by Vwinwidth
(which is chosen by the user.) If a second digital pulse arrives at Vin1
while Vwindow is high, Vpatterndetected goes high and causes the pulse
formatter circuit to generate a pulse on Vout and the refractory circuit to
initiate a refractory period. Also, VA and VC rise as C1, C2, C3 and C4
are recharged by the new pulse, cutting the window off and setting up the
circuit to detect another Na-Na-∆t pattern.
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Fig. 3.2.3. Case 3: Na-Nb-Coincidence. Initially, the circuit is in coinci-
dence mode (Vcoin=Vdd) and VA and VC are at logical 0. When a digital
pulse arrives at Vin1, VA and VC remain unchanged as the output of U2 is
held at logical 1 by Vcoin. When a digital pulse arrives at Vin1, Vwindow
goes high through U1 and U3. If a second digital pulse arrives at Vin2
while Vwindow is high, Vpatterndetected goes high and causes the pulse
formatter circuit to generate a pulse on Vout and the refractory circuit to
initiate a refractory period.
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Fig. 3.2.4. a) A block diagram of a network of Spatiotemporal Pattern
Detectors, where each Spatiotemporal pattern Detector is depicted as an
AND gate with the start time of the window written in the body and Vin1
above Vin2. Each ∆t indicates the amount of time between the appropriate
pattern spikes. For example ∆t1 is the time between the pattern spikes
from N20 and N11. This network was designed to detect the pattern
highlighted in grey. b) The simulation results of the network depicted in
Fig. 3.2.4a. A combination of pattern and noise input spikes from neurons
N1 through N25 results in a pattern detection signal that coincides with
the presentation of the pattern (highlighted in grey) indicating that the
desired pattern was detected.



45

3.3 Conclusion

This chapter discussed the design and operation of a Spatiotemporal Pattern

Detector which is capable of detecting simple spatiotemporal patterns. The operation

of the Spatiotemporal Pattern Detector, and each of the subcircuits that make up the

Spatiotemporal Pattern Detector, were explained, and simulations were performed.

The simulations were designed to demonstrate how the subcircuits of the Spa-

tiotemporal Pattern Detector work, and how they work together to perform simple

spatiotemporal pattern detection. Additional simulation was performed to demon-

strate how Simple Pattern Detectors could be combined to detect more complicated

spatiotemporal patterns.

The results demonstrate that the Spatiotemporal Pattern Detector is capable

of detecting simple spatiotemporal patterns, and show that Spatiotemporal Pattern

Detectors can be tiled together to detect more complicated spatiotemporal patterns.



4 CHAPTER FOUR: THE R(T) ELEMENT MODEL

Human brains are made up of billions of neurons which generate voltage spikes

called action potentials in response to stimulus [32]. Those billions of neurons are

interconnected through trillions of synapses which effectively serve to scale the mag-

nitude of action potentials that pass through them [33]. The amount of scaling that

a synapse performs is referred to as its synaptic efficacy, strength, or weight. The

weight of a synapse is not static, and changes over time based on learning rules that

depend on pre- and post-synaptic neuron activity. Timing differences between two

action potentials occurring in the neurons that the synapse connects is one mechanism

that can alter the weight [34, 55, 56]. This is known as STDP.

Many forms of STDP have been observed in different brain regions across various

species. It is known to be responsible for abilities including rapid response to threats

and sound source localization [34, 35, 37–39, 57, 58]. However, it is also known

that biological synapses implement much more complex and diverse learning rules

than pair-based STDP [59]. In reality, synapses integrate multiple action potentials

asymmetrically and can alter their weight over longer timescales containing multiple

pre- and post-synaptic spikes [59–64]. Broader consequences of this observation are

not well understood, but may enable many advanced cognitive functions.

©2020 IEEE. Reprinted, with permission, from Robert C. Ivans, Sumedha G.
Dahl, and Kurtis D. Cantley, ”A Model for R(t) Elements and R(t) -Based Spike-
Timing-Dependent Plasticity With Basic Circuit Examples”, IEEE Transactions on
Neural Networks and Learning Systems, October 2020.
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Electronic spiking neural networks comprised of STDP synapses have been shown

to perform complicated learning tasks such as pattern recognition, classification, and

feature extraction [3, 13, 15, 17, 21, 50, 65, 66]. Due to these demonstrated abilities,

many researchers have implemented STDP synapses using CMOS circuits [7, 28,

44, 45, 67–69]. The circuits generally contain at least a dozen devices and have

relatively large footprints [7, 28, 69, 70]. Both these traits are highly undesirable when

the objective is to maximize synaptic density and the overall number of synapses.

In other words, although local Hebbian learning rules such as STDP are essential

for constructing networks with an extremely large number of elements, the synapse

implementations must also be compact.

Memristors are an ideal candidate for electronic synapses because they have only

two terminals and can change their resistance based on previously applied bias. They

can also be non-volatile with very small cross-sectional area, and densely fabricated

in crossbar array structures [71–79]. Using single memristors as synapses requires

that the neurons somehow control synaptic weight change. A dominant approach

for obtaining STDP with memristive synapses is to engineer the shape of the neuron

output voltage pulses to achieve the desired weight update function [66, 75, 79–87]. In

the pulse-shaping method, signals are directed toward both the axonic and dendritic

synapses whenever a neuron fires. The potential across the memristor itself is given

by the difference between the post- and pre-synaptic voltages. The main drawback

of this approach is that it allows only nearest-neighbor pairs of action potentials to

contribute to synaptic weight changes, and has no dependence on firing rate [88–90].

This paper presents an approach that is similar and complementary to pulse shaping

and is compatible with single-memristor synapses contained in crossbar arrays. The
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Table 4.1: Comparing and Contrasting the R(t) and Shaped Pulse
Methods of Facilitating STDP

R(t) Shaped

Pulses

Frequency influenced learning rules Yes No

Sensitive to component values Yesa No

Only needs one potential Yes No

Sneak paths Yesb Yesb

Frequency influenced non-specific synaptic plasticity Yes No

aThis depends on the desired behavior. The equations presented in this

work represent a rigid case where synaptic weight change is guaranteed

not to occur outside of the influence of related spikes. However, if merely

facilitating STDP is desired, then component value selection can be re-

laxed. bIf the network doesn’t use neurons which control the potential

at their inputs, then the network will have sneak paths.

approach enables the realization of traditional pair-based STDP as well as rules that

depend on multiple spikes and long-term firing rates. The key to facilitating these

effects is the addition of dynamic resistance, or R(t), elements to the input and output

of each hidden layer neuron circuit. In this work, we define R(t) elements as circuits

or devices which possess time-varying resistance. This technique is similar to pulse

shaping in that a time-varying quantity is driving STDP. However, the distinguishing

characteristic of R(t)-based STDP is that the path resistance between neurons changes

as a function of the pre- and post-synaptic neuron outputs. Table 4.1 compares and

contrasts the R(t) and shaped pulse methods of facilitating STDP.

A simple digital pulse is used in the examples presented in this work to activate
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the R(t) elements which creates the time-varying resistance. This creates a network

of time-dynamic voltage dividers, and maximizes the simplicity of the synapses while

only slightly increasing the complexity of the neurons. Simple digital pulses are used

for mathematical convenience; however, shaped pulses can also be used with R(t)

elements for even more complicated learning rules, but this is beyond the scope of

this introductory work.

The remainder of this chapter is organized as follows: Section 4.1 describes perfect

STDP using R(t) elements and single memristor synapses and explains the process

involved in component value selection. Section 4.2 presents examples and simulations

of R(t) implementations that result in pair-based and triplet STDP behavior. Section

4.3 contains simulations demonstrating STDP in a network with three input and two

output neurons using R(t) elements and single-memristor synapses, and discusses

other characteristics of the network. Section 4.4 compares the proposed R(t) model

method of STDP with charge trapping Thin-Film Transistors (TFTs). Section 4.5

presents simulations of networks using R(t) model and single memristor synapses.

4.1 STDP with R(t) Elements

An R(t) element is a circuit or device which possess a time-varying resistance. To

design an R(t) element, one must design a circuit or device such that a controlling

quantity varies in time to produce the desired R(t) response. One way to do this is

to design a circuit or device which implements an activation function, Q, to bridge

the gap between R(t) and the controlling quantity function, ¢. The relationship be-

tween the activation function, the time-varying controlling quantity, and the resulting

effective resistance is depicted in Fig. 4.1.1a.

To facilitate excitatory STDP behavior, the activation functions should be imple-



50

Fig. 4.1.1. An R(t) Element model and the four stages of R(t)-based
STDP. a) Illustration showing that R(t) is a composition of three functions.
b) An R(t) element model represented as a static resistance, RS, and a
variable resistance, RV , capable of sweeping between 0 and RV in time.
c) An STDP circuit, consisting of two R(t) elements on either side of a
memristor, is in its initial state with pre- and post-synaptic R(t) elements
at their maximum resistances. d) A digital pre-synaptic pulse arrives,
driving its associated R(t) element to its minimum value. e) Some time
passes, over which the resistance of the pre-synaptic R(t) element rises.
f) A post-synaptic pulse arrives, driving the post-synaptic R(t) element
to its minimum value, and placing a potential across the memristor, VM ,
greater than its negative threshold V −

TH, causing memristance to decrease.
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mented such that the R(t) element’s resistance decreases sharply when exposed to

stimulus and increases slowly once the stimulus is removed. In this work we use the

term activated to describe a condition where the controlling quantity abruptly and

temporarily increases resulting in a temporary state of reduced resistance for the R(t)

element. R(t) elements have been modeled using

R(t) = RVQ(¢(t)) +RS (6)

where RV is the variable portion of the R(t) element, RS, is the static portion of

the R(t) element which represents its minimum series resistance, Q is an activation

function which converts a controlling quantity into a real number in the range [0,1],

and ¢ is the controlling quantity function which represents a controlling quantity,

such as potential or charge, at a particular time.

From the model one can see that the R(t) element has a minimum resistance of RS

and a maximum resistance of RS +RV . Using two resistors instead of a single resistor

is a mathematical convenience to describe the R(t) element’s resistance with a single

activation factor between zero and one. Fig. 4.1.1b depicts a two-resister model of

an R(t) element. The angle of the arrow going from left to right in the figure is a

graphical approximation of the effective resistance of RV in the range from zero to

RV at a particular moment in time.

4.1.1 Synaptic Weight Change

Two R(t) elements combined with a memristor form a circuit which can implement

STDP through voltage division. In very general terms, when only one R(t) element

is activated, neural spiking is insufficient to cause the voltage across the memristor,

VM , to exceed the memristor’s threshold, VTH . However, when both R(t) elements
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are sufficiently activated, the resistance of the memristor, relative to the rest of the

branch, is large enough to cause neural spike voltage to exceed its threshold voltage.

More specifically, an increase in synaptic strength through an STDP circuit using

digital spiking neurons and R(t) elements with single-memristor synapses can be

explained in four stages, as depicted graphically in Fig. 4.1.1c-f. In the first stage, it is

assumed that no spikes have occurred for a long enough time period that both pre- and

post-synaptic R(t) elements are in their most resistive states. It is also assumed that

the memristor will retain its value for long periods of time, like a resistive memory,

and that the value of the memristor is somewhere between its most resistive (ROFF )

and least resistive (RON) states. The second stage begins when a pre-synaptic spike

occurs. The resistance of the pre-synaptic R(t) element is suddenly reduced, and the

voltage across the memristor is less than the memristor positive threshold voltage,

V +
TH , meaning that its value will remain unchanged. In the third stage the pre-

synaptic R(t) element’s resistance has increased with the passage of time, but is still

not at its maximum value. The fourth stage begins with the arrival of a post-synaptic

spike. The reduced resistances of the R(t) elements results in a negative voltage,

greater in magnitude than the absolute value of the negative memristor threshold

voltage, |V −
TH |, across the memristor. This causes its memristance to decrease. As

the memristance is decreased, the total path resistance is reduced. This results in

a higher current for a given potential. So, more charge is transferred to the post-

synaptic neuron through the synapse for a given spike—the synaptic connection has

strengthened. A decrease in synaptic resistance due to a post-pre spike pair is achieved

similarly. One final thing to note is that if the memristors used in the simulation are

additive in nature, meaning that a change in their memristance is not dependent on
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their instantaneous memristance value, R(t) element-based STDP causes non-additive

behavior to manifest due to the state of the memristor affecting the voltage that it

drops in the resistive voltage divider.

4.1.2 Component Value Selection for Perfect STDP

In this work we define perfect STDP as a synaptic connection where synaptic

change is guaranteed not to occur outside of related spikes. The rest of this section

describes how to choose component values that will result in perfect STDP. Before

choosing to design STDP circuits which implement perfect STDP, circuit designers

should bear in mind that perfect STDP has very strict requirements, results in very

small synaptic changes, and as will be demonstrated in Section 4.5, is not necessary

to facilitate STPR with R(t) elements. This section is included to demonstrate that

perfect STDP is mathematically possible rather than to be a design guide that one

should rigidly follow.

To design a perfect STDP circuit with R(t) elements and a memristor, one must

determine the values of RS and RV for each R(t) element, decide on an activation

function Q, and implement the design. Instead of defining a specific implementation

of Q, we will use particular values of Q, denoted as X and Y, to determine values of

R which will enable STDP to occur, as implementing a particular activation function

is beyond the scope of this work. Our strategy is to focus on selecting particular

values of RV and RS which will facilitate STDP for all possible values that a par-

ticular memristor could have. The shape of a particular STDP curve is due to the

composition of R ◦ Q ◦ ¢ = R(Q(¢(t))), and so to attain a specific desired STDP

curve one must carefully design their circuits; however, the point of this work is not

to design any particular STDP curve, but rather to show how STDP is possible in
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the first place and to provide a model which, when properly implemented, guarantees

perfect STDP behavior.

With this in mind, to facilitate STDP the memristor voltage, VM , must be con-

sidered with respect to its threshold voltage for two cases: where change is desired

(|VM | ≥ VTH) and where change is undesired (|VM | < VTH). We assert that the

activation of an R(t) element occurs when a bias is applied to its input terminal. In

other words, when a voltage spike is applied to Terminal 1 (Terminal 2) in Fig. 4.1.1,

R1(R4) is activated. Its resistance suddenly decreases toward RS and then slowly

rises over time toward RV +RS.

4.1.2.1 Choosing the RV values: R1 and R4

Resistances R1 and R4 are the variable portions of the R(t) elements. They control

whether, or not, and by what amount the memristor will be changed in response to

spiking stimulus. Consider the STDP circuit model depicted in Fig. 4.1.1b. If a

potential of VPRE were applied to Terminal 1, and ground were applied to Terminal

2, then the memristor voltage would be

VM = VPRE
RM

XR1 +R2 +RM +R3 + Y R4

, (7)

where X and Y are real values between zero and one which represent how resistive, at

the moment when VPRE is applied, R1 and R4 are, respectively. Assume that the R(t)

element connected to Terminal 1 is fully activated, and therefore minimally resistive

(X=0). Depending on the type of R(t) element it may not be true that a single neural

spike would fully activate it. However, this is a safe assumption to make because, for

the purpose of determining component values, we are assuming some activation of

R4 and applying a DC bias, and not neural spikes, to Terminal 1. For the case when
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change is desired, the component values must result in a situation where VM ≥ VTH .

Substituting into (7) and rearranging gives us

RM

(
VPRE

V +
TH

− 1

)
≥ R2 +R3 + Y R4. (8)

This inequality describes all of the factors which determine whether, or not, memris-

tance will change: the current value of RM , the values chosen for VPRE, R2, R3, and

R4, and the resistance of R4, at the time VPRE is applied. A similar inequality can

be derived for the case when change is undesired (VM < VTH):

RM

(
VPRE

V +
TH

− 1

)
< R2 +R3 + Y R4. (9)

Let A denote the resistance of R4, above which VM < VTH , regardless of RM , and let

B denote the resistance of R4, below which VM > VTH , regardless of RM . Choosing

A and B is accomplished by examining the fringe cases where change is undesired

with the memristor at its highest resistance value (RM = ROFF ) and where change

is desired with the memristor at its lowest resistance value (RM = RON), and then

selecting from the allowed values. The fringe cases can be expressed as

V +
TH ≤ VPRE

RON

R2 +RON +R3 +BR4

(10)

and

V +
TH > VPRE

ROFF

R2 +ROFF +R3 + AR4

, (11)
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which can be combined and rearranged to yield

(R2 +R3)(ROFF −RON) < R4[RONA−ROFFB]. (12)

Since R2, R3, and R4 are greater than zero, and ROFF > RON , then

RONA > ROFFB, (13)

which can be rearranged into

A

B
>
ROFF

RON

. (14)

This inequality is a good rule of thumb for choosing A and B, but insufficient to

ensure that the circuit will produce perfect STDP. Thus, start by choosing A and B

which satisfy (14). Next, R4 is chosen. Re-examining the fringe cases, they can be

expressed as

ROFF

(
VPRE

V +
TH

− 1

)
< R2 +R3 + AR4 (15)

and

RON

(
VPRE

V +
TH

− 1

)
≥ R2 +R3 +BR4. (16)

It is clear that if

R4 =
ROFF

(
VPRE

V +
TH

− 1
)

A
5 (17)

5Any R4 such that R4 >
ROFF

(
VPRE

V +
TH

−1

)
A

− (R2 +R3) will satisfy (15).



57

and the value of B is updated such that

B ≤
RON

(
VPRE

V +
TH

− 1
)
− (R2 +R3)

R4

, (18)

then (14), (15), and (16) can all be satisfied. The next step depends on whether

symmetrical STDP is desired. If symmetrical STDP is desired, then let R2=R3,

R1=R4, and choose R2. If asymmetrical STDP is desired, then connect ground to

Terminal 1 and VPOST to Terminal 2. Assume that the R(t) element connected to

Terminal 2 is fully activated, and therefore minimally resistive (Y=0). Thus (7)

becomes

VM = VPOST
RM

XR1 +R2 +RM +R3

. (19)

Let C denote the resistance of R1, above which VM < VTH , regardless of RM , and let

D denote the resistance of R1, below which VM > VTH , regardless of RM .

Choosing C and D is accomplished by examining the fringe cases where change is

undesired with the memristor at its highest resistance value (RM = ROFF ) and where

change is desired with the memristor at its lowest resistance value (RM = RON), and

then selecting from the allowed values. The fringe cases can be expressed as

V −
TH ≤ VPOST

RON

DR1 +R2 +RON +R3

(20)

and

V −
TH > VPOST

ROFF

CR1 +R2 +ROFF +R3

, (21)
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which can be combined and rearranged to yield

(R2 +R3)(ROFF −RON) < R1[RONC −ROFFD]. (22)

Since R1, R2, and R3 are greater than zero, and ROFF > RON , then

RONC > ROFFD, (23)

which can be rearranged into

C

D
>
ROFF

RON

. (24)

This inequality is a good rule of thumb for choosing C and D, but insufficient to

ensure that the circuit will produce perfect STDP. Thus, start by choosing C and D

which satisfy (24).

Next, R1 is chosen. Re-examining the fringe cases, they can be expressed as

ROFF

(
VPOST

V −
TH

− 1

)
< CR1 +R2 +R3 (25)

and

RON

(
VPOST

V −
TH

− 1

)
≥ DR1 +R2 +R3. (26)

It is clear that if

R1 =
ROFF

(
VPOST

V −
TH

− 1
)

C
6 (27)

6Any R1 such that R1 >
ROFF

(
VPOST

V −
TH

−1

)
C

− (R2 +R3) will satisfy (25).
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and the value of D is updated such that

D ≤
RON

(
VPOST

V −
TH

− 1
)
− (R2 +R3)

R1

, (28)

then (24), (25), and (26) can all be satisfied. Finally, choose R2 and R3.

4.1.2.2 Choosing the RS values: R2 and R3

The combination of R2 and R3 limit the maximum theoretical voltage that can

be applied to the memristor and therefore limit the magnitude of change that the

memristor can undergo due to the application of a spike. The individual values of

R2 and R3 will not affect the shape of the STDP curve, only their combined value.

To ensure that the memristor will change as desired, choose R2 and R3 such that the

quantity R2 +R3 obeys all of the following inequalities:

R2 +R3 ≤
VPRE

V +
TH

RON −RON −BR4 (29)

R2 +R3 >
VPRE

V +
TH

ROFF −ROFF − AR4 (30)

R2 +R3 ≤
VPOST

V −
TH

RON −RON −DR4 (31)

R2 +R3 >
VPOST

V −
TH

ROFF −ROFF − CR1 (32)
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4.2 R(t) Element Implementation Examples

Previous work has demonstrated that synapses composed of single memristors

driven by short-term memory transistors are capable of STDP. Specifically, TFTs with

layers of nanoparticles in the gate dielectric were used to drive memristive synapses.

Close correspondence to biological measurements for spike pairs, triplets, and overall

frequency measurements [91–93]. Simulations also indicated these networks are capa-

ble of performing STPR [21]. The nanoparticle TFTs effectively perform the function

of an R(t) element, as will be discussed in Section 4.4.

This section provides two additional examples of R(t) elements in the form of

CMOS circuits (as opposed to devices). These basic circuits, are designed using the

R(t) element model described in Section 4.1, and are meant to emphasize the char-

acteristics of simple and compound R(t) elements rather than perfectly encapsulate

simple and compound R(t) element functionality. We demonstrate how to create

STDP circuits with these circuits, and provide simulation results conducted using

the industry-standard circuit design software Cadence Virtuoso, TSMC 0.18 micron

technology MOSFET models, and the NCSU Cadence Design Kit (CDK) [54].

The first example is a simple R(t) element circuit, defined to be an R(t) element

that achieves its maximum resistance change from a single digital pulse. The second

example is a compound R(t) element circuit, defined as an R(t) element that requires

multiple digital pulses to achieve their maximum resistance change. Both examples

were used in conjunction with an ideal memristor with the following characteristics:
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α=0.001, RON=10 kΩ, V +
TH=200 mV, V −

TH=-200 mV, ∆M described by

f(M,VM , V
+
TH , V

−
TH) =


α exp(VM − V +

TH)− 1 : VM > V +
TH and M < ROFF

α exp(|VM − V −
TH |)− 1 : VM < V −

TH and M > RON

0 : otherwise

(33)

and memristance, M , described by

M = RON
w

D
+ROFF

(
1− w

D

)
(34)

where w/D represents physical characteristics of the memristor which for the purposes

of a memristor-based synapse can be thought of as the weight with values between

zero and one [74, 94–96].

4.2.1 Simple R(t) Element Circuits

The first implementation of an R(t) element circuit that will be demonstrated is

a simple R(t) element circuit. We define a simple R(t) element as an R(t) element

that achieves its maximum resistive change from a single digital pulse. The values

of R1 and R2 were chosen in accordance with the guidance described in the previous

section. A and B were chosen to be 0.95 and 0.05 respectively, which resulted in R1

and R2 + R3 being 842 kΩ and 38 kΩ respectively. Since symmetrical STDP was

desired, and the memristor used had symmetrical characteristics, R4=R1. Fig. 4.2.1

depicts a schematic of a simple R(t) element circuit and a plot of the response of the

simple R(t) element to a 1.8 V digital pulse applied to Vin when w/D=0.5.

When a digital pulse arrives at Vin, capacitor C1 is charged through diode con-

nected MOSFET M1. For the duration of the pulse, VGM2 rises towards Vin-VDS,
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Fig. 4.2.1. a) A schematic of a simple R(t) element circuit. b) The simple
R(t) element circuit’s response to a 1 ms long 1.8 V digital (square) pulse
with Vleak = 50 mv, R1=842 kΩ, R2=19 kΩ, C1 =1 pF, and W/L=10/2
for all MOSFETs. Effective resistance is calculated as the voltage dif-
ference between Vin and Vout over the current through R2. A small
measuring bias voltage is applied to Vin, but not C1, in the absence of
spiking stimulus.

increasing the conduction of M2 and lowering the overall effective resistance of the

R(t) element. When the simple digital pulse ends, charge leaks to ground out of C1

through M3, at a rate determined by Vleak. This causes VGM2 to lower over time and

the effective resistance of the R(t) element to rise over time. This particular imple-

mentation of an R(t) element circuit used in an STDP circuit as shown in Fig. 4.2.2,

produces the STDP curve of Fig. 4.2.3a.

Although the memristor described in (33) is additive, the memristor will change

in a non-additive fashion due to the voltage dividing action of the STDP circuit. This

property is portrayed in Fig. 4.2.3b. It is important to note that the R(t) elements in

this single STDP circuit do not belong to the synapse memristor, but instead to the

input and output neurons connected through it. In a network configuration, many

single-memristor synapses may be connected to a particular neuron’s R(t) element.
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Fig. 4.2.2. A schematic of a simple R(t) element-based STDP circuit. It
is important to note that the R(t) elements are not part of the synapse,
many memristive synapses can be fed by a neuron through a single R(t)
element, rather they are an accessory to be added to a neuron. In this
figure, the neurons have been substituted with piece-wise linear voltage
sources to create simple digital pulses.

This is explained in more detail in Section 4.5.

4.2.2 Compound R(t) Element Circuits

The second implementation of an R(t) element circuit that will be demonstrated is

a compound R(t) element circuit. We define a compound R(t) element as an R(t) el-

ement that requires multiple digital pulses to achieve its maximum resistance change.

The values of R1 and R2 from the previous example circuit are used. Fig. 4.2.4a

shows a schematic of a compound R(t) element circuit and a plot of the response of

the compound R(t) element to five 1.8 V digital pulses applied to Vin.

When a simple digital pulse is applied at Vin to the compound R(t) element,

current flows through the current-mirror-like arrangement composed of M1, M2, and

M3. This induces another current (Vth 6= Vleak) in the structure composed of M4,

M5, and M6. The induced current is divided between flowing to ground through M6

and charging C1. The charge in C1 raises VGM7 which increases the conductivity of

M7 and lowers the effective resistance of the R(t) element. When the simple digital

pulse at Vin ends the charge stored in C1 leaks to ground through M6 at a rate
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Fig. 4.2.3. a) The pair-based STDP plot created by an STDP circuit com-
posed of two simple R(t) element circuits and a memristor. The memristor
is initialized to 55 kΩ (w/D=0.5). Applied pre- and post-synaptic pulses
are 1.8 V digital pulses with pulse widths of 1 ms and Vleak=40 mV.
b) A simulation demonstrating the multiplicative behavior of the additive
memristor due to the voltage dividing nature of the R(t) element-based
STDP circuit. The same pre- and post-synaptic potentials are applied to
two identical simple STDP circuits (Vleak=40 mV) except for the initial
condition of the two memristors (0.100 in one and 0.500 in the other). The
memristor with the lower initial w/D, and thus a higher initial memris-
tance, experiences a larger ∆w/D because it drops a larger fraction of the
applied potential.
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Fig. 4.2.4. a) A schematic of a compound R(t) element circuit. b) The
compound R(t) element circuit’s response to simple 1 ms duration 5 V
digital pulses with Vleak= 40mV, Vth=68 mV, R1=842 kΩ, R2=19 kΩ,
C1=1 pF, and W/L=10/2 and 20/2 for all NMOS and PMOS respectively.
Effective resistance is calculated as the voltage difference between Vin and
Vout over the current through R2 with a small measuring bias applied to
Vin, but not C1, in the absence of spiking stimulus.

determined by Vleak. This particular implementation of a compound R(t) element

was used in the STDP circuit shown in Fig. 4.2.5.

Since compound R(t) elements, by definition, cannot achieve their least resis-

tive state by a single spike, the STDP curve changes for different combinations of

spikes. The memristance changes resulting from pre-post pairs and pre-pre-post

triplets produce different STDP curves because the effective resistance of compound

R(t) elements is dependent on the cumulative effect of spike combinations. Thus,

combinations of spikes will produce different effects than pairs of single spikes. These

higher-order effects, which lead to STDP asymmetry, are examined in Fig. 4.2.6.

Here, evenly spaced spike-triplets, which would otherwise leave the memristor

unchanged, cause a net change in w/D. Two things to note are how the second pair

of spikes in the triplet are dominant. A pre-post-pre triplet acts more like a post-pre
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Fig. 4.2.5. A schematic of the compound R(t) element-based STDP
circuit. It is important to note that the R(t) elements are not part of
the synapse, many memristive synapses can be fed by a neuron through a
single R(t) element, rather they are an accessory to be added to a neuron.
In this figure, the neurons have been substituted with piece-wise linear
voltage sources to create simple digital pulses.
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Fig. 4.2.6. Three separate spike trains are applied to the same compound
R(t) element-based STDP circuit with the same settings (Vleak=40 mV,
Vth=125 mV, memristor initialized to w/D=0.500). The pre- and post-
synaptic R(t) element’s effective resistances are depicted with thin solid
and dotted lines respectively. The memristor’s w/D is depicted with a
thick line. The times of pre- and post-synaptic spikes are represented
with ◦ and + respectively. Notice how the magnitude of change varies as
the inter-spike-interval and time between triplets varies. a) Three spike
triplets are applied to the compound STDP circuit with an inter-spike-
interval of 6 ms and 15 ms between triplets. b) Three spike triplets are
applied to the compound STDP circuit with an inter-spike-interval of 3
ms and 15 ms between triplets. c) Three spike triplets are applied to the
compound STDP circuit with an inter-spike-interval of 6 ms and 10 ms
between triplets. Applied pre- and post-synaptic pulses are 1.8 V digital
pulses with pulse widths of 1 ms.
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pair than a pre-post pair. In addition, the repetition frequency clearly affects the

change in w/D, as each successive repetition of the triplet causes the magnitude of

the change in w/D to increase.

Further, the circuit produces the STDP curves depicted in Fig. 4.2.7 when exposed

to spike-pair stimulus and spike-triplet stimulus.

The triplets are composed of sequences of 1.8 V pre-pre-post (∆t < 0) and post-

post-pre (∆t > 0) synaptic spikes of 1 ms in duration with 6 ms between the leading

edges of the first two spikes in the sequence, and ∆t is taken to be the time between

the leading edges of the second and third spikes in the sequence. It is important

to note that the R(t) elements in this single STDP circuit do not belong to the

synapse memristor, but instead to the input and output neurons connected through

it. In a network configuration, many single-memristor synapses may be connected to

a particular neuron’s R(t) element. This is explained in more detail in Section 4.5.

4.3 Demonstration with a More Realistic Memristor Model

To demonstrate how R(t) elements can facilitate STDP with a less ideal, and more

realistic memristor, an STDP circuit was constructed using two simple R(t) elements

and a memristor based on the Yakopcic model [97, 98]. The memristor parameters are

as follows: a1=a2=0.135, b=0.025, Vp=Vn=0.2, Ap=An=4000, xp=xn=0.3, αp=αn=1,

x0=0.5, and η=1. The R(t) element parameters are R1=R2=R3=R4=

1.5 kΩ. The resulting STDP plot is depicted in Fig. 4.3.1.

4.4 Discussion and Comparison to Other Methods

The use of charge-trapping TFTs mentioned previously is functionally similar

to an R(t) approach in that the characteristics of the synaptic path are modified

by an accessory element, independent of the neurons, to induce specific synaptic
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Fig. 4.2.7. The STDP plot created by an STDP circuit composed of
two compound R(t) element circuits and a memristor under the influ-
ence of two different kinds of stimulus—pairs of single spikes and spike
triplets. The pairs of single spikes are typical pre-post pairs, whereas the
spike triplets are pre-pre-post and post-post-pre triplets where the first
two spikes are separated by 5 ms. The memristor is initialized to 55 kΩ
(w/D=0.5). Applied pre- and post-synaptic pulses are 1.8 V digital pulses
with widths of 1 ms. Vleak=40 mV and Vth=125 mV.
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Fig. 4.3.1. The STDP plot created by using two simple R(t) elements
and a memristor based on the Yakopcic model.
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changes. Simulation, fabrication, and experimental validation of these devices have

been demonstrated previously and has been shown to enable complex synaptic learn-

ing [93, 95, 99]. At first, the simplicity of using a single device as an R(t) element

seems elegant and extremely advantageous. However, a great deal of design effort

is required to realize device functionality in accordance with the requirements pre-

sented in Section 4.1. Threshold voltage must be set to the proper value, and the

subthreshold swing must offer the appropriate amount of conductance modulation for

the operating voltages. Most importantly, thicknesses of the gate tunneling dielectrics

and the charge trapping mechanism (nanoparticles or otherwise) must be precise to

achieve the desired time constants. Once the circuit is fabricated, these response

parameters cannot be tuned as in the CMOS implementations, dramatically reducing

the flexibility of the design.

Comparison of power consumption between these two approaches is also impor-

tant. In the simple and compound R(t) elements presented, the minimum effective

resistance of the current path (when the element is activated) is on the order of R2

plus the channel resistance of M2 or M7, resulting in approximately 20 kΩ. This value

is on the same order as the lowest possible on-state channel resistance achievable in

TFT devices with high-k dielectrics such as HfO2. Assuming that both the TFT and

CMOS implementations would need to exhibit similar changes in resistance between

the input and output terminal across similar voltage ranges, the power consumption

should be similar in both cases.

One of the biggest drawbacks is that TFTs degrade significantly over time, result-

ing in an undesirable loss of the expected R(t) properties. It is also far more difficult

to integrate these special devices into a typical CMOS fabrication process. Future
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R(t) element designs could be much more power- and area-efficient than either of the

approaches discussed here. However, they would still need to follow similar behavioral

rules to achieve the same learning characteristics for any given memristor technology.

4.5 Network Examples

Neural networks are typically composed of multiple neurons, each of which con-

nects to other neurons via synapses. The maximum number of R(t) elements, =∧,

required in a layered neural network with R(t) element-based STDP can be deter-

mined using

=∧ = I +O + 2
h∑

i=1

Hi (35)

where I is the number of input neurons, O is the number of output neurons, Hi is the

number of neurons in the ith hidden layer, and h is the number of hidden layers. In

most useful cases (I > O ≥ 2) this is fewer than the maximum number of synapses,

S, in a layered neural network given by

S =
n−1∑
i=1

NiNi+1 (36)

where Ni is the number of neurons in the ith layer and n is the number of layers.

4.5.1 Small Network Example

Fig. 4.5.1 depicts the connections of a network consisting of three input neurons,

two output neurons, six synapses, and five R(t) elements. In Fig. 4.5.1 the R(t)

elements are symbolically represented as variable resistors and the neurons have been

abstracted as voltage signals applied to the connectome.

To demonstrate R(t) element-based STDP in this network, 1.8 V digital spikes of

1 ms duration were applied to the network inputs and outputs in a 100 ms transient



73

Fig. 4.5.1. a) The connections of an R(t) element-based STDP neu-
ral network consisting of three input neurons, two output neurons, six
single-memristor synapses, and five R(t) elements. The connections to
the pre-synaptic neurons are labeled N1-N3 and the connections to the
post-synaptic neurons are labeled as N4 and N5. The synapses are labeled
according to the neurons they connect using a post-pre naming convention.
For example, Synapse 52 connects Neurons 5 and 2. These connections
between the R(t) elements give rise to two types of non-specific synap-
tic plasticity. The first is heterogeneous non-specific plasticity, where the
change in weight is due to a low resistance path which begins and ends
on different layers. The second is homogeneous non-specific synaptic plas-
ticity, where the change in weight is due to a low resistance path which
starts and ends on the same layer. b) This figure depicts an example of
the specific and non-specific synaptic paths that arise due to a pre-post
pair. The specific path that results from N3 firing followed by N5 firing
is illustrated with solid black lines. The non-specific paths, which could
result in heterogeneous non-specific synapse weight increase of Synapses
51 and 52 and weight decreases of 41, 42, and 43, are illustrated with
dashed black lines. c) This figure depicts an example of the non-specific
path that arises due to a pre-pre pair. The non-specific path that results
from N3 firing followed by N2 could result in the homogeneous non-specific
synaptic weight decrease of Synapse 52 and increase of Synapse 53.
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simulation. Results of the applied stimulus are shown in Fig. 4.5.2.

Note the rise in w/D that occurs at 4ms in synapse 41. This corresponds with

the pre- and post-synaptic spikes at 1 and 4 ms, respectively. Also, the w/D increase

at 30 ms in Synapse 52 is not as large. This is due to the increased amount of time

between the pre- and post-synaptic spikes, at 20 and 30 ms, resulting in a larger

post-synaptic R(t) element resistance at the time of the post-synaptic spike, and thus

a smaller voltage across the memristor resulting in a smaller memristance change.

The decreases in w/D that occur at 53 and 80 ms in synapses 43 and 51 respectively

can be explained similarly.

At 20 ms into the simulation Synapse 52 decreases in strength, despite the fact

that Neuron 5 had not fired yet. This non-specific synaptic plasticity is due to alterna-

tive paths through the multiple memristors between the pre- and post-synaptic firing

neurons as depicted in Fig. 4.5.1. Unlike other methods that induce non-specific

synaptic plasticity, which depend on the availability of alternative paths, often re-

ferred to as sneak paths, the induced synaptic change was facilitated by activated

R(t) elements—meaning that the time between the non-specific spikes altered the

resistances of the available paths making some paths temporarily more susceptible to

the influence of non-specific synaptic plasticity than others. In simulation non-specific

synaptic plasticity has been shown to improve the recognition of sparse patterns un-

der certain conditions [100]. A final set of spikes was added at 80 and 95 ms to

demonstrate that, although the memristor is behaving non-additively, the expression

of the modified behavior may be very subtle.
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Fig. 4.5.2. The results of the small network simulation. The times of
pre- and post-synaptic spikes are represented at the top with ◦ and +
respectively. The weights of the memristive synapses are shown in the
middle and change via specific and non-specific plasticity over the course
of the simulation. The effective resistances of the R(t) elements are shown
at the bottom.
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4.5.2 STPR Example

A network consisting of 25 afferent neurons, 25 memristors, 26 R(t) element cir-

cuits, and one output neuron was also simulated to demonstrate STPR using R(t)

elements. To demonstrate R(t) element-based STPR, 1.8 V digital spikes of 1 ms

duration were simulated from the afferent neurons. Training was performed using

an unsupervised method wherein the afferent neurons produced random spiking sig-

nals mixed with 1666 instances of a 10 ms spatiotemporal pattern over 30 seconds.

Fig. 4.5.3 depicts a sample of the simulation after training.

The STPR performed by this network are the spikes from the output neuron,

Nout, which occur after the network is exposed to spatiotemporal patterns in the

afferent neurons. The spatiotemporal patterns in Fig. 4.5.3 are highlighted with grey

bars. A false positive occurs at 33.624 s in the simulation and is highlighted with a

grey circle.

4.6 Conclusion

This chapter discussed the design and operation of R(t) elements and R(t)-based

STDP circuits which enable STPR behavior in SNNs. The theory behind R(t) el-

ements and the operation of STDP circuits made from simple and compound R(t)

element circuits were explained, and simulations were performed.

The simulations were designed to demonstrate how the R(t) elements work, and

how they facilitate STDP learning in memristive synapses. Additional simulation was

performed to demonstrate how a single-layer feed-forward network with 25 afferent

neurons, 25 memristors, and 26 R(t) elements could facilitate STPR.

The results demonstrate that R(t) elements can be used to create STDP circuits

which can give rise to STPR behavior in single-layer feed-forward SNNs.
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Fig. 4.5.3. The results of the STPR network simulation. The network
consists of 25 afferent spiking neurons (N1 through N25), 26 R(t) elements,
25 memristors, and 1 output neuron (Nout). The network was trained
using an unsupervised method consisting of the afferent neurons producing
random spiking signals with a spike pattern embedded in them at random
times. Notice that the spikes produced by the output neuron, Nout, occur
after the presentation of the patterns (highlighted with grey bars)—this
is STPR. A false positive occurs at 33.624 s and is highlighted with a grey
circle.



5 CHAPTER FIVE: SPATIOTEMPORAL PATTERN DETECTION, PATTERN

GENERATION, AND COMPUTATION WITH CIRCUITS

Implementations of neurons, delays, and synapse circuits are presented with sim-

ulations. These neural elements are used to create two small spiking neural networks,

the Rate-Window and Order-Biased clusters, which are capable of detecting sim-

ple two-spike spatiotemporal patterns. A SPDN is created by combining the Rate-

Window and Order-Biased clusters, where clusters are small spiking neural networks,

and its simple pattern detection ability is demonstrated in simulation. The SPDN is

used to implement a Complex Pattern Detecting Network (CPDN) and its complex

pattern detection ability is demonstrated in simulation. Methods for generating arbi-

trary spatiotemporal patterns are presented. The CPDN and spatiotemporal pattern

generation methods are then used to implement a novel spatiotemporal computing

paradigm based on detecting and responding to spatiotemporal symbols. A sim-

ulation of a spatiotemporal half adder is presented to demonstrate the computing

paradigm.

5.1 Introduction

In a biological brain, electrochemical signals, or action potentials, are passed

through trillions of synapses between neurons. This massively parallel network of

neurons is responsible for the brain’s many wonderful abilities such as sound source

localization and rapid response to threat stimuli [37–39, 57, 58]. Because of the brain’s

abilities, humans have wanted to build brain-like computers for some time [2, 3, 101,
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102]. The most recent attempts mimic the biological brain’s physiology by combining

spike signals and scaling synapses to perform neural computing. For convenience, we

assert that there are three distinct classes of modern neural computing: modeling,

packet-based, and spatiotemporal.

In modeling neural computing, computational neuroscientists use computing sys-

tems like Neurogrid, SpiNNaker, and FACETS to model biological neural systems

[103–105]. In packet-based neural computing, packets are routed throughout a chip

that act as placeholders for spikes in a hybrid spiking architecture. IBM True North

and Intel Loihi are examples of packet-based neural computing that demonstrate how

hybrid spiking architectures can be used to implement algorithms to solve specific

kinds of problems [106, 107]. In spatiotemporal neural computing, computation is

performed using only spiking neural elements—neurons, synapses, and axonal delays.

One form of spatiotemporal computing is polychronous wave front computation.

Izhikevich introduced the idea of polychronous wavefront computation in [108], in

which action potential wavefronts propagate between neurons like ripples in a pond.

Izhikevich’s work introduced reverberating memory, used fewer variables than tradi-

tional spiking neural networks, and implemented a system where computation was

performed solely by action potentials modeled as wave fronts.

However, there are issues with this spatiotemporal computing framework. Fore-

most, there is no way to prevent a signal from reaching any particular neuron in the

framework. This inhibits scaling, as the larger the system becomes, the more likely

it is that stray signals from one part of the system will cause interference in another

part. This also means that calculations which would be useful to localize and abstract

through isolation in a large system are not possible.
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An additional complication exists in that the mechanism for implementing axonal

delays relies on the positional relationship between neurons in 2-space. This fact,

combined with the fact that all messages between neurons are presented as having

uniform constant wave speeds, complicates complex spatiotemporal symbol manipu-

lation due to the limitation of only being able to change the positional relationship

between neurons. As a simple example, it can be shown that this framework makes

asymmetric action potential delays between two neurons impossible without first rout-

ing the action potentials through additional neurons. Unlike the polychronous wave

front framework, the axonal delays between neurons in this work can easily be assy-

metrical, and signal isolation is achieved between neurons by simply not connecting

them.

Another form of spatiotemporal computing is the Spike Time Interval Computa-

tional Kernel (STICK) framework. In [109], Lagorce & Benosmen demonstrated how

neurons, synapses, and delays could be used to perform Turing complete computation

using precise timing. Values are represented as the precise time interval between two

spikes.

One issue with STICK is that it depends on the use of non-leaky neurons to

perform memory operations and calculations. In STICK, values are stored in the

membrane potentials of non-leaky neurons, either by directly modifying the value

stored by the membrane potential (V-synapses) or by initiating and halting currents

with precise timing (ge, gf, and gate-synapses). The problem with this is that charge

tends to leak to ground due to tunneling, which will cause the values to drift over

time. Unlike STICK, in this work only one kind of synapse is used and the neurons

are leaky-integrate-and-fire neurons.



81

As opposed to the works in [108] and [109], the kind of spatiotemporal compu-

tation presented in this work is transformative, meaning that the spatiotemporal

patterns form symbols which undergo a transformation through a process of detec-

tion and generation. The form of spatiotemporal computation presented in this work

begins with recognizing spatiotemporal symbols. Spatiotemporal pattern recogni-

tion (STPR), within the context of SSNs, is a process through which an output

spike coincides with the occurrence of an input spatiotemporal pattern. STPR has

been demonstrated using SNNs with synapses that change weight in accordance with

a spike-timing-dependent learning rule, otherwise known as spike-timing-dependent

plasticity (STDP) [17, 18, 21, 30, 49–52].

In one common approach to STPR, SNNs are trained to recognize a pattern by

repeatedly exposing them to the pattern embedded in noise. After repeated exposures,

the synaptic weights adjust in accordance with an STDP learning rule so that the

output neuron’s spikes tend to coincide with the presentation of the pattern [17, 21,

30].

Another approach to STPR requires knowing the pattern to be detected and de-

signing a system to detect that particular pattern. Examples of this approach include

Spike Sequence Recognition Networks, Key-Threshold based SNNs, and neural net-

works combined with simple logic gates [29, 52, 53]. The circuits we present in this

work are also examples of this approach, but unlike other approaches mentioned,

which require precise timing, time steps, or additional logic circuits to achieve pat-

tern recognition, this approach uses only common neural circuitry (neurons, synapses,

and delays) to implement user-defined windows of detection.

In addition to STPR, the spatiotemporal computation presented in this work re-
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quires generation to respond to the detected patterns. While STPR is the process

of producing a single spike when a spatiotemporal pattern is recognized, Spatiotem-

poral Pattern Generation (STPG) is the ability to create arbitrary spatiotemporal

patterns from a single spike. By combining STPR and STPG, spatiotemporal symbol

transformation can be performed to achieve computation.

The motivation for this work is to demonstrate a spatiotemporal symbol comput-

ing paradigm wherein Complex Spatiotemporal Pattern Detectors (CSPDs) are used

to interpret stimulus. CSPDs, which are sophisticated pattern detecting Spiking Neu-

ral Networks (SNNs), can be created from compositions of Simple Pattern Detecting

Networks (SPDNs), which themselves are nothing more than small SNNs. The in-

terpreted stimulus than elicits the creation of new spatiotemporal symbols through

generation.

In this work we will show how sequences of action potentials which form spatiotem-

poral patterns can be detected and generated using neural components (neurons,

synapses, and axonal delays) in order to form and transform spatiotemporal pattern

symbols to give rise to a new form of computation. This is accomplished using con-

figurations of neurons, synapses, and delays referred to as the Rate-Window Cluster

and the Order-Biased Cluster. These clusters detect the two simple spatiotemporal

sub-patterns, NA-NA-∆t and NA-NB-∆t, as well as a special case of NA-NB-∆t, NA-

NB-Coincidence. Simulations of the pattern detection abilities of the SPDN, which

is a combination of the Rate-Window Cluster and the Order-Biased Cluster, are pre-

sented. The rest of this work is as follows: Section 5.2 presents basic neural circuit

components. Section 5.3 describes the simple spatiotemporal patterns and presents

simulations of the detection of simple patterns by a SPDN. Section 5.4 shows how
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compositions of Simple Pattern Detecting Networks can be used to create CSPDs in

order to detect complex spatiotemporal patterns. Section 5.5 discusses spatiotempo-

ral symbol interpretation, generation, and computation. Conclusions are presented

in Section 5.6.

5.2 Neural Circuit Components

All simulation results presented in this work were produced using NGSpice revision

30 and BSIM 4.8.1 level 14 MOSFET models [110, 111]. These circuits are not in-

tended for use in production, but rather as examples which demonstrate the behavior

of the Simple Pattern Detecting Network. The authors would like to emphasize that

the circuits themselves are irrelevant—any circuit implementations that can perform

the functions of a spiking neuron, delay, and synapse can be used—it is the clusters

and networks formed from these circuits, and their resulting abilities to detect simple

spatiotemporal patterns, that are interesting. Thus, implementation-specific metrics,

such as power consumption, are not discussed in this work.

5.2.1 Neuron Circuit

The Neuron Circuit, pictured in Figure 5.2.1, is a leaky-integrate-and-fire design

based on [2]. What follows is a description of the operation of the Neuron Circuit.

Initially, the circuit is in steady state—the soma potential is at ground, the output

potential is at ground, and the potential between the inverters is Vdd. As current

enters the input current pin, Iin, charge accumulates on capacitors C1 and C2, which

causes the voltage at the input node, Vsoma, to rise. While charge accumulates through

Iin, charge is leaking from the input node to ground through N4 and N5 at a rate

determined by the user (Vleak). If at any time a voltage spike arrives at Vinhibit, then

the charge accumulated on the input node will rapidly discharge to ground through
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N1.

If the charge accumulated on the input node causes Vsoma to exceed the threshold

of the inverter formed by P1 and N6, the voltage of the node between the inverters

will start to lower, and Vout will start to rise. Vout rising causes Vsoma to rise rapidly

(which in turn causes Vout to rise rapidly) due to the positive feedback loop through

C2. The positive feedback loop rapidly raises Vout to Vdd, “turning on” N3, and

lowers the node between the inverters to ground, “turning off” N5, cutting off the

input node discharge path to ground through N4 and N5, and creating a new input

node discharge path through N2 and N3 at a rate determined by the user (Vreset).

When the discharge through N2 and N3 has lowered Vsoma below the threshold

of the inverter formed by P1 and N6, the potential between the inverters begins to

rise, and the potential at Vout begins to lower. Vout lowering causes Vsoma to drop

rapidly (which in turn causes Vout to drop rapidly) due to the positive feedback loop

through C2. The positive feedback loop rapidly lowers Vout to ground, “turning off”

N3, and raises the node between the inverters to Vdd, “turning on” N5, creating

an input node discharge path to ground through N5 and N4, cutting off the input

node discharge path through N2 and N3, and resetting the Neuron Circuit into a

steady-state condition.

5.2.2 Synapse Circuit

The Synapse Circuit, depicted in Figure 5.2.2, converts the digital voltage spikes

from neurons into currents of varying magnitudes, which can be fed into the Iin pin

of Neuron Circuits. To understand the Synapse Circuit’s operation, first assume

that the output of the postsynaptic neuron (Vpsop) is low. That means that P1 is

“ON” and N1 is “OFF”, which in turn means that voltage spikes arriving at Vin



85

Vdd Vdd

N1

N2

N3

N4

N5

N6 N7

P1 P2

C1

C2

Soma

n

(a)

(b)

Iin

Vinhibit

Vreset Vleak

Vout

Vin
Vinhibit

Vout

Fig. 5.2.1. (a) A Neuron circuit based on [2]. Iin is the current input
where one or more synapses may connect. Vinhibit is a signal that dumps all
charge collected on the soma to ground. Vreset is a user-defined bias that
sets the output digital spike’s pulse-width. Vleak is a user-defined bias that
sets the leak current from the soma to ground. Vout is the digital spiking
output of the neuron. (b) Neuron Circuits are depicted schematically as
a circle around an “n”. Notice that the input is labeled “Vin”. This is
because in diagrams, inputs to Iin are implicitly through synapses.
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may pass through P1 and reach the inverter formed by P2 and N2. The inverted Vin

signal is applied to the gate of P3, causing P3 to “turn on” when Vin is high and

“turn off” when Vin is low. When P3 is “ON”, current flows through P3, P4, and

diode-connected NMOS N3 at a rate determined by the user (Vweight).

Now, assume that the output of the postsynaptic neuron (Vpsop) is high. That

means that P1 is “OFF” and N1 is “ON”, which prevents any signals from propagating

through P1, and ties the inverter formed by P2 and N2 to ground through N1.

Schematically, Synapse Circuits are not depicted. Connections between Neuron

Circuits are assumed to be through a Synapse Circuit unless one end is shown to have

a “-” symbol, which would indicate that a direct full-strength negative connection has

been made (Vinhibit). Similarly, connections from a Delay Circuit to a Neuron Circuit

are assumed to be through a synapse circuit unless one end is shown to have a “-”

symbol, which would indicate that a full-strength negative connection has been made

(Vinhibit). In a similar fashion, connections from a Neuron Circuit to a Delay Circuit

are direct connections from the output of the Neuron Circuit to the Delay Circuit

(either the input or an inhibitory connection). Neuron Circuits can have one or more

inputs, either through synapses or from delay circuits.

5.2.3 Different Kinds of Delays

In this work we define two different kinds of delays: tolerant and intolerant. We

define tolerant delays as delays which faithfully reproduce an input spike stream at

a delayed time, and intolerant delays as delays which are only capable of processing

the delay for one spike at a time. We further define two subcategories of intolerant

delays: resetting and non-resetting.

What distinguishes a resetting delay from a non-resetting delay is how each of
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Fig. 5.2.2. A Synapse Circuit. Vin is the digital pre-synaptic spiking
input. Vpsop is the output from the postsynaptic Neuron Circuit. Vweight

is a subthreshold bias, determined by the user, which sets the efficacy
of the synapse. Iout is the current output connected to the input of the
postsynaptic neuron.

the two process multiple input spikes. If a second spike arrives at a non-resetting

intolerant delay while it is delaying a spike, the delay will ignore it, and all additional

inputs, until it has produced a delayed spike. Whereas, if a second spike arrives at

a resetting intolerant delay while it is delaying a spike, the delay will start over and

reset for the latest spike. Any spikes that occur during the delay of an intolerant delay

will cause the delay to reset. Figure 5.2.3 depicts typical tolerant and an intolerant

delay behavior in response to the same spike stream.

The delay circuits used in this work are pictured in Figure 5.2.4. Both designs

are based on [2]. In one design, the circuit acts as a resetting intolerant delay. In the

resetting intolerant design, the goldenrod MOSFET is absent, and the blue line is

connected as shown. In the non-resetting intolerant design, the goldenrod MOSFET

is connected as shown, but the blue line is connected to Vinhibit rather than Vin.

To understand the Resetting Intolerant Delay Circuit’s operation, let us first as-

sume that Vin=0 V and Vout=0 V. When a voltage spike is applied to Vin, current
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flows through diode connected NMOS N1 and charge accumulates on C1 and C2.

This causes VC1 to rise. This also causes N5 to “turn on”, draining whatever charge

may be accumulated on C3 and C4 to ground. Meanwhile, the positive feedback

loop formed by P1, N3, P2, N4, and C2 cause VC1, and the output of the inverter

formed by P2 and N4, to rapidly rise to Vdd. During the short period of time that

the input spike is high the circuit is now in a state such that a small current, limited

by subthreshold MOSFET P3, flows from Vdd through P2, P3, and N5 to ground.

At this point it is helpful to reiterate that the purpose of this circuit is not to

represent the pinnacle of efficient neuromorphic design, but rather to exhibit the

characteristics of a resetting intolerant delay in order to demonstrate the pattern

detecting behavior of the Simple Pattern Detecting Network through simulation. It

should also be noted that the Simple Pattern Detecting Network does not require

a particular kind or implementation of delay—tolerant and non-resetting intolerant

delays can also be used to detect simple spatiotemporal patterns, but networks of

Simple Pattern Detecting Networks constructed with the different kinds of delays can

respond differently to the same spiking stimulus.

When the input spike ends, N5 is cutoff, and charge begins to accumulate on

C3 and C4 through P2 and subthreshold MOSFET P3 at a rate determined by the

user-defined bias, Vdelay. If another input spike arrives before a sufficient amount of

charge has accumulated on C3 and C4, then N5 “turns on”, discharging C3 and C4 to

ground until that input spike ends. Either way, once a sufficient amount of charge has

accumulated such that VC1 crosses the inverter threshold of P4 and N8, the positive

feedback loop formed by P4, N8, P5, N9, and C4 causes VC1 and Vout to rise to Vdd.

When Vout rises to Vdd, N2 and N7 are “turned on”, creating paths for charge to
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leak from C1 and C2 to ground through N2 rapidly, and from C3 and C4 to ground

through N6 and N7 at a rate determined by the user-defined bias, Vreset. When VC1

drops below the inverter threshold the positive feedback loop formed by P1, N3, P2,

N4 and C2 rapidly pull VC1, and the output of the inverter formed by P2 and N4,

down to ground. Similarly, when VC1 drops below the inverter threshold, the positive

feedback loop formed by P4, N8, P5, N9, and C4 rapidly pull VC1 and Vout down to

ground, placing the delay circuit in a condition to delay another spike.

The Non-Resetting Intolerant Delay’s operation is almost identical to the Reset-

ting Intolerant Delay, except that since Vin is not connected to N5, additional spikes

do not reset the delay. Also, should a Vinhibit spike arrive, the charge stored on C1, C2,

C3, and C4 will rapidly discharge to ground, placing the delay circuit in a condition

to delay another spike.

One more thing to note is that because MOSFETS are not ideal switches, when-

ever C1 and C2 are charged, off current will be leaking through N2 to ground. This

places an upper limit on the delay that can be achieved with this particular imple-

mentation of a delay. If the user sets Vdelay too low, after an input spike arrives, but

before an output spike is produced, VC1 might lower below the inverter threshold due

to the off current through N2, before VC1 would be able to rise above the inverter

threshold. This would cause the circuit to reset without ever having produced an

output spike. Thus, in this particular circuit implementation, the dimensions of N2

have been adjusted so as to decrease the off current and increase the upper limit of

the delay.
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Fig. 5.2.3. The stereotypical response of tolerant and intolerant delays
to the same spiking stimulus. Notice how the tolerant delay faithfully
reproduces all three of the spikes at the respective times plus a delay.
In contrast, the intolerant delays only produce two of the three input
spikes. This is because the spike at t3 follows the spike at t2 too closely—it
occurs while the delay element is delaying the spike at time t2—causing
the characteristic behavior of the intolerant delays. In the case of the
non-resetting intolerant delay, the second spike is ignored, and in the case
of the resetting intolerant delay, the delay is reset for the third spike, and
the second spike is ignored.

5.3 Simple Pattern Detection using Neurons and Delays

Simple spatiotemporal patterns are spatiotemporal patterns that consist of a single

pair of spikes from either one or two sources. These spike pairs can be detected

using special SNN topologies called clusters. Two clusters, the Rate-Window cluster

and the Order-Biased cluster, can detect NA-NA-∆t and NA-NB-∆t simple patterns,

respectively. A third cluster, the Simple Pattern Detecting Network, is a combination

of the Rate-Window and the Order-Biased clusters, and as such is capable of detecting

both NA-NA-∆t and NA-NB-∆t simple patterns.

5.3.1 Simple Spatiotemporal Patterns

There are two simple spatiotemporal patterns: NA-NA-∆t and NA-NB-∆t. The

first simple pattern, NA-NA-∆t, consists of two spikes from the same source separated

by an amount of time, ∆t. The second simple pattern, NA-NB-∆t, consists of two

spikes from different sources separated by an amount of time, ∆t. Also of note is a

special case of NA-NB-∆t, NA-NB-Coincidence, where ∆t=0. Figure 5.3.1 depicts the

two simple spatiotemporal patterns and the special case NA-NB-Coincidence.



91

d

Vdd Vdd Vdd Vdd

W=4λ
L=24λ

N1

N2

N3 N4

N5

N6

N7

N8 N9

P1 P2

P3

P4 P5

C1

C2

C3

C4

(a)

(b) d(c)Vin Vout Vout

Vinhibit

Vin

Vin

Vinhibit Vdelay

Vreset

Vout

Fig. 5.2.4. (a) Circuit implementations of intolerant delays. Vin is the
digital spiking input to the delay circuit. Vdelay is a subthreshold bias, set
by the user, that determines the length of the delay between the input and
the output. Vreset is a subthreshold bias, set by the user, which adjusts the
pulse-width of the delayed pulse. Vout is the delayed digital spiking output
of the circuit. Vinhibit is an inhibitory signal that prevents transmission of
the delayed signal. (b) Resetting Intolerant Delay Circuits are depicted
schematically as a square around a “d”. In this design, the goldenrod
MOSFET is absent, and the blue line is connected as shown. (c) Non-
Resetting Intolerant Delay Circuits are depicted schematically as a square
around a “d” with an additional inhibitory connection denoted with a “-”
sign. In this design, the goldenrod MOSFET is present, and the blue line
connects N5’s gate to Vinhibit rather than Vin.
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Fig. 5.3.1. The two simple spatiotemporal patterns and the special case
NA-NB-Coincidence.

5.3.2 Simple Pattern Detecting Network

The Simple Pattern Detecting Network, depicted in Figure 5.3.2, is a composi-

tion of two clusters—the Rate-Window Cluster and the Order-Biased Cluster. This

combination enables the SPDN to detect all three simple spatiotemporal patterns

depending on how it is configured. Figure 5.3.3, Figure 5.3.4, and Figure 5.3.5 depict

the response of different configurations of the Simple Pattern Detecting Network to

different combinations of input spikes. The first six spikes chronologically are three

pairs of spikes on VinA, where each pair is separated from the others by 10 ms between

the leading edges, and the leading edges of each spike in each pair are separated by

2 ms, 3 ms, and 4 ms. The next six spikes chronologically start 10 ms after leading

edge of the last spike, and are three pairs of spikes on VinB, which are identical to

the first six on VinA. The next two spikes chronologically form an NA-NB-∆t pattern

where ∆t=2 ms. 10 ms later, the next two spikes form an NB-NA-∆t pattern where

∆t=2 ms. 10 ms later, the final two spikes form an NA-NB-Coincidence pattern.

The Simple Pattern Detecting Network can be configured to detect simple NA-NA-

∆t patterns by tying the inputs to the delays to ground and providing the same input

to both neurons, as depicted in Figure 5.3.3. This effectively makes it a Rate-Window
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Cluster. The way that the Rate-Window Cluster works is two neurons, exposed to the

same input but with different input weights, influence an output neuron in mutually

opposing ways. Neuron n1 is connected to neuron n3 in such a way as to stimulate it

beyond n3’s threshold with a single spike (but not instantaneously), whereas neuron

n2 is connected to neuron n3 in such a way as to fully discharge the soma with a single

spike. Neurons n1 and n2 are biased such that n1 will fire when ∆t between two spikes

is a user-defined value, and n2 will fire when ∆t between two spikes is slightly less

than the ∆t of n1.

Figure 5.3.3 depicts the Simple Pattern Detecting Network’s response to spiking

inputs when configured as a Rate-Window Cluster. If the ∆t between input spikes is

sufficient to cause both n1 and n2 to fire, then n3 will not fire, because the output of

n2 is connected to the inhibitory connection of n3 (Vinhibit), meaning that the charge

will be discharged to ground from n3’s input node instead of accumulating, which

prevents n3 from firing. This behavior can be seen in the SPDN’s response to the

first pair of spikes chronologically, which are separated by ∆t=2 ms between leading

edges. However, if the ∆t between input spikes is sufficient to cause n1 to fire, but

not n2, then charge will flow into the input node of n3 through a synapse, causing n3

to fire. This behavior can be seen in the SPDN’s response to the second pair of spikes

chronologically, which are separated by ∆t=3 ms between leading edges. Finally, if

neither fires, then n3 will not fire either, as it won’t be sufficiently stimulated. This

behavior can be seen in the SPDN’s response to the third pair of spikes chronologically,

which are separated by ∆t=4 ms between leading edges.

The Simple Pattern Detecting Network can also be configured to detect simple

NA-NB-∆t patterns by tying the inputs to the neurons to ground and providing n1
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and n2 inputs to the delays, as depicted in Figure 5.3.4. This effectively makes it an

Order-Biased Cluster. The way that the Order-Biased Cluster works is two spiking

inputs are connected to two delay elements. The delay elements are biased such that

input spikes of a particular orientation, and separated by an amount ∆t, produce

output spikes which align to sufficiently stimulate n3 and cause it to spike.

Figure 5.3.4 depicts the Simple Pattern Detecting Network’s response to spiking

inputs when configured as an Order-Biased Cluster. Notice how the only output spike

occurs at approximately 85 ms in response to the NA-NB-∆t pattern formed by the

13th and 14th spikes chronologically. Also, notice that the NB-NA-∆t pattern, formed

by the 15th and 16th chronological spikes, does not induce an output spike—even

though the patterns have the same ∆t. This is because of the values of d1 and d2,

which produce aligned spikes when exposed to the NA-NB-∆t pattern. The aligned

spikes stimulate n3 sufficiently to produce an output spike. However, when exposed

to the NB-NA-∆t pattern, the values of d1 and d2 produce misaligned spikes which

are insufficient to produce an output spike. To detect the special case of NA-NB-

Coincidence, as depicted in Figure 5.3.5, let d1=d2.

5.4 Complex Pattern Detection using Neurons and Delays

In this work, we define complex spatiotemporal patterns as any spatiotemporal

patterns that are not the three simple spatiotemporal patterns. Complex spatiotem-

poral patterns can be thought of as compositions of features where each feature can

be described as a simple spatiotemporal pattern. Therefore, it follows that complex

spatiotemporal patterns can be detected by compositions of simple pattern detec-

tors. A complex spatiotemporal pattern detector is depicted in Figure 5.4.1. The

CSPD is designed to detect a pattern composed of spiking output from seven dif-



95

d1

d2
n3+ =

Rate-Window Cluster Order-Biased Cluster Simple Pattern Detecting Network

n2

n1

n3

d1

d2

n2

n1

n3

VinC

VinA

VinB
Vout Vout

VinC

VinA

VinB
Vout

Fig. 5.3.2. The Simple Pattern Detecting Network is a composition of a
Rate-Window Cluster (n1, n2, and n3) and an Order-Biased Cluster (d1, d2,
and n3).The Simple Pattern Detecting Network can detect NA-NA-∆t and
the NA-NB-∆t simple spatiotemporal patterns, including the special case
of NA-NB-∆t, NA-NB-Coincidence, where ∆t=0.
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Fig. 5.3.3. The Rate-Window Cluster portion of the Simple Pattern De-
tecting Network and the Simple Pattern Detecting Network’s response to
spiking stimulus when configured to detect an NA-NA-∆t simple spatiotem-
poral pattern. Observe SPDN’s response to the first three pairs of spikes,
which are separated by ∆t=2 ms, 3 ms, and 4ms between leading edges,
respectively. The SPDN produces a spike in response to the spike pair
separated by 3 ms, but not 2 ms or 4 ms.
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ferent neurons, N1 through N7. For demonstration, the CSPD is designed to detect

three distinct spatiotemporal features–an NA-NA-∆t pattern, an NA-NB-∆t pattern,

and an NA-NB-Coincidence pattern–in order to detect the complex spatiotemporal

pattern.

Figure 5.4.1 also depicts the schematic symbol representations of the Simple Pat-

tern Detecting Network for NA-NA-∆t and NA-NB-∆t configurations and the pattern

detector designed to detect the highlighted features. The three features detected

by the Simple Pattern Detecting Networks 1, 2, and 3 in the pattern detector are

highlighted in goldenrod, coral, and blue, respectively. The first feature used by the

pattern detector, detected by Simple Pattern Detecting Network 1, is the NA-NA-∆t

simple pattern formed by the first and second spikes from N4, and is highlighted

in goldenrod. The second feature used by the pattern detector, detected by Simple

Pattern Detecting Network 2, is the NA-NB-∆t simple pattern formed by the sec-

ond spikes from N4 and N3, and is highlighted in coral. The third feature used by

the pattern detector, detected by Simple Pattern detecting Network 3, is the NA-

NB-Coincidence simple pattern formed by the first spikes from N1 and N5, and is

highlighted in blue.

Figure 5.4.2 depicts simulation results demonstrating complex spatiotemporal pat-

tern detection using the CSPD shown in in Figure 5.4.1. The input signal is a spa-

tiotemporal signal spanning seven neuron outputs consisting of random spikes com-

bined with spatiotemporal patterns at 25 ms, 50 ms, and 75 ms. The spatiotemporal

patterns are highlighted in gray. Vout is the output of the pattern detecting network.

Notice how the output of the pattern detector, Vout, coincides with the occurrence

of the spatiotemporal patterns—this is spatiotemporal pattern detection. This is
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achieved through the use of five simple pattern detecting networks detecting three

spatiotemporal two-spike features from the outputs of four neurons (N1, N3, N4, and

N5). This method of spatiotemporal pattern detection by detecting a subpattern is

consistent with more conventional methods, such as training, in which spiking neural

networks find the start of repeating patterns [17, 41]. Logically, if a trained SNN is

finding the start of a pattern, then it is not taking the entire pattern into consideration

before detecting the pattern, and is instead detecting a subpattern.

5.5 Computation

If we define computation as symbol manipulation within a logically consistent

framework, then spiking neural networks allow for computation using spatiotempo-

ral patterns as symbols by detecting patterns and issuing new patterns in response.

We now present methods for spatiotemporal symbol interpretation, generation, and

computation.

5.5.1 Spatiotemporal Symbol Interpretation, Generation, and Computation

Spatiotemporal symbol interpretation is spatiotemporal pattern detection within

the context of spatiotemporal computation. Spatiotemporal symbol generation is the

process through which a single spike undergoes series, parallel, and/or conditional

generation to create a spatiotemporal pattern. In series generation, an input spike

is applied to delays with different delay values in parallel so that a spike train is

produced from their collective outputs. In parallel generation, an input spike is

applied to the common input node of several delay elements, which are not in parallel,

so as to produce a spatiotemporal pattern from the outputs of the delay elements.

In conditional generation, an input spike is transmitted as is, delayed, or blocked

contingent upon some condition. Series, parallel, and conditional generation can be
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used in combination to generate elaborate spatiotemporal patterns from a single spike.

Figure 5.5.1 depicts stereotypes of series, parallel, and conditional generation.

Spatiotemporal computation is a symbol manipulation process through which spa-

tiotemporal patterns are detected, and then a corresponding spatiotemporal pattern

is emitted. Figure 5.5.2 depicts a Spatiotemporal Computating Element (STCE),

which is a proposed paradigm for computing with spatiotemporal symbols.

The operation of the STCE begins when stimulus and a reference spike, referred

to as a Frame, are applied. The Frame initiates a delay element to produce a spike

at a later time, and the stimulus is applied to the interpretation network. If the in-

terpretation network detects the stimulus, then interpreted stimulus is passed to the

condition network. The condition network responds conditionally to the interpreted

stimulus, which may include interrupting the delay element before it can produce a

delayed spike or sending signals to the response network. If the condition network

does not send signals to the response network, then the delay element is uninter-

rupted and produces a delayed spike to produce an empty frame. Upon reaching the

response network, the signals from the condition network are used to generate a new

spatiotemporal signal.

5.5.2 Half Adder

As an example of spatiotemporal computation we present a spatiotemporal half

adder SNN. Figure 5.5.3 depicts the schematic of the spatiotemporal half adder. For

simplicity, the symbols fed to the half adder are spatiotemporal patterns that can be

interpreted as binary with a frame spike. The interpretation network, highlighted in

goldenrod, detects and interprets the patterns in the spatiotemporal symbols. The

condition network, highlighted in coral, performs logical operations on the interpreted
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symbols and informs the response network. The response network, highlighted in blue,

produces the appropriate spatiotemporal response through generation based on the

response of the condition network. Figure 5.5.4 depicts the results of simulating the

half adder. The half adder responds to four spatiotemporal binary symbols—00F,

01F, 10F, and 11F where the 1’s and 0’s represent the presence or absence of a

spike and the F (not to be confused with a hexadecimal F) represents a frame spike.

The first symbol, 00F, is represented by a lone Fin spike at 1 ms in the simulation.

The half adder responds with a lone Fout spike at approximately 7 ms which can be

interpreted as 00F. What this means is 0+0 = 0 sum + 0 carry. The second symbol,

01F, is represented by coincidental VinB and Fin spikes at approximately 11 ms in

the simulation. The half adder responds with coincidental Sum and Fout spikes at

approximately 19 ms which can be interpreted as 10F. What this means is that 0 +

1 = 1 sum + 0 carry. The third symbol, 10F, is represented by coincidental VinA and

Fin spikes at approximately 21 ms in the simulation. The half adder responds with

coincidental Sum and Fout spikes at approximately 29 ms which can be interpreted

as 10F. What this means is that 1 + 0 = 1 sum + 0 carry. The fourth symbol, 11F,

is represented by coincidental VinA, VinB, and Fin spikes at approximately 31 ms in

the simulation. The half adder responds with coincidental Carry and Fout spikes at

approximately 38 ms which can be interpreted as 01F. What this means is that 1 +

1 = 0 sum + 1 carry.

5.6 Conclusion

This work discussed the design and operation of spatiotemporal computers using

SNNs constructed using a detect-and-generate paradigm. The operation of SPDNs

were explained, and simulations were performed for each of its three configurations:



104

n1

n2

n3

n4

n5

d1

d2

d3

VinA

VinB

VinA
VinB

Fin

Fout

Sum

Carry

Fin

Fin

Fig. 5.5.3. A spatiotemporal half adder implemented using the STCE
paradigm. The interpretation network is highlighted in goldenrod, the
condition network is highlighted in coral, and the response network is
highlighted in blue.



105

0

1.8

0

1.8

0

1.8

S
um

 (
V

)

0

1.8

C
ar

ry
 (

V
)

0

1.8

0 10 20 30 40 50
Time (ms)

0

1.8

0

0 1

1

0

0

1

0

0

0

0

1

0

1

1

1
V

   
 (

V
)

in
A

V
   

 (
V

)
in

B

F F F F

FFFF

F
   

(V
)

in

F
   

 (
V

)
ou

t

Fig. 5.5.4. Simulation results of exposing the spatiotemporal half adder
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NA-NA-∆t, NA-NB-∆t, and the special case of NA-NB-∆t, NA-NB-Coincidence. Sim-

ulations were performed to demonstrate the SPDN detecting each simple spatiotem-

poral pattern. Additional simulation was performed to demonstrate how a network of

SPDNs could form a CPDN and detect complex spatiotemporal patterns. Then, three

kinds of Spatiotemporal pattern generation were introduced: series, parallel, and con-

ditional. After that, a detect-and-generate spatiotemporal computing paradigm was

introduced that relied on the spatiotemporal pattern detection and generation tech-

niques which were presented. Finally, a simulation of a spatiotemporal half-adder was

performed to demonstrate the STCE computing paradigm. The results demonstrate

that a spatiotemporal computing paradigm can be used to perform computation in

the form of spatiotemporal symbol manipulation.
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6 CHAPTER SIX: SUMMARY AND FUTURE WORK

This chapter summarizes the conclusions from the previous chapters and suggests

areas to be explored for future research.

6.1 Spatiotemporal Pattern Recognition

Chapter 4 used R(t) elements and R(t)-based STDP circuits to enable STPR be-

havior in SNNs. The theory behind R(t) elements and the operation of STDP circuits

made from simple and compound R(t) element circuits were explained, and simula-

tions were performed. STDP is a Hebbian learning rule that updates synaptic weight

according to the temporal relationships between pre- and post-synaptic spikes. R(T)

elements, which are time-varying resistance elements, facillitate STDP by creating

time-varying voltage dividers with memristors. This means that a pre-synaptic spike

applied to the STDP circuit will have a different effect on the memristor depending

on the post-synaptic spike history7, and vice versa. STDP, including STDP facili-

tated by memristor-R(t) element circuits, has been shown to lead to STPR behavior,

wherein a SNN produces an output spike that coincides with the presentation of a

spatiotemporal pattern.

6.1.1 Contributions and Future Work

Contributions that were made with the work in Chapter 4 in the area of spatiotem-

poral pattern recognition were the creation of the R(t) model, using R(t) models to

create STDP circuits that enable frequency-influenced STDP learining rules, and us-

7A history that spans approximately five time constants.
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ing the R(t)-based STDP circuits to facilitate STPR. One possible direction for future

research would be to examine the novel learning rules that are possible due to R(t)

elements. For example, nothing precludes combining shaped pulses with R(t) ele-

ments. What would the characteristics of such a combination be? What would the

effect be on the time it takes to recognize a pattern?

6.2 Spatiotemporal Pattern Detection

Chapters 3 and 5 both used neural components to achieve STPD. The idea in

these chapters was to combine simple pattern detectors in order to detect complex

patterns.

The pattern detectors presented in Chapter 3 were composed of neural compo-

nents and digital logic gates to create a spatiotemporal pattern detector, whereas the

pattern detectors presented in Chapter 5 exclusively used neural components. In each

case, more complex patterns were detected by using combinations of the more simple

pattern detectors.

6.2.1 Contributions and Future Work

Contributions that were made with the work in Chapters 3 and 5 in the area of

spatiotemporal pattern detection were identifying and naming simple spatiotemporal

patterns, creating simple spatiotemporal pattern detectors, and combining simple

spatiotemporal pattern detectors in a tiling fashion in order to detect more complex

spatiotemporal patterns. However, because the pattern detectors were designed with

the capability to detect all of the simple patterns, components in each pattern detector

were always unused. Therefore, one possibility for future research in this area would

be to figure out intelligent consolidation—how to take away unnecessary or redundant

components, and how to maximize the use of what is already there.
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6.3 Spatiotemporal Computing

The end of Chapter 5 demonstrated a detect-and-generate spatiotemporal half

adder. Chapter 5 took the idea that computation is the manipulation of symbols

within a logical framework, and applied it to spatiotemporal patterns. The idea

behind the detect-and-generate computing paradigm is very simple; spatiotemporal

symbols are fed to the input of a SNN, and spatiotemporal symbols come out of the

other end that relate to the input in some logical manner.

To achieve this, an interpretation network, composed of SPDNs, detects and in-

terprets the patterns in spatiotemporal symbols. Then, a condition network performs

logical operations on the interpreted symbols and informs the generation network. Fi-

nally, a generation network produces the appropriate spatiotemporal response through

generation based on the response of the condition network.

6.3.1 Contributions and Future Work

Contributions that were made with the work in Chapter 5 in the area of spa-

tiotemporal computation were the discovery of spatiotemporal pattern generation,

the creation of the STCE model, and the detect-and-generate computing paradigm.

One possible avenue for future research would be to design a compatible memory for

a spiking computer. Different schemes could be examined for storing and recalling

spatiotemporal information. How will values be stored? How will they be recalled?

What would an addressing scheme look like in a detect-and-generate paradigm?
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[19] F. Ponulak and A. Kasiński, “Supervised learning in spiking neural networks

with resume: Sequence learning, classification, and spike shifting,” Neural com-

putation, vol. 22, no. 2, pp. 467–510, 2010.

[20] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations

by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[21] K. D. Cantley, R. C. Ivans, A. Subramaniam, and E. M. Vogel, “Spatio-

temporal pattern recognition in neural circuits with memory-transistor-driven

memristive synapses,” in 2017 International Joint Conference on Neural Net-

works (IJCNN), IEEE, 2017, pp. 4633–4640.

[22] D. O. Hebb, The organisation of behaviour: a neuropsychological theory. Sci-

ence Editions New York, 1949.



113

[23] F. Rosenblatt, “The perceptron: A probabilistic model for information storage

and organization in the brain.,” Psychological review, vol. 65, no. 6, p. 386,

1958.

[24] K. A. Boahen, “Point-to-point connectivity between neuromorphic chips using

address events,” IEEE Transactions on Circuits and Systems II: Analog and

Digital Signal Processing, vol. 47, no. 5, pp. 416–434, 2000.

[25] C. Medini, R. M. Zacharia, B. Nair, A. Vijayan, L. P. Rajagopal, and S. Di-

wakar, “Spike encoding for pattern recognition: Comparing cerebellum gran-

ular layer encoding and bsa algorithms,” in 2015 International Conference on

Advances in Computing, Communications and Informatics (ICACCI), IEEE,

2015, pp. 1619–1625.

[26] S. Dong, L. Zhu, D. Xu, Y. Tian, and T. Huang, “An efficient coding method

for spike camera using inter-spike intervals,” arXiv preprint arXiv:1912.09669,

2019.

[27] S. Panzeri, N. Brunel, N. K. Logothetis, and C. Kayser, “Sensory neural codes

using multiplexed temporal scales,” Trends in neurosciences, vol. 33, no. 3,

pp. 111–120, 2010.

[28] R. C. Ivans, K. D. Cantley, and J. L. Shumaker, “A cmos synapse design imple-

menting tunable asymmetric spike timing-dependent plasticity,” in 2017 IEEE

60th International Midwest Symposium on Circuits and Systems (MWSCAS),

IEEE, 2017, pp. 1125–1128.



114

[29] R. Ivans and K. D. Cantley, “A spatiotemporal pattern detector,” in 2019

IEEE 62nd International Midwest Symposium on Circuits and Systems (MWS-

CAS), 2019, pp. 444–447. doi: 10.1109/MWSCAS.2019.8884799.

[30] R. C. Ivans, S. G. Dahl, and K. D. Cantley, “A model for r(t) elements and r(t)-

based spike-timing-dependent plasticity with basic circuit examples,” IEEE

transactions on neural networks and learning systems, vol. 31, no. 10, pp. 4206–

4216, 2019.

[31] J. Hawkins and S. Blakeslee, On intelligence: how a new understanding of the

brain will lead to the creation of truly intelligent machines. Macmillan, 2007.

[32] B. Pakkenberg and H. J. G. Gundersen, “Neocortical neuron number in hu-

mans: Effect of sex and age,” Journal of comparative neurology, vol. 384, no. 2,

pp. 312–320, 1997.

[33] Y. Tang, J. R. Nyengaard, D. M. De Groot, and H. J. G. Gundersen, “To-

tal regional and global number of synapses in the human brain neocortex,”

Synapse, vol. 41, no. 3, pp. 258–273, 2001.

[34] H. Markram, J. Lübke, M. Frotscher, and B. Sakmann, “Regulation of synap-

tic efficacy by coincidence of postsynaptic aps and epsps,” Science, vol. 275,

no. 5297, pp. 213–215, 1997.

[35] G. Bi and M. Poo, “Synaptic modification by correlated activity: Hebb’s pos-

tulate revisited,” Annual review of neuroscience, vol. 24, no. 1, pp. 139–166,

2001.

https://doi.org/10.1109/MWSCAS.2019.8884799


115

[36] S. Song, K. D. Miller, and L. F. Abbott, “Competitive hebbian learning

through spike-timing-dependent synaptic plasticity,” Nature neuroscience, vol. 3,

no. 9, pp. 919–926, 2000.

[37] W. Bialek, F. Rieke, R. D. R. Van Steveninck, and D. Warland, “Reading a

neural code,” Science, vol. 252, no. 5014, pp. 1854–1857, 1991.

[38] C. Carr and M Konishi, “A circuit for detection of interaural time differences

in the brain stem of the barn owl,” Journal of Neuroscience, vol. 10, no. 10,

pp. 3227–3246, 1990.

[39] B. Glackin, J. A. Wall, T. M. McGinnity, L. P. Maguire, and L. J. McDaid,

“A spiking neural network model of the medial superior olive using spike tim-

ing dependent plasticity for sound localization,” Frontiers in computational

neuroscience, vol. 4, p. 18, 2010.

[40] J. A. Wall, L. J. McDaid, L. P. Maguire, and T. M. McGinnity, “Spiking neural

network model of sound localization using the interaural intensity difference,”

IEEE transactions on neural networks and learning systems, vol. 23, no. 4,

pp. 574–586, 2012.

[41] R. Guyonneau, R. VanRullen, and S. J. Thorpe, “Neurons tune to the earliest

spikes through stdp,” Neural Computation, vol. 17, no. 4, pp. 859–879, 2005.

[42] L. Chua, “Memristor-the missing circuit element,” IEEE Transactions on cir-

cuit theory, vol. 18, no. 5, pp. 507–519, 1971.

[43] L. O. Chua and S. M. Kang, “Memristive devices and systems,” Proceedings

of the IEEE, vol. 64, no. 2, pp. 209–223, 1976.



116

[44] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F.

Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, et al., “A million

spiking-neuron integrated circuit with a scalable communication network and

interface,” Science, vol. 345, no. 6197, pp. 668–673, 2014.

[45] S. Pradyumna and S. Rathod, “Analysis of cmos synapse generating excitatory

postsynaptic potential using dc control voltages,” in 2015 Global Conference

on Communication Technologies (GCCT), IEEE, 2015, pp. 433–436.

[46] V. Saxena, Memory controlled circuit system and apparatus, 61/973,754.

[47] J. M. Cruz-Albrecht, M. W. Yung, and N. Srinivasa, “Energy-efficient neuron,

synapse and stdp integrated circuits,” IEEE transactions on biomedical circuits

and systems, vol. 6, no. 3, pp. 246–256, 2012.

[48] S. Fusi, M. Annunziato, D. Badoni, A. Salamon, and D. J. Amit, “Spike-

driven synaptic plasticity: Theory, simulation, vlsi implementation,” Neural

computation, vol. 12, no. 10, pp. 2227–2258, 2000.

[49] X. Wu, V. Saxena, and K. Zhu, “Homogeneous spiking neuromorphic system

for real-world pattern recognition,” IEEE Journal on Emerging and Selected

Topics in Circuits and Systems, vol. 5, no. 2, pp. 254–266, 2015.

[50] S. Mitra, S. Fusi, and G. Indiveri, “Real-time classification of complex pat-

terns using spike-based learning in neuromorphic vlsi,” IEEE transactions on

biomedical circuits and systems, vol. 3, no. 1, pp. 32–42, 2008.

[51] P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer, “Fast-

classifying, high-accuracy spiking deep networks through weight and thresh-



117

old balancing,” in 2015 International joint conference on neural networks

(IJCNN), ieee, 2015, pp. 1–8.

[52] Q. Yu, R. Yan, H. Tang, K. C. Tan, and H. Li, “A spiking neural network

system for robust sequence recognition,” IEEE transactions on neural networks

and learning systems, vol. 27, no. 3, pp. 621–635, 2016.

[53] A. V. Gavrilov, A. A. Maliavko, and A. A. Yakimenko, “Key-threshold based

spiking neural network,” in 2017 Second Russia and Pacific Conference on

Computer Technology and Applications (RPC), IEEE, 2017, pp. 64–67.

[54] T. Schaffer, A. Stanaski, A. Glaser, and P. Franzon, The ncsu design kit for

ic fabrication through mosis, International Cadence User Group, 1998.

[55] T. V. Bliss and T. Lømo, “Long-lasting potentiation of synaptic transmission

in the dentate area of the anaesthetized rabbit following stimulation of the

perforant path,” The Journal of physiology, vol. 232, no. 2, pp. 331–356, 1973.

[56] G.-q. Bi and M.-m. Poo, “Synaptic modifications in cultured hippocampal

neurons: Dependence on spike timing, synaptic strength, and postsynaptic

cell type,” Journal of neuroscience, vol. 18, no. 24, pp. 10 464–10 472, 1998.

[57] M. H. Holmqvist and M. V. Srinivasan, “A visually evoked escape response of

the housefly,” Journal of comparative Physiology A, vol. 169, no. 4, pp. 451–

459, 1991.

[58] P. X. Joris, P. H. Smith, and T. C. Yin, “Coincidence detection in the auditory

system: 50 years after jeffress,” Neuron, vol. 21, no. 6, pp. 1235–1238, 1998.

[59] J. Lisman and N. Spruston, “Questions about stdp as a general model of

synaptic plasticity,” Frontiers in synaptic neuroscience, vol. 2, p. 140, 2010.



118

[60] H. Z. Shouval, S. S.-H. Wang, and G. M. Wittenberg, “Spike timing dependent

plasticity: A consequence of more fundamental learning rules,” Frontiers in

computational neuroscience, vol. 4, p. 19, 2010.

[61] H.-X. Wang, R. C. Gerkin, D. W. Nauen, and G.-Q. Bi, “Coactivation and

timing-dependent integration of synaptic potentiation and depression,” Nature

neuroscience, vol. 8, no. 2, pp. 187–193, 2005.

[62] J.-P. Pfister and W. Gerstner, “Triplets of spikes in a model of spike timing-

dependent plasticity,” Journal of Neuroscience, vol. 26, no. 38, pp. 9673–9682,

2006.

[63] W. Senn, “Beyond spike timing: The role of nonlinear plasticity and unreliable

synapses,” Biological cybernetics, vol. 87, no. 5, pp. 344–355, 2002.
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This appendix concerns the Neuron Circuit used in Chapter 5.

Makefile

The following code is the makefile used to control the neuron.

1 TARGET=neuron

2

3 all:

4 ngspice $(TARGET)_test.ngspice

5 gnuplot "plot.gnuplot"

6

7 show:

8 display figure.svg

9

10 clean:

11 rm bsim* figure*

12

13 plot:

14 gnuplot "plot.gnuplot"

15

16 pdf:

17 inkscape --file=figure_fig.svg --without -gui --export -

pdf=figure_fig.pdf

18

19 spice:

20 cat subcktPreamble.txt $(TARGET).spc | sed -e ’s/.end/.

ends/’ > $(TARGET).subckt
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Subcircuit Preamble

The following code is the subcircuit preamble used by the makefile to create the

subcircuit file from the exported SPICE code of the Xcircuit program, and is pulled

directly from

subcktPreamble.txt:

1 * A CMOS neuron

2

3 .subckt neuron iin vleak vreset vdump vout vdd gnd

4

5 * Models

6 .MODEL P1 PMOS LEVEL =14 VERSION =4.8.1 TNOM =27

7 .MODEL N1 NMOS LEVEL =14 VERSION =4.8.1 TNOM =27

8

9 * Parameters

10 .param lmbda =0.18u

11 .param lch ={4* lmbda}

12 .param pw={14* lmbda}

13 .param nw={6* lmbda}

14

15 * Circuit Description

Gnuplot file

The following code is the file used by the makefile to tell gnuplot how to plot the

data generated by the test file, and is pulled directly from

plot.gnuplot:
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1 set terminal svg size 300 ,400

2 set output "figure.svg"

3

4 set size 1,1

5 set origin 0,0

6 set multiplot layout 2,1

7

8 set yrange [ -0.2:2]

9 set ytics (0 ,1.8) font "Times New Roman , 14"

10 set xtics font "Times New Roman , 14"

11 set xlabel "Time (ms)" font "Times New Roman , 14" offset

0,0.5,0

12

13 set style line 1 lc rgb "red" lt 1 lw 1.5

14 set style line 2 lc rgb "blue" lt 1 lw 1.5

15 set style line 3 lc rgb "green" lt 1 lw 1.5

16 set style line 4 lc rgb "violet" lt 1 lw 1.5

17 set style line 5 lc rgb "black" lt 1 lw 1.5

18

19 unset key

20

21 set ylabel "Vin (V)" font "Times New Roman , 14" offset

3.5,0,0

22 plot "figure.data" using ($1 *1000) :($2) with lines ls 5
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23 set ylabel "Vout (V)" font "Times New Roman , 14" offset

3.5,0,0

24 plot "figure.data" using ($3 *1000) :($4) with lines ls 5

Subcircuit

The following code is for a leaky integrate-and-fire digital spiking neuron, written

for NGSPICE, and is imported directly from neuron.subckt:

1 * A CMOS neuron

2

3 .subckt neuron iin vleak vreset vdump vout vdd gnd

4

5 * Models

6 .MODEL P1 PMOS LEVEL =14 VERSION =4.8.1 TNOM =27

7 .MODEL N1 NMOS LEVEL =14 VERSION =4.8.1 TNOM =27

8

9 * Parameters

10 .param lmbda =0.18u

11 .param lch ={4* lmbda}

12 .param pw={14* lmbda}

13 .param nw={6* lmbda}

14

15 * Circuit Description

16 *SPICE circuit <neuron > from XCircuit v3.9 rev 73

17

18 MN1 iin vdump gnd gnd N1 W=nw L=lch
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19 C1 vout iin 1.0P

20 C2 iin gnd 1.0P

21 MN2 int7 vout gnd gnd N1 W=nw L=lch

22 MN3 int9 int12 gnd gnd N1 W=nw L=lch

23 MN4 iin vleak int9 gnd N1 W=nw L=lch

24 MN5 iin vreset int7 gnd N1 W=nw L=lch

25 MN6 vout int12 gnd gnd N1 W=nw L=lch

26 MN7 int12 iin gnd gnd N1 W=nw L=lch

27 MP1 vout int12 Vdd vdd P1 W=pw L=lch

28 MP2 int12 iin Vdd vdd P1 W=pw L=lch

29

30 .ends

Test File

The following code is for testing the neuron in NGSPICE, directly from

neuron_test.ngspice:

1 * Testing the neuron

2

3 .include ./ neuron.subckt

4

5 * Times

6 .param t1=1m

7 .param t2=3m

8 .param t3=5m

9 .param t4=7m
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10 .param t5=9m

11 .param t6=11m

12

13 * Circuit Voltages

14 .param v_vdd =1.8

15 .param v_vleak =0.4

16 .param v_vreset =0.5

17 VDD nvdd 0 DC v_vdd

18 VLEAK nvleak 0 DC v_vleak

19 VRESET nvreset 0 DC v_vreset

20

21 VinA nvinA nvinA1 0 pwl ( 0 0 t1 0 {t1 +0.01 ms} v_vdd {t1

+ 1.01ms} v_vdd {t1 +1.02ms} 0)

22 VinA1 nvinA1 nvinA2 0 pwl ( 0 0 t2 0 {t2 +0.01ms} v_vdd {

t2 + 1.01ms} v_vdd {t2 +1.02ms} 0)

23 VinA2 nvinA2 nvinA3 0 pwl ( 0 0 t3 0 {t3 +0.01ms} v_vdd {

t3 + 1.01ms} v_vdd {t3 +1.02ms} 0)

24 VinA3 nvinA3 nvinA4 0 pwl ( 0 0 t4 0 {t4 +0.01ms} v_vdd {

t4 + 1.01ms} v_vdd {t4 +1.02ms} 0)

25 VinA4 nvinA4 nvinA5 0 pwl ( 0 0 t5 0 {t5 +0.01ms} v_vdd {

t5 + 1.01ms} v_vdd {t5 +1.02ms} 0)

26 VinA5 nvinA5 0 0 pwl ( 0 0 t6 0 {t6 +0.01 ms} v_vdd {t6 +

1.01ms} v_vdd {t6 +1.02ms} 0)

27

28 * Device Under Test
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29 * iin vleak vreset vdump vout vdd gnd neuron

30 Xneuron1 nvinA nvleak nvreset gnd vout nvdd 0 neuron

31

32 * Transient simulation parameters

33 .tran 1u 50m

34

35 * Run the simulation and plot the results

36 .control

37 run

38 echo inputA(V) inputB(V) > figure.data

39 wrdata figure.data v(nvinA) v(vout)

40 quit

41 .endc

42

43 .end
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This appendix concerns the Synapse Circuit used in Chapter 5.

Makefile

The following code is the makefile used to control the synapse.

1 TARGET=synapse

2

3 all:

4 ngspice $(TARGET)_test.ngspice

5 gnuplot "plot.gnuplot"

6

7 show:

8 display figure.svg

9

10 clean:

11 rm bsim* figure*

12

13 plot:

14 gnuplot "plot.gnuplot"

15

16 pdf:

17 inkscape --file=figure_fig.svg --without -gui --export -

pdf=figure_fig.pdf

18

19 spice:

20 cat subcktPreamble.txt $(TARGET).spc | sed -e ’s/.end/.

ends/’ > $(TARGET).subckt
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Subcircuit Preamble

The following code is the subcircuit preamble used by the makefile to create the

subcircuit file from the exported SPICE code of the Xcircuit program, and is pulled

directly from

subcktPreamble.txt:

1 * A Synapse Circuit

2

3 .subckt synapse vin vpsop vweight iout vdd gnd

4

5 * Models

6 .MODEL P1 PMOS LEVEL =14 VERSION =4.8.1 TNOM =27

7 .MODEL N1 NMOS LEVEL =14 VERSION =4.8.1 TNOM =27

8

9 * Parameters

10 .param lmbda =0.18u

11 .param lch ={4* lmbda}

12 .param pw={14* lmbda}

13 .param nw={6* lmbda}

14

15 * Circuit Description

Gnuplot file

The following code is the file used by the makefile to tell gnuplot how to plot the

data generated by the test file, and is pulled directly from

plot.gnuplot:
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1 set terminal svg size 700 ,500

2 set output "figure.svg"

3

4 set size 1,1

5 set origin 0,0

6 set multiplot layout 3,1

7

8 set yrange [ -0.2:2]

9 set ytics (0 ,1.8) font "Times New Roman , 14"

10 set xtics font "Times New Roman , 14"

11 set xlabel "Time (ms)" font "Times New Roman , 14" offset

0,0.5,0

12

13 set style line 1 lc rgb "red" lt 1 lw 1.5

14 set style line 2 lc rgb "blue" lt 1 lw 1.5

15 set style line 3 lc rgb "green" lt 1 lw 1.5

16 set style line 4 lc rgb "violet" lt 1 lw 1.5

17 set style line 5 lc rgb "black" lt 1 lw 1.5

18

19 unset key

20

21 set ylabel "Vin (V)" font "Times New Roman , 14" offset

3.5,0,0

22 plot "figure.data" using ($1 *1000) :($2) with lines ls 5
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23 set ylabel "Soma (V)" font "Times New Roman , 14" offset

3.5,0,0

24 plot "figure.data" using ($3 *1000) :($4) with lines ls 5

25 set ylabel "Vout (V)" font "Times New Roman , 14" offset

3.5,0,0

26 plot "figure.data" using ($5 *1000) :($6) with lines ls 5

Subcircuit

The following code is for the synapse, written for NGSPICE, and is imported

directly from synapse.subckt:

1 * A Synapse Circuit

2

3 .subckt synapse vin vpsop vweight iout vdd gnd

4

5 * Models

6 .MODEL P1 PMOS LEVEL =14 VERSION =4.8.1 TNOM =27

7 .MODEL N1 NMOS LEVEL =14 VERSION =4.8.1 TNOM =27

8

9 * Parameters

10 .param lmbda =0.18u

11 .param lch ={4* lmbda}

12 .param pw={14* lmbda}

13 .param nw={6* lmbda}

14

15 * Circuit Description
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16 *SPICE circuit <synapse > from XCircuit v3.9 rev 73

17

18 MN1 int7 vpsop gnd gnd N1 W=nw L=lch

19 MP1 int7 vpsop vin vdd P1 W=pw L=lch

20 MP2 iout vweight int9 vdd P1 W=pw L=lch

21 MP3 int9 int8 Vdd vdd P1 W=pw L=lch

22 MN2 int8 int7 gnd gnd N1 W=nw L=lch

23 MP4 int8 int7 Vdd vdd P1 W=pw L=lch

24

25 .ends

Test File

The following code is for testing the synapse in NGSPICE, directly from

synapse_test.ngspice:

1 * Testing the synapse

2

3 .include ../ neuron/neuron.subckt

4 .include ./ synapse.subckt

5

6 * Times

7 .param t1=1m

8 .param t2=3m

9 .param t3=5m

10 .param t4=7m

11 .param t5=9m
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12 .param t6=11m

13

14 * Circuit Voltages

15 .param v_vdd =1.8

16 .param v_vleak =53m

17 .param v_vreset =60m

18 .param v_vweight ={v_vdd -65m}

19 VDD nvdd 0 DC v_vdd

20 VLEAK nvleak 0 DC v_vleak

21 VRESET nvreset 0 DC v_vreset

22 VWEIGHT nvweight 0 DC v_vweight

23

24 VinA nvinA nvinA1 0 pwl ( 0 0 t1 0 {t1 +0.01 ms} v_vdd {t1

+ 1.01ms} v_vdd {t1 +1.02ms} 0)

25 VinA1 nvinA1 nvinA2 0 pwl ( 0 0 t2 0 {t2 +0.01ms} v_vdd {

t2 + 1.01ms} v_vdd {t2 +1.02ms} 0)

26 VinA2 nvinA2 nvinA3 0 pwl ( 0 0 t3 0 {t3 +0.01ms} v_vdd {

t3 + 1.01ms} v_vdd {t3 +1.02ms} 0)

27 VinA3 nvinA3 nvinA4 0 pwl ( 0 0 t4 0 {t4 +0.01ms} v_vdd {

t4 + 1.01ms} v_vdd {t4 +1.02ms} 0)

28 VinA4 nvinA4 nvinA5 0 pwl ( 0 0 t5 0 {t5 +0.01ms} v_vdd {

t5 + 1.01ms} v_vdd {t5 +1.02ms} 0)

29 VinA5 nvinA5 0 0 pwl ( 0 0 t6 0 {t6 +0.01 ms} v_vdd {t6 +

1.01ms} v_vdd {t6 +1.02ms} 0)

30
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31 * Devices Under Test

32 ** Synapses

33 * vin vpsop vweight iout vdd gnd synapse

34 Xsynapse1 nvinA vout nvweight ns1 nvdd 0 synapse

35 ** Neurons

36 * iin vleak vreset vdump vout vdd gnd neuron

37 Xneuron1 ns1 nvleak nvreset gnd vout nvdd 0 neuron

38

39 * Transient simulation parameters

40 .tran 1u 50m

41

42 * Run the simulation and plot the results

43 .control

44 run

45 echo inputA(V) soma(V) vout(V) > figure.data

46 wrdata figure.data v(nvinA) v(ns1) v(vout)

47 quit

48 .endc

49

50 .end
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This appendix concerns the Delay Circuit used in Chapter 5.

Makefile

The following code is the makefile used to control the delay.

1 TARGET=delay

2

3 all:

4 ngspice $(TARGET)_test.ngspice

5 gnuplot "plot.gnuplot"

6

7 show:

8 display figure.svg

9

10 clean:

11 rm bsim* figure*

12

13 plot:

14 gnuplot "plot.gnuplot"

15

16 pdf:

17 inkscape --file=figure_fig.svg --without -gui --export -

pdf=figure_fig.pdf

18

19 spice:

20 cat subcktPreamble.txt $(TARGET).spc | sed -e ’s/.end/.

ends/’ > $(TARGET).subckt
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Subcircuit Preamble

The following code is the subcircuit preamble used by the makefile to create the

subcircuit file from the exported SPICE code of the Xcircuit program, and is pulled

directly from

subcktPreamble.txt:

1 * A Delay Circuit

2

3 .subckt delay vin vdelay vreset vout vdd gnd

4

5 * Models

6 .MODEL P1 PMOS LEVEL =14 VERSION =4.8.1 TNOM =27

7 .MODEL N1 NMOS LEVEL =14 VERSION =4.8.1 TNOM =27

8

9 * Parameters

10 .param lmbda =0.18u

11 .param lch ={4* lmbda}

12 .param pw={14* lmbda}

13 .param nw={6* lmbda}

14

15 * Circuit Description

Gnuplot file

The following code is the file used by the makefile to tell gnuplot how to plot the

data generated by the test file, and is pulled directly from

plot.gnuplot:
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1 set terminal svg size 700 ,500

2 set output "figure.svg"

3

4 set size 1,1

5 set origin 0,0

6 set multiplot layout 4,1

7

8 set yrange [ -0.2:2]

9 set ytics (0 ,1.8) font "Times New Roman , 14"

10 set xtics font "Times New Roman , 14"

11 set xlabel "Time (ms)" font "Times New Roman , 14" offset

0,0.5,0

12

13 set style line 1 lc rgb "red" lt 1 lw 1.5

14 set style line 2 lc rgb "blue" lt 1 lw 1.5

15 set style line 3 lc rgb "green" lt 1 lw 1.5

16 set style line 4 lc rgb "violet" lt 1 lw 1.5

17 set style line 5 lc rgb "black" lt 1 lw 1.5

18

19 unset key

20

21 set ylabel "Vin (V)" font "Times New Roman , 14" offset

3.5,0,0

22 plot "figure.data" using ($1 *1000) :($2) with lines ls 5
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23 set ylabel "Soma1" font "Times New Roman , 14" offset

3.5,0,0

24 plot "figure.data" using ($3 *1000) :($4) with lines ls 5

25 set ylabel "Soma2" font "Times New Roman , 14" offset

3.5,0,0

26 plot "figure.data" using ($5 *1000) :($6) with lines ls 5

27 set ylabel "Vout (V)" font "Times New Roman , 14" offset

3.5,0,0

28 plot "figure.data" using ($7 *1000) :($8) with lines ls 5

Subcircuit

The following code is for the delay, written for NGSPICE, and is imported directly

from delay.subckt:

1 * A Delay Circuit

2

3 .subckt delay vin vdelay vreset vout vdd gnd

4

5 * Models

6 .MODEL P1 PMOS LEVEL =14 VERSION =4.8.1 TNOM =27

7 .MODEL N1 NMOS LEVEL =14 VERSION =4.8.1 TNOM =27

8

9 * Parameters

10 .param lmbda =0.18u

11 .param lch ={4* lmbda}

12 .param pw={14* lmbda}
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13 .param nw={6* lmbda}

14

15 * Circuit Description

16 *SPICE circuit <delay > from XCircuit v3.9 rev 73

17

18 MN1 soma1 vout gnd gnd N1 W=lch L={4*nw}

19 MN2 soma2 vin gnd gnd N1 W=nw L=lch

20 MP1 soma2 vdelay int9 vdd P1 W=pw L=lch

21 C1 vout soma2 1.0P

22 MN3 vout int23 gnd gnd N1 W=nw L=lch

23 MN4 int23 soma2 gnd gnd N1 W=nw L=lch

24 MP2 vout int23 vdd vdd P1 W=pw L=lch

25 MP3 int23 soma2 vdd vdd P1 W=pw L=lch

26 MN5 vin vin soma1 gnd N1 W=nw L=lch

27 MN6 int19 vout gnd gnd N1 W=nw L=lch

28 MN7 soma2 vreset int19 gnd N1 W=nw L=lch

29 C2 soma2 gnd 1.0P

30 C3 int9 soma1 1.0P

31 C4 soma1 gnd 1.0P

32 MN8 int9 int7 gnd gnd N1 W=nw L=lch

33 MN9 int7 soma1 gnd gnd N1 W=nw L=lch

34 MP4 int9 int7 vdd vdd P1 W=pw L=lch

35 MP5 int7 soma1 vdd vdd P1 W=pw L=lch

36

37 .ends
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Test File

The following code is for testing the synapse in NGSPICE, directly from

delay_test.ngspice:

1 * Testing the delay

2

3 .include ./ delay.subckt

4

5 * Times

6 .param t1=1m

7 .param t2=3m

8 .param t3=5m

9 .param t4=7m

10 .param t5=9m

11 .param t6=11m

12

13 * Circuit Voltages

14 .param v_vdd =1.8

15 .param v_vdelay ={v_vdd -25m}

16 .param v_vreset =68m

17 VDD nvdd 0 DC v_vdd

18 VDELAY nvdelay 0 DC v_vdelay

19 VRESET nvreset 0 DC v_vreset

20

21 VinA nvinA nvinA1 0 pwl ( 0 0 t1 0 {t1 +0.01 ms} v_vdd {t1

+ 1.01ms} v_vdd {t1 +1.02ms} 0)
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22 VinA1 nvinA1 nvinA2 0 pwl ( 0 0 t2 0 {t2 +0.01ms} v_vdd {

t2 + 1.01ms} v_vdd {t2 +1.02ms} 0)

23 VinA2 nvinA2 nvinA3 0 pwl ( 0 0 t3 0 {t3 +0.01ms} v_vdd {

t3 + 1.01ms} v_vdd {t3 +1.02ms} 0)

24 VinA3 nvinA3 nvinA4 0 pwl ( 0 0 t4 0 {t4 +0.01ms} v_vdd {

t4 + 1.01ms} v_vdd {t4 +1.02ms} 0)

25 VinA4 nvinA4 nvinA5 0 pwl ( 0 0 t5 0 {t5 +0.01ms} v_vdd {

t5 + 1.01ms} v_vdd {t5 +1.02ms} 0)

26 VinA5 nvinA5 0 0 pwl ( 0 0 t6 0 {t6 +0.01 ms} v_vdd {t6 +

1.01ms} v_vdd {t6 +1.02ms} 0)

27

28 * Device Under Test

29 ** Delay Circuit

30 * vin vdelay vreset vout vdd gnd delay

31 Xdelay1 nvinA nvdelay nvreset vout nvdd 0 delay

32

33 * Transient simulation parameters

34 .tran 1u 25m

35

36 * Run the simulation and plot the results

37 .control

38 run

39 echo inputA(V) soma1(V) soma2(V) Vout(V) > figure.data

40 wrdata figure.data v(nvinA) v(Xdelay1.soma1) v(Xdelay1.

soma2) v(vout)
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41 quit

42 .endc

43

44 .end
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APPENDIX D

NGSPICE Code for a Delay with an Inhibitory Connection
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This appendix concerns the Delay Circuit with an inhibitory connection used in

Chapter 5.

Makefile

The following code is the makefile used to control the delay.

1 TARGET=delay

2

3 all:

4 ngspice $(TARGET)_test.ngspice

5 gnuplot "plot.gnuplot"

6

7 show:

8 display figure.svg

9

10 clean:

11 rm bsim* figure*

12

13 plot:

14 gnuplot "plot.gnuplot"

15

16 pdf:

17 inkscape --file=figure_fig.svg --without -gui --export -

pdf=figure_fig.pdf

18

19 spice:
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20 cat subcktPreamble.txt $(TARGET).spc | sed -e ’s/.end/.

ends/’ > $(TARGET).subckt

Subcircuit Preamble

The following code is the subcircuit preamble used by the makefile to create the

subcircuit file from the exported SPICE code of the Xcircuit program, and is pulled

directly from

subcktPreamble.txt:

1 * A Delay Circuit

2

3 .subckt delay vin vdump vdelay vreset vout vdd gnd

4

5 * Models

6 .MODEL P1 PMOS LEVEL =14 VERSION =4.8.1 TNOM =27

7 .MODEL N1 NMOS LEVEL =14 VERSION =4.8.1 TNOM =27

8

9 * Parameters

10 .param lmbda =0.18u

11 .param lch ={4* lmbda}

12 .param pw={14* lmbda}

13 .param nw={6* lmbda}

14

15 * Circuit Description
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Gnuplot file

The following code is the file used by the makefile to tell gnuplot how to plot the

data generated by the test file, and is pulled directly from

plot.gnuplot:

1 set terminal svg size 700 ,500

2 set output "figure.svg"

3

4 set size 1,1

5 set origin 0,0

6 set multiplot layout 4,1

7

8 set yrange [ -0.2:2]

9 set ytics (0 ,1.8) font "Times New Roman , 14"

10 set xtics font "Times New Roman , 14"

11 set xlabel "Time (ms)" font "Times New Roman , 14" offset

0,0.5,0

12

13 set style line 1 lc rgb "red" lt 1 lw 1.5

14 set style line 2 lc rgb "blue" lt 1 lw 1.5

15 set style line 3 lc rgb "green" lt 1 lw 1.5

16 set style line 4 lc rgb "violet" lt 1 lw 1.5

17 set style line 5 lc rgb "black" lt 1 lw 1.5

18

19 unset key

20
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21 set ylabel "Vin (V)" font "Times New Roman , 14" offset

3.5,0,0

22 plot "figure.data" using ($1 *1000) :($2) with lines ls 5

23 set ylabel "Soma1" font "Times New Roman , 14" offset

3.5,0,0

24 plot "figure.data" using ($3 *1000) :($4) with lines ls 5

25 set ylabel "Soma2" font "Times New Roman , 14" offset

3.5,0,0

26 plot "figure.data" using ($5 *1000) :($6) with lines ls 5

27 set ylabel "Vout (V)" font "Times New Roman , 14" offset

3.5,0,0

28 plot "figure.data" using ($7 *1000) :($8) with lines ls 5

Subcircuit

The following code is for the delay, written for NGSPICE, and is imported directly

from delay.subckt:

1 * A Delay Circuit

2

3 .subckt delay vin vdump vdelay vreset vout vdd gnd

4

5 * Models

6 .MODEL P1 PMOS LEVEL =14 VERSION =4.8.1 TNOM =27

7 .MODEL N1 NMOS LEVEL =14 VERSION =4.8.1 TNOM =27

8

9 * Parameters
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10 .param lmbda =0.18u

11 .param lch ={4* lmbda}

12 .param pw={14* lmbda}

13 .param nw={6* lmbda}

14

15 * Circuit Description

16 *SPICE circuit <delay > from XCircuit v3.9 rev 73

17

18 MN99 soma1 vdump gnd gnd N1 W=lch L={4*nw}

19 MN1 soma1 vout gnd gnd N1 W=lch L={4*nw}

20 MN2 soma2 vdump gnd gnd N1 W=nw L=lch

21 MP1 soma2 vdelay int10 vdd P1 W=pw L=lch

22 C1 vout soma2 1.0P

23 MN3 vout int24 gnd gnd N1 W=nw L=lch

24 MN4 int24 soma2 gnd gnd N1 W=nw L=lch

25 MP2 vout int24 vdd vdd P1 W=pw L=lch

26 MP3 int24 soma2 vdd vdd P1 W=pw L=lch

27 MN5 vin vin soma1 gnd N1 W=nw L=lch

28 MN6 int20 vout gnd gnd N1 W=nw L=lch

29 MN7 soma2 vreset int20 gnd N1 W=nw L=lch

30 C2 soma2 gnd 1.0P

31 C3 int10 soma1 1.0P

32 C4 soma1 gnd 1.0P

33 MN8 int10 int8 gnd gnd N1 W=nw L=lch

34 MN9 int8 soma1 gnd gnd N1 W=nw L=lch
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35 MP4 int10 int8 vdd vdd P1 W=pw L=lch

36 MP5 int8 soma1 vdd vdd P1 W=pw L=lch

37

38 .ends

Test File

The following code is for testing the synapse in NGSPICE, directly from

delay_test.ngspice:

1 * Testing the delay

2

3 .include ./ delay.subckt

4

5 * Times

6 .param t1=1m

7 .param t2=3m

8 .param t3=5m

9 .param t4=7m

10 .param t5=9m

11 .param t6=11m

12

13 * Circuit Voltages

14 .param v_vdd =1.8

15 .param v_vdelay ={v_vdd -25m}

16 .param v_vreset =68m

17 VDD nvdd 0 DC v_vdd
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18 VDELAY nvdelay 0 DC v_vdelay

19 VRESET nvreset 0 DC v_vreset

20

21 VinA nvinA nvinA1 0 pwl ( 0 0 t1 0 {t1 +0.01 ms} v_vdd {t1

+ 1.01ms} v_vdd {t1 +1.02ms} 0)

22 VinA1 nvinA1 nvinA2 0 pwl ( 0 0 t2 0 {t2 +0.01ms} v_vdd {

t2 + 1.01ms} v_vdd {t2 +1.02ms} 0)

23 VinA2 nvinA2 nvinA3 0 pwl ( 0 0 t3 0 {t3 +0.01ms} v_vdd {

t3 + 1.01ms} v_vdd {t3 +1.02ms} 0)

24 VinA3 nvinA3 nvinA4 0 pwl ( 0 0 t4 0 {t4 +0.01ms} v_vdd {

t4 + 1.01ms} v_vdd {t4 +1.02ms} 0)

25 VinA4 nvinA4 nvinA5 0 pwl ( 0 0 t5 0 {t5 +0.01ms} v_vdd {

t5 + 1.01ms} v_vdd {t5 +1.02ms} 0)

26 VinA5 nvinA5 0 0 pwl ( 0 0 t6 0 {t6 +0.01 ms} v_vdd {t6 +

1.01ms} v_vdd {t6 +1.02ms} 0)

27

28 Vdump nvdump 0 0 pwl ( 0 0 t3 0 {t3 +0.01 ms} v_vdd {t3 +

1.01ms} v_vdd {t3 +1.02ms} 0)

29

30 * Device Under Test

31 ** Delay Circuit

32 * vin vdump vdelay vreset vout vdd gnd delay

33 Xdelay1 nvinA nvdump nvdelay nvreset vout nvdd 0 delay

34

35 * Transient simulation parameters
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36 .tran 1u 25m

37

38 * Run the simulation and plot the results

39 .control

40 run

41 echo inputA(V) soma1(V) soma2(V) Vout(V) > figure.data

42 wrdata figure.data v(nvinA) v(Xdelay1.soma1) v(Xdelay1.

soma2) v(vout)

43 quit

44 .endc

45

46 .end
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